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Abstract. What sort of grid cells do we expect to see in rodents who
have spent their developmental period inside a large spherical cage? Or, in
a different experimental paradigm, toddling on a revolving ball, with virtual
reality simulating a coherently revolving surround? We consider a simple model
of grid firing map formation, based on firing rate adaptation, that we have earlier
analyzed when playing out on a flat environment. The model predicts that
whether experienced on the outside or inside, a spherical environment induces
one of a succession of grid maps realized as combinations of spherical harmonics,
depending on the relation of the radius to the preferred grid spacing, itself related
to the parameters of firing rate adaptation. Numerical simulations concur with
analytical predictions.
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1. Introduction

The study of navigation in rodents has revealed the presence of specific groups of neurons
devoted to the representation of space in the brain, with the most conspicuous among
them the place cells [1] in the hippocampus, and the grid cells [2, 3] in the neighboring
medial entorhinal cortex (mEC). These neurons are selective for certain portions of the
environment: they get activated, and emit spikes, only when the animal occupies one of
these so called fields. Place cells and grid cells thus share the same behavioral correlate,
i.e. the position of the animal in space, but in other respects they are rather different. A
place cell is generally selective for only one location, its (often idealized) place field, or for
a few locations randomly distributed in the environment. In a different environment, the
same place cell will often be inactive. In contrast, a grid cell is active in any environment,
and in each environment not in one but in many preferred positions—or grid fields. The
spatial distribution of its grid fields is strikingly regular, as they form a periodic triangular
grid that covers all the 2D space accessible to the animal.

Another characteristic of grid cell activity is that the representation of space a grid cell
provides is almost invariant across different environments. The typical hexagonal tiling
appears to be internally generated and to be applied to any environment the rodent visits,
with only distinct reference frames to differentiate the activity of an ensemble of cells
between different environments, i.e. a common translation and rotation of the grids [4].
Here an ensemble is a group of cells recorded simultaneously and located next to each
other in the tissue, although their grid fields are typically not overlapping beyond chance.
Whatever the relation between the grids expressed by different cells, it is maintained
across environments. These properties are in marked contrast with those of place cell
maps in the hippocampus. Place cell representations are multiple, in that such relations
are not maintained at all. Considering two cells that are active at the same location in
one environment, for example, moving to a new environment, one may find that they are
both inactive, or only one of the two is active, but at an unrelated location.
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Place cells, particularly those in the CA3 region of the hippocampus, are thought to
participate in cell assemblies that can be reactivated by partial cues through attractor
dynamics [5, 6]. Such assemblies would be organized in multiple quasi-continuous
attractors [7], which might be rapidly acquired during exploration. Grid cells, instead,
might participate in a single continuous attractor, which is then imposed to represent
whatever environment, and which is established much more slowly, through a gradual
process, likely during animal development. According to the most recent experimental
data [8, 9], the critical period for such a slow process should be somewhere between the
15th and 35th postnatal days.

2. A model based on adaptation

This scenario is described in a model that shows how the grids may emerge spontaneously
from disorder under the influence of firing rate adaptation, a very general property of
cortical neurons. Such temporal modulation induces a self-organization process that, over
time, sculpts the activity of single units to produce a triangular spatial pattern [10].

The gradual process can be observed in simulations of a model network representing
the mEC, which receives spatially tuned inputs from the hippocampus or from
parahippocampal cortices [10]. The combination of adaptation in mEC units and plasticity
on the feed-forward connectivity is enough to generate increasingly regular grid patterns
over time scales corresponding to a couple of weeks of rodent development.

The same process, at the single-unit level, can be described in analytical terms as
an unsupervised optimization process, if one neglects the collateral interactions that are
presumed to align the grids expressed by interacting units [11]. The simplified version of
the model that can be analyzed mathematically is very abstract, and does not specify most
of the parameters necessary to the simulations. Nevertheless, it indicates which states are
the asymptotic ones that should be reached by the system after having evolved for a
certain time.

