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Abstract

We study weighted modular inequalities for a generalized maximal operator
associated to a Young function in the context of spaces of homogeneous type.
We prove the equivalence between these inequalities and a Dini-type condition,
which involves the function associated to the operator and the functions related
to the modular estimates. Particularly we obtain a generalization of a result of C.
Perez and R. Wheeden ([PW]). In addition we prove a characterization of the A1-
Muckenhoupt class, that extends and improves the corresponding results proved
by H. Kita ([K3][K2]).

1 Introduction and Preliminaries

The Hardy-Littlewood maximal operator M of a locally integrable function f is
defined by

(1.1) Mf(x) = sup
B3x

1

|Q|

∫
Q

|f |

where the supremum is taken over all balls B containing x. A modular inequality for
this operator involving the growth functions φ and ψ that has been widely studied is
given by ∫

Rn
φ(Mf(x)) dx ≤ C

∫
Rn
ψ(C|f(x)|) dx.

For example, in [HSV] the authors prove that a Dini- type condition on the growth
functions φ and ψ characterizes the modular boundedness of certain versions of the
operator in (1.1) associated to an open bounded set Ω. Moreover, their results include
norm estimates for these operators between Orlicz spaces related to the functions φ and
ψ and extend those results contained in [K1].
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Related to weighted modular inequalities involving M , in [K3] the author proves that
if w is a weight in the A1 Muckenhoupt class and the function φ and ψ satisfy a Dini-type
condition then

(1.2)

∫
Rn
φ(Mf(x))w(x) dx ≤ C

∫
Rn
ψ(C|f(x)|)w(x) dx.

A reciprocal result is also obtained for weights w satisfying a RH∞ condition, that is,

C sup
Q
w ≤ 1

|Q|

∫
Q

w.

Moreover, for weights in A1 ∩RH∞ the author proves the equivalence between the Dini-
type condition and the modular estimate in (1.2).

Let k be a positive integer and Mk =

k︷ ︸︸ ︷
M ◦ · · · ◦M . Let a and b be certain positive

functions, φ(t) =
∫ t

0
a(s) ds and ψ(t) =

∫ t
0
b(s) ds, t ≥ 0. In [K2] the author considers

weighted modular inequalities involving the functions φ and ψ for Mk and A1-weights.
Concretly, he proves that if the functions φ and ψ satisfy the following Dini-type condition

(1.3)

∫ t

0

a(s)

s

(
log

t

s

)k−1

ds ≤ C1b(C2t)

for every t > 0, then there exist positive constants C3 and C4 such that

(1.4)

∫
Rn
φ(Mkf)w ≤ C3

∫
Rn
ψ(C4|f |)w.

For the case k = 1, the author also gives a characterization of A1 weights in terms of the
Dini condition (1.3) and the modular inequality (1.4).

For a general Young function η, let

Mηf(x) = sup
Q3x

‖f‖η,Q

where

‖f‖η,Q = inf{λ > 0 :
1

|Q|

∫
Q

η(|f |/λ) ≤ 1}.

Particularly, when ηk(t) = t logk−1(e + t), it is well known that Mk ∼= Mηk (See, for
example, [PW] or [BHP]). On the other hand, it is easy to check that η′k(t)

∼= ηk(t)/t ∼=
(log t)k−1, for t > 1. Thus, the Dini-type condition (1.3) can be written as

(1.5)

∫ t

0

a(s)

s
η′k(t/s) ds ≤ C1b(C2t),

and (1.4) gives a A1-weighted modular estimate for Mηk .
For a general Young function η, the continuity properties of Mη between Lp spaces

have been studied in [P] in the euclidean setting and in [PW] in the context of spaces of
homogeneous type with the additional hypotheses that every annuli in the space is not
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empty. Later, in [PS] the authors avoid this hypotheses and proved the result on spaces
of homogeneous type with infinite measure. In all the cases the authors prove that the
operator Mη is bounded from Lp into Lp if and only if η belongs to the Bp class, that

is
∫∞
c

η(t)
tp

dt
t
< ∞, which is the Dini-type condition (1.5) with a(t) = b(t) = tp−1 and ηk

replaced by η. Moreover, the Bp condition characterizes weighted estimates of Mη.
In this paper we give a characterization of weighted modular and norm estimates in

Orlicz spaces of the generalized maximal function Mη via a Dini-type condition in the
general setting of spaces of homogeneous type. Our results extends those contained in [P]
in the euclidean context and in [PW] and [PS] on spaces of homogeneous type. Moreover,
as a consequence of these results we obtain a new characterizations of A1 weights in the
spirit of the results contained in [K2].

The paper is organized as follows. In §2 we state the main results described above;
in §3 we give some technical lemmas that allow us to prove in §4, the main results.

