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EVOLUTION EQUATIONS∗
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Abstract. In this paper we present a unified picture concerning general splitting methods for
solving a large class of semilinear problems: nonlinear Schrödinger, Schrödinger–Poisson, Gross–
Pitaevskii equations, etc. This picture includes as particular instances known schemes such as Lie-
Trotter, Strang, and Ruth–Yoshida. The convergence result is presented in suitable Hilbert spaces
related to the time regularity of the solution and is based on Lipschitz estimates for the nonlinearity.
In addition, with extra requirements both on the regularity of the initial datum and on the nonlin-
earity, we show the linear convergence of these methods. We finally mention that in some special
cases in which the linear convergence result is known, the assumptions we made are less restrictive.
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1. Introduction

Let us consider the semilinear evolution equation

{
ut+ iAu+ iB (u)=0,

u(0)=u0∈H1,
(1.1)

where A is a self-adjoint operator in the Hilbert space H1 with domain D(A) and
B :H1→H1 is a locally Lipschitz map. This evolution equation models a large number
of problems, of which we can mention the nonlinear Schrödinger, Schrödinger–Poisson,
Gross–Pitaevskii equations (see [4] for more details). In addition, a large amount of
articles are devoted to the numerical study of time-splitting methods, most of them
concerning Lie-Trotter and Strang schemes for the problem (1.1), among them we
should mention: [10] which is devoted to the Schrödinger–Poisson equation (in 3D),
[3, 10] where the cubic nonlinear Schrödinger equation is studied, [1, 7] devoted to
the Gross–Pitaevskii equation, [5, 6, 8] are concerned with abstract splitting methods,
and [11] in which is proved the second order convergence of the Strang-type splitting
scheme for the the stochastic nonlinear Schrödinger equation with multiplicative noise
of Stratonovich type. In this article we shall present a unified picture of time-splitting
methods. This means that we shall show general results concerning both the order of
convergence, and the regularity required for initial data. On the other hand, and be-
cause the standard result for Lie–Trotter schemes developed in the literature expresses
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2 GENERAL SPLITTING METHODS

that the convergence is globally linear in the time step, we take under consideration
both discretization in time and discretization in space (see Subsection 3.4). In ad-
dition, we also show that under the assumptions made above on the operators the
general method is well defined and converges in the space H1. We finally mention that
in some special cases the known results are expressed in terms of a smaller Hilbert
space, and therefore the assumptions we made require less regularity on the initial
data.

We recall how to solve the problem (1.1) by means of a generic time-splitting
scheme. Note that any solution of (1.1) satisfies the fixed point integral equation

u(t)=ΦA (t)u0− i

∫ t

0

ΦA (t− t′)B (u(t′))dt′, (1.2)

where ΦA denotes the strongly continuous one-parameter unitary group generated by
−iA, i.e. that v (t)=ΦA (t)v0 is the solution of the linear problem

{
vt+ iAv=0,

v (0)=v0.
(1.3)

The following well-posedness result of (1.2) is well-known; for proof and details,
see [4].

Proposition 1.1. Let B be a locally Lipschitz map defined on the Hilbert space H1

with B (0)=0. Then for any u0∈H1 there exists T ∗=T ∗(u0)>0, the maximal time
of existence, and a unique solution u∈C ([0,T ∗(u0)),H1) of equation (1.2). Moreover,
the map T ∗ :H1→ [0,+∞] is lower semicontinuous, for any T <T ∗(u0) the map H1 7→
C ([0,T ],H1) given by u0 7→u(t) is continuous, (i.e.: given ε>0, there exists δ>0 such
that if ‖u0− ũ0‖H1

<δ then T <T ∗ (ũ0) and ‖u(t)− ũ(t)‖
H1

<ε for t∈ [0,T ], where ũ
is the solution of (1.2) with ũ(0)= ũ0), and it also satisfies the blow-up alternative:

1. T ∗(u0)=∞ (u is globally defined).

2. T ∗(u0)<∞ and lim
t↑T∗(u0)

‖u(t)‖=∞.

Because B is a locally Lipschitz map, there exists a flow ΦB , defined locally in
time, generated by the problem

{
wt+ iB (w)=0,

w(0)=w0.
(1.4)

Let Φ be the flow of the equation −i(A+B) defined by Φ(t)(u0)=u(t), where u is
the solution of (1.2). The idea of time-splitting methods is to approximate Φ, the
exact flow, by combining the exact flows ΦA and ΦB , in the following sense: for any
(small) time step h>0, the discrete flow is defined by

Φh=ΦB (bmh)◦ΦA (amh)◦···◦ΦB (b1h)◦ΦA (a1h) ,

where the splitting scheme given by a1, . . . ,am, b1, . . . ,bm satisfies a1+ · · ·+am=
b1+ · · ·+bm=1. Let us mention that for m=1 (therefore a1= b1=1) we get the
Lie-Trotter scheme, and for m=2 and a1=a2=1/2,b1=1,b2=0 we get the Strang
scheme. Other Yoshida schemes (see details in [15]) are represented similarly.

For fixed u0∈H1 and T <T ∗(u0), the convergence result expresses that for any k≤
n the sequence {u0,Φh(u0), . . . ,Φ

k
h(u0)} converges in some sense to the exact solution
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at time t=kh, i.e. {u0,Φ(h)(u0), . . . ,Φ(kh)(u0)}, when the time step h=T/n goes to
0. We note that the splitting scheme given by a1, . . . ,am and b1, . . . ,bm is performed n
times before reaching the value t=T . Clearly, the scaling t→Tt allows us to restrict
our attention to the normalized case T =1. We therefore set α,β as the 1-periodic
functions defined by

α(t)=

{
2maj , if j−1≤m(t− [t])<j−1/2,

0, if j−1/2≤m(t− [t])<j,

β (t)=

{
0, if j−1≤m(t− [t])<j−1/2,

2mbj , if j−1/2≤m(t− [t])<j.

where [t] denotes the integer part of t.
It is, then, a straightforward computation to verify that for n∈N and αn (t)=

α(nt) ,βn (t)=β (nt), the continuous flow generated by the (non-autonomous) operator
−i(αnA+βnB), denoted by Φn, satisfies Φn(1/n)=Φh. Therefore, the convergence
(in time) of the splitting scheme is expressed as Φn (t) converges to Φ(t) as the time
step h=1/n goes to 0. In what follows we shall refer to an abstract time-splitting
method when we are given a pair of T =1-periodic functions α,β.

