
International Journal of Bifurcation and Chaos, Vol. 12, No. 1 (2002) 87–101
c© World Scientific Publishing Company

CHARACTERIZATION OF DYNAMIC
BIFURCATIONS IN THE FREQUENCY DOMAIN

GRISELDA R. ITOVICH
Departamento de Matemática,
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In this paper dynamical systems with certain degenerate Hopf bifurcations are considered. An
analysis of the bifurcation behavior is proposed using several tools from the frequency domain
approach. The analyzed bifurcations are the building blocks to understand the multiplicity
of Hopf bifurcation points and to propose certain strategies in the future for controlling the
bifurcation behavior in nonlinear systems.

1. Introduction

The bifurcation structure of dynamical systems can
be described qualitatively by using the variation of
several control parameters. The defining conditions
and nondegeneracy conditions which typify the
singularities are not only important for the proper
design of engineering systems but also for their con-
trol. In this regard, it is interesting to mention
the classification of static singularities in chemi-
cal reacting systems by using the singularity the-
ory by Alhumaizi and Aris [1995], Balakotaiah and
Luss [1984], and Farr [1986], and later extended to
cover dynamic (or Hopf) bifurcation degeneracies in
[Alhumaizi & Aris, 1995; Byeon & Chung, 1989;
Farr, 1986; Planeaux, 1993]. In the field of biol-
ogy, the applications of the singularity theory in
dynamic bifurcations are recognized in the early
works of Hassard and Shiau [1989] and Shiau and

Hassard [1991]. Other more recent applications
dealing with degenerate Hopf bifurcations are the
contributions of Fukai et al. [2000a, 2000b] and Xu
et al. [1998], to mention some of the most sophisti-
cated ones.

In this article, the applied methodology comes
from the theory of multivariable control systems,
known as the frequency domain method, and in-
tends to complement previous results [Itovich &
Moiola, 2001; Moiola & Chen, 1993] regarding
dynamic bifurcation degeneracies, as well as other
related bifurcations analyzed by other researchers
in the frequency domain [Aracil et al., 2000; Llibre
& Ponce, 1996; Llibre & Sotomayor, 1996]. These
results are the preliminary steps to locate degen-
erate bifurcations which act as organizing centers
for dynamics and/or to propose strategies to delay,
modify, avoid or control the degeneracies [Moiola
et al., 1999]. This latter issue has been explored
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extensively since the pioneering works of Abed and
Fu [1987] and later by Fu [2000a], Kang and Krener
[1992], and Kang [2000] regarding static singulari-
ties, and by Abed and Fu [1986], Berglund [2000],
and Fu [2000b] concerning dynamic degeneracies.
Recent developments have shown that bifurcation
methods are very effective and provide nonclassical
and useful new strategies in the control of nonlinear
systems [Chen & Dong, 1998; Chen et al., 2000].

2. Preliminaries

Consider an n-dimensional system of ordinary
differential equations, given by

ẋ = f(x; µ) ,

x(0) = 0 ,
(1)

where µ is a real parameter and f satisfies adequate
conditions to guarantee the existence and unique-
ness of the established initial value problem, for
each fixed value of µ.

If Eq. (1) is written in a state-variable form, the
following is attained

ẋ = A(µ)x+B(µ)g(y; µ) ,

y = −C(µ)x ,

x(0) = 0 ,

(2)

where A is an n×n matrix, which can be arbitrarily
chosen for convenience (invertible and stable for all
values of µ), B and C are n × p and m × n ma-
trices respectively, and g(y; µ) is a p× 1 nonlinear
vectorial function which belongs to C4.

Introducing in the system (2) a state-feedback
control u = g(y; µ), a linear system with a nonlin-
ear control variable is obtained as follows

ẋ = A(µ)x+B(µ)u ,

y = −C(µ)x ,

u = g(y; µ) .