The asymptotic states are defined in terms of a variational principle amounting to the
minimization of a cost function of the form

H = HK +HA =

∫
dχ [5Ψ(χ)]2 + γ

∫
dχ

∫
dt′Ψ(χ(t))K(t− t′)Ψ(χ(t′)), (1)

where χ is the spatial coordinate and Ψ represents the firing rate of the neuron across the
environment.

The functional is defined based on the hypothesis that the activity of the units reflects
only two simple constraints.

(i) Minimization of the variability of the maps across space, i.e. a preference for smooth
maps. Such smoothness is expected to stem from the smoothness of the spatial inputs
and the neuronal transfer function. This constraint is expressed in the first term of
the functional, the kinetic one.

(ii) Penalization of maps that require a neuron to fire for prolonged periods of time, despite
the presence of neuronal fatigue. The second term of the functional, the adaptation
term, represents this constraint.

The parameter γ parametrizes the relative importance of the two constraints. In the second
term, taking into account the averaging effect of a long run over many trajectories, we
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can substitute the time-dependent kernel K(∆t) with an effective space-dependent one,
K(χ′ − χ),

H = HK +HA =
1

A

∫
S

dχ [5Ψ(χ)]2 + γ
1

A

∫
S

dχΨ(χ)

∫
S

dχ′Ψ(χ′)K(|χ′ − χ|), (2)

where we have also made explicit the normalization by the area A of the environment S.
In [10] it is shown that the grid pattern exhibited by the mEC neurons minimizes

this cost function, as it is the optimal compromise solution (among periodic and fully
symmetric solutions) between the two opposite constraints, for a number of reasonable
choices of the kernel K. Since the phenomena described by this model are presumed to
extend over a long developmental time, it is expected that the topological properties of
the environment in which the animal develops affect the shape and the appearance of the
grid maps [12]–[15]. The possibility is currently being explored of running experiments in
which rodents develop, during the critical period for grid cell formation, on a revolving
sphere [16], with virtual reality provisions that should give them the visual impression
of living and running on the surface of a tiny planet—literally a small world. In an
independent approach, rats are being raised inside a large comfortable spherical cage,
which can be partially revolved from time to time [24]. What grid cell firing maps would
we expect to observe after such training protocols, according to the model previously
described?

3. Life on a sphere: a mathematical analysis

Here we discuss a formulation of the adaptation model on the sphere. This formulation
is both experimentally relevant and mathematically treatable. While on a 2D plane the
solutions to the minimization problem were formulated in terms of Fourier components,
a similar approach can be applied on a sphere in terms of spherical harmonics [17].

Using the following set of coordinates to parametrize the unitary sphere (R = 1):

x = sin(θ) cos(ϕ), y = sin(θ) sin(ϕ), z = cos(θ),

we define a function Ψ(θ, ϕ) whose values on the sphere represent the firing rate of a unit
in the different locations.

We normalize this function such that

Ψ(θ, ϕ) ≥ 0, (3)∫
Ψ(θ, ϕ) = 1, (4)

corresponding to allowing only positive firing rates and to fixing the mean rate.
We start by considering the linear combinations of spherical harmonics that generate

an ordered and symmetrical grid-like arrangement of firing fields. Among these, we then
look for potential solutions to the minimization problem.