Before stating the main results of this article, we give some standard notation.
Let X be a set. A function d : XxX → [0,∞) is called a quasi-distance on X if the

following conditions are satisfied:

i) for every x and y in X, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,

ii) for every x and y in X, d(x, y) = d(y, x),

iii) there exists a constant K such that d(x, y) ≤ K(d(x, z) + d(z, y)) for every x, y
and z in X.

Let µ be a positive measure defined on the σ-algebra of subsets of X generated by the
d-balls B(x, r) = {y : d(x, y) < r}, with x ∈ X and r > 0. We assume that µ satisfies a
doubling condition, that is, there exists a constant A such that

(1.6) 0 < µ(B(x, 2Kr)) ≤ Aµ(B(x, r)) <∞

holds for every ball B ⊂ X. A structure (X, d, µ), with d and µ as above, is called a
space of homogeneous type and it was introduced for the first time in [CW] (for more
details, see [MS1] and [MS2], for instance).

We say that (X, d, µ) is a space of homogeneous type regular in measure if µ is regu-
lar, that is for every measurable set E, given ε > 0, there exists an open set G such that
E ⊂ G and µ(G− E) < ε. In what follows we always assume that the space (X, d, µ) is
regular in measure.

A non negative function w defined on X will be called a weight if it is a locally
integrable function. Given E a measurable set we denote w(E) =

∫
E
w dµ.

A weight w is in the Muckenhoupt’s class A1 respect to µ if there exists a positive
constant C such that the inequality

(1.7)
w(B)

µ(B)
≤ Cw(x)

holds for almost every x ∈ B.
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We summarize now a few facts about Orlicz spaces. For more information see, for
instance, [RR]. Recall that a non negative increasing function ϕ, defined on [0,∞) is
called a Young function if it is convex and satisfies ϕ(0) = 0, lims→∞ ϕ(s) = ∞. It follows
that ϕ(t)/t is increasing. Each Young function ϕ has an associated complementary Young
function ϕ̃ satisfying

(1.8) t ≤ ϕ−1(t)ϕ̃−1(t) ≤ 2t,

for all t > 0. We shall be also concerned with submultiplicative functions ϕ, which means
that

ϕ(ts) ≤ ϕ(t)ϕ(s)

for every positive numbers t and s. It is immediate that if ϕ is a submultiplicative Young
function, then it satisfies the ∆2 condition, that is, ϕ(2s) ≤ Cϕ(s) which, in particular,
implies that ϕ′(t) ≈ ϕ(t)/t.

If ϕ is a Young function, we define the weighted ϕ-average of a function f over a ball
B as

‖f‖ϕ,B,w = inf{λ > 0 :
1

µ(B)

∫
B

ϕ(|f |/λ)w dµ ≤ 1}.

If w = 1 we simply write ‖f‖ϕ,B. The following generalization of Hölder’s inequality
holds

(1.9)
1

µ(B)

∫
B

|fg| dµ ≤ ‖f‖ϕ,B‖g‖ϕ̃,B.

2 Main results

Before stating our main results, we include some basic definitions.
Let a and b be positive continuous functions defined on [0,∞) with a(0) = b(0) = 0.

We also suppose that b is non decreasing, b(s) →∞ as s→∞. We define

(2.1) φ(t) =

∫ t

0

a(s) ds ψ(t) =

∫ t

0

b(s) ds

for t ≥ 0. Observe that φ is not necessary a Young function.
From definition (2.1) and the fact that b is non decreasing the following property follows

(2.2)
1

2
b

(
t

2

)
≤ ψ(t)

t
≤ b(t).

Finally, we will be working with normalized Young functions η, which means that
η(1) = 1.

With these definitions, we can introduce our first result.

4



(2.3) Theorem: Let (X, d, µ) be a space of homogeneous type with µ(X) = ∞ and
such that X contains a point measuring zero. Let η be a doubling Young function and
a, b, φ and ψ defined as in (2.1). Then the following statements are equivalent

(2.4) There exists a positive constant C such that the inequality∫ 4t

0

a(s)

s
η′(t/s) ds ≤ Cb(Ct)

holds for every t > 0.
(2.5) There exists a positive constant C such that the inequality

(2.6)

∫
X

φ(Mηf(x))w(x) dµ(x) ≤ C

∫
X

ψ(|f(x)|)Mw(x) dµ(x)

holds for every positive function f and every weight w.
(2.7) There exists a positive constant C such that the inequality

‖Mηf‖φ,w ≤ C‖f‖ψ,Mw,

holds for every positive function f and every weight w.
(2.8) There exists a positive constant C such that the inequality∫

X

φ(Mηf(x)) dµ(x) ≤ C

∫
X

ψ(|f(x)|) dµ(x)

holds for every positive function f .
(2.9) There exists a positive constant C such that the inequality

(2.10)

∫
X

φ

(
Mf(x)

Mη̃(ψ−1(u))

)
w(x) dµ(x) ≤ C

∫
X

ψ

(
|f(x)|
ψ−1(u)

)
Mw(x) dµ(x)

holds for every positive function f and all weights w and u.
(2.11) There exists a positive constant C such that the inequality

‖Mηf‖φ ≤ C‖f‖ψ,

holds for every positive function f .

