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Abstract The composition of zooplankton is known to

affect the structure of the microbial trophic web. The

zooplankton of the hypertrophic Laguna Chascomús

(Argentina) is generally dominated by rotifers and

cyclopoids copepods. An unusual dominance by small-

cladocerans was observed after a massive winter fish kill

in 2007. We hypothesized that small-cladocerans would

increase the grazing pressure on heterotrophic flagellates

(HF), reducing the degree of coupling between HF and

picoplankton. The aim of this study was to investigate the

microbial food web structure under two contrasting

zooplankton assemblages. The lake was sampled every

other week between 2007 and 2009. The abundances of

heterotrophic bacteria (HB) and picocyanobacteria (Pcy)

laid among the highest values reported for aquatic

systems ([108 and 107 cells ml-1, respectively). Pcy

averaged 53% of total picoplanktonic biomass. When

small-cladocerans dominated zooplankton HF reached

the higher abundance ([105 cells ml-1) and picoplank-

ton showed the opposite pattern, while the proportion of

grazing resistant morphologies (i.e. microaggregates of

Pcy) was higher. In contrast, when rotifers dominated,

HF abundance decreased and picoplankton increased.

Our data suggest that the degree of HF–HB coupling was

affected by changes in zooplankton dominance. In

contrast to our initial hypothesis, the present results

suggest that large numbers of rotifers ([5,000 ind. l-1)

are more efficient than small-cladocerans at controlling

HF populations.

Keywords Picoplankton �Heterotrophic flagellates �
Trophic cascade � Trophic coupling

Introduction

The abundance and composition of aquatic organisms

might be modulated either by resource availability

(‘‘bottom-up’’) or predation (‘‘top-down’’). The het-

erotrophic flagellates (HF) are considered a key group

within aquatic microbial food webs, since they are

efficient predators of bacteria, and also constitute an

important food source for ciliates and crustacean

zooplankton. Thus, HF play a pivotal role in aquatic

microbial communities by channelling picoplankton
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production to higher trophic levels (Ducklow et al.,

1986; Sherr & Sherr, 1994).

HF not only prey upon heterotrophic bacteria (HB)

(Boenigk & Arndt, 2002), but also upon autotrophic

picoplankton (Weisse et al., 1990; Šimek et al., 1997;

Sherr & Sherr, 2002). In fact, under certain circum-

stances, picocyanobacteria (Pcy) may be the preferred

prey (Christoffersen, 1994; Pernthaler et al., 1996;

Callieri et al., 2002), as well as the main source of

carbon (Tarbe et al., 2011). It is known that HF may

control the abundance, production and size structure of

bacterial communities (Chrzanowski & Šimek, 1990;

Pernthaler et al., 1996; Jürgens & Jeppesen, 2000).

Moreover, HF predation may induce the development

of resistance morphologies, such as filaments and

aggregates (Jürgens & Matz, 2002; Blom et al., 2010).

Comparatively, the effect of HF on autotrophic

picoplankton has received less attention.

HF populations may in turn be affected by preda-

tion by larger grazers (Arndt, 1993; Sanders &

Wickham, 1993; Arndt et al., 2000). It is well known

that virtually all planktonic metazoan groups (hereaf-

ter zooplankton) compete with, and prey upon, HF

(Sanders et al., 1994; Jürgens et al., 1996), but the

intensity of predation varies widely with the type of

predator (Arndt, 1993; Jürgens & Jeppesen, 2000;

Jürgens & Matz, 2002; Sommer & Sommer, 2006).

For example, large filter-feeder cladocerans (i.e.

Daphnia spp.) use a filter to remove microbial food

from suspension (Finlay & Esteban, 1998), thereby

can feed over a wide range of particle size. These large

filter-feeders are more efficient at controlling HF than

selective raptorial-feeders (i.e. copepods), which pre-

fer larger preys (Sommer & Sommer, 2006). As a

consequence, changes in zooplankton composition

may impact on the HF abundance, and also indirectly

affect the abundance and size structure of preys

(Jürgens & Matz, 2002), and the degree of HF-preys

coupling (Gasol, 1994; Tadonléké et al., 2004). Even

though the contrasting impact of large cladocerans

versus copepods on the microbial food web has been

well studied (see reviews by Jürgens & Matz, 2002;

and Sommer & Sommer, 2006), the effect of small

cladocerans and rotifers is comparative less known.

Although the structure of the microbial trophic web

has been investigated over a wide range of trophic

conditions, there is still a paucity of studies dealing

with highly eutrophic environments (but see Somma-

ruga, 1995; Šimek et al., 1997; Jürgens & Jeppesen,

2000; Wieltschnig et al., 2001; Chen et al., 2010).

Laguna Chascomús (Pampa region, Argentina) is a

highly productive (Torremorell et al., 2009), hyper-

trophic, shallow lake. The zooplankton composition of

the lake is strongly shaped by fish planktivory and is

typically dominated by small rotifers and cyclopoid

copepods; while other zooplankton groups are com-

paratively less abundant (calanoid copepods) or vir-

tually absent (cladocerans) (Diovisalvi et al., 2010,

unpublished data).