Finally, we also take into consideration the convergence in space. It is a common
practice to solve the problem (1.3) by means of spectral methods, which consist of
solving the problem on a finite dimensional invariant subspace (generated by eigen-
functions of the linear operator A). Because invariant subspaces of A are not neces-
sarily ΦB-invariant, the approximated solution is projected before the application of
ΦA; this gives the (finite dimensional) discrete flow:

Φ̃h=ΦB (bsh)◦ΦA (ash)◦P ◦···◦P ◦ΦB (b1h)◦ΦA (a1h)◦P,

where P is the orthogonal projection onto the finite dimensional invariant subspace.
In a more general setting, if we take Φ̃A as an approximation of the exact flow

ΦA, this gives the discrete flow:

Φ̃h=ΦB (bsh)◦ Φ̃A (ash)◦···◦ΦB (b1h)◦ Φ̃A (a1h) . (1.5)

1.1. Notation and main results. Throughout this paper the evolution
problem is given by equation (1.1) where A is a self-adjoint operator in H1 with
domain D(A), B :H1→H1 is a locally Lipschitz map, and u0∈H1. The problem under
consideration is to find the generated flow Φ(t) in a compact interval [0,T ], where the
solution exists. The abstract time-splitting method to solve the evolution problem
(1.1) for t∈ [0,T ], i.e. to get the flow Φ(t), is thus described as follows:

1. Set α,β∈L1
loc T-periodic bounded functions with total integral

∫ T

0

α=

∫ T

0

β=1.

2. Fix n∈N and the step size h=T/n (the choice T =1 shall be used in the
sequel).

3. Set the sequences αn(t)=α(nt) and βn(t)=β(nt).

4. Get the flow Φh of the non-autonomous equation ut=−i(αnAu+βnB (u)).
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Under this situation we show the following result:

Theorem 1.2 (Convergence). If u0∈H1 and T <T ∗(u0), then there exists
n0∈N such that for any n≥n0, the function un(t) :=Φn(t)u0 is defined for t∈ [0,T ],
and lim

n→∞
max
t∈[0,T ]

‖u(t)−un (t)‖H1
=0.

In order to get the order of convergence for abstract methods some extra regularity
both on the time derivative and on the nonlinearity is needed. The basic assumption
is as follows:

1. There exists a Hilbert space H0 such that H1⊆H0, with continuous embed-
ding.

2. The solution u of (1.2) satisfies u∈W 1,∞ ([0,T ],H0).

3. There exists a map B′ :H1 7→B(H0) , where B(H0) is the Banach space of
bounded endomorphisms of H0, such that for R,ε>0 given, one can choose
C,δ>0 satisfying

‖B′(u)‖B(H0)
≤C,

‖B (u+w)−B (u)−B′ (u)w‖
H0

≤ ε‖w‖
H0

,

for u,w∈H1, ‖u‖H1
≤R and ‖w‖

H1
<δ.

Theorem 1.3 (Local error). If u0∈H1 and T <T ∗(u0), then there exists a con-
stant C>0 and n0∈N such that for n≥n0, the following estimate holds for the time
step h=T/n:

‖Φ(h)u0−Φn (h)u0‖H0
≤Ch2.

Theorem 1.4 (Global error). If u0∈H1 and T <T ∗(u0), then there exists a
constant C>0 and n0∈N such that, for n≥n0,

max
0≤k≤n

‖Φ(kh)u0−Φn (kh)u0‖H0
≤Ch.

2. Auxiliary results

This section is devoted to the presentation of some basic results that we use to
prove the convergence theorems. We start with the following notion. We say that a
sequence {αn}n∈N of functions in L1

loc (R) converges weakly to α∈L1
loc (R), denoted by

αn⇀α, if for any compact interval I⊂R and θ∈C (I), the following estimate holds:

lim
n→∞

∫

I

αn (t)θ(t)dt=

∫

I

α(t)θ(t)dt.

Lemma 2.1. Let αn,α,ᾱ∈L1
loc

(R), n∈N, such that αn⇀α and |αn|≤ ᾱ. Then

for any θ∈C ([0,T ]) the sequence Θn (t)=

∫ t

0

αn (t
′)θ(t′)dt′ converges uniformly to

Θ(t)=

∫ t

0

α(t′)θ(t′)dt′ on [0,T ].

Proof. If Θn does not converge to Θ uniformly, then there exists ε>0 and a
subsequence Θnk

such that max
0≤t≤T

|Θ(t)−Θnk
(t)|≥ ε. Using the estimate

|Θnk
(t)|≤ max

0≤t≤T
|θ(t)|‖ᾱ‖L1([0,T ]) ,
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we have that the sequence {Θnk
}n≥1 is uniformly bounded in C ([0,T ]). A similar

argument allows us to conclude that the sequence {Θnk
}n≥1 is equicontinuous. By

the Arzelá-Ascoli theorem, we obtain that (a subsequence of) Θnk
converges uniformly

to Θ∗ 6=Θ on [0,T ]. But Θnk
converges pointwise to Θ, which is a contradiction. This

finishes the proof.

For any real valued function α∈L1
loc (R), we set τ (t1,t0)=

∫ t1

t0

α(t)dt and define

the propagator operator ΦA,α (t1,t0)=ΦA (τ (t1,t0)) . The following lemma collects the
basic properties of this operator.

Lemma 2.2. The propagator ΦA,α (t1,t0) satisfies the following properties:

1. ΦA,α (t0,t0)= I.

2. ΦA,α (t2,t0)=ΦA,α (t2,t1)Φ
A,α (t1,t0).

3. If u∈D(A), then ∂tΦ
A,α (t,t0)u=−iα(t)AΦA,α (t,t0)u.

4. If u0∈D(A), then u(t)=ΦA,α (t,0)u0 is the solution of the linear evolution
Cauchy problem iut=α(t)Au with initial condition u(0)=u0.

Proposition 2.3. If {αn}n∈N be a sequence of real valued functions in L1
loc

(R) such
that αn⇀1, then ΦA,n (t,t′)=ΦA,αn (t,t′) converges strongly to ΦA (t− t′). Moreover,
if |αn|≤ ᾱ∈L1

loc
(R), then the convergence is uniform for t′,t on bounded intervals.

Proof. Let I⊆R be a compact interval and τn : I×I→R defined by αn. Because
αn⇀1, we have τn (t,t

′)→ t− t′, thus lim
n→∞

ΦA,n (t,t′)u=ΦA (t− t′)u. If |αn|≤ ᾱ, from

Lemma 2.1 it follows that the sequence τn(t,t
′) converges to t− t′ uniformly on I×I.

For any u∈D(A), the estimate
∥∥ΦA,n (t,t′)u−ΦA (t− t′)u

∥∥
H1

≤|τn (t,t′)−(t− t′)|‖Au‖
H1

,

is satisfied. Because D(A) is dense in H1, an ε/3 argument finishes the proof.

Lemma 2.4. Let v∈C ([0,T ],H1) and ε>0. Then there exist θj ∈C ([0,T ]) and
zj ∈H1, 0≤ j≤m, such that the function

z (t)=
∑

0≤j≤m

θj (t)zj (2.1)

satisfies max
t∈[0,T ]

‖v (t)−z (t)‖
H1

<ε.