(3)

Taking Laplace transform in (3), with zero-
initial condition, results in

L(y) = −G(s; µ) · L(g(y; µ)) ,

whereG(s; µ) = C(µ)[sI−A(µ)]−1B(µ) is the usual
transfer matrix of the linear part of (3). From the
last equation, the original problem can be solved
for the variable y (contained in L(·)) in the so-called

frequency domain. Thus, if x̂(t; µ) is an equilibrium
solution of (3), ŷ(t; µ) = −C(µ)x̂(t; µ) can be con-
sidered as an equilibrium solution in the frequency
domain. Taking into account the last observation,
it can be deduced that the equilibrium points are
the solutions of the following equation

ŷ(t; µ) = −G(0; µ)g(ŷ(t; µ); µ) , (4)

where −G(0; µ) = C(µ)[A(µ)]−1B(µ).
Linearizing (3) about the equilibrium ŷ(t; µ),

which solves (4), a system with the following trans-
fer matrix is obtained

G(s; µ)J(µ) , (5)

where J(µ) = ∂g/∂y|y=ŷ.
An application of the generalized Nyquist sta-

bility criterion [MacFarlane & Postlethwaite, 1977],
where s = iω gives the following result:

Lemma 1. If an eigenvalue of the Jacobian of
the system (3), in the time domain, takes a purely
imaginary value iω0 at a particular value µ = µ0,
then the corresponding eigenvalue of the matrix
G(iω0; µ0)J(µ0) in the frequency domain must take
the value −1 + i0 at µ = µ0.

Let λ̂ = λ̂(iω; µ) be the unique eigen-
value of the matrix G(iω; µ)J(µ) which satisfies

λ̂(iω0; µ0) = −1 + i0. Fixing µ = µ̃ and varying
ω, the locus of the eigenvalue or “eigenlocus” is ob-
tained. From the frequency analysis viewpoint, the
appearance of a dynamic bifurcation fits the analy-
sis of this locus for a certain value ω0 6= 0 and this
is precisely formulated below.

In general, the eigenvalues λ(s; µ) of (5) are the
solutions of the following algebraic equation

h(λ, s; µ) = det(λI −G(s; µ)J(µ)) = 0 . (6)

Considering Lemma 1 and imposing the condition
λ = −1 in (6), a necessary relationship between
s = iω and µ to find a bifurcation point is obtained.
Thereby, the resulting equation is

h(−1, iω; µ) = 0 . (7)

By separating (7) into real (<) and imaginary (=)
parts, the following system is attained{

F1(ω, µ) = <{h(−1, iω; µ)} = 0 ,

F2(ω, µ) = ={h(−1, iω; µ)} = 0 .
(8)
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Definition 2.1. A singular point (λ, s) is a solu-
tion of any of the following systems:

(i)


h(λ, s, ·) = 0 ,

∂h

∂λ
(λ, s, ·) = 0,

or (ii)


h(λ, s, ·) = 0 ,

∂h

∂s
(λ, s, ·) = 0 .

It is important to point out that the functions
F1 and F2 given in (8) and their partial derivatives
allow to find and classify the singular points.

Proposition 2.2. A necessary condition for
(ω0, µ0) to be a singular point is obtained by satis-
fying (8) [Moiola & Chen, 1996].

Definition 2.3. A dynamic or Hopf bifurcation
condition is obtained satisfying (8) with ω0 6= 0.

It is convenient to keep in mind that, if the
original problem is formulated in the time domain,
a dynamic bifurcation condition goes together with
the existence of a simple pair of pure imaginary
eigenvalues. This result is established in the
following classic theorem about existence and sta-
bility of limit cycles for a nonlinear system as (1)
[Arrowsmith & Place, 1990]:

Theorem (Poincaré–Andronov–Hopf). Suppose
that the nonlinear autonomous system (1) has an
equilibrium point at the origin: x̂ = 0, and the
associated Jacobian Ĵ = ∂f/∂x|x=x̂=0 has a sim-
ple pair of purely imaginary eigenvalues λt(µ) and

λt(µ). If d<[λt(µ)]/dµ > 0 for some µ0, where <{·}
denotes the real part of the complex eigenvalues,
then

(1) µ = µ0 is a bifurcation point of the system;
(2) for close enough values µ < µ0, the origin x̂ = 0

is an asymptotically stable equilibrium solution
of the system;

(3) for close enough values µ>µ0, the origin x̂ =
0 is an unstable equilibrium solution of the
system; and

(4) for close enough values µ 6= µ0, the origin x̂ = 0
is surrounded by a limit cycle of magnitude
O (
√
µ).

