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In this work we consider de Branges spaces where the multiplication operator by the 
independent variable is not densely defined. First, we study the canonical selfadjoint 
extensions of the multiplication operator as a family of rank-one perturbations from 
the viewpoint of the theory of de Branges spaces. Then, on the basis of the obtained 
results, we provide new necessary and sufficient conditions for a real, zero-free 
function to lie in a de Branges space.
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1. Introduction

In this paper we deal with some properties of the class of de Branges spaces (dB spaces) characterized 
by the fact that the operator S of multiplication by the independent variable is not densely defined. We 
recall that a de Branges space B is a Hilbert space of entire functions which can be defined by means of an 
Hermite–Biehler function e(z) (for details see Section 2). As it is well known, when the domain of S, denoted 
dom(S), is not dense, its codimension equals one [3, Theorem 29]. In particular, in such case dom(S) is 
orthogonal to one of the associated functions

sβ(z) := i

2
[
eiβe(z) − e−iβe#(z)

]
= sin β sπ/2(z) + cosβ s0(z), (1)

where β ∈ [0, π). As we recall in Section 3, this family of functions is in one-to-one correspondence with 
the set of canonical (that is, within B) selfadjoint extensions Sβ of S. Moreover, the function sβ(z) that is 
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orthogonal to dom(S) is the only one of this family that belongs to B. Without loss of generality we shall 
henceforth assume that this occurs for s0(z) (otherwise one can always perform a change of parametrization).

We begin by looking at the operator S and its canonical selfadjoint extensions. The main result here is 
Theorem 3.4, where we render the selfadjoint operator extensions of S as a family of rank-one perturbations 
of Sπ/2 along the function s0(z) ∈ B, viz.,

Sβ = Sπ/2 −
cotβ
π

〈
s0(·), ·

〉
Bs0(z), β ∈ (0, π). (2)

Generically speaking, a formula of this sort is known to be valid from the abstract theory of rank-one per-
turbations of relations with deficiency indices (1, 1); see for instance [4]. However, we derive (2) exclusively 
from the properties of functions in dB spaces and the family sβ(z), β ∈ [0, π). We believe that this deriva-
tion yields further insight on the interplay between the functions sβ(z) and the corresponding selfadjoint 
extensions of S. In passing, we note that the selfadjoint extension S0 is not itself an operator but rather a 
(multi-valued) linear relation; see (7) below.

Eq. (2) suggests studying whether s0(z) is a generating vector of a selfadjoint extension of S. For a 
definition of generating vector we refer the reader to [1, Section 69, Definition 1]. Theorem 3.5 asserts 
that s0(z) is a generating vector for Sπ/2, and therefore, for all of the selfadjoint extensions of S with the 
exception of S0.

With these results at hand, we tackle the question of whether a dB space of the class considered in this 
work has a zero-free function. The existence of a real zero-free function in a dB space (or more generally, 
in certain spaces of functions associated with it) has been studied in great detail; see for instance [8,11,12]. 
From the point of view of Krein’s theory of entire operators [7], if g(z) ∈ B is zero-free then it is an entire 
gauge for S, viz., it satisfies

B = ran(S − wI) � span
{
g(z)

}
, ∀w ∈ C. (3)

In Theorem 4.1 we show that a real zero-free function of the form sβ(z)/jβ(z) is in B, where jβ(z) is any 
real entire function whose zero-set coincides with that of sβ(z), if and only if

1
jβ(z) =

∞∑
k=1

ck
z − xk

,

where {ck}k∈N satisfies

∞∑
k=1

|ck|2
∣∣∣∣s′β(xk)
s0(xk)

∣∣∣∣ < ∞.

Theorem 4.1 does not hold for β = 0. This case is treated apart in Theorem 4.2, where specific necessary 
and sufficient conditions, for a real zero-free function of the form s0(z)/j0(z) to be in B, are given. This 
characterization is based on the fact, elaborated in Remark 4, that every zero-free function in B is a 
generating vector for some, hence every, selfadjoint operator extension of S.