Proof. Let δ>0 be such that ‖v (t)−v (t′)‖
H1

<ε/2 if |t− t′|<δ, and let t−1<
t0=0<t1< · · ·<tm=T <tm+1 be a partition with tj− tj−1<δ. Let also θj ∈C (I) be
such that 0≤θj ≤1,

∑
0≤j≤m

θj =1, and supp(θj)⊂ (tj−1,tj+1). Taking zj =v (tj) we

have, for t∈ [tj−1,tj ],

‖v (t)−z (t)‖
H1

=‖(θj−1 (t)+θj (t))v (t)−θj−1 (t)zj−1−θj (t)zj‖H1

≤‖v (t)−v (tj−1)‖H1
+‖v (t)−v (tj)‖H1

.

Because |t− tj−1| , |t− tj−1|<δ, the proof is finished.

Corollary 2.5. Let βn be a sequence of real valued functions in L1
loc

(R) such that
βn⇀0 with |βn|≤ β̄∈L1

loc
(R), and let v∈C ([0,T ],H1). Define Vn(t) as

Vn (t)=

∫ t

0

βn (t
′)v (t′)dt′. (2.2)
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Then Vn∈C ([0,T ],H1) and lim
n→∞

max
t∈[0,T ]

‖Vn (t)‖H1
=0.

Proof. Let ε>0 and let z(t) be the function given by Lemma 2.4. We define

Zn (t)=

∫ t

0

βn (t
′)z (t′)dt′=

∑

0≤j≤m

Θj,n (t)zj ,

where Θj,n (t)=

∫ t

0

βn (t
′)θj (t

′)dt′. From Lemma 2.1, lim
n→∞

max
t∈[0,T ]

‖Zn (t)‖H1
=0. On

the other hand, from Lemma 2.4 we have max
t∈[0,T ]

‖Vn (t)−Zn (t)‖H1
≤ ε

∥∥β̄
∥∥
L1([0,T ])

,

which proves the result.

Corollary 2.6. Let v∈C (I,H1) and let {αn}n∈N be a sequence of real valued
functions in L1

loc
(R) such that αn⇀1 and |αn|≤ ᾱ∈L1

loc
(R). Then ΦA,n (t,t′)v (t′)

converges uniformly to ΦA (t− t′)v (t′) on I×I.

Proof. If z(t) is as in Lemma 2.4, then
(
ΦA,n (t,t′)−ΦA (t− t′)

)
v (t′)=ΦA,n (t,t′)(v (t′)−z (t′))

−ΦA (t− t′)(v (t′)−z (t′))

+
(
ΦA,n (t,t′)−ΦA (t− t′)

)
z (t′) .

Because ΦA,n (t,t′) ,ΦA (t− t′) are unitary operators, the first and the second term
on the right-hand side are bounded by ε. From the definition of z, it is easy to see
that
∥∥(ΦA,n (t,t′)−ΦA (t− t′)

)
z (t′)

∥∥
H1

≤ max
1≤j≤m

max
t′∈I

|θj (t′)|

×
∑

1≤j≤m

∥∥(ΦA,n (t,t′)−ΦA (t− t′)
)
zj
∥∥
H1

.

Using Proposition 2.3, we obtain the result.

Let β be a bounded, 1-periodic, function. For n∈N we define βn (t)=β (nt),

and we note that βn⇀ 〈β〉 :=
∫ 1

0

β (t)dt. Then, under additional hypotheses on v, we

obtain an estimate for the order of convergence in Corollary 2.3.

Lemma 2.7. Let v∈W 1,∞ ([0,h],H1), and let Vn(t) be given by (2.2). If 〈β〉=0 or

v (0)=0, then ‖Vn (h)‖H1
≤ 1

2
‖β‖L∞ ‖vt‖L∞([0,h],H1)

h2.

Proof. Using v (t)=v (0)+

∫ t

0

vt (t
′)dt′, we obtain

wn=〈β〉v (0)h+
∫ h

0

∫ t

0

βn (t)vt (t
′)dt′dt

=

∫ h

0

∫ t

0

βn (t)vt (t
′)dt′dt,

and therefore ‖Vn (h)‖H1
≤
∫ h

0

∫ t

0

|βn (t)|‖vt (t′)‖H1
dt′dt, and an easy estimation im-

plies the result.
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3. Main results

3.1. Convergence in H1. Let {αn}n∈N,{βn}n∈N be two sequences of real
valued functions in L1

loc (R) such that αn,βn⇀1, |αn|≤ ᾱ, and |βn|≤ β̄, with ᾱ,β̄∈
L1
loc (R). For n∈N we consider the approximated evolution problem,

{
iwt+(αnA+βnB)w=0,

w(0)=u0,
(3.1)

related to the abstract splitting scheme defined by these sequences, and we denote
by Φn the related flow. (The exact flow will be denoted by Φ.) Let u0∈H1 be
given and let un=Φnu0 be the maximal solution of the problem (3.1), defined for
t∈ [0,T ∗n (u0)). We recall below the integral expression for un, where Φ

A,n is the flow
of Lemma 2.2:

un (t)=ΦA,n (t,0)u0− i

∫ t

0

βn (t
′)ΦA,n (t,t′)B (un (t

′))dt′ . (3.2)

We are now in position to give the first result concerning the uniform convergence
of Φn(t)u0 to Φ(t)u0 for t∈ [0,T ] and for any u0∈H1.

Theorem 3.1 (Convergence). If u0∈H1 and T <T ∗(u0), then there exists
n0∈N such that for any n≥n0, the function Φn(t)u0 is defined for t∈ [0,T ], and
lim
n→∞

max
t∈[0,T ]

‖u(t)−un (t)‖H1
=0.

Proof. For t<min{T,T ∗
n(u0)}, we write

u(t)−un (t)=I1,n (t)−i
(
ΦA (t)I2,n (t)+I3,n (t)+I4,n (t)

)
, (3.3)

where

I1,n (t)=
(
ΦA (t)−ΦA,n (t,0)

)
u0,

I2,n (t)=

∫ t

0

(1−βn (t
′))ΦA (−t′)B (u(t′))dt′,

I3,n (t)=

∫ t

0

βn (t
′)
(
ΦA (t− t′)−ΦA,n (t,t′)

)
B (u(t′))dt′,

I4,n (t)=

∫ t

0

βn (t
′)ΦA,n (t,t′)(B (u(t′))−B (un (t

′)))dt′.

We shall prove that Ij,n (t)→0 as n→∞ uniformly on [0,T ]. Let R>0 be such
that max

t∈[0,T ]
‖u(t)‖

H1
≤R and max

t∈[0,T ]

∥∥ΦA (t)u0

∥∥
H1

≤R. From Proposition 2.3 we get

lim
n→∞

max
t∈[0,T ]

‖I1,n (t)‖H1
=0. This leads to the estimate

max
t∈[0,T ]

∥∥ΦA,n (t,t′)u0

∥∥
H1

≤R+δ,

valid for n>n0(δ). From Corollary 2.5 we deduce the identity lim
n→∞

max
t∈[0,T ]

‖I2,n (t)‖H1
=

0.
For j=3 we have the estimate

‖I3,n (t)‖H1
≤
∥∥β̄

∥∥
L1([0,T ])

max
t,t′∈[0,T ]

∥∥(ΦA (t− t′)−ΦA,n (t,t′)
)
B (u(t′))

∥∥
H1

.
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Using Corollary 2.6 we obtain lim
n→∞

‖I3,n (t)‖H1
=0.