(2.12) Remark: For a(t) = b(t) = ptp−1, the theorem above was proved in the euclidean
context by C. Pérez in [P]. In the setting of spaces of homogeneous type and for the same
functions a and b, it was obtained in [PW] but under the assumption that every annuli in
the space is non empty, which implies, for instance, that the space has infinite measure
and no atoms (that is, points with positive measure). In [PS], the authors remove the
last assumption and prove that the result is valid in any space of homogeneous type with
infinite measure.
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(2.13) Remark: The implications (2.4) ⇒ (2.5) ⇒ (2.7) ⇒ (2.8) ⇒ (2.11) and
(2.5) ⇒ (2.9) do not require µ(X) = ∞. Moreover, from the proof of the theorem
it can be seen that the hypothesis about the existence of a point with zero measure is
only needed to prove (2.11) ⇒ (2.4). So, from this fact and since (2.4) does not depends
onX, the theorem is true for every space with infinite measure in staments (2.5) to (2.11).

One version of the above theorem when the measure of the whole space is finite is
the following result.

(2.14) Theorem: Let (X, d, µ) be a space of homogeneous type with µ(X) < ∞ and
such that X contains a point measuring zero. Let η be a doubling Young function and
a, b, φ and ψ defined as in (2.1). Then the statements (2.4) to (2.8) are equivalent.

(2.15) Remark: When µ(X) < ∞ and µ({x}) 6= 0 for every x in X, (2.4) does not
follows from (2.8). In fact, let us assume X = {0, 1} such that µ({0}) = µ({1}) = 1 and
the euclidean metric. For η(t) = φ(t) = ψ(t) = t the modular inequality (2.8) clearly
holds, but (φ, ψ) does not satisfy the Dini condition (2.4).

(2.16) Remark: In Orlicz spaces related to a bounded subset Ω of Rn, Harboure, Salinas
and Viviani proved for η(t) = t in [HSV], that a strong inequality ‖Mf‖φ ≤ C‖f‖ψ is

equivalent to a slightly different Dini type condition, that is,
∫ t

1
a(s)/sds ≤ Cb(Ct)

whenever t > 1 and a modular inequality that differs in a constant.

The next results involve one weight inequalities for the generalized maximal operator
Mη on spaces of homogeneous type with infinite measure. The first one can be obtained
as a simple corollary of theorem 2.3.

(2.17) Theorem: Let η, a, b, φ and ψ be as in theorem 2.3. Then the following
statements are equivalent
(2.18) There exists a positive constant C such that the inequality∫ 4t

0

a(s)

s
η′(t/s) ds ≤ Cb(Ct)

holds for every t > 0,
(2.19) There exists a positive constant C such that the inequality∫

X

φ(Mηf(x))w(x) dµ(x) ≤ C

∫
X

ψ(|f(x)|)w(x) dµ(x)

holds for every positive function f and every weight w belonging to A1.

6



(2.20) Remark: In the euclidean context theorem 2.17 was partially obtained by H.
Kita in [K3] for the maximal function M , but in proving that (2.19) is a sufficient
condition for (2.18) the author assumes that w ∈ A1 ∩ RH∞ weights respect to the
Lebesgue measure.

A certain reciprocal of the theorem above is contained in the following result.

(2.21) Theorem: Let η be a submultiplicative Young function. If condition (2.18)
implies (2.19) for every positive, continuous functions a, b, φ and ψ as in theorem 2.17,
then w ∈ A1.

(2.22) Remark: In the euclidean setting and for the Hardy-Littlewood maximal oper-
ator, the theorem above was proved in [K2].

(2.23) Remark: Note that, from theorem (2.17) and (2.21) we get a characterization
for weights belonging to A1.

3 Some technical lemmas

The following result is a classical covering lemma in spaces of homogeneous type. A
proof can be found in [CW].

(3.1) Lemma: Let E be a bounded subset in X. Let {B(x, r(x)) : x ∈ E} be a
covering of E by balls centered at each point of E. Then there exists a sequence of
points {xi}i∈N ⊂ E such that
(i) B(xi, r(xi))

⋂
B(xj, r(xj)) = ∅ if i 6= j,

(ii) E ⊂
⋃∞
i=1B(xi, 4Kr(xi)), where K is a constant of the space

(3.2) Lemma: Let η be a Young function and let w be a weight. Then, the following
estimate holds

w({x ∈ X : Mηf(x) > λ}) ≤ C

∫ ∞

1/4

Mw({x ∈ X : |f(x)|/λ > s})η′(s) ds.

Proof: By using lemma (3.1) and standard techniques it is not difficult to prove that
the following endpoint modular inequality holds

(3.3) w({x ∈ X : Mηf(x) > λ}) ≤ C

∫
X

η(|f(x)|/λ)Mw(x) dµ(x).