According to [12, Theorem 3.2], if there exists a real zero-free function in the dB space, then this function 
is unique up to a multiplicative real constant. Therefore, in this case, all the functions sβ(z)/jβ(z), β ∈ [0, π), 
are basically the same one. Thus, Theorems 4.1 and 4.2 give two different characterizations of dB spaces 
with nondensely defined multiplication operator and having zero-free functions. Note also that, since (3)
means that S is an entire operator, each of these theorems provides necessary and sufficient conditions for 
the operator S to be entire.
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It is worth remarking that the characterizations of dB spaces with zero-free functions given by Theo-
rems 4.1 and 4.2 differ from all the characterizations already known, viz., from the one stated by de Branges 
[3, Theorem 25] and those found, with diverse degree of generalization, in [8,11,12].

By the end of this note we briefly address the question of how the generating vector s0(z) and the entire 
gauge g(z) are related. Proposition 4.4 is a simple observation on a connection between these two functions 
within the dB space.

2. Preliminaries

In what follows by a dB space we will always mean a de Branges Hilbert space.
The usual definition of a dB space starts from an Hermite–Biehler function, that is, an entire function 

e(z) satisfying |e(z)| > |e(z)| for all z ∈ C
+. Then, the dB space generated by e(z) is defined as

B(e) :=
{
f(z) entire : f(z)/e(z), f#(z)/e(z) ∈ H2

(
C

+)},
where H2(C+) is the Hardy space

H2
(
C

+) :=
{
f(z) is holomorphic in C

+ : sup
y>0

∫
R

∣∣f(x + iy)
∣∣2dx < ∞

}
;

here C+ denotes the open upper half-plane. We also use the standard notation f#(z) := f(z). The linear 
space B(e) equipped with the inner product

〈g, f〉B :=
∫
R

g(x)f(x)
|e(x)|2 dx (4)

is a Hilbert space [10, Theorem 2.2].
There are alternative definitions of a dB space; see for instance [10, Proposition 2.1] and [3, Chap-

ter 2]. It is also possible to define a de Branges space without relying on a given Hermite–Biehler function 
[3, Problem 50]. Moreover, a given dB space can be generated by different Hermite–Biehler functions 
[2, Theorem 1].

By definition, a dB space has a reproducing kernel, that is, there exists a function k(z, w) that belongs to 
B for all w ∈ C and satisfies the property 〈k(·, w), f(·)〉B = f(w) for all f(z) ∈ B. Moreover, k(w, z) = k(z, w)
and k(z, w) = k(z, w) [3, Theorem 23].

One important operator in a dB space is the operator of multiplication by the independent variable,

dom(S) =
{
f(z) ∈ B : zf(z) ∈ B

}
, (Sf)(z) := zf(z).

This operator is symmetric, closed, regular, and has deficiency indices (1, 1). Its domain has codimension 1 
or 0, depending on whether one (and in that case, only one) of the functions sβ(z) is within B or none is 
[3, Theorem 29].

To any de Branges space there corresponds a so-called space of associated functions [3, Section 25]. This 
space can be succinctly defined by

assocB := B + zB

(see [5, Lemma 4.5]). Within assocB lies the distinguished family of entire functions sβ(z) defined by (1). 
Generically, sβ(z) ∈ assocB\B. As already mentioned, this family of functions is in bijective correspondence 
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with the set of canonical selfadjoint extension of S (see (6) and (7) below). From its definition, it follows 
that sβ(z) is real (that is, it satisfies sβ(z) = sβ(z)), it can also be verified that this function has only simple 
zeros and its zero-set coincides with the spectrum of the corresponding selfadjoint extension Sβ.

The reproducing kernel can be written in terms of the functions sβ(z). In particular [8, Section 2],

k(z, w) =
{

sπ/2(z)s0(w)−s0(z)sπ/2(w)
π(z−w) , z �= w,

1
π [s′π/2(z)s0(z) − sπ/2(z)s′0(z)], z = w.