The number of fields obtained in the solution depends on the angular momentum (l)
of the harmonics used in the linear combination. Solutions for l up to 6 are as follows (see
figure 1). The solution with a single field is obtained with l = 1 spherical harmonics,

Ψ1(θ, ϕ) = d[cY 0
0 + Y 0

1 ] =
1

4π
∗ (1 + cos(θ)). (5)

doi:10.1088/1742-5468/2013/03/P03013 4
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Figure 1. The analytical solutions considered. Larger spheres lead to more fields,
given an approximately constant spacing.

l = 2 harmonics lead to a 2-field map,

Ψ2(θ, ϕ) = d[cY 0
0 + Y 0

2 ] =
3

4π
cos2(θ). (6)

For l = 3–4 fields

Ψ3(θ, ϕ) = d
[
cY 0

0 + [aY 0
3 + b(Y 3

3 − Y −3
3 )]

]
=

2
√

2

π(16
√

2 + 3π)

× [2 + cos(θ)(5
2

cos(2θ)− 1
2
) +
√

2 sin3(θ)(2 cos(2ϕ) + 1)]. (7)

For l = 4–6 fields

Ψ4(θ, ϕ) = d
[
cY 0

0 + [aY 0
4 + b(Y 4

4 + Y −4
4 )]

]
=

1

8π
[2 + 3(cos4(θ) + sin4(θ) cos4(ϕ) + sin4(θ) sin4(ϕ))

− 9(cos2(θ) sin2(θ) + sin4(θ) cos2(ϕ) sin2(ϕ))]. (8)

doi:10.1088/1742-5468/2013/03/P03013 5
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For l = 6–12 fields, i.e., a soccer ball,

Ψ6(θ, ϕ) = d[cY 0
0 + [aY 0

6 +
b

2
(Y −5

6 − Y 5
6 )]]

= d

[
c
1

2

√
1

π
+

[√
143

137π

1

32
∗ (231 cos6(θ)− 315 cos4(θ)

+ 105 cos2(θ)− 5) +
143

137π

21

6
∗ cos(5ϕ) sin5(θ) cos(θ)

]]
. (9)

Here, d and c are used to satisfy conditions (3) and (4) while the a and b values are
chosen in each case so that the solutions are fully symmetric. We now want to calculate
the value of the ‘energy’, i.e., the cost function associated with these solutions. Consider
our cost function H,

H = HK +HA = − 1

A

∫
S

dχ [5Ψ(χ)]2 + γ
1

A

∫
S

dχΨ(χ)

∫
S

dχ′Ψ(χ′)K(|χ′ − χ|). (10)

To evaluate this function for every l, we expand our solutions on the spherical harmonics,

Ψl?(r) =
∑
l=0,l?

∑
m=0,m?

almY
m
l (r). (11)

Then, using the spherical harmonics defining property

R252Y m
l (r) = −l(l + 1)Y m

l , (12)

we can write the kinetic term L1 as

HK =
1

4π

1

R2
l?(l? + 1)(a2

l?,0 + 2a2
l?,m?). (13)

To calculate the adaptation term HA we project the adaptation kernel on a basis of
Lagrange polynomials. Suppose we consider an exponential kernel

K(~x · ~y) =
1

vτL
e−q/vτL − ρ ∗ 1

vτS
e−q/vτS , (14)

which expresses the fact that adaptation effects become significant over time differences
τS and decay away after time differences τL. It means that, after a neuron has emitted a
spike in a certain position, the spatial region of strong adaptation is comprised in a ring
between radii vτS and vτL around that position.

In our case q is the distance between two vectors ~x, ~y having coordinates (θ, ϕ) and
(θ′, ϕ′) on the sphere. We write the kernel in terms of the angle between these two vectors,

K(~x · ~y) =
1

vτL
e−(1/vτL)∗R∗arccos(~x·~y) − ρ ∗ 1

vτS
e−(1/vτS)∗R∗arccos(~x·~y). (15)

The kernel is thus a function in the [−1, 1] domain and can therefore be projected on
a set of Lagrange polynomials which are complete in that range,

K(q) =
∑
l

klPl(q). (16)

doi:10.1088/1742-5468/2013/03/P03013 6
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HA is thus

HA =
1

4π

∑
l=0,l?

∑
m=0,m?

alm
∑
l′=0,l?

∑
m′=0,m?

al′m′

∫
dΩY m

l (r)

∫
dΩ′ Y m′

l′ (r′)K(~x · ~y)

=
1

4π

∑
l=0,l?