Let L̃ be the Lipschitz constant for B in the ball of radius R+δ. Because B is a
Lipschitz continuous function and max

t∈[0,T ]
‖un (t)‖H1

≤R+δ, we deduce the estimate

max
t∈[0,T ]

‖B (un)(t)‖H1
≤ L̃ max

t∈[0,T ]
‖un (t)‖H1

≤ L̃(R+δ),

and we recall that B(0)=0. We then have max
t∈[0,T ]

‖I1,n (t)‖H1
+ max

t∈[0,T ]
‖I2,n (t)‖H1

+

max
t∈[0,T ]

‖I3,n (t)‖H1
<ε, and therefore

‖u(t)−un (t)‖H1
≤ ε+

∫ t

0

β̄(t′)‖B (u(t′))−B (un (t
′))‖

H1
dt′.

Taking L as the Lipschitz constant of the ball of radius L̃(R+δ) we obtain the
estimate

‖u(t)−un (t)‖H1
≤ ε+L

∫ t

0

β̄(t′)‖u(t′)−un (t
′)‖

H1
dt′,

and from Gronwall’s inequality we obtain ‖u(t)−un (t)‖H1
≤ ε̃, and then T <T ∗

n(u0).
This finishes the proof.

3.2. Error estimate. In this section we obtain local and global in time
error estimates for general time-splitting methods. These results are optimal for Lie-
Trotter schemes, whose local convergence in the whole space is quadratic in the time
step. Let α,β be 1-periodic, bounded functions with 〈α〉= 〈β〉=1, and set αn (t)=
α(nt), βn (t)=β (nt), with h=1/n↓0. We recall that under this situation αn,βn⇀1.
In order to get these error estimates we impose some regularity both on the time
derivative of the solution and on the nonlinearity B, which is accomplished as follows.
We consider a Hilbert space H0 such that H1 is continuously embedded in H0, and
such that the operator A :D(A) 7→H1 has a self-adjoint extension Ã :D(Ã)→H0 with

H1⊆D(Ã). In the sequel the self–adjoint extension will be denoted A. We can see
that for u0∈H1, the solution u of (1.2) or (3.2) satisfies u∈W 1,∞ ([0,T ],H0). We also
assume that there exists a map B′ :H1 7→B(H0) such that for R,ε>0, one can choose
C,δ>0 satisfying

‖B′(u)‖B(H0)
≤C, (3.4a)

‖B (u+w)−B (u)−B′ (u)w‖
H0

≤ ε‖w‖
H0

, (3.4b)

for u,w∈H1, ‖u‖H1
≤R, and ‖w‖

H1
<δ.

From conditions (3.4) it is clear that for R>0, there exists L>0 such that
‖B (u)−B (v)‖

H0
≤L‖u−v‖

H0
for any u,v∈H1 with ‖u‖

H1
,‖v‖

H1
≤R. Let u0,ũ0∈

H1, T <min{T ∗ (u0) ,T
∗ (ũ0)}, ε>0, and R>0 be such that

‖Φ(t)u0‖L∞([0,T ],H1)
,‖Φ(t)ũ0‖L∞([0,T ],H1)

≤R.

Because ΦA (t− t′) (ΦA,n (t,t′)) is an unitary operator of H0, we deduce that

‖Φ(t)u0−Φ(t)ũ0‖H0
≤‖u0− ũ0‖H0

+L

∫ t

0

‖Φ(t′)u0−Φ(t′)ũ0‖H0
dt′.
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Therefore, we have the estimate

‖Φ(t)u0−Φ(t)ũ0‖H0
≤ eLt‖u0− ũ0‖H0

. (3.5)

We now define for a fixed T >0 the space XT =C ([0,T ],H1)∩W 1,∞ ([0,T ],H0).
Because B is a locally Lipschitz map, and using conditions (3.4), we can see that
g :XT 7→XT , g(u)(t)=B(u(t)) is a well–defined bounded map in XT and (g(u))t=
B′ (u)ut.

Theorem 3.2 (Local error). If u0∈H1 and T <T ∗(u0), then there exists a
constant C>0 and n0∈N such that for n≥n0, the following estimate holds for the
time step h=T/n:

‖Φ(h)u0−Φn (h)u0‖H0
≤Ch2.

Proof. Replacing t=h in equation (3.3) and using that ΦA (h) are unitary
operators, we see that it is sufficient to show the estimates ‖Ij,n (h)‖H0

≤Ch2, where
Ij,n are defined as in Theorem 3.1. Because 〈α〉=1, we have

I1,n (h)=ΦA (h)−ΦA,n (h,0)=ΦA (h)−ΦA (h〈α〉)=0.

From Theorem 3.1, there exists n0∈N such that for n≥n0 it holds that T ∗
n >T and

max
t∈[0,T ]

‖un (t)‖< max
t∈[0,T ]

‖u(t)‖+1=R. Setting v(2) (t)=ΦA (−t)B (u(t)), it is clear that

v(2)∈XT and

v
(2)
t (t)=ΦA (−t)(iAB (u(t))+(B (u(t)))t) ,

whence the estimate
∥∥∥v(2)t

∥∥∥
L∞([0,h],H0)

≤C (R) follows.

Using that

I2,n (h)=

∫ h

0

(1−βn(s))v
(2) (s)ds,

and because 〈1−β〉=0, from Lemma 2.7 we deduce

‖I2,n (h)‖H0
≤C (R)(1+‖β‖L∞)h2.

We set v(3) (t)=
(
ΦA (h− t)−ΦA,n (h,t)

)
B (u(t)). It is clear that v(3)∈XT , v

(3) (0)=0,
and

v
(3)
t (t)=i

(
ΦA (h− t)−αn (t)Φ

A,n (h,t)
)
AB (u(t))

+
(
ΦA (h− t)−ΦA,n (h,t)

)
(B (u(t)))t.

Taking norms, we deduce the estimate
∥∥∥v(3)t

∥∥∥
L∞([0,h],H0)

≤C (R)(1+‖α‖L∞). Using

Lemma 2.7 again, we obtain

‖I3,n (h)‖H0
≤C (R)(1+‖α‖L∞)‖β‖L∞h2.

We finally set v(4) (t)=ΦA,n (h,t)(B (u(t))−B (un (t))). Because

v
(4)
t (t)=iαn (t)Φ

A,n (h,t)A(B (u(t))−B (un (t)))
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+ΦA,n (h,t)(B (u(t))−(B (un (t))))t

and u,un are bounded in XT , using the Gronwall inequality as in Theorem 3.1 we
deduce the estimate for I4,n (h). The theorem is thus proven.