(5)

3. Selfadjoint extensions of S

Since we are assuming that the multiplication operator S in B is not densely defined, one of the functions 
sβ(z) necessarily belongs to B. As already mentioned, we may suppose that this happens for β = 0. Conse-
quently, dom(S)⊥ = span{s0(z)} [3, Theorem 29]. The selfadjoint operator extensions of S, corresponding 
to β ∈ (0, π), can be described as follows [5, Propositions 4.5 and 6.1] (cf. [11, Proposition 3.8]),

dom(Sβ) =
{
g(z) = sβ(w)f(z) − sβ(z)f(w)

sin β(z − w) , f(z) ∈ B, w ∈ C

}
, (6a)

(Sβg)(z) = zg(z) + 1
sin β

f(w)sβ(z), (6b)

while the remainder selfadjoint extension of S is given by the linear relation

S0 =
{(

g(z), zg(z) + cs0(z)
)

: g(z) ∈ dom(S), c ∈ C
}
; (7)

clearly dom(S0) = dom(S).

Lemma 3.1. Assume s0(z) ∈ B. Then dom(Sβ) = dom(Sπ/2) for all β ∈ (0, π). Furthermore,

(Sβg)(z) = (Sπ/2g)(z) + cosβ
sin β

f(w)s0(z), (8)

for all g(z) ∈ dom(Sβ) and where f(z) is related to g(z) by (6a).

Proof. Consider g(z) ∈ dom(Sβ). By (6a),

g(z) = sβ(w)f(z) − sβ(z)f(w)
sin β(z − w)

for some f(z) ∈ B. Using (1) this can be written as

g(z) =
sπ/2(w)f(z) − sπ/2(z)f(w)

z − w
+ cosβ

sin β

s0(w)f(z) − s0(z)f(w)
z − w

. (9)

The first term above belongs to dom(Sπ/2) due to (6a), hence the second one belongs to B. Moreover, since 
s0(z) ∈ B, the numerator of the second term is in B and, therefore, it is in ran(S − wI). Thus, the second 
term in (9) lies in dom(S). Taking into account that dom(S) ⊂ dom(Sπ/2), one concludes that there exists 
n(z) ∈ B such that

cosβ s0(w)f(z) − s0(z)f(w) =
sπ/2(w)n(z) − sπ/2(z)n(w)

. (10)
sin β z − w z − w



1000 L.O. Silva, J.H. Toloza / J. Math. Anal. Appl. 421 (2015) 996–1005
The fact that both terms in (9) belong to dom(Sπ/2) shows that dom(Sβ) ⊆ dom(Sπ/2). Since in the 
argument above we can switch the roles of Sβ and Sπ/2, we in fact have dom(Sβ) = dom(Sπ/2).

Since the numerator of the l.h.s. of (10) lies in B, it also does the numerator of the r.h.s. As sπ/2(z) /∈ B, 
necessarily n(w) = 0, that is, n(z) ∈ ran(S − wI). Let h(z) := f(z) + n(z). Then, resorting to (1) once 
again, we obtain

(Sβg)(z) = zg(z) + 1
sin β

f(w)sβ(z)

= zg(z) + f(w)sπ/2(z) + cosβ
sin β

f(w)s0(z)

= zg(z) + h(w)sπ/2(z) − n(w)sπ/2(z) + cosβ
sin β

f(w)s0(z),

which yields (8). �
The following assertion does not depend on assuming that a function sβ(z) is in B (that is, it holds on 

any dB space).

Lemma 3.2. For every sβ(z), β ∈ [0, π), and h(z) ∈ dom(S),

∞∫
−∞

sβ(x)h(x)
|e(x)|2 dx = 0.

Proof. Let x0 be a zero of sβ(z). Then, by (6), k(z) := sβ(z)/(z − x0) is an eigenfunction of Sβ with 
eigenvalue x0. Therefore,

∞∫
−∞

sβ(x)h(x)
|e(x)|2 dx =

∞∫
−∞

k(x)(x− x0)h(x)
|e(x)|2 dx =

〈
k(·), (S − x0I)h(·)

〉
B = 0,

where the last identity follows after realizing that k(z) ∈ ker(S∗ − x0I) and the multi-valued part of S∗

equals span{s0(z)} [4]. �
Lemma 3.3. Let s0(z) ∈ B. For g(z) ∈ dom(Sβ), f(z) ∈ B and w ∈ C related to each other by (6a), one has 
〈s0(·), g(·)〉B = −πf(w).