In many aspects, Laguna Chascomús is a rather

predictable environment that, in spite of the marked

inter-annual variability in hydrological and weather

variables that characterizes the region (Sierra et al.,

1994; Rennella & Quirós, 2006), displays recurring

seasonal patters of several important variables like

total phosphorus (TP), phytoplankton biomass, sus-

pended particulate matter and water transparency

(Torremorell et al., 2007, 2009; Llames et al., 2009;

Lagomarsino et al., 2011; Pérez et al., 2011). How-

ever, singular (i.e. catastrophic) events may affect the

lake sporadically. Quite relevant for the context of this

study was a massive fish kill that occurred in winter

2007, after an unusually long period of cold weather.

Inspection of plankton samples, which are part of our

routine sampling of Laguna Chascomús, revealed a

remarkable shift in the zooplankton towards the

dominance of small cladocerans (Moina spp., Bosmina

spp.) during spring 2007–summer 2008. However,

during the next spring-summer period, zooplankton

reverted to the characteristic assemblage of Laguna

Chascomús dominated by rotifers.

Here, we report the results of a 2-year study, aimed

at investigating the microbial community structure

(particularly, the relationship between HF and HB) in

an highly eutrophic lake, under two contrasting

zooplankton communities (small cladocerans vs. rot-

ifers). We hypothesized that the increase in the

abundance of cladocerans would increase the grazing

pressure on HF, thus reducing the degree of coupling

between HF and picoplankton.

Materials and methods

Study area

Laguna Chascomús (35�360S 58�W) is located in

north-eastern Buenos Aires Province within the
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Pampa region of Argentina. The region has a warm-

temperate climate, with a mean annual temperature

and precipitation of about 15.3�C and 935 mm,

respectively (Iriondo & Drago, 2004), but with a

recurrent alternation of wet and dry periods, resulting

in large inter-annual variability (Sierra et al., 1994).

Laguna Chascomús is a large (area 30.1 km2),

shallow (mean depth 1.9 m) and highly turbid lake

(mean Secchi disk 0.11 m) belonging to the River

Salado watershed (Dangavs, 1976). Nutrient concen-

trations are very high and typical of hypertrophic

systems, mean total phosphorous concentration fluc-

tuate around 610 lg l-1 (Lagomarsino et al., 2011)

and total nitrogen around 1,000 lg l-1 (Torremorell

et al., 2009). The mixing regime is polymictic due to

the persistence and strength of winds. Primary

productivity and the concentration of suspended

particulate matter are directly related to the incident

solar radiation (Torremorell et al., 2007, 2009).

Sampling

The lake was sampled every other week from May

2007 to May 2009. Measurements of temperature, pH

(Orion pH-meter), conductivity (Cond) (Hach con-

ductimeter), nephelometric turbidity (Hach), dis-

solved oxygen concentration (DO) (YSI 5000 Meter)

and Secchi disk readings were made in situ. Water

depth was measured at a gaging station. Subsurface

water samples were collected at a central point of the

lake with 10 l polypropylene containers and trans-

ported to the laboratory for analyses of chemical

parameters and biological communities. It is worth

mentioning that due to the shallowness and the large

area of the lake, vertical as well as horizontal

homogeneity of the water column is commonly

observed for most parameters (Torremorell et al.,

2007).

Chemical analyses

Lake water was filtered through Whatman GF/F filters.

Nitrates (N-NO3
-) and nitrites (N-NO2

-) were mea-

sured by Cd reduction followed by diazotization and

ammonia (N-NH4
?) by the indophenol blue method

(APHA, 1998). TP from unfiltered water samples was

converted to soluble reactive phosphorus (SRP) after

an acid digestion with potassium persulfate and

measured by ascorbic acid method. Chlorophyll

a concentration (Chl-a) was assessed after extraction

with methanol (Lopretto & Tell, 1995). Total sus-

pended solid (TSS, also referred to as seston) concen-

tration was determined by weighing the dried residue

(60�C) resulting from the filtration of a water sample

through prerinsed and precombusted (530�C, 2 h) GF/

F filters. Non-volatile particulate matter (also referred

to as ash content) was estimated by reweighing the GF/

F filters after combustion at 530�C for 3 h (APHA,

1998). The ash-free dry weight (AFDW) was esti-

mated as the difference between TSS and ash.

Dissolved organic carbon (DOC) was measured on

filtered (GF/F 0.7 lm) water samples using the high

temperature Pt catalyst oxidation method (Shimadzu

TOC-5000) following Sharp (1993). The instrument

has a detection limit of 4 ppb of TOC and is routinely

calibrated against a sodium phthalate standard. DOC

analysis were performed by Don Morris at Lehigh

University.

Biological communities

Picoplankton and HF abundance

Within the picoplankton fraction (size range:

0.2–2 lm, Sieburth et al., 1978), we distinguished

HB, Pcy and picoeukaryotic (Peuk) algae. Although

heterotrophic picoflagellates (\2 lm) overlap the

upper end of the picoplankton size range, they were

processed slightly differently and their abundances

were pooled with larger-sized heterotrophic nanofla-

gellates. HF \ 20 lm are collectively referred to as

HF. Only non-pigmented flagellates were included in

this group. Picoplankton and HF samples were

preserved in 45 ml falcon flask with ice-cold filtered

glutaraldehyde 10% (final concentration 1%).