∑
m=0,m?

∑
l′=0,l?

∑
m′=0,m?

almal′m′

∫
dΩY m

l

∫
dΩ′ Y m′

l′

∑
l′′

kl′′Pl′′ (~x · ~y).

Using the addition theorem [18]

Pl(~x · ~y) =
4π

2l + 1

l∑
m=−l

(−1)mY m
l (~x)Y −ml (~y) (17)

the previous expression becomes

HA =
1

4π

∑
l,l′=0,l?

∑
m,m′=0,m?

almal′m′

∑
l′′

kl′′
4π

2l′′ + 1

×
l′′∑

µ=−l′′

(−1)µ
∫

dΩY m
l (~x)Y µ

l′′ (~x)

∫
dΩ′ Y m′

l′ (~y)Y −µl′′ (~y). (18)

Given the orthonormality rules for spherical harmonics,∫
dΩY m

l (~x)Y m′

l′ (~x)∗ = δl,l′δm,m′ , (19)

and that l, l′ = 0, l? and m,m′ = 0,m?, the surviving combinations in the sum are

HA =
1

2l? + 1
kl?(a2

l?,0 + 2a2
l?,m?) + k0(a

2
0). (20)

The last term is identical for all solutions, as k0 and a0 are always the same.
The total energy is

H = (a2
l?,0 + 2a2

l?,m?) ∗
(

1

4π

1

R2
l?(l? + 1) + γ

1

2l? + 1
kl?

)
+ γk0(a

2
0). (21)

In the region of parameters where ((1/4π)(1/R2)l?(l?+ 1) +γ(1/(2l?+ 1))kl?) > 0 any
solution is worse than the constant solution with all the alm = 0.

Since the first term in ((1/4π)(1/R2)l?(l? + 1) + γ(1/(2l? + 1))kl?) is always positive,
for the sum to be negative it has to be at the very least that kl < 0. As shown in figure 2,
the different components of the kernel projection have a qualitatively similar dependence
on the radius, but the range in which they take negative values is progressively shifted
towards larger radii. This result does not depend on the particular choice of the kernel.
Choosing a kernel consisting of radially symmetric Gaussians,

K(~x · ~y) =
1

vτL
√

2π
e−1/2(vτL)2∗(R∗arccos(~x·~y))2 − ρ ∗ 1

vτS
√

2π
e−1/2(vτS)2∗(R∗arccos(~x·~y))2 , (22)

produces the same behavior, figure 3. The choice of the adaptation time scale (τL, τS)
determines the spatial scale of these transitions. Slower adaptation dynamics means that
all curves are shifted towards larger values of R. This allows us to conclude that the
solutions associated with increasing values of the angular momentum become energetically

doi:10.1088/1742-5468/2013/03/P03013 7
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Figure 2. Lagrange projections of the exponential kernel.

Figure 3. Lagrange projections of the Gaussian kernel.

favored one after the other as the size of the sphere increases. The precise radius at which
the switch occurs between two solutions depends also on the values of the components
alm, on the particular value of γ and on the choice of the kernel, among other factors, but
the point of transition from negative to positive values of the corresponding component
of the kernel provides an upper bound for the validity of the solution. Therefore, the
different solutions are not clearly separated and it is very possible that the energy minima
are quite shallow. Transitions from one solution to the next may thus be gradual, and
allow for intermediate spurious solutions consisting of a mix of different locally minimal
configurations. These questions cannot be analytically addressed and are thus left for
numerical simulations.

These calculations are not conclusive with regard to the effective optimality of the
combinations of spherical harmonics we have defined. Once we set a certain radius we
know that solutions including spherical harmonics with a certain angular momentum are

doi:10.1088/1742-5468/2013/03/P03013 8
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Figure 4. Comparison of the symmetrical solution for l = 3 (left) with the result
of the numerical minimization of the energy functional (center) and with the
asymptotical state of network simulations (right, see section 4).

favored. The particular combination that minimizes the cost function is determined by
the values of the alm associated to that solution by the constraints in equation (4). What
about other periodical but non-symmetrical solutions?