Now, let f = f1 + f2, where f1 = fχ{|f |≤λ}. Then, by (3.3) we have

w({x ∈ X : Mηf(x) > 2λ}) ≤ Cw({x ∈ X : Mηf2(x) > λ})

≤ C

∫
{|f |>λ}

η(|f(x)/λ|)Mw(x) dµ(x).
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Then, to conclude the proof, it is enough to prove that

(3.4)

∫
{|f |>λ}

η(|f(x)/λ|)Mw(x) dµ(x) ≤ C

∫ ∞

1/2

Mw({x ∈ X : |f(x)|/λ > s})η′(s) ds.

Let us observe that∫
{|f |>λ}

η(|f(x)/λ|)Mw(x) dµ(x) ≤
∫ ∞

0

Mw({x ∈ X : |f(x)|/λ > max{1, s}})η′(s) ds

= I1 + I2,

where

I1 =

∫ 1

0

Mw({x ∈ X : |f(x)|/λ > max{1, s}})η′(s) ds

and

I2 =

∫ ∞

1

Mw({x ∈ X : |f(x)|/λ > max{1, s}})η′(s) ds.

For I1 we have

I1 ≤ CMw({x ∈ X : |f(x)| > λ})

≤ C

∫ 1

1/2

Mw({x ∈ X : |f(x)| > λs})η′(s) ds.

≤ C

∫ ∞

1/2

Mw({x ∈ X : |f(x)| > λs})η′(s) ds.

On the other hand, it is clear that

I2 ≤
∫ ∞

1/2

Mw({x ∈ X : |f(x)| > λs})η′(s) ds.

Then, from the estimates for I1 and I2 we obtain (3.4). �

The next lemma gives us a Calderón-Zygmund decomposition related to Orlicz norms
and it can be proved applying a similar reasoning to the one used by H. Aimar in [A] for
the case φ(t) = t.

(3.5) Lemma: Let f be a nonnegative function belonging to L(X). Then, given σ > 1,
for each λ ≥ ‖f‖η,X there exists a sequence {Bi} of pairwise disjoint balls such that, if
B̃i is the dilation of Bi by σ, the following statements hold
(3.6) ‖f‖η,B̃i ≤ λ < ‖f‖η,Bi .
(3.7) For every x ∈ X − ∪iB̃i, we get ‖f‖η,B ≤ λ for all ball B containing x.
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(3.8) Remark: Observe that, if µ(X) = ∞, the lemma holds for every positive number
λ.

The following result give us a reverse modular weak type inequality.

(3.9) Lemma: Let f be a non negative locally integrable function. Then there exists
a positive constant C such that the inequality

µ({x ∈ X : Mηf(x) > λ}) ≥ C

∫
{x∈X:η(f/λ)>1}

η(f/λ) dµ

holds for every λ > ‖f‖η,X .

Proof: From lemma 3.5, given σ > 0 and λ > ‖f‖η,X there exists a sequence {Bi} of
pairwise disjoint balls which satisfies (3.6) and (3.7). Moreover, since µ is a regular mea-
sure, it is easy to check that {x ∈ X : η(|f |/λ) > 1} ⊂ ∪iB̃i. From these considerations
we have

µ (x ∈ X : Mηf(x) > λ) ≥
∑
i

µ(Bi)

≥ C
∑
i

µ(B̃i)

≥ C
∑
i

∫
B̃i

η(|f |/λ) dµ

≥ C

∫
∪iB̃i

η(|f |/λ) dµ

≥ C

∫
{x∈X:η(|f |/λ)>1}

η(|f |/λ) dµ

which proves the lemma. �

In order to state the next result we define δ : X ×X → R+ ∪ {0} as

δ(x, y) =

{
µ(B(x, d(x, y))) if x 6= y,
0 if x = y,

It can be seen that the function δ satisfies
(i) δ(x, y) ≥ 0 and δ(x, y) = 0 is and only if x = y,
(ii) δ(x, y) ≤ Aδ(y, x) and
(iii) A2(δ(x, z) + δ(y, z)) for every x, y and z in X, where A is the constant in (1.6).

We observe that δ(x, y) does not necessarily satisfy a symmetric condition as d. The
function δ is called the non-necessarily symmetric quasi-distance associated to (X, d, µ)
and it was introduced in [MST]. We denote by Bδ(x, r) the set {y : δ(x, y) < r}. The
conditions above on δ imply the existence of a constant D such that

0 < µ(Bδ(x, 2Kr)) ≤ Dµ(Bδ(x, r)) <∞.

The next lemma related to the δ-balls was proved in [PS], (see [BS], too).
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(3.10) Lemma: Assuming µ(X) = ∞, there exist two constants C0 and C1, depending
only on the constants of the space (X, d, µ), such that

µ(Bδ(z, C0R))− µ(Bδ(z, R)) ≥ C1R

for every z in X and every R > µ({z})/2A2, where A is the constant in (1.6).