Due to the high density of organisms and high

amount of suspended particulate matter, the samples had

to be diluted with distillate water prior to counting. First,

1 ml of lake water sample was brought to 30 ml (1:30

dilution). For picoplankton enumeration (HB, Pcy and

Peuk), 1.2 ml of the 1:30 dilution (i.e. 40 ll of the

original lake water sample) were brought to 5 ml with

distillate water, stained with 50 ll of DAPI

(0.5 mg ml-1) for 10 min (Porter & Feig, 1980), and

filtered through a 0.22-lm pore-size black polycarbon-

ate filter (MSI). For HF counting, 3 ml of the same

1:30 dilution (i.e. 100 ll of the original lake water

sample) were filtered through a 0.8-lm pore-size black
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polycarbonate filter (MSI). All filters were mounted

onto a microscope slide with a drop of immersion oil for

fluorescence (Immersol 518 F) and stored at -20�C.

Samples were inspected at 1,0009 magnification

using Nikon Eclipse 600 microscope equipped with

HBO 50 W lamp, and a filter set for blue light

excitation (BP 450–490 nm, FT 500 nm, LP 515 nm),

green light excitation (BP 510–560 nm, FT 565 nm,

LP 590 nm) and UV excitation (BP 340–380 nm, FT

400 nm, BP 435–485). Single-cell HB were counted

under UV light excitation. Pcy and Peuk were clearly

recognizable under blue and green light excitation,

due to of their characteristic photosynthetic pigments

fluorescence (Callieri & Pinolini, 1995). Pcy micro-

aggregates (i.e. 4–40 cells loosely attached within

inconspicuous mucilage) were recurrently observed in

our samples and recorded separately. Conspicuous

aggregates of cyanobacteria (i.e. Aphanocapsa sp.

(Nägeli) were not considered. Filamentous HB

([4 lm length) were assumed to be inedible for HF

and were measured and counted on the 0.8-lm pore-

size filter. HF were counted under blue and UV light

excitation and sorted into three size categories: \5,

5–10 and [10 lm. A minimum of 25 fields was

inspected for HB and Pcy, and 200 for HF.

Ciliates abundance

Unfiltered water samples were preserved in 100 ml

PVC flasks with 1% acidified Lugol’s iodine solution.

Although ciliates are customarily counted using the

Utermöhl method, the high density of particulate

matter present in lake water made this procedure

unfeasible. To circumvent this problem, 6 ml of

samples were bleached with a few drops of thiosul-

phate (Macek et al., 2008) and subsequently fixed with

2% formalin; 500 ll of this preparation were stained

with 50 ll of DAPI and gently filtered through a 2-lm

pore-size black polycarbonate filter (Sherr & Sherr,

1993). Ciliates were enumerated by epifluorescence

microscopy under UV excitation, and sorted into three

size categories:\10, 10–20 and[20 lm. A minimum

of 200 fields was counted at 1,0009 magnification.

Zooplankton abundance

The zooplankton was collected by pouring 50 l of lake

water into a 45-lm plankton net. Samples were preserved

in 4% formalin. Rotifer and nauplii enumeration was

performed under a direct scope at 1009 magnification,

on 1 ml Sedgwick-Rafter counting cell. Crustaceans

were counted at 209 magnification under a dissecting

scope using a 5-ml Bogorov counting chamber (Gannon,

1971). For all groups of zooplankton, the number of

subsamples counted was adjusted in order to admit a

maximum counting error of 20%. Zooplankton species

were identified following Ruttner-Kolisko (1974), Pontin

(1978) and Koste (1978) for rotifers, and José de Paggi

(1994), Pennak (1989) and Reid (1985) for crustaceans.

Estimation of picoplankton biomass

The average HB, Pcy and Peuk biovolume (V) in

Laguna Chascomús had been previously estimated in

0.053, 0.351 and 1.097 lm3, respectively (Kranewitter,

2010). Using these estimates, the individual bacterial

cell carbon content (Cbact) was estimated according to

Simon & Azam (1989) as: Cbact (fgC cell-1) = 92 9

V0.598. Individual cell carbon content for Pcy was

calculated assuming a conversion factor of 230

fgC lm-3 (Worden, 2004). Whereas, Peuk cell carbon

content (Cpeuk) was estimated following the C:V

relationship proposed by Menden-Deuer & Lessard

(2000) as: Cpeuk (pgC cell-1) = 0.216 9 V0.939.

Empirical models

The degree of uncoupling (D) between HF and HB

abundances was estimated according to Gasol (1994), as

the vertical distance from the actual HF abundance to the

maximum attainable abundance (MAA), predicted by

the model (Eq. 6), for the observed HB abundance:

D ¼ �2:55þ 1:04� Log HBð Þ � Log HFð Þ: ð1Þ

where HB and HF (cells ml-1) are the abundance of HB

and HF, respectively. The model assumes that HB are

the only food source for HF, and that HF responds in a

proportional way to HB abundance regardless bacte-

rial size.

Bacterial production (BP) was estimated using the

empirical models proposed by White et al. (1991) for

freshwater systems and assuming a steady state

between population growth and mortality (Eq. 5):

Log BPð Þ ¼ 0:43þ Log HBð Þ þ 0:031� T ; ð2Þ

where BP (lgC l-1 day-1) is the bacterial production,

HB (cells ml-1) is the abundance of HB and T (�C) is

water temperature.
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Bacterial grazing by HF (GHF) was calculated

following Vaqué et al. (1994, Eq. 1):

Log GHFð Þ ¼ �3:21þ 0:99� Log HFð Þ þ 0:028� T

þ 0:55� Log HBð Þ; ð3Þ

where HB and HF (cells ml-1) are the abundance of

HB and HF, respectively; GHF (HB ml-1 h-1) is the

grazing rate of HF on HB and T (�C) is water

temperature. This empirical model assumes that HF

grazing are the major contribution to HB mortality.