Proof. Let us start by considering (9). As already mentioned, the second term of this identity lies in dom(S), 
so

〈
s0(·), g(·)

〉
B =

∞∫
−∞

s0(x)sπ/2(w)f(x) − s0(x)sπ/2(x)f(w)
|e(x)|2(x− w) dx

= −π
〈
k(·, w), f(·)

〉
B

+
∞∫

−∞

sπ/2(x)
|e(x)|2

[
s0(w)f(x) − s0(x)f(w)

x− w

]
dx,

where the fact that the functions sβ(z) are real has been used. In the second term, the expression between 
squared brackets lies in dom(S) so by Lemma 3.2 this term equals zero. Obviously the first term equals 
−πf(w) so the assertion is proven. �
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Theorem 3.4. Assume s0(z) ∈ B. Then the set of canonical selfadjoint operator extensions of S is given by 
dom(Sβ) = dom(Sπ/2),

Sβ = Sπ/2 −
cotβ
π

〈
s0(·), ·

〉
Bs0(z), (11)

for β ∈ (0, π).

Proof. The assertion follows straightforwardly from Lemmas 3.1 and 3.3. �
The previous discussion generalizes effortless if one assumes that sγ(z) ∈ B, γ ∈ [0, π). For β ∈ [γ, γ+π), 

it is easy to see that

sβ(z) = sin(β − γ)sγ+π/2(z) + cos(β − γ)sγ(z),

so instead of (11) one has

Sβ = Sγ+π/2 −
cot(β − γ)

π

〈
sγ(·), ·

〉
Bsγ(z),

now for β ∈ (γ, γ + π).
Now we turn to the proof of the fact that s0(z) is generating element (see [1, Section 69]) of Sπ/2.

Theorem 3.5. Assume that s0(z) ∈ B. Then, for every β ∈ (0, π), s0(z) is a generating vector for the 
operator Sβ.

Proof. Since s0(z) ∈ B, one has, on the basis of (6a) and (6b), that

(Sπ/2 − wI)−1s0(z) = 1
sπ/2(w)

sπ/2(w)s0(z) − sπ/2(z)s0(w)
z − w

= − π

sπ/2(w)k(z, w)

for all w /∈ spec(Sπ/2). Hence, taking into account that (see [11, Section 3])

k(z, w) ∈ ker
(
S∗ − wI

)
for any w ∈ C, (12)

one verifies

spanw∈spec(S0)
{
(Sπ/2 − wI)−1s0(z)

}
= B.

Thus, s0(z) is a generating element for Sπ/2, but then, it can be derived from (11), that s0(z) is a generating 
vector for Sβ with β ∈ (0, π). �
Remark 1. Alternatively, s0(z) is a generating vector for Sβ, β ∈ (0, π), because it has a nonzero projection 
to each eigenspace of Sβ. Indeed, this follows from (12) and the fact that the eigenvalues of Sβ with β ∈ (0, π)
never intersect the zeros of s0(z). In passing, it is also clear that s0(z) is not a generating vector for S0.
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4. On the existence of a zero-free function

Let Eβ(t) be the resolution of the identity of Sβ, β ∈ (0, π). Define the family of spectral functions

mβ(t) :=
〈
s0(·), Eβ(t)s0(·)

〉
B =

∑
xn<t

|s0(xn)|2
‖k(·, xn)‖2

B
, {xn}n∈N = spec(Sβ).