Observation. A system as the one described
in the aforementioned theorem can be rewritten
locally using polar coordinates and considering
µ = 0, through Taylor expansions up to grade three,

leading to: {
ṙ = (dµ+ ar2)r ,

θ̇ = ω + cµ+ br2 .
(9)

It is appropriate to distinguish the following param-
eters: d = d<[λt(µ)]/dµ, which shows the way as
the eigenvalues cross the imaginary axis; a, whose
sign determines the stability of the emerging limit
cycle and ω which is the approximate frequency of
the bifurcating periodic solution [Guckenheimer &
Holmes, 1983]. Complications in the analysis of the
dynamics in (9) appear when d = 0 or a = 0. These
situations give rise to the so-called degenerate Hopf
bifurcations and specifically, the treatment of the
first type (as well as its complications) will be the
focus of the rest of this work.

3. Degenerate Hopf Bifurcations

Some of the degenerate cases introduced in the
previous section are classified and analyzed in this
section. The problems where d = 0 are known as
the ones where the transversality condition in the
crossing of the eigenvalues fails, while those with
a = 0 are recognized as the cases where the curva-
ture coefficient is zero and this hinders the straight
determination of the stability of the existing peri-
odic solution. The case where d = 0 but the rest of
the hypotheses of the Hopf bifurcation theorem are
satisfied will be noted as H01, following the stan-
dard notation used by Alhumaizi and Aris [1995],
Farr [1986] and Planeaux [1993]. This type of sin-
gularity has codimension 1 [Golubitsky & Schaeffer,
1985], which means that it is necessary to vary a
unique auxiliary parameter together with the main
one to locate and describe the current degenerate
bifurcation in the parameter space.

In the following, some general results about
degenerate Hopf bifurcations for the treatment of
a system like (1) in the frequency domain are
expounded.

Definition 3.1. It is said that in (ω0, µ0) occurs
some kind of degenerate Hopf bifurcation if the
following system is satisfied

F1(ω0, µ0) = 0 ,

F2(ω0, µ0) = 0 ,

M(ω0, µ0) = 0 ,
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for a certain value ω0 6= 0 and (∂F1/∂ω)2|(ω0,µ0) +

(∂F2/∂ω)2|(ω0,µ0) 6= 0, where

M(ω, µ) =

∣∣∣∣∣∣∣∣∣∣
∂F1

∂µ

∂F1

∂ω

∂F2

∂µ

∂F2

∂ω

∣∣∣∣∣∣∣∣∣∣
is called the determinant of degeneracies [Moiola
et al., 1990].

It will be considered an auxiliary parameter in
the description of the system (3) in the frequency
domain setting. Thus, the unique eigenlocus which
is closest to the critical point Pc = −1 + i0, accord-
ing to Lemma 1, will be analyzed when the main
and auxiliary parameters change simultaneously.

Let λ̂ = G1(ω, µ) + iG2(ω, µ) where G1, G2 ∈
C1, the above-mentioned eigenlocus and solution of
(6) where s = iω. Given that (8) is satisfied at the
point (ω0, µ0),

G1(ω0, µ0) = F1(ω0, µ0)− 1 = −1 ,

G2(ω0, µ0) = F2(ω0, µ0) = 0 ,

and in agreement with the assumption of the
uniqueness,

G1(ω, µ) = F1(ω, µ)− 1, G2(ω, µ) = F2(ω, µ) .