Remark 3.1. As in the proof of Theorem 3.1, it follows that for fixed R>0 there
exists n0(R) such that ‖Φ(kh)u0‖H0

<R and ‖Φn (kh)u0‖H0
<R, for 0≤k≤n.

Under the hypotheses of Theorem 3.2 we formulate the result concerning global
error estimate.

Theorem 3.3 (Global error). If u0∈H1 and T <T ∗(u0), then there exists a
constant C>0 and n0∈N such that, for n≥n0,

max
0≤k≤n

‖Φ(kh)u0−Φn (kh)u0‖H0
≤Ch.

Proof. Setting ek=‖Φ(kh)u0−Φn (kh)u0‖H0
, it follows that

ek+1≤‖Φ(h)Φ(kh)u0−Φ(h)Φn (kh)u0‖H0

+‖Φ(h)Φn (kh)u0−Φn (h)(Φn (kh)u0)‖H0
.

Using estimate (3.5) and Theorem 3.2, we deduce ek+1≤ eLhek+Ch2, with L uniform
in k from Remark 3.1. By means of an inductive argument, we prove the estimate,
valid for 0≤k≤n,

ek≤Ch2
k−1∑

j=0

eLjh=
Ch2

eLh−1

(
eLkh−1

)
≤ C

(
eLT −1

)

L
h.

This finishes the proof.

Corollary 3.4. Let Hθ=[H0,H1]θ be the interpolation Hilbert space, θ∈ (0,1) , and
u0∈H1. If T <T ∗ and ε>0, then there exists n0∈N such that

max
0≤k≤n

‖Φ(kh)u0−Φn (kh)u0‖Hθ
≤ εh1−θ

holds for n≥n0.

Remark 3.2. Let u0,ũ0∈H0, and let T <min{T ∗ (u0) ,T
∗ (ũ0)}. Using the notation

and the result of Theorem 3.3, and the estimate (3.5), we deduce

‖Φ(kh)u0−Φn (kh)ũ0‖H0
≤‖Φ(kh)u0−Φ(kh)ũ0‖H0

+‖Φ(kh)ũ0−Φn (kh)ũ0‖H0

≤eLT ‖u0− ũ0‖H0
+Ch.

3.3. Approximation methods. Assume that we can define an approxima-

tion Φ̃A for the flow ΦA such that
∥∥∥Φ̃A(t)u

∥∥∥
H1

≤C ‖u‖
H1

for any u∈H1, and for any

u0∈H1 and a small time step h,

∥∥∥ΦA(h)u0− Φ̃A(h)u0

∥∥∥
H0

≤Ch2‖u0‖H1
. (3.6)
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Let Φ̃h be the flow given by (1.5). From the identity ΦA (t)=Φ̃A (t)+(
ΦA (t)− Φ̃A (t)

)
, we get the following decomposition for the discrete flow: Φh=

Φ̃h+Nh, where γ=(γ1, . . . ,γs), γj ∈{0,1}, and

Nh=
∑

γ∈{0,1}s

γ 6=0

s∏

j=1

ΦB (bjh)◦
(
Φ̃A (ajh)

)1−γj

◦
(
ΦA (ajh)− Φ̃A (ajh)

)γj

.

Proposition 3.5 (Approximation method). Let Φ̃A be an approximation of
the flow ΦA satisfying (3.6). If u0∈H1, T <T ∗(u0), then there exists a constant C>0
and n0∈N such that, for n≥n0,

max
0≤k≤n

∥∥∥Φ(kh)u0− Φ̃k
nu0

∥∥∥
H0

≤Ch.

Proof. Using that B :H1→H1 is Lipschitz with constant L, then for all u∈H1

and for all s
∥∥ΦB(bsh)u

∥∥
H1

≤ eL(bsh)‖u‖
H1

,

which combined with inequality (3.6) yields ‖Nhu0‖H0
≤CeLhh2‖u0‖H1

. Using that

∥∥∥Φ(h)u0− Φ̃hu0

∥∥∥
H0

≤‖Φ(h)u0−Φhu0‖H0
+
∥∥∥Φhu0− Φ̃hu0

∥∥∥
H0

,

and Theorem (3.2), we obtain that there exist n0 such that for n≥n0

∥∥∥Φ(h)u0− Φ̃hu0

∥∥∥
H0

≤Ch2,

and therefore we deduce the desired inequality.

3.4. Spectral methods. We then turn to the discretization in space variables.
Let R>0 be fixed, let E be the projection valued spectral measure of A :H1⊂D(A)→
H0, and let P =E([−R,R]) be the orthogonal projection onto the A-invariant subspace

H=P (H0). According to the previous subsection, we define Φ̃A=ΦA ◦P and ΦA (t)=

ΦA (t)(P +I−P )=Φ̃A (t)+ΦA (t)(I−P ). We get the following decomposition for the

discrete flow: Φh=Φ̃h+Nh, where h>0 is a small time step and

Nh=
∑

γ∈{0,1}s

γ 6=0

s∏

j=1

ΦB (bjh)◦ΦA (ajh)P
1−γj (I−P )

γj .

Theorem 3.6 (Spectral approximation). Let u0∈H1, T <T ∗(u0), and n∈N be
given. Then for R>h−2

n =(n/T )2 we have the following estimate:

max
0≤k≤n

∥∥∥Φ(khn)u0− Φ̃k
nu0

∥∥∥
H0

≤Chn.

Proof. For any u∈H1 we have

‖u−Pu‖2
H0

=

∫

|λ|>R

d〈u|E (λ)u〉
H0

≤R−2

∫

|λ|>R

λ2d〈u|E (λ)u〉
H0
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and then ‖u−Pu‖
H0

≤R−1‖u‖
H1
. As ΦA is a unitary operator, we get that∥∥ΦA(I−P )u

∥∥
H0

≤R−1‖u‖
H1
. Taking R≥h−2

n we get the desired inequality from

proposition (3.5).

When (A± i)
−1

are compact operators, there exists a basis {ϕj}j≥0⊂D(A) of

H0 and a sequence {λj}j≥0⊂R with |λj | ↑∞ such that Aϕj =λjϕj . The operator

ΦA (t)P could be written as

ΦA (t)Pu=
∑

|λj |≤R

e−iλjt 〈ϕj |u〉H0
ϕj ,

which represents the approximate solution of (1.3) in terms of the eigenfunctions
(which in most cases are explicitly given).

4. Examples

This section is devoted to the presentation of several instances of the model equa-
tion in which the results of the previous section are valid. Details are also given in
order to express the advantages of the general setting with respect to similar known
results, mainly concerned with the regularity of the initial data needed to show linear
convergence. We start collecting estimates related to typical nonlinearities of both
local and nonlocal natures.