Since s0(z) is a generating element of Sβ, β ∈ (0, π), one can consider the family of canonical isometries 
Uβ : L2(R, mβ) onto−→ B (cf. [1, Section 69, Theorem 2]) given by

(Uβf)(z) := f(S)s0(z) =
∑

xn∈spec(Sβ)

f(xn)〈k(·, xn), s0(·)〉B
‖k(·, xn)‖2

B
k(z, xn). (13)

Theorem 4.1. Assume s0(z) ∈ B and fix β ∈ (0, π). Let jβ(z) be any real entire function with simple zeros 
exactly at {xn}n∈N = spec(Sβ). The zero-free function sβ(z)/jβ(z) is in B if and only if the reciprocal of 
the function jβ(z) can be decomposed as follows,

1
jβ(z) =

∞∑
k=1

ck
z − xk

, (14)

where {ck}k∈N satisfies

∞∑
k=1

|ck|2
∣∣∣∣s′β(xk)
s0(xk)

∣∣∣∣ < ∞ (15)

and the convergence in (14) is uniform on compact subsets of C \ spec(Sβ).

Proof. We begin by proving the necessity of the condition for β = π/2. Since s0(z) is a generating vector 
for the operator Sπ/2, for every f ∈ L2(R, mπ/2), f(S)s0(z) is an element of B, and any vector in B can be 
written in this way. Using the properties of the reproducing kernel and

∥∥k(·, xn)
∥∥2
B =

〈
k(·, xn), k(·, xn)

〉
B = − 1

π
s′π/2(xn)s0(xn), (16)

which is obtained from (5), one can rewrite the action of Uπ/2 as follows

(Uπ/2f)(z) = −π
∑

xn∈spec(Sπ/2)

f(xn)k(z, xn)
s′π/2(xn) .

Suppose that sπ/2(z)/jπ/2(z) is in B; then there is a function f ∈ L2(R, mπ/2) such that

sπ/2(z)
jπ/2(z)

= −π
∑

xn∈spec(Sπ/2)

f(xn)
s′π/2(xn)k(z, xn)

= −
∑

xn∈spec(Sπ/2)

f(xn)sπ/2(z)s0(xn)
s′π/2(xn)(z − xn) , (17)

where we have used (5). Hence, one has
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1
jπ/2(z)

= −
∑

xn∈spec(Sπ/2)

f(xn)s0(xn)
s′π/2(xn)(z − xn)

,

where the series converges uniformly on compacts of C \ spec(Sπ/2) since (17) converges in B. By setting

cn = −f(xn)s0(xn)
s′π/2(xn)

one establishes the necessity of the condition.
Let us now prove that the condition is sufficient for β = π/2. For any n ∈ N, define

an :=
cns

′
π/2(xn)

s0(xn)

and substitute it into (14) to obtain

1
jπ/2(z)

=
∞∑

n=1

ans0(xn)
s′π/2(xn)(z − xn) .

Therefore, using (5) and (16), one has

sπ/2(z)
jπ/2(z)

=
∞∑

n=1

ansπ/2(z)s0(xn)
s′π/2(xn)(z − xn)

=
∞∑

n=1

an〈k(·, xn), s0(·)〉
‖k(·, xn)‖2 k(z, xn) (18)

for any z ∈ C. By definition of the numbers {an}n∈N there is a function f ∈ L2(R, mπ/2) such that 
f(xn) = an for all n ∈ N. Thus, (18) means that sπ/2(z)/jπ/2(z) = (Uπ/2f)(z) ∈ B.

Once the assertion has been proven for β = π/2, one uses [11, Lemmas 3.3 and 3.4] to finish the proof. �
Remark 2. A. Baranov pointed out to us that Theorem 4.1 for β = π/2 can be proven by expanding 
the function sπ/2(z)/jπ/2(z) with respect to the orthonormal basis k(z, xn)/‖k(·, xn)‖ (with {xn}n∈N =
spec(Sπ/2)), thus obviating the use of a generating vector.

Remark 3. If (14) and (15) hold, and additionally we suppose that

|cn|
(
1 + |xn|

)
≥

∣∣∣∣ s0(xn)
sπ/2(xn)

∣∣∣∣ for all n ∈ N,

then, due to a theorem by Krein [9, Lecture 16, Theorem 3], the function sβ(z)/jβ(z) is in the Cartwright 
class.

Remark 4. Clearly, if a zero-free function belongs to B, then it is a generating vector for Sβ with β ∈ [0, π), 
since it has a nonzero projection onto every eigenspace (cf. Remark 1).