Hence, the equalities of the partial derivatives

∂G1

∂ω
=
∂F1

∂ω
,

∂G1

∂µ
=
∂F1

∂µ
,

∂G2

∂ω
=
∂F2

∂ω
,

∂G2

∂µ
=
∂F2

∂µ
,

(10)

are valid at (ω0, µ0).
According with the objective of determining the

extreme values of the eigenlocus λ̂ with respect to
the critical point Pc, the following proposition holds
[Moiola et al., 1990]:

Proposition 3.2. Suppose that (ω0, µ0) satisfies
the dynamic bifurcation condition

F1(ω0, µ0) = F2(ω0, µ0) = 0 .

Then:

(a) If G1 = G1(ω, µ) has an extreme value at
(ω0, µ0), under the condition G2 = G2(ω, µ) =
0, and if ∂F2/∂ω|(ω0, µ0) 6= 0, then M(ω0, µ0) =
0, i.e. in (ω0, µ0) occurs a degenerate dynamic
bifurcation.

(b) If M(ω0, µ0) = 0 and ∂F2/∂ω|(ω0, µ0) 6=0, then
(ω0, µ0) is a critical point of the function G1 =
G1(ω, µ) under the condition G2 = G2(ω, µ) =
0.

Observation. The previous proposition can
also be formulated under the assumption that
∂F2/∂µ|(ω0, µ0) 6= 0.

Under the general hypothesis established in
Proposition 3.2, given that for certain (ω0, µ0),
ω0 6= 0, is satisfied

∂G2

∂ω

∣∣∣∣
(ω0, µ0)

=
∂F2

∂ω

∣∣∣∣
(ω0, µ0)

6= 0 ,

it is possible to define a function

ω = ω(µ) , (11)

in a neighborhood E(µ0), which solves the equation
G2(ω, µ) = 0. Moreover, according with (10), we
see the following results particularly

dω

dµ

∣∣∣∣
(ω0, µ0)

= −

∂G2

∂µ
∂G2

∂ω

∣∣∣∣∣∣∣∣
(ω0, µ0)

= −

∂F2

∂µ
∂F2

∂ω

∣∣∣∣∣∣∣∣
(ω0, µ0)

.

(12)

If G1 = G1(ω, µ) has an extreme value at (ω0, µ0),
the function

H(µ) = G1(ω(µ), µ) (13)

can be considered for any µ ∈ E(µ0) and it can be
deduced, under the general assumptions and (12),
that

dH

dµ

∣∣∣∣
µ=µ0

= 0 .

Connected with degenerate Hopf bifurcations
where the transversality condition of the classical
Hopf theorem fails, the function H defined in (13)
can be used in order to generalize the result already
stated in [Moiola et al., 1990], as follows:

Proposition 3.3. Suppose that

F1(ω0, µ0) = F2(ω0, µ0) = 0 ,

M(ω0, µ0) = 0 and

∂F2

∂ω

∣∣∣∣
(ω0, µ0)

6= 0
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where ω0 6= 0. Let be

∆n =
dnH

dµn

∣∣∣∣
µ=µ0

6= 0 , n ≥ 2

the first nonzero derivative of H at µ = µ0, then:

(a) If n is even, the transversality condition of the
classical Hopf theorem fails.

(b) If n is odd, the transversality condition of the
classical Hopf theorem degenerates.

Observation. Henceforth, according to the previ-
ous result, the following notation will be used

∆i =
d iH

dµi

∣∣∣∣∣
µ=µ0

, ∀i ≥ 2 .

By supposing that the sign of the curvature
coefficient “a” is always defined, the degenerate and
nondegenerate conditions established in the preced-
ing proposition characterize the singularity family
H0,n−1, which involves up to n Hopf bifurcation
points in its unfoldings [Alhumaizi & Aris, 1995;
Golubitsky & Langford, 1981].