4 Proof of the main results

In this section we prove theorems 2.3, 2.14 and 2.21.

Proof of theorem 2.3:

We are going to do the proof in the following way:

i) We prove the chain of implications (2.4) ⇒ (2.5) ⇒ (2.7) ⇒ (2.8) ⇒ (2.4).

ii) We proceed with the proof of (2.5) ⇒ (2.9) ⇒ (2.4).

iii) We finally prove that (2.8) ⇒ (2.11) ⇒ (2.4).

i) Let us prove that (2.4) ⇒ (2.5). Let f ∈ LψMw(X). From lemma 3.2 and the
hypothesis we obtain∫
X

φ(Mηf(x))w(x) dµ(x) =

∫ ∞

0

a(λ)w({x ∈ X : Mηf(x) > λ}) dλ

≤ C

∫ ∞

0

a(λ)

∫ ∞

1/4

Mw({x ∈ X : |f(x)|/λ > s})η′(s) ds dλ

≤ C

∫ ∞

0

Mw({x ∈ X : |f(x)| > s})
(∫ 4s

0

a(λ)

λ
η′(s/λ) dλ

)
ds

≤ C

∫ ∞

0

b(Cs)Mw({x ∈ X : |f(x)| > s}) ds

≤ C

∫
X

ψ(C|f(x)|)Mw(x) dµ(x),

which is (2.5).

From the fact that ψ is a convex function, (2.7) follows easily from (2.5) by taking
f/C‖f‖ψ,Mw instead of f . Let us prove (2.7) ⇒ (2.8). Let f be a positive function, and
let α be a constant such that α = 1/(

∫
X
ψ(C|f(x)|)dµ(x)). Clearly∫

X

ψ(C|f(x)|)αdµ(x) = 1,
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and then ‖f‖ψ,α = 1/C, where w ≡ α. Since the constant in (2.7) is independent of the
weight and the function f , we can rewrite for that weight the inequality of the hypothesis
as ∫

X

φ(Mηf(x))αdµ(x) ≤ 1.

Then we have ∫
X

φ(Mηf(x))dµ(x) ≤ C

∫
X

ψ(C|f(x)|)dµ(x),

which is (2.8).

Finally to complete (i), let us prove (2.8) ⇒ (2.4). By hypothesis we obtain

C

∫
X

ψ(C|f(x)|)dµ(x) ≥
∫
X

φ(Mη(f(x)))dµ(x)

=

∫ ∞

0

a(λ)µ{x ∈ X : Mηf(x) > λ}dλ.

From the weak type reverse inequality for Mη stated in lemma 3.9 it follows that

C

∫
X

ψ(C|f(x)|)dµ(x) ≥
∫ ∞

0

a(λ)

∫
{x∈:η(|f(x)|/λ)>1}

η(|f(x)|/λ)dµ(x)dλ.

Let λo > 0 and a fixed ball Bo. Let f = λoχBo . Replacing f in the previous inequality
we get that

Cψ(Cλo)µ(Bo) ≥
∫ λo

0

a(λ)η

(
λo
λ

)
µ(Bo)dλ

≥ C

∫ λo

0

a(λ)

λ
η′
(
λo
λ

)
λoµ(Bo)dλ,

having applied latter that η′(t) ≈ η(t)/t. Finally as ψ(t)/t ≤ b(t) we have

Cb(Cλo) ≥ C
ψ(λo)

λo

≥ C

∫ λo

0

a(λ)

λ
η′
(
λo
λ

)
dλ

for all λo > 0 from which it follows (2.4).

ii) We use similar arguments to those in theorem 5.1 of [PW] to prove that (2.5) ⇒
(2.9). Since (2.10) is equivalent to∫

X

φ

(
M(fg)(x)

Mη̃(g)

)
w(x) dµ(x) ≤ C

∫
X

ψ (|f(x)|)Mw(x) dµ(x)
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for all non negative functions f , g and w, (2.9) follows from (2.5) after an application of
the following inequality

M(fg)(x) ≤Mη(f)(x)Mη̃(g)(x) x ∈ X,

which is a consequence of the generalized Hölder’s inequality (1.9).
Note that if η(t) = t, then η̃(t) = 0 if t ≤ 1 and η̃(t) = ∞ if t > 1, which implies

that Mη̃(g)(x) = ‖g‖∞. In this case the results can be obtained by following similar
arguments with the obvious changes.

The proof of (2.9) ⇒ (2.4) follows similar arguments as those in the proof of theorem
1.4 in [PS]. For a sake of completeness we include it.

Let us take w = 1 in the hypotheses to obtain

(4.1)

∫
X

φ

(
Mf(x)

Mη̃(ψ−1(u))

)
dµ(x) ≤ C

∫
X

ψ

(
|f(x)|
ψ−1(u)

)
dµ(x).