We have used a numerical approach to explore the existence of other solutions
representing global minima for our functional. We have looked for any combination of
the l+ 1 real spherical harmonics associated with each eigenvalue l. The optimal solution
for a given l was defined as maximizing the energy function

HNum = a2
l,0 + 2 ∗

l∑
m=1

a2
l,m − λ

∫
dχΘ(−Ψal,m

(χ)), (23)

where Ψal,m
is the solution corresponding to a particular set of coefficients, λ� 1, and

the last term is used to enforce constraint (3).
With this approach, we find that for every l the solutions reached by the numerical

optimization procedure are equivalent to, or strongly resemble, our symmetric ansatz, as
shown in the example of figure 4.

We limit this approach to the single l case for computational reasons. Not only would
the parameter space significantly grow when any combination of different l was allowed,
but also the energy minima would become dependent on the particular choice of the
adaptation kernel, making a comprehensive approach impossible. This situation is similar
to the one described for the planar case in [10], where a single wavevector length k is
selected to produce the solutions.

4. Numerical simulations of grid development

The solutions we have studied in section 3 should correspond to the asymptotic behavior
of a more complex model, which explicitly expresses the effects of adaptation on neural
dynamics. We now proceed to study a more detailed model with numerical simulations. If
our analytical approach is robust, we expect the firing maps generated by our simulated
model units to correspond to the combinations of spherical harmonics we have previously
described.

doi:10.1088/1742-5468/2013/03/P03013 9
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4.1. Network model

In our simulations, time is discretized in steps of length ∆t = 0.01 s. The virtual rat
moves on surfaces of spheres of different radii with a constant speed of v = 0.4 m s−1. For
simplicity, the change in running direction between two consecutive steps of the virtual rat
is sampled from a Gaussian distribution with zero mean and standard deviation σh = 0.15
radians. The virtual rat always runs along the great circle determined by its running
direction. Our model comprises two layers: the input network represents, e.g., the CA1
region of the hippocampus and contains Ninp = 4πR2ρ units, where R is the radius of the
sphere and ρ = 8000/m2 is the density of input units; the output network represents a
population of NmEC = 100 would-be grid units in the mEC, all with the same adaptation
parameters.

Each mEC unit receives afferent spatial inputs which, as already discussed in [10], we
take for simplicity to arise from regularly arranged place cells, although they could also
arise from spatially modulated units in the adjacent cortices. The input to unit i at time
t is then given by hti,

hit =
∑
j

W t−1
ij rtj. (24)

The weight W t
ij connects input unit j to mEC unit i. We will assume that at the time

the mEC units develop their firing maps, spatially modulated or place cell-like activity
is already present, either in the parahippocampal cortex or in the hippocampus. The
network model works in the same way with any kind of spatially modulated input, but
the place-cell assumption reduces the time necessary for learning. Moreover, as recent
studies have shown [8, 9], it is entirely plausible that place cells develop adult-like spatial
code earlier than grid cells do. We thus model the place field as an exponential bump
centered in the place cell preferred position ~xj0,

rtj = exp

(
−‖~x

t − ~xj0‖2

2σ2
p

)
, (25)

where ~xt is the position at time t of the simulated rat, σp = 0.05m is the width of the
firing field and ‖a− b‖ is the great-circle distance between two points a and b on a sphere.
The firing rate Ψt

i of mEC unit i is determined by a non-linear transfer function

Ψt
i =

π

2
arctan

[
gt(αti − µt)

]
Θ(αti − µt), (26)

which is normalized to have a maximal firing rate equal to 1 (in arbitrary units), and Θ(·)
is the Heaviside function.