By using the fact that s0(z)/j0(z) is a generating vector for any selfadjoint extension whenever 
s0(z)/j0(z) ∈ B, we prove the following assertion which gives a different set of necessary and sufficient 
conditions for a zero-free function to be in B.
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Theorem 4.2. Assume s0(z) ∈ B and let jβ(z) be defined as in Theorem 4.1. If the function s0(z)/j0(z) is 
in B, then, for all β ∈ (0, π),

1
j0(t)

∈ L2(R,mβ) and s0(z)
j0(z)

=
(
Uβ

1
j0

)
(z). (19)

Conversely, if there exists a set I ⊂ (0, π) having an accumulation point and such that

1
j0(t)

∈ L2(R,mβ) ∀β ∈ I and
(
Uβ

1
j0

)
(z) =

(
Uβ′

1
j0

)
(z) ∀β, β′ ∈ I,

then s0(z)/j0(z) is in B.

Proof. Assume that s0(z)/j0(z) ∈ B. Define the spectral functions

m̃β(t) :=
〈
s0(·)/j0(·), Eβ(t)s0(·)/j0(·)

〉
B,

and the isometries Ũβ from L2(R, m̃β) onto B such that (Ũβf)(z) := f(Sβ) s0(z)j0(z) . Since the function g(t) ≡ 1
lies in L2(R, m̃β) for all β ∈ (0, π) we have the first part of (19). Moreover, taking into account (13), one 
has

s0(z)
j0(z)

= (Ũβg)(z) =
∑

xn∈spec(Sβ)

s0(xn)
j0(xn)‖k(·, xn)‖2

B
k(z, xn) =

(
Uβ

1
j0

)
(z)

for every β ∈ (0, π). For the converse part of the assertion, consider the function r(z) = (Uβ
1
j0

)(z) for all 
β ∈ I. It is straightforward to verify that r(xn) = s0(xn)/j0(xn) for xn ∈ spec(Sβ). Now, since I has 
an accumulation point, [6, Chapter 7, Theorem 3.9] implies that the entire functions r(z) and s0(z)/j0(z)
coincide in a set having accumulation points. �

In [11, Proposition 3.9] (see also [12, Theorem 3.2]), necessary and sufficient conditions for a function to 
be in B are given in terms of the spectra of two selfadjoint extensions of S. Two of these conditions imply 
that the products below are convergent

hβ(z) :=
{

limr→∞
∏

|bk|≤r(1 − z
bk

) if 0 /∈ spec(Sβ),
z limr→∞

∏
0<|bk|≤r(1 − z

bk
) otherwise,

for any β ∈ [0, π). Moreover, the unique real zero-free function in B (up to a multiplicative real constant) is 
sβ(z)/hβ(z). Therefore, one arrives at the following straightforward conclusion.

Proposition 4.3. Let s0(z) be an element of B. If sβ(z)/jβ(z) ∈ B, then jβ(z) = hβ(z) up to a multiplicative 
real constant. On the other hand, if jβ(z) is decomposed as in (14) with the sequence {cn}n∈N satisfying 
(15), then jβ(z) = hβ(z) (up to a multiplicative real constant).

Remark 5. Assuming that B is decomposed as in (3) (equivalently that there is a zero-free function in B), 
the unique real zero-free function is nothing but the unique real entire gauge (up to a multiplicative real 
constant).

In order to clarify the connection between the gauge and the function s0(z), let us define the operator 
f(S) as the operator in B given by

dom
(
f(S)

)
:=

{
g(z) ∈ B : f(z)g(z) ∈ B

}
,

(
f(S)g

)
(z) := f(z)g(z).
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Clearly this definition is consistent with the notion of a function of an operator. Moreover, the following 
assertion immediately follows from it.

Proposition 4.4. If there is a zero-free function in B, then s0(z)/h0(z) ∈ dom(h0(S)), s0(z) ∈
dom((1/h0)(S)), and (

h0(S) s0

h0

)
(z) = s0(z),

(
1
h0

(S)s0

)
(z) = s0(z)

h0(z)
.
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