For t > 0, z ∈ X and R > 0, let us take f = tχB0 and ψ−1(u) = χB0 , where B0 =
B(z, R). Let x ∈ X such that d(x, z) > θR, θ > 1 large enough and let α > 1 such that
µ(B(z, αθR)) > µ(B(z, θR)). Let Ω be the set defined by Ω = {x : µ(B(z, d(z, x))) ≥
µ(B(z, αθR))}. It is clear that Ω ⊂ {x : d(z, x) > θR}.

On the other hand, it is easy to check that there exists a positive constant C such
that

M(tχB0)(x)
∼=

t

µ(B(x, d(x, z)))

and

Mη̃(χB0)(x)
∼=

1

η̃−1(Cµ(B(x, d(x, z))))
.

Thus, proceeding as in the proof of theorem 1.4 in [PS], from (4.1) we obtain

Cψ(t) ≥
∫

Ω

φ

(
tη̃−1(Cµ(B(z, d(x, z))))

µ(B(z, d(x, z)))

)
dµ.

Then, taking R0 = µ(B(z, αθR)), from (1.8) applied to η and lemma (3.10) we get

Cψ(t) ≥
∞∑
j=0

∫
Cj0R0≤µ(B(z,d(x,z)))<Cj+1

0 R0

φ

(
tη̃−1(Cµ(B(z, d(x, z))))

µ(B(z, d(x, z)))

)
dµ

≥
∞∑
j=0

φ

(
tη̃−1(CCj

0R0)

Cj+1
0 R0

)
µ
(
Bδ(z, C

j+1
0 R0)−Bδ(z, C

j
0R0)

)
≥ C1

∞∑
j=0

φ

(
Ct

C0η−1(CCj
0R0)

)
Cj

0R0

≥ C1

∞∑
j=0

∫ Cj+1
0 R0

Cj0R0

sφ

(
Ct

η−1(s)

)
ds

s

≥ C1

∫ ∞

C

sφ

(
Ct

η−1(s)

)
ds

s
.
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By changing variables in the expression above we obtain

C
ψ(t)

t
≥

∫ Ct

0

φ(s)

s
η′(t/s)

ds

s

≥
∫ Ct

0

a(s)

s
η′(t/s) ds.

From the fact that b(t) ≥ ψ(t)/t (see (2.2)), we obtain (2.4).
It is important to note that if η(t) = t then Mη̃(ψ

−1(u)) = 1 and the same proof
works by making a slight modification.

iii) If we set w = 1 in (2.5) we get (2.8). On the other hand, by taking w = 1 and
proceeding as in the proof of (2.5) ⇒ (2.7), we obtain that (2.8) implies (2.11).

Let us now see that (2.11) ⇒ (2.4). For x0 ∈ X, such that µ({xo}) = 0 and 0 < r < 1
we set Br = B(x0, r) and fr = 1

µ(Br)
χBr(x). If 0 < λ < 1/µ(Br), it is easy to prove that

Br ⊂ {x ∈ X : η(fr/λ) > 1}. Since µ(X) = ∞, we have that ‖fr‖η,X = 0, thus, by
applying lemma 3.9 we obtain

µ({x ∈ X : Mηfr(x) > λ}) ≥ C

∫
{x∈X:η(fr/λ)>1}

η(fr/λ) dµ

≥ C

∫
Br

η

(
1

µ(Br)λ

)
dµ

= Cµ(Br) η

(
1

µ(Br)λ

)
.

On the other hand, we have that ‖fr‖ψ = 1
µ(Br)ψ−1(1/µ(Br))

. From (2.11) and the
properties of η we get

1 ≥
∫
X

φ

(
Mηfr
C‖fr‖ψ

)
dµ

=

∫ ∞

0

a(λ)µ({Mηfr > Cλ‖fr‖ψ}) dλ

=

∫ ∞

0

a

(
λ

C‖fr‖ψ

)
µ({Mηfr > λ}) dλ

C‖fr‖ψ

≥ C

∫ 1/µ(Br)

0

a(λ/C‖fr‖ψ)

λ
4λµ(Br) η

(
1

4λµ(Br)

)
dλ

C‖fr‖ψ

≥ C

∫ 1/µ(Br)

0

a(λ/C‖fr‖ψ)

λ
η′
(

1

4λµ(Br)

)
dλ

C‖fr‖ψ

= C

∫ 1/Cµ(Br)‖fr‖ψ

0

a(λ)

λ
η′
(

1

4Cλµ(Br)‖fr‖ψ

)
dλ

C‖fr‖ψ
.