The variable αti represents the adaptation-mediated input to the unit i. It is related
to the hti as follows:

αti = αt−1
i + b1(h

t−1
i − βt−1

i − αt−1
i ), βti = βt−1

i + b2(h
t−1
i − βt−1

i ), (27)

where βi has slower dynamics than αi, with b2 = b1/3, b1 = 0.1. This adaptive threshold
makes it more difficult for a neuron to fire for prolonged periods of time, and corresponds
to the kernel K considered in the analytical treatment. The gain gt and threshold µt

are iteratively adjusted by equations (28) at every time step to fix the mean activity

a =
∑

iΨ
t
i/NmEC and the sparsity s = (

∑
iΨ

t
i)

2/(NmEC

∑
iΨ

t
i
2
) within a 10% relative error

doi:10.1088/1742-5468/2013/03/P03013 10
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bound from pre-specified values, a0 = 0.1 and s0 = 0.3 respectively. If k is indexing the
iteration process,

µt,k+1 = µt,k + b3(a
k − a0), gt,k+1 = gt,k + b4g

t,k(sk − s0). (28)

b3 = 0.01 and b4 = 0.1 are the sizes of the iteration steps. ak and sk are the values of the
mean activity and sparsity determined by µt,k and gt,k in the intermediate iteration steps.
The iteration stops once the gain and threshold have been brought within the 10% error
range, and the activity of mEC units is determined by the final values of the gain and
threshold in equation (26).

The learning process modifies the strength of the feed-forward connections according
to a Hebbian rule

W̃ t
ij = W t−1

ij + ε(Ψt
ir
t
j − Ψ̄t−1

i r̄t−1
j ), (29)

with a rate ε = 0.002. Ψ̄t
i and r̄tj are estimated mean firing rates of mEC unit i and place

unit j that are adjusted at each time step of the simulation,

Ψ̄t
i = Ψ̄t−1

i + η(Ψt
i − Ψ̄t−1

i ), r̄tj = r̄t−1
j + η(rtj − r̄t−1

j ), (30)

with η = 0.05 being a time averaging factor.
After each learning step, the provisional W̃ t

ij weights are normalized into the unitary
norm, ∑

j

W t
ij

2
= 1. (31)

Units that win during competitive learning manage to establish strong connections with
units that provide strong inputs. As the learning proceeds the units establish fields
where they receive strong inputs and at the same time are recovering from adaptation.
The emergence of the grid map is the product of averaging over a period of time
corresponding to some hours of running for the animal. It remains to be assessed whether
the mechanism we propose is suitable to explain the formation of grid representations in
each new environment the animal encounters, or if, instead, it can only be applied to the
developmental period.

4.2. Results

We have run several simulations of 3 × 107 learning time steps, i.e. 83 h of animal time,
considerably longer than needed to produce clear grids in a flat 2D environment. The
fields developed by model mEC units are then expected to be in the asymptotically
stable regime, and they are depicted, for different values of the radius of the sphere,
in figure 5. The figure presents the firing activity of a random sample of mEC units.
The units develop a grid-like pattern of activation and the emerging configurations are in
reasonable agreement with those predicted by the analytical model. For each value of the
radius, the units typically express the same number of fields. As the radius increases, the
units express an increasing number of grid fields, regularly tiling the surface. As already
discussed for the analytical approach, the particular association between the radius and
the number of fields is the result of the choice of the adaptation time scale. A different
value of b1 (and b2) will result in the appearance of the same configuration of fields
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Figure 5. Units in an adapting network form grid-like firing maps on spheres.
The number of fields increases from 1, 2, 4, 6 to 12 when the radius of the
sphere R increases. In each panel, the first two rows show four examples of firing
maps from two opposite views perpendicular to the x–z plane. The bottom rows
of each panel are the Miller cylindrical projections of the corresponding maps.
(a) R = 10 cm, (b) R = 15 cm, (c) R = 25 cm, (d) R = 30 cm and (e) R = 45 cm.

with a smaller or larger radius of the sphere. In the case of a population of cells with
heterogeneous adaptation properties, we expect the coexistence of different solutions on
the same sphere.
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Figure 5. (Continued.)