Data analysis

The nonparametric Spearman rank correlation was

applied for all data set. All statistical analysis was

accepted as significant at a probability level of

P \ 0.05. After graphical inspection of the data, we

noticed that the collected data tended to form two

distinct groups. Following Hessen (2006), we used

recursive partitioning analysis to identify potential

variables and their corresponding threshold values that

better explained the segregation of the data points into

the two groups. Recursive partitioning (Zhang &

Singer, 1999) is a tool for choosing among alternative

explanatory parameters without any strong a priori

assumptions about causality.

Results

Average values of physical and chemical parameters

are summarized in Table 1. Mean depth remained

fairly constant (1.9 m) during the best part of the study,

but after September 2008 it displayed a decreasing

trend. By the end of the study mean depth reached

1.1 m (Fig. 1a). This parameter was negatively corre-

lated with conductivity (r = -0.80, P \ 0.05), nep-

helometric turbidity (r = -0.74, P \ 0.05) and TP

concentration (r = -0.55, P \ 0.05). The concentra-

tions of nutrients and Chl-a were similar to values

measured previously and well within the hypertrophic

range (Table 1). Chl-a showed a temporal pattern, with

the highest values occurring during the warm seasons

and a general increasing trend towards the end of the

study (Fig. 1b). Chl-a concentration was negatively

correlated with lake depth (r = -0.60, P \ 0.05) and

positively correlated with nephelometric turbidity

(r = 0.92, P \ 0.001), TSS (r = 0.75, P \ 0.001),

AFDW concentration (r = 0.79, P \ 0.001) and TP

(r = 0.75, P \ 0.001). In turn, nephelometric turbid-

ity was positively correlated with the TSS (r = 0.96,

P \ 0.001), AFDW (r = 0.87, P \ 0.01) and nega-

tively with depth Secchi disk (r = -0.82, P \ 0.01).

The pattern of water temperature was similar

among years (Fig. 1a). A remarkable exception cor-

responds to winter 2007 (data not shown) that

displayed an unusually long ([1 month) period of

low temperatures (\10�C). Dissolved oxygen during

this period fluctuated around 10–11 mg l-1. During

this low temperature period, a massive winter fish kill

event took place. As an attempt to assess the dimen-

sion of this fish kill, our colleagues from the Ecology

and Fish Production Laboratory (IIB-INTECH) per-

formed a visual inventory of the dead fish that crowded

the lakeshore. On a single day, they counted nearly

17,000 dead fish, mainly planktivorous and micro-

phagous Cyphocharax voga (Günter), Parapimelodus

valenciennesi (Kröyer), along with several other

Table 1 Average values (AVG), standard deviation (SD) and

range (maximum and minimum values) of main physical,

chemical and biological parameters, measured during the study

period

AVG SD Maximum Minimum

Temp. (�C) 17.1 5.2 25 6

pH 9.1 0.2 9.5 8.7

Cond. (mS cm-1) 2.5 0.5 3.7 1.8

DO (mg l-1) 9.2 1.6 12.1 6.0

Secchi (cm) 8.8 2.9 16 4

Z (m) 1.7 0.3 2.0 1.1

N-NO3
- (lg l-1) 15 16 86 0

N-NO2
- (lg l-1) 9 17 109 0

N-NH4
? (lg l-1) 13 16 66 0

TP (lg l-1) 788 243 1,251 263

SRP (lg l-1) 15 10 41 3

Chl-a (lg l-1) 365 186 860 43

AFDW (mg l-1) 86.4 35.6 45.0 193.4

TSS (mg l-1) 245.9 120.9 591.7 87.0

DOC (mg l-1) 28.8 7.9 47.4 10.7

In all cases n = 46

Temp temperature, Cond conductivity, DO dissolved oxygen,

Secchi Secchi depth, Z mean depth, TP total phosphorous, SRP

soluble reactive phosphorus, AFDW ash-free dry weight, TSS

total suspended solid, DOC dissolved organic carbon, Chl-a

chlorophyll a
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benthonic fish species, such as Hypostomus commer-

soni (Valenciennes) (Solimano, pers. commun.).

The abundance and biomass of picoplanktonic organ-

isms were very high (Table 2). HB (single-cell) abun-

dance was always higher than 2.3 9 107 cells ml-1, and

displayed an increasing trend with time (Fig. 2a), with

higher abundances recorded towards the end of the study

period. Filamentous HB (mean filament length: 22 lm)

followed the same temporal pattern, but they never

exceeded 1.2 9 106 filaments ml-1 (Table 2). HB

abundance was positive correlated with Chl-a, AFDW,

TP and DOC concentrations (r = 0.71, r = 0.71,

r = 0.55, r = 0.55 respectively; P \0.05). Single-cell,

phycocyanine-rich Pcy abundance fluctuated between

3.2 9 106 and 2.5 9 107 cells ml-1. They increased

along the study and showed the lowest annual values in

March, at the end of each summer seasons (Fig. 2a). Pcy

microaggregates of on average 12 cells per aggregate,

ranged between 1.6 9 106 and 8.9 9 106 cells ml-1,

without showing a clear seasonal pattern. Peuk were

about an order of magnitude lower than Pcy, and

represented always less than 6% of the total abundance

of autotrophic picoplankton (Pcy ? Peuk). Peuk

behaved seasonally with an annual peak during summer

time (Fig. 2a).