Lemma 4.1 (Local nonlinearities). Let f :C→C be a smooth map in the real
sense, (i.e.: if f =f (r)+ if (i), then the map (ξ,η) 7→

(
f (r) (ξ+ iη) ,f (i) (ξ+ iη)

)
is

smooth on R
2). Let also H1=Hs

(
R

d
)
, with s>d/2, and H0=L2

(
R

d
)
. Then B :

H1 7→H1 given by B(u)=f(u) is a well-defined map, and in addition B′ :H1 7→B(H0)
given by B′(u)(v)=f ′(u)v is well-defined and satisfies (3.4).

Proof. From the Schauder lemma (see Theorem 6.1 in [13]), for s>d/2, it follows
that B :Hs

(
R

d
)
7→Hs

(
R

d
)
is a well-defined, locally Lipschitz map. Taking the norm

of the identity

f ′ (u) .w=
(
f
(r)
ξ (u)w(r)+f (r)

η (u)w(i)
)
+ i

(
f
(i)
ξ (u)w(r)+f (i)

η (u)w(i)
)
,

we obtain ‖B′ (u)w‖L2(Rd)≤C
(
‖u‖L∞(Rd)

)
‖w‖L2(Rd), with C (R)= max

|u|≤R
|f ′ (u)|.

Using |f (u+w)−f (u)−f ′ (u) ·w|<ε |w| if |u|≤R and |w|<δ, we get the required
inequality. This finishes the proof.

In order to add Hartree-type nonlinearities we first collect some useful estimates.

Lemma 4.2. Let W1∈L∞
(
R

d
)
,W2∈Lp

(
R

d
)
, with p≥2, p>d/4. Let also u∈

Hs
(
R

d
)
, with s>d/2, and v∈L2

(
R

d
)
. Then the following estimates hold, with C

depending only on s:

(i) ‖W1 ∗Re(u∗v)‖L∞(Rd)≤‖W1‖L∞(Rd)‖v‖L2(Rd)‖u‖L2(Rd),

(ii) ‖W2 ∗Re(u∗v)‖L∞(Rd)≤C ‖W2‖Lp(Rd)‖v‖L2(Rd)‖u‖
θ
Hs(Rd)‖u‖

1−θ
L2(Rd),

(iii)
∥∥W1 ∗|u|2

∥∥
L∞(Rd)

≤‖W1‖L∞(Rd)‖u‖
2
L2(Rd),

(iv)
∥∥W2 ∗|u|2

∥∥
L∞(Rd)

≤C ‖W2‖Lp(Rd)‖u‖
2θ
Hs(Rd)‖u‖

2(1−θ)

L2(Rd)
.
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Proof. Estimates (i) and (iii) follow immediately from the Young and Hölder
inequalities, while estimates (ii) and (iv) also use the Gagliardo-Nirenberg inequality.

Lemma 4.3 (Hartree-type nonlinearities). Let W ∈L∞
(
R

d
)
+Lp

(
R

d
)
, with

p≥2, p>d/4, let H1=Hs
(
R

d
)
, with s>d/2, and H0=L2

(
R

d
)
. Then B :H1 7→H1,

with B(u)=
(
W ∗|u|2

)
u is a well-defined map, and in addition the map B′ :H1 7→

B(H0) given by B′(u)(v)=
(
W ∗|u|2

)
v+2(W ∗Re(u∗v))u is well-defined and satisfies

estimate (3.4).

Proof. Because

B(u+v)−B(u)=
(
W ∗|u|2

)
v+2(W ∗Re(u∗v))u

+2(W ∗Re(u∗v))v+
(
W ∗|v|2

)
(u+v) ,

the linear term is given by B′(u)(v)=
(
W ∗|u|2

)
v+2(W ∗Re(u∗v))u. The estimate

(3.4) follows directly from Lemma 4.2.

4.1. Nonlinear Schrödinger equation. We consider

{
iut+∆u+f(|u|2)u+

(
W (x)∗|u|2

)
u=0,

u(0)=u0,

where f :C→C is smooth as a real function, and W (x) is an even function such
that W =W1+W2, W1∈L∞

(
R

d
)
,W2∈Lp

(
R

d
)
, with p≥2, p>d/4. Taking H1=

Hs
(
R

d
)
and H0=L2

(
R

d
)
, with s>d/2, s≥2, we can see that A=−∆ is a self-

adjoint operator, and B (u)=−f(|u|2)u−
(
W (x)∗|u|2

)
u is a locally Lipschitz map

(see lemmas 4.1 and 4.2). Following these lemmas we can also deduce that, for any
u0∈H1, and T <T ∗(u0), the solution satisfies u∈W 1,∞ ([0,T ],H0); in addition, the
nonlinearity B satisfies (3.4). We thus obtain Theorem 4.1 of [3] for Lie-Trotter
splitting schemes. Using H2θ

(
R

d
)
↪→L∞

(
R

d
)
for θ>d/4 and Corollary 3.4, we can

see that ‖u(kh)−un (kh)‖L∞(Rd)=o
(
h1−θ

)
.

Remark 4.1. Because, for d=3, the Newtonian potential W (x)= |x|−1
satis-

fies the hypotheses of Lemma 4.2, the convergence results are also valid for the 3-D
Schrödinger-Poisson equation:

{
iut+∆u+V u=0,

∆V =−|u|2.

Let us also add that C. Lubich in [10] shows a first-order error bound in the H1

norm and a second-order error bound in the L2 norm for an H4-regular solution.

Remark 4.2. In lower dimensions, d=1,2, the kernel W is not bounded and
therefore Lemma 4.2 does not apply. Actually, the existence of dynamics requires
some extra work (see [9, 12]), mainly connected with a suitable decomposition of
the nonlinearity. However, the conclusions of theorems 3.1-3.3 remain valid but their
proofs are more involved.
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4.2. Gross-Pitaevskii equation with a trapping potential. We consider
the d-dimensional initial value problem

{
iut+∆u−Ωu−|u|2u=0,

u(0)=u0,

where Ω is a positive definite quadratic form. Without loss of generality we can assume
Ω(x)=ω2

1x
2
1+ · · ·+ω2

dx
2
d. This equation is used to describe Bose-Einstein condensates.

The operator A=−∆+Ω has a basis of eigenfunctions (explicitly) given by

ϕk (x)=
d∏

j=1

ϕkj
(ωjxj)

for k=(k1, . . . ,kd)∈N
d
0 with eigenvalues λk=d+2

d∑
j=1

kjω
2
j , where ϕk is the k-th Her-

mite function. In [7] the convergence of a split-step method using Hermite expansion
is studied, the Hilbert spaces H̃s

(
R

d
)
=D

(
As/2

)
are defined as the functions u in

L2
(
R

d
)
such that ‖u‖H̃s(Rd) is finite, where

‖u‖2H̃s(Rd)=
∑

k∈Nd
0

λs
k

∣∣∣〈ϕk|u〉L2(Rd)

∣∣∣
2

.