13



If we set t = 1
4Cµ(Br)‖fr‖ψ

from the estimates above we obtain that

∫ 4t

0

a(λ)

λ
η′
(
t

λ

)
dλ ≤ C‖fr‖ψ

= C
ψ(Ct)

Ct
≤ Cb(Ct),

which proves (2.4). (�)

Proof of theorem 2.14: Keeping in mind remark 2.13, in order to complete the proof
we have to see that (2.4) follows from (2.8). Let λo > 0, M > 0, xo ∈ X such that
µ({xo}) = 0) and the ball Bo = B(xo,M). Let f = λoχBo ,then by the norm definition it
follows that ‖f‖η,X = λo/η

−1(µ(X)/µ(Bo)). From the hypothesis

C

∫
X

ψ(C|f(x)|)dµ(x) ≥
∫
X

φ(Mη(f(x)))dµ(x)

=

∫ ∞

0

a(λ)µ{x ∈ X : Mηf(x) > λ}dλ.

Applying the weak type reverse inequality (3.9) for Mη with λ ≥ ‖f‖η,X we have that

C

∫
X

ψ(C|f(x)|)dµ(x) ≥
∫ λo

‖f‖η,X
a(λ)

∫
{x∈:η(|f(x)|/λ)>1}

η(|f(x)|/λ)dµ(x)dλ

From the definition of f we get

Cψ(Cλo)µ(Bo) ≥
∫ λo

λo
η−1(µ(X)/µ(Bo))

a(λ)η

(
λo
λ

)
µ(Bo)dλ

≥ C̄

∫ λo

λo
η−1(µ(X)/µ(Bo))

a(λ)

λ
η′
(
λo
λ

)
λoµ(Bo)dλ.

In the latter it has been applied that η′(t) ≈ η(t)/t.
Now, applying that ψ(t)/t ≤ b(t), we obtain

Cb(Cλo) ≥ C
ψ(Cλo)

λo

≥
∫ λo

λo
η−1(µ(X)/µ(Bo))

a(λ)

λ
η′
(
λo
λ

)
dλ.

Since λo
η−1(µ(X)/µ(Bo))

tends to zero when the radius of Bo tends to zero and C is indepen-
dent of it, we obtain

Cb(Cλo) ≥
∫ λo

0

a(λ)

λ
η′
(
λo
λ

)
dλ
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for all λo > 0, which is (2.4) and the theorem is proved. (�)

Before starting with the proof of theorem 2.21, we introduce another class of weigths
and then a characterization result.

Let ψ and η be Young functions. By Bη
ψ we denote the class of weights w for which

there exists a positive constant C such that the inequality

(4.2) w({x ∈ X : Mηf(x) > λ}) ≤
∫
X

ψ ◦ η
(
C
|f(x)|
λ

)
w(x) dµ(x)

holds for every λ > 0 and for all f ∈ Lφ◦ηw (X). When η(t) = t we simply write Bψ. In
the euclidean setting the class Bψ was widely studied in [B].

It is not difficult to see that, if w ∈ Bη
ψ then w satisfies a doubling condition. In

fact, let B = B(xB, r) and B̃ = B(xB, 2Kr) where K is the constant associated to the
quasi-distance d. If f = χB then it is easy to check that Mηf(x) ≥ 1/η−1(A) for x ∈ B̃,
where A is the constant in (1.6). Then, from (4.2) we have

w(B̃) ≤ w({x ∈ X : Mηf(x) > 1/η−1(A)}) ≤ ψ(CA)w(B)

which proves the desired result.

The next theorem gives a characterization of the weights in the class Bη
ψ on spaces

of homogeneous type. This result proves that both classes Bη
ψ and Bψ coincide.

(4.3) Theorem: Let w be a weight and let ψ and η be a Young functions such that η
is submultiplicative. The following statements are equivalent
(4.4) w ∈ Bψ.
(4.5) w satisfies a doubling condition and there exists a positive constant C such that
the inequality

(4.6) ‖1/w‖ψ̃,B,w ≤ Cµ(B)/w(B)

holds for every ball B ⊂ X.
(4.7) w ∈ Bη

ψ.

(4.8) Remark: It is easy to see that (4.6) is equivalent to the existence of a positive
number ε such that the inequality∫

B

ψ̃

(
εw(B)

µ(B)w

)
w dµ ≤ w(B)

holds for every ball B in X.

Proof of theorem 4.3: To prove that (4.4) ⇒ (4.5) we followed similar arguments
to those applied by Bagby in Rn with obvious changes and we omit the details, (see
theorem 3.3 in [B]). Let us first suppose that (4.5) holds. If B is any ball such that
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∫
B
η(|f |/λ) dµ > µ(B) then, by proceeding as in the proof of theorem 3.3 in [B] and from

the hypotheses on w we obtain that

(4.9) w(B) ≤
∫
B

ψ(Cη(|f |/λ))w dµ.

Let Eλ be any subset of {x : Mηf(x) > λ}. Let M̃η be the centered version of Mη,
because of there exists C > 0 such that the inequality Mη ≤ CM̃η holds, we have

Eλ ⊂ {x ∈ X : M̃ηf(x) > λ/C}.