In terms of biomass, single-cell HB (953 ±

408 lgC l-1), Pcy (1,044 ± 418 lgC l-1) and Peuk

(43 ± 38 lgC l-1) represented on average 44, 53 and

3% of total picoplanktonic biomass, respectively.

However, these proportions varied seasonally: the

percentage of HB biomass reached the highest values

(up to 54% of the total picoplanktonic biomass)

always in summer, but it only amounted *35% in

winter (Fig. 3a). Filamentous HB (341 ± 180 lgC l-1)

represented on average 26% of the total biomass of HB

and displayed no evident temporal pattern (Fig. 3b). The

percentage of Pcy cells forming microaggregates

(349 ± 164 lgC l-1) averaged 22% of the total Pcy

biomass. This proportion was relatively constant all year

round except during the first summer (January–March

2008) when it reached 32–65% (Fig. 3c).

HF abundance ranged from 7.4 9 103 to 1.1 9

105 cells ml-1 (Table 2). Their density neither dis-

played a defined temporal trend nor a repeatable

seasonal trend (Fig. 2b). On average, small cells

(\5 lm) contributed 69.1%, medium-size cells

(5–10 lm) 26.9%, and large cells ([10 lm) 4% of

total HF abundance. The density of ciliates varied

haphazardly over time, with abundances ranging from

zero to 1,207 cells ml-1 (Table 2; Fig. 2b). Small

(\10 lm), medium size (10–20 lm) and large

([20 lm) represented 27, 44 and 29%, respectively.

The zooplankton was represented by the cyclopoid

copepod, Acanthocyclops robustus (Sars), the calanoid

copepod, Notodiaptomus incompositus (Brian), small

cladocerans (mostly Bosmina huaronensis (Delachaux)

and Moina micrura (Kurz)) and rotifers (predominantly,

Brachionus caudatus (Barrois & Daday), B. havanaën-

sis (Rousselet) and Keratella tropica (Apstein)). As a

whole the abundance of zooplankton displayed marked

seasonality, with obvious maxima occurring during

spring and summer, and much lower densities of all

groups during fall and winter. During the spring 2007–

summer 2008, cladocerans were particularly abundant

(Fig. 2c), while the abundance of rotifers was relatively

low. An early spring peak of B. huaronensis (up to

611 ind. l-1) was followed by a mid-summer peak of

M. micrura (up to 240 ind. l-1). The dominance of

small cladocerans was preceded by the massive mor-

tality of planktivorous and microphages fish occurring

during the winter of 2007 (June–July). In contrast, the
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next year (from spring 2008 to summer 2009), the

zooplankton assemblage was dominated by rotifers,

which reached densities [5,000 ind. l-1, while the

abundance of cladocerans remained low. The pattern of

copepods did not differ so markedly between the two

growing season, although they tended to display higher

abundances on 2007–2008 than on 2008–2009.

Two distinct clusters of data are apparent in Fig. 4a.

Samples collected before July 16th 2008 tend to plot to

the left of samples collected after that date. The

distinction between these two periods was based on a

recursive partitioning analysis performed on the

degree of decoupling (D) (Fig. 5). We have noticed

that D tended to be higher during the second half of the

study. Among the several variables investigated,

the recursive partitioning analysis identified time to

be the variable that better explained the splitting of the

data. Samples collected before July 16th 2008 dis-

played lower uncoupling (D) than samples collected

after that date (Fig. 5), which explains the segregation

of data points (circles and diamonds) in Fig. 4a. The

average HB:HF ratio before July 16th 2008 was lower

(1,099 ± 687) than the average ratio after that date

(3,476 ± 2,171). The estimates of HB production

(BP) averaged 318 (±178) lC l-1 day-1 and 540

(±264) lC l-1 day-1 for 2007–2008 and 2008–2009,

respectively. On the other hand, HB grazing by HF

(GHF) averaged 399 (±363) lC l-1 day-1 during

2007–2008 and 366 (±274) lC l-1 day-1 during

2008–2009.

Data also tended to cluster in two groups when HF

abundance was plotted against Pcy abundance

(Fig. 4b). However, the segregation of data by period

was less marked than in the HF–HB plot. The average

Pcy:HF ratio before July 16th 2008 was lower

(286 ± 206) that after that date (687 ± 380).