The particular set of adaptation parameters we used would produce a spacing of about
56 cm in the planar case. We notice that this spacing is approximately maintained on the
sphere, when its radius is varied. As a consequence of this constraint, the number of fields
expressed by the cells grows roughly quadratically with the radius of the sphere.

Generally the configurations correspond to those indicated as asymptotic solutions (1,
2, 4, 6, 12 fields), but in the case of the 40 cm radius, some units exhibit a non-symmetrical
configuration of 8–10 fields, figure 6, that emerges at the transition, as it were, from the
6-field to the 12-field solution. The existence and the stability of such a configuration is
most probably the expression of the very shallow nature of the energy profile. As previously
noted, we cannot exclude the presence of other asymptotically stable solutions. The results
of the simulations seem to point in this direction.

5. Conclusions

Grid cells, found in rodents and now also in bats [19], are a striking example of the way
the brain represents the space we move in. The precise triangular tiling of the environment
that is expressed by mEC neurons closely resembles a coordinate system, but how such a
regularity can be generated in a neural circuit is still controversial.

We propose a model in which the grid pattern is a product of a self-organization
process driven by neural adaptation, with additional recurrent interactions to align the
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Figure 6. Units develop intermediate numbers of fields if the size of the sphere
does not match the adaptation parameters of the network. The radius here is
40 cm, and the four units in the sample shown develop from 8 to 10 fields.
Representation as in figure 5.

grids, which can, however, be regarded as second order corrections [11]. This mechanism
does not rely on any internal hard-wired structure to work. The final arrangement of the
grid fields is a spontaneous effect of the protracted exploration of the environment by the
animal. The model thus differs from those based on a pre-wired attractor structure [20,
21], which rely on a specific connectivity established a priori to produce the grid pattern of
activity. It is not clear to us what such models would predict in the case of rodents raised in
or on a sphere, or in fact in any other environment not matching the flat 2D geometry of the
pre-wired connectivity (it is likewise not clear what such pre-wired attractor models would
predict in the case of bats, flying in 3D). Unless attractor models can be shown to also lead
to symmetric combinations of spherical harmonics, or something similar, experiments with
spherical environments might help to contrast different models of grid field formation. In
parallel, the observation of spherical grid fields with l ≤ 6 would immediately lead one to
refute models of grid cell formation based on the combination of striped fields at 60 or
120 degrees to each other [22, 23].

In this paper we analyze the specific case of a spherical environment. Using an
analytical approach based on the minimization of an energy function, together with more
detailed numerical simulations of the system (though still a network of noninteracting
units), we study the configurations of activity that develop after a long rearing period.

We find that these configurations are described by linear combinations of spherical
harmonics that express a grid-like arrangement of the fields on the surface of the sphere.
By combining harmonics of increasing angular momentum one obtains solutions with
an increasing number of fields. The radius of the sphere determines which of these is
energetically favored, and thus prevails in the asymptotic configuration of the activity, as
shown also by simulations.

One problem that remains open is the existence of intermediate, stable states present
for certain radii, at the transition between one fully symmetrical solution and the next.
Their appearance may reflect the shallow nature of the energy profile described by our

doi:10.1088/1742-5468/2013/03/P03013 14

http://dx.doi.org/10.1088/1742-5468/2013/03/P03013


J.S
tat.M

ech.(2013)
P

03013

Grid cells on the ball

model, or the inability of our approach to successfully identify all the minima of the energy
function defining the asymptotic states of the system.

New experiments that make use of virtual reality on a revolving sphere, or in which
rats are reared inside a spherical cage, will likely provide a direct test for our model in
the near future.
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