Then, if x ∈ Eλ there exists a ball B(x, r(x)) such that ‖f‖η,B(x,r(x)) > λ/C. From lemma
(3.1) there exists a sequence of points {xi}i∈N ⊂ Eλ such that the balls B(xi, r(xi))

⋂
B(xj, r(xj)) = ∅ if i 6= j and

Eλ ⊂
∞⋃
i=1

B(xi, 4Kr(xi)).

Since w satisfies a doubling condition, from (4.9) we obtain

w(Eλ) ≤
∑
i

w(B(xi, 4Kr(xi)))

≤
∑
i

Cw(B(xi, r(xi)))

≤
∑
i

∫
Bi

Cψ ◦ η
(
C
|f(x)|
λ

)
)(x)dµ(x)

≤
∫
X

ψ ◦ η
(
C
|f(x)|
λ

)
)(x)dµ(x),

where the last inequality follows from the fact that φ ◦ η is a convex function. Then, by
a standard approximation argument we obtain (4.7).

Let us now prove that (4.7) ⇒ (4.4). Let M̃η the maximal function defined by

M̃ηf(x) = sup
B3x

η−1

(
1

µ(B)

∫
B

η(|f |) dµ
)
.

From the fact that η is a submultiplicative function it is easy to see that M̃ηf(x) ≤
Mηf(x). Thus, since w ∈ Bψ we have

w({x ∈ X : M(η(|f |)) > η(λ)}) = w({x ∈ X : M̃η(|f |) > λ})
≤ w({x ∈ X : Mη(|f |) > λ})

≤
∫
X

ψ(Cη(|f |/λ))w dµ.

Particularly, if λ = 1 and g = t η(|f |), t > 0, we obtain

w({x ∈ X : M(g) > t}) ≤
∫
X

ψ(Cg/t)w dµ,

16



and then w ∈ Bψ and (4.4) is true. �

Proof of theorem 2.21: Let us first suppose that w /∈ A1. Proceeding as in the proof
of theorem 2.3 in [K2] we can find a sequence of balls {Bn}n≥1 such that, if

Gn = {x ∈ Bn : w(Bn)/µ(Bn) > 22nw(x)},

then µ(Gn) > 0 and consequently w(Gn) > 0. From this sequence we can construct a
suitable positive continue function b defined in [0,∞) such that ψ(t) =

∫ t
0
b(s) ds results

a Young function with the property that ψ̃(2n) ≥ w(Bn)/µ(Bn), n ≥ 1.
We define a(s) = (b ◦ η)′(s)/η(1/s). Since η is submultiplicative, we obtain that η is a
doubling function and thus η′(t) ≈ η(t)/t. Then we have∫ t

0

a(s)

s
η′(t/s) ds ≤ Cη′(t)

∫ t

0

a(s)η(1/s) ds(4.10)

≤ Cη′(t)

∫ t

0

(b ◦ η)′(s) ds

≤ Cb ◦ η(t) η′(t)
≤ C(ψ ◦ η)′(t).

Let us now consider the functions φ(t) =
∫ t

0
a(s)ds and ψ(t) = ψ ◦ η(t). By (4.10) and

the hypothesis we obtain that the pair (φ, ψ) satisfies

w({x ∈ X : Mηf > λ}) ≤
∫
X

φ (Mηf/λ)w dµ

≤
∫
X

ψ (η(|f |/λ))w dµ

and thus w ∈ Bη
ψ. From theorem 4.3 and remark 4.8 there exists ε > 0 such that the

inequality

(4.11)

∫
B

ψ̃

(
εw(B)

µ(B)w

)
w dµ ≤ w(B)

holds for every ball B.
Let n ∈ N big enough such that 1/2n < ε, then from (4.11) we get

w(Bn) ≥
∫
Gn

ψ̃

(
22nµ(Bn)w

2nµ(B)w

)
w dµ

≥ ψ̃(2n)w(Gn)

> w(Bn),

which is a contradiction. Then w ∈ A1 and the proof is done. �
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tains espaces homogènes, Lecture Notes in Mathematics, 242, Springer-
Verlag, Berlin-New York, (1971).

[HSV] E. Harboure, O. Salinas, B. Viviani, Orlicz boundedness for certain classical
operators, Colloquium Mathematicum, 91, No. 2, (2002), 263-282.

[K1] Kita H.: On maximal functions in Orlicz spaces, Proc. Amer. Math. Soc.
124 (1996), 3019-3025.

[K2] Kita H.: Weighted inequalities for iterated maximal functions in Orlicz
spaces, Mathematische Nachrichten, 178, (2005), 1180-1189.

[K3] Kita H.: Inequalities with weights for maximal functions in Orlicz spaces,
Acta Math. Hungar, 72, No. 4, (1996), 291-305.
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Ana Maŕıa Kanashiro
e-mail address: akanashi@fiq.unl.edu.ar

Gladis Pradolini
e-mail address: gladis.pradolini@gmail.com

Oscar Salinas
e-mail address: salinas@santafe-conicet.gov.ar

19


	Introduction and Preliminaries
	Main results
	Some technical lemmas
	Proof of the main results