Discussion

The first, and perhaps most salient, characteristic of the

picoplankton community in Laguna Chascomús is its

great abundance. HB abundances (up to 1.1 9 108

cells ml-1) are higher than those reported in most

hypertrophic lakes worldwide (e.g. Sommaruga, 1995;

Jürgens & Jeppesen, 2000; Eiler & Bertilsson, 2004;

Tijdens et al., 2008; Chen et al., 2010) and close to the

Table 2 Average abundance (AVG), standard deviation (SD) and range (maximum and minimum) for the different planktonic

components measured during the study period

Abundance AVG SD Maximum Minimum

HB single-cells (cells ml-1) 6.0 9 107 2.6 9 107 1.1 9 108 2.3 9 107

HB filaments (filaments ml-1) 4.9 9 105 2.9 9 105 1.2 9 106 5.0 9 104

Pcy single-cells (cells ml-1) 1.4 9 107 5.5 9 106 2.5 9 107 3.2 9 106

Pcy microaggregates (cells ml-1) 4.3 9 106 2.0 9 106 8.9 9 106 1.6 9 106

Peuk (cells ml-1) 2.2 9 105 2.0 9 105 1.0 9 106 1.4 9 104

HF total (cells ml-1) 3.5 9 104 2.1 9 104 1.1 9 105 7.4 9 103

HF \ 5 lm (cells ml-1) 2.5 9 104 1.6 9 104 6.8 9 104 4.4 9 103

HF 5–10 lm (cells ml-1) 9.2 9 103 6.7 9 103 3.5 9 104 7.4 9 102

HF [ 10 lm (cells ml-1) 1.3 9 103 2.0 9 103 9.2 9 103 0

Ciliates total (cells ml-1) 427 278 1,207 0

Ciliates \ 10 lm (cells ml-1) 105 93 426 0

Ciliates 10–20 lm (cells ml-1) 205 155 568 0

Ciliates [ 20 lm (cells ml-1) 117 166 1,009 0

Rotifers (ind. l-1) 936 1,273 5,103 44

Nauplii cyclopoids (ind. l-1) 272 276 1,238 40

Nauplii calanoids (ind. l-1) 50 63 306 3

Copepods (ind. l-1) 107 95 514 19

Cladocerans (ind. l-1) 78.0 139.2 611.4 0.2

In all cases n = 46

HB heterotrophic bacteria, Pcy picocyanobacteria, Peuk picoeukaryote, HF heterotrophic flagellates

Hydrobiologia (2013) 714:115–130 121

123

Author's personal copy



highest values ever reported for pelagic systems

(3.6 9 108 cells ml-1 in analkaline saline lake, Kilham,

1981). The abundances of phycocyanine-rich Pcy (up to

2.7 9 107 cells ml-1), which make the bulk of the

autotrophic picoplankton, are among the highest values

ever reported in natural aquatic systems (Hirose et al.,

2003; Callieri, 2007).

Two other distinctive features of the picoplankton in

this lake are the relative proportion of the autotrophic

components and the weak seasonality displayed by
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them. On a biomass basis, the Pcy:HB ratio in Laguna

Chascomús resulted very high (minimum: 35%, mean:

53%) and the abundance of Pcy never dropped below

3.2 9 106 cells ml-1. Similar relative compositions

of picoplankton and seasonal patterns of Pcy abun-

dance (e.g. constrained within a narrow range year

round) have been reported for some shallow subtrop-

ical lakes (Carrick & Schelske, 1997) and deep tropical

lakes (Sarmento et al., 2008; Stenuite et al., 2009). In

most temperate systems, the abundance of Pcy

typically remains low during the best part of the year,

except for one or two outbursts in the warmer season

(Calllieri, 2010). The similarities between Laguna
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our own observations, together with the data set from Gasol
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abundances collected from the literature. Only eutrophic and

hypertrophic shallow lakes were considered. We excluded

papers that presented only single points or means. A total of six

articles were found to be included in this plot. Data were taken

from tables or read from graphs with an image analyzer. The

upper boundary line is the empirically derived MAA for HF, and

the dashed line is the mean realized abundance (MRA),
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Chascomús and, tropical and subtropical lakes may be

a reflection of its intermediate climatic position or may

be related to the fact that the light climate in tropical

(Sarmento, 2012), as well as in polymictic hypertro-

phic turbid lakes, such as Laguna Chascomús (Pérez

et al., 2011), is less variable than in deep, stratifying

temperate lakes.

Picoplanktonic organisms may develop resistant

morphologies, such as filamentous and microaggre-

gates, in response to HF predation (Pernthaler, 2005

and references therein). Filamentous HB are particu-

larly common in hypertrophic lakes (e.g. Sommaruga,

1995; Jürgens & Jeppesen, 2000; Hahn & Höfle, 2001;

Thelaus et al., 2008). In Laguna Chascomús filamen-

tous HB make up a significant proportion of the HB

biomass ([20%). However, no relationship was found

between the abundance, biomass or proportion of

filamentous HB and the abundance of HF. It is known

that some bacterial strains have permanently a fila-

mentous morphotype independent of the presence of a

predator (Hahn et al., 1999), this might explain the

constancy of filamentous bacteria recorded in Chas-

comús regardless the abundance of HF. On the other

hand, the presence of Pcy microaggregates has been

reported in several freshwater environments (Callieri,

2007 and references therein). The origin of Pcy

microaggregates is not fully understood. It is possible

that some microaggregates may represent detachments

from larger colonies (i.e. Aphanocapsa sp.). However,

there is also evidence suggesting that they might derive

from aggregation of single-cell Pcy (Passoni & Callieri,

2001; Crosbie et al., 2003). In particular, Jezberová &

Komárková (2007) demonstrated that the grazing

activities of a nanoflagellate induced the formation of

microaggregates in a culture of Pcy single-cell. In our

study, higher proportion of Pcy microaggregates were

recorded during the period in which small cladocerans

dominated zooplankton and HF abundance and

HF:prey ratio reached the highest values.