Because A≥−∆, we see H̃2
(
R

2
)
↪→H2

(
R

d
)
, and in particular H̃2

(
R

d
)
↪→L∞

(
R

d
)
if

d≤3. In these cases, Lemma 2 in [7] implies that D(A)= H̃2
(
R

3
)
is an algebra and

then B (u)= |u|2u is a locally Lipschitz map. Using similar arguments as in the proof
of Lemma 4.1, we get (3.4) for the cubic nonlinearity. Therefore, taking H1= H̃2

(
R

3
)

and H0=L2
(
R

3
)
, we obtain the convergence result given by Theorem 3.3 and, like in

the example above, ‖u(kh)−un (kh)‖L∞(Rd)=o
(
hθ

)
for θ<1−d/4.

Proposition (4.6) below deals with quite general local nonlinearities. This result
depends upon the following lemma.

Lemma 4.4. For any u∈D(A) the following estimate holds:

c−1 〈Au|Au〉L2(Rd)≤‖−∆u‖2L2(Rd)+‖Ωu‖2L2(Rd)≤ c〈Au|Au〉L2(Rd) ,

with c=max
{
2,1+2d−2

∑d
j=1ω

2
j

}
.

Proof. Because S
(
R

d
)
is dense in D(A), we just have to prove the following

norm equivalence for any Schwartz function:

〈Au|Au〉L2(Rd)=‖−∆u‖2L2(Rd)+‖Ωu‖2L2(Rd)−2〈∆u|Ωu〉L2(Rd) .

Using 〈∆u|Ωu〉L2(Rd)=−〈∇Ω ·∇u|u〉−〈Ω∇u|∇u〉, we get

2〈∆u|Ωu〉L2(Rd)≤−2〈∇Ω ·∇u|u〉L2(Rd)= 〈∆Ωu|u〉L2(Rd)

=2

d∑

j=1

ω2
j ‖u‖2L2(Rd) .
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Because 〈Au|Au〉L2(Rd)≥d2‖u‖2L2(Rd), we have

‖−∆u‖2L2(Rd)+‖Ωu‖2L2(Rd)≤
(
1+2d−2∑d

j=1ω
2
j

)
〈Au|Au〉L2(Rd) .

From 2〈∆u|Ωu〉L2(Rd)≤‖−∆u‖2L2(Rd)+‖Ωu‖2L2(Rd), we obtain

〈Au|Au〉L2(Rd)≤2‖−∆u‖2L2(Rd)+2‖Ωu‖2L2(Rd) ,

and then the lemma follows.

Corollary 4.5. For d≤3, H̃2
(
R

d
)
is an algebra with the pointwise product.

Proof. From the estimate ‖Ωuv‖L2(Rd)≤‖Ωu‖L2(Rd)‖v‖L∞(Rd) and the em-

bedding H̃2
(
R

d
)
↪→L∞

(
R

d
)
, we obtain ‖Ωuv‖L2(Rd)≤C ‖u‖H̃2(Rd)‖v‖H̃2(Rd). Using

−∆(uv)=−∆uv−u∆v−2∇u ·∇v, we have

‖−∆(uv)‖L2(Rd)≤‖−∆u‖L2(Rd)‖v‖L∞(Rd)+‖−∆v‖L2(Rd)‖u‖L∞(Rd)

+2‖∇u‖L4(Rd)‖∇v‖L4(Rd) .

Because

‖∇u‖2L4(Rd)≤C ‖u‖(4−d)/4

L2(Rd)
‖−∆u‖(4+d)/4

L2(Rd)

≤C
(
‖u‖2L2(Rd)+‖−∆u‖2L2(Rd)

)
≤C ‖u‖2H̃2(Rd) ,

(4.1)

we get ‖−∆(uv)‖L2(Rd)≤C ‖u‖H̃2(Rd)‖v‖H̃2(Rd) and

‖uv‖H̃2(Rd)≤C ‖u‖H̃2(Rd)‖v‖H̃2(Rd) ,

which finishes the proof.

Proposition 4.6. If f is as in Example 4.1 and d≤3, then the map u 7→f (u) is
bounded and locally Lipschitz on H̃2

(
R

d
)
.

Proof. If R>0 such that ‖u‖L∞(Rd)≤R, because |f (u)|≤C |u| if |u|≤R we

have ‖Ωf (u)‖L2(Rd)≤C ‖Ωu‖L2(Rd). Using that ∆f (u)=f ′′ (u) |∇u|2+f ′ (u)∆u, we
obtain

‖−∆f (u)‖2L2(Rd)+‖Ωf (u)‖2L2(Rd)≤C
(
‖−∆u‖2L2(Rd)

+‖Ωu‖2L2(Rd)+‖∇u‖2L4(Rd)

)
,

from (4.1) and Lemma 4.4 we have

〈Af (u) |Af (u)〉L2(Rd)≤C ‖−∆f (u)‖2L2(Rd)+‖Ωf (u)‖2L2(Rd)

≤C
(
‖u‖2L2(Rd)+‖−∆u‖2L2(Rd)

)
≤C 〈Au|Au〉L2(Rd) .

If u,v∈ H̃2
(
R

d
)
such that ‖u‖H̃2(Rd) ,‖u‖H̃2(Rd)≤R, then

‖f (u)−f (v)‖H̃2(Rd)≤
∫ 1

0

‖f ′ ((1− t)u+ tv)‖H̃2(Rd)‖u−v‖H̃2(Rd)dt

≤C ‖u−v‖H̃2(Rd) ,

which expresses that f is a locally Lipschitz map.

Using arguments similar to those used in the proof of Lemma 4.1, we can see
that the nonlinear local term given by B (u)=f(|u|2)u satisfies (3.4), and then the
conclusion of Theorem 3.3 holds.
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4.3. Nonlinear wave interaction model. Consider the system of evolution
equations modelling wave-wave interaction in quadratic nonlinear media (see [2] and
references therein). This model describes the nonlinear and nonlocal cross-interaction
of two waves in 1+1 dimensions. The interaction is described by nonlocal (integral)
expressions:





u
(1)
t −u

(1)
x +ν gu(2)=0,

u
(2)
t +u

(2)
x −ν g∗u(1)=0,

u(1) (0)=u
(1)
0 , u(2) (0)=u

(2)
0 ,

where ν=±1 and gx=u(2)∗u(1), g (x)→0 when x→−∞. Consider the spaces H1=
H1 (R)×H1 (R), H0=L2 (R)×L2 (R), and the operator A= i∂xσz. Define B (u)=
νg (u)σy ·u, with

g (u)(x,t)=

∫ x

−∞

u(2)∗ (y,t)u(1) (y,t)dy

and σy,σz the Pauli matrices. Taking

(g′ (u)w)(x,t)=

∫ x

−∞

(
w(2)∗ (y,t)u(1) (y,t)+u(2)∗ (y,t)w(1) (y,t)

)
dy,

we can see that B′ (u)w=νg′ (u)wσy ·u+νg (u)σy ·w. From Cauchy’s inequality, we
get ‖g′ (u)w‖L∞(R)≤‖u‖L2(R)‖w‖L2(R). From the expression of B′ (u)w, we conclude

‖B′ (u)w‖L2(R)≤C ‖u‖2L2(R)‖w‖L2(R). Then, (3.4) is verified and therefore the con-
clusions of Theorem 3.2 and Theorem 3.3 are valid.

As an application of these results, we study the behavior of solutions with
compact support. If supp(u0)⊂ (a,b), because A is a first order linear wave
equation and supp(B (u))⊂ supp(u), it follows that supp

(
ΦA (t)u0

)
⊂ (a− t,b+ t)

and supp
(
ΦB (t)u

)
⊂ supp(u). Therefore, supp(un (t))⊂ (a− t,b+ t), which implies

supp(u(t))⊂ (a− t,b+ t).

5. Numerical example

Consider the Schrödinger–Poisson equation in T, i.e. u is a 1–periodic solution of




iut+uxx+ |u|2u+V u=0,

Vxx=D−|u|2 ,
u(0)=u0,

(5.1)

where D∈C∞ (T) is a given real–valued function. We assume that the following
neutrality condition is satisfied:

∫

T

D(x)dx=‖u0‖2L2(T) ,

and because ‖u(t)‖2L2(T) is a conserved quantity, this condition holds for any t. The

potential V can be calculated by V =−G∗%, where %=D−|u|2 and G is the Green
potential defined as the 1–periodic function such that G(x)=x(1−x)/2 on [0,1]. We
consider H0=L2 (T), H1=H2 (T), and defining the self–adjoint operator A=−∂xx
and

B (u)=−|u|2u+(G∗%)u,
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we can write (5.1) in the form (1.1) and from Lemma 4.2, B satisfies (3.4).

The linear flow ΦA can be written as
(
ΦA (t)u

)
(x)=

∑
p∈Z

ûpe
−i4π2p2tei2πpx,

where

ûp=

∫

T

u(x)e−i2πpxdx.

Let w be the solution of (1.4) with w(0)=u, using that V is a real–valued potential,
we can see that Re(w∗wt)=0, which implies |w|= |u|, so that V is constant in t.

Therefore ΦB (t)u= eit(V+|u|2)u, where V is calculated using u. Observe that if %=

D−|u|2, then it holds that %̂0=0 and the potential can be expanded by V (x)=

−∑
p∈Z

%̂p (2πp)
−2

ei2πpx.

5.1. Solving by discrete Fourier transform. We show a numerical method
using discrete Fourier coefficients. Let m be the odd integer m=2l+1 and consider

(Imu)(x)=
l∑

p=−l

Ûpe
i2πpx, where Ûp is the discrete Fourier coefficient given by

Ûp=
1

m

m−1∑

q=0

Uqe
−i2πpq/m

and Uq =u(q/m). Because e−i2πpq/m= e−i2πq(p±m)/m, we have Ûp= Ûp±m. We also
know that

Uq =
m−1∑

p=0

Ûpe
i2πpq/m.

It is known that ‖u−Imu‖L2(T)≤Cm−2‖u‖H2(T) (see Lemma 2.2 in [14]) and then
we have the following result.

Proposition 5.1. If ΦA
m (t)=ΦA (t)Im, for any u∈H2 (T), then

∥∥ΦA (t)u−ΦA
m (t)u

∥∥
L2(T)

≤Cm−2‖u‖H2(T) .

We can see ΦA
m (t) as an approximation of the flow ΦA that satisfies inequality (3.6)

in Subsection 3.3 for m≥n. From the definition of ΦA
m (t) and Ûp= Ûp±m, it holds

that

(
ΦA

m (t)u
)
(q/m)=

l∑

p=−l

Ûpe
−i4π2p2tei2πpq/m

=
m−1∑

p=l+1

Ûpe
−i4π2(m−p)2tei2πpq/m+

l∑

p=0

Ûpe
−i4π2p2tei2πpq/m

=

m−1∑

p=0

Ûpe
−iλptei2πpq/m,

where λp=4m2π2h(p/m) for 0≤p≤m−1 and h(ν)=ν2−2(ν−1/2)+.
The solution of (1.4) can be exactly calculated as

(
ΦB (t)u

)
(q/m)= eit(Vq+Nq)Uq,
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Fig. 5.1. (a) Discretization error in time. (b) Discretization error in space.

where Nq = |Uq|2and the potential V is given by

Vq =−
m−1∑

p=1

%̂pλ
−2
p ei2πpq/m,

with %̂p= D̂p−N̂p. Observe that the neutrality condition reads as %̂0= D̂0−N̂0=0.
Therefore, the Lie–Trotter algorithm can be written as:

- Fix n.
- Assign h=T/n.
- Fix m∼h−1.
- Transform D to D̂ using FFT.
- Compute λ−2.
- Compute exp(−iλh).
- Evaluate U =u0 (q/m) for q=0,... ,m−1.
- For k=1,... ,n do

1. Transform U to Û using FFT (m× log(m) ops).

2. Multiply Û by exp(−iλh) (m ops).

3. Obtain U(A) by anti-transforming FFT e−iλh
· Û (m× log(m) ops).

4. Compute N =
∣

∣U(A)
∣

∣

2
(m ops).

5. Transform N to N̂ using FFT (m× log(m) ops).

6. Compute %̂ subtracting N̂ from D̂.
7. Multiple %̂ by λ−2 (m ops).
8. Obtain V by anti-transforming FFT −λ−2

· %̂ (m× log(m) ops).
9. Sum N and V .

10. Evaluate exp(ih(V +N)) (b×m ops).
11. Obtain U by multiplying by exp(ih(V +N)) ·U(A) (m ops).
12. Assign U [k]=U .

The computational cost is proportional to n×m× log(m).
To illustrate Theorem (3.3) we present a numerical experiment in one space dimen-

sion. We use the algorithm described above to get a discretization of the Schrödinger–

Poisson equation (5.1) with initial data u0(x)=sin
3

2
+α(πx) with α>0 small so that

u0∈H2 but u0 /∈H2+s for s>α, and D(x)=γ (α)
(
1+

(
1+16π2

))
cos(4πx), with

γ (α)=
Γ(α+2)√
πΓ

(
α+ 5

2

) .

Figure 5.1(a) shows the order dependence of the L∞ error at time T =1 on the time
step-size h. The calculations are performed with a space discretization of 2×105+1
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and compared to the result with a time step-size h= 10−5

2 . The order of the conver-

gence is almost linear, slightly better than h3/4, the order expected from Corollary
3.4.

Figure 5.1(b) illustrates the dependence of the L∞ error on the space discretiza-
tion parameter n. Here, we use a fixed time step-size h=10−3 and compare the results
with the result for n=214+1.
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