HF abundances were also among the highest values

([105 cells ml-1) reported for natural pelagic envi-

ronments (Sanders et al., 1992; Sommaruga, 1995;

Auer & Arndt, 2001; Hirose et al., 2003; Chen et al.,

2010). The diet of HF typically includes picoplank-

tonic preys. Several studies have shown that protists

can ingest both HB and Pcy (e.g. Weisse et al., 1990;

Callieri et al., 2002; Tsai et al., 2007), but only a

handful studies have simultaneously analyzed the

grazing rates on both types of preys (e.g. Šimek et al.,

1997; Sakka et al., 2000; Christaki et al., 2001; Tarbe

et al., 2011; Izaguirre et al., 2012). All these studies

reported higher clearance rates on Pcy than on HB.

Along the same line, several authors (Jürgens & Matz,

2002 and cites herein) demonstrated that *0.5 lm

diameter particles (i.e. close to average HB size)

would experience 4–6 times lower mortality due to HF

grazing than *1 lm diameter particles (i.e. close to

average Pcy cell size). Published clearance rates (CR)

of HF on Pcy estimates range between 0.3 and

58 nL HF-1 h-1 (Šimek et al., 1997; Callieri et al.,

2002; Tarbe et al., 2011; Izaguirre et al., 2012). The

importance of HF as major grazers of autotrophic

prokaryotes becomes apparent when one considers

that, even assuming the lowest CR value, HF could

still remove as much as 25% of the Pcy biomass per

day. These results are in line with the idea that Pcy

microaggregates would be formed as a result of high

grazing pressure on Pcy single-cell.

In Laguna Chascomús, the structure of the zoo-

plankton community is strongly affected by intense

fish planktivory (Diovisalvi et al., 2010). During the

first year of this study, and after the massive winter fish

kill, we recorded unusually high abundances of small

cladocerans (Moina spp., Bosmina spp.) and low

rotifer abundances. This atypical zooplankton com-

position reverted to the characteristic zooplankton

assemblage of Laguna Chascomús, one dominated by
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rotifers and cycloid copepods, within about a year. The

role of fish in shaping the zooplankton community in

Laguna Chascomús has also been observed experi-

mentally. In a mesocosm experiment from which fish

had been excluded, Llames et al. (2009) observed the

development of small-sized cladocerans populations

within a few weeks. Similar results were observed in

other tropical and subtropical shallow lakes (Rennella

& Quirós, 2006; Boveri & Quirós, 2007; Havens et al.,

2009; Teixeira de Mello et al., 2009; Iglesias et al.,

2011).

The relationship between HF and their preys (HB and

Pcy) seems to have been differentially affected by the two

distinct zooplankton assemblages that dominated in the

two consecutive years: dominance of small cladocerans

versus dominance of rotifers. Even though the proportion

of grazing resistant morphologies (i.e. filaments) did not

change between years, the absolute abundance of HB

steadily increased and the HF:HB ratio decreased. This

effect has been better investigated for the relationship

between HF and HB. Gasol (1994) proposed an empirical

model to relate the abundances of HF and HB. He noticed

that the join distribution of Log HF abundance and Log

HB abundance was bounded by straight line, which he

called ‘‘maximum attainable abundance’’ (MAA). Gasol

(1994) further used the MAA as a reference to define the

‘‘degree of uncoupling’’, i.e. the vertical distance

(D) between the MAA line and the actual HF abundance.

In theory, low D values indicate low levels of predation

on HF, and vice versa. HB abundances in Laguna

Chascomús are nearly an order of magnitude higher than

the upper limit of Gasol’s (1994) dataset, and also higher

than more recently published reports for highly eutrophic

shallow lakes (Berninger et al., 1993; Sommaruga, 1995;

Šimek et al., 1997; Nakano et al., 1998; Jürgens &

Jeppesen, 2000; Wieltschnig et al., 2001; Hirose et al.,

2003; Chen et al., 2010). Nevertheless, the validity of

Gasol’s original model seems unaffected, as neither the

values reported more recently, nor our own from Laguna

Chascomús, exceeds the original MAA line. During the

period when the zooplankton community was dominated

by small cladocerans, the degree of uncoupling between

HF and HB (D) (sensu Gasol, 1994) was relatively low.

On the other hand, during the period when the zooplank-

ton was dominated by rotifers (i.e. the ‘‘typical’’

condition in Laguna Chascomús), the values of D were

significantly higher. Moreover, our estimates of BP

(318 ± 178 lC l-1 day-1) and bacterial grazing by HF

(399 ± 363 lC l-1 day-1) were roughly balanced

during the first part of the study, whereas during the

second part of the study, BP (540 ± 264 lC l-1 day-1)

exceeded the estimated bacterial grazing (GHF = 366

± 274 lC l-1 day-1). One of the major changes

observed during the study was the gradual increase in

HB abundance, which affected the estimates of D, GHF

and BP. This increasing trend in HB was also observed

even if the abundance was standardized by lake depth.

The different approaches are therefore consistent in

suggesting that HB and HF were more coupled during the

first half of the study.

By analogy with the analysis performed for HB, we

plotted the Log HF abundance versus Log Pcy

abundance. Similarly to the results observed for HF–

HB, the HF-Pcy data tended to cluster in two groups.

As mentioned above the relationship between HF and

Pcy, has been less intensively studied, and unfortu-

nately an analogue estimate of the degree of uncou-

pling (D) has not yet been developed. Therefore the

choice of July 16th 2008 to separate the two periods is

somehow arbitrary, which may explain why the

segregation of data by period is less marked than in

the HF–HB plot. Moreover, the proportion of micro-

aggregates of Pcy (i.e. potentially grazing resistant

morphologies) was higher during the first summer

period (January–March 2008) when small cladocerans

dominated.

The evidence presented in this study suggests that

the relationship between the abundances of HF and

their potential preys is affected by the composition of

the zooplankton assemblage. The composition of

zooplankton is known to affect the structure of the

microbial trophic web (see reviews by Jürgens &

Matz, 2002; Sommer & Sommer, 2006). But most

studies have focused on comparisons between Daph-

nia dominated and copepod dominated zooplankton

communities. In general, the degree of decoupling is

higher in Daphnia dominated environments than in

copepod-dominated lakes (Gasol et al., 1995). Both

Daphnia dominated and copepod dominated zoo-

plankton assemblages are more representative of

temperate, stratifying lakes. On the other hand, rotifer,

which are often the dominant group in polymictic

shallow lakes (Berninger et al., 1993; Sommaruga,

1995; Jürgens & Jeppesen, 2000; Chen et al., 2010)

appear to have an intermediate effect on the HF (Gasol

et al., 1995). We used published clearance rates of

rotifers on HF to calculate proportion of the HF

community that could have been consumed by rotifers
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during our study. Clearance rates estimates range from

0.38 to 1.23 ml ind.-1 day-1 (Dolan & Gallegos,

1991; Sanders et al., 1994; Jürgens et al., 1996), but in

order to be conservative, we used the lowest value.

During the first part of the study, the rotifer abundance

averaged 350 ind. l-1 and could have potentially

consumed about 10% of the HF biomass per day.

While during the second part of the study, rotifers

often exceeded 1,500 ind. l-1 and theoretically, they

might have grazed *90% of the HF biomass daily.

Dolan & Gallegos (1991) observed a strong top-down

control of HF by rotifers in the Rhone River Estuary

when rotifers achieved densities comparable with our

study (1,000–5,000 ind. l-1), which cascaded down as

an indirect positive effect on HB abundance. Studies

from other lakes also revealed that rotifers can have a

strong structuring effect on microbial plankton com-

munities (Burian et al., 2012), being responsible for a

high mortality of HF (Arndt, 1993; Pernthaler et al.,

1996) and affecting the HF–HB relationship (Tado-

nléké et al., 2004). Finally, zooplankton assemblages

dominated by small cladocerans (e.g. Bosmina spp.,

Moina spp.), which are know to have much less

effective filtration capacity than daphnids (Köthe &

Benndorf, 1994; Jürgens & Stolpe, 1995; Zölner et al.,

2003), can be presumed to have a lesser effect in

structuring the microbial community than Daphnia.

Contrarily to our hypothesis, the present results

suggest that the effect of small cladocerans dominated

zooplankton may be even smaller than that of

produced by high densities of rotifers, which may

explain the differences in the microbial food web

structure observed between years.

Our study showed that changes in the composition

of the zooplankton community might affect the

relationship between HF and their preys (HB and

Pcy), and possibly, although less evident, the structure

of the potential preys (i.e. Pcy morphology). The

resulting heterotrophic cascade for the two contrasting

zooplankton communities is outlined in Fig. 6. The

observed changes in zooplankton community could in

turn be linked to processes affecting the top of the

trophic web (winter fish kill) and ultimately to an

infrequent weather event (a prolonged period of low

HF

HB and Pcy

CILIATES

EDIBLE RESISTANT

(Filamentous HB
and Pcy aggregates)

SPRING-SUMMER 2007-2008

after the massive winter fish kill

SPRING-SUMMER 2008-2009

high abundance of planktivorous fish

ZOOPLANKTON

Dominance of small cladocerans
(Moina spp., Bosmina spp.)
Low abundance of rotifers

ZOOPLANKTON

Dominance of rotifers
(Brachionus caudatus, B. havanaensis, Keratella tropica)

Low abundance of cladocerans
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CILIATES

RESISTANTEDIBLE
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(Filamentous HB and 
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Fig. 6 Simplified scheme showing the trophic interactions

between zooplankton and the components of the microbial food

web in Lake Chascomús during two consecutive years, with

contrasting zooplankton communities (modified from Jürgens &

Matz, 2002). The size of the arrows is indicative only, and

thicker indicates greater predation pressure to that community.

Bars HB and Pcy were built randomly
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winter water temperature). The data reported in this

work are consistent with empirical models describing

the relationship between HF and HB, but extend the

range of published HB and Pcy abundances. Even after

including additional data published after Gasol’s

(1994) revision, it is evident that hypertrophic envi-

ronments are still underrepresented. Considering the

high number of shallow lakes, many of which are

naturally eutrophic or have undergone eutrophication

in recent decades, the paucity of data at the high

productivity end of the gradient seems most likely a

consequence of scientific bias rather than the statistical

outcome of the world’s distribution of lakes.
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