4. Characterization of Some
Bifurcations of Types
H01 and H02

Under the assumptions of Proposition 3.3 (a) at the
point (ω0, µ0), the following equation is considered

H(µ, ρ) = G1(ω(µ), µ, ρ) = −1 , (14)

where ω(µ) is the function defined in (11) and ρ
is a vector of auxiliary parameters introduced in
order to analyze the H01 and H02 degeneracies.
For simplicity, let us suppose at first that ρ ∈ R1.
Moreover, the next equality holds

H(µ0, 0) = G1(ω0, µ0, 0) = −1 . (15)

Under the stated conditions, it is known that the
hypothesis of transversality of the Hopf bifurcation
theorem fails. By analyzing a system like (3) with
an auxiliary parameter ρ, sufficient conditions can
be specified to guarantee the existence of a fold
singularity at the point (µ, ρ) = (µ0, 0) in the
parameter space.

Observation. This notation will be used in the
subsequent theorems

∂ iH

∂µi

∣∣∣∣∣
(µ0, 0)

=
d iH

dµi

∣∣∣∣∣
µ=µ0

, ∀i ≥ 2 .

Theorem 4.1. Under the assumptions of Propo-
sition 3.3 (a) at the point (ω0, µ0), (15 ) and if
∂H/∂ρ|(µ0, 0) 6= 0, there is a fold singularity that

results at (µ, ρ) = (µ0, 0) in the parameter space.

Proof. First, the case with n = 2 is considered,
this means that ∆2 = d2H/dµ2|µ=µ0 6= 0. Given
that ∂H/∂ρ|(µ0, 0) 6= 0 and due to (15), applying
the implicit function theorem, it is possible to find
a function ρ = ρ(µ) which solves Eq. (14) and
satisfies the following properties:

(i) dρ/dµ|µ=µ0 = 0, due to

∂H

∂µ
+
∂H

∂ρ

dρ

dµ
= 0 , (16)

and evaluating at µ = µ0, results in

dρ

dµ

∣∣∣∣
µ=µ0

= −

∂H

∂µ

∣∣∣∣
(µ0, 0)

∂H

∂ρ

∣∣∣∣
(µ0, 0)

= 0 .

(ii) d2ρ/dµ2|µ=µ0 6= 0, since taking derivatives in
(16) with respect to the main parameter µ, it
is obtained

∂2H

∂µ2
+ 2

∂2H

∂µ∂ρ

dρ

dµ
+
∂2H

∂ρ2

(
dρ

dµ

)2

+
∂H

∂ρ

d2ρ

dµ2
= 0 , (17)

and evaluating at µ = µ0 follows,

d2ρ

dµ2

∣∣∣∣∣
µ=µ0

= −

∂2H

∂µ2

∣∣∣∣∣
(µ0, 0)

∂H

∂ρ

∣∣∣∣
(µ0,0)

6= 0 ,

taking into account the result of (i) and the hy-
pothesis about the second derivative of function
H. Then, there is a fold singularity at the point
(µ, ρ) = (µ0, 0) in the parameter space. In the
general case, with an even n greater than two,
following the same argument, d2ρ/dµ2|µ=µ0 = 0.
Nevertheless, starting from (17), it can be proved
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that if

∆i =
∂iH

∂µi

∣∣∣∣∣
µ=µ0

= 0, for 2 ≤ i ≤ n− 1 ,

∆n =
∂nH

∂µn

∣∣∣∣
µ=µ0

6= 0 , (18)

then

d iρ

dµi

∣∣∣∣∣
µ=µ0

= 0, for 2 ≤ i ≤ n− 1 and

dnρ

dµn

∣∣∣∣
µ=µ0

6= 0 . (19)

Thus, as (18) is satisfied with an even n greater than
two, due to (19) and Taylor’s formula, there results
again a fold singularity at the point (µ, ρ) = (µ0, 0)
in the parameter space. �

Under the assumptions of Proposition 3.3 (b)
with n = 3 at the point (ω0, µ0), the following equa-
tion is considered:

H(µ, (ρ1, ρ2)) = G1(ω(µ), µ, (ρ1, ρ2)) = −1 ,

(20)

where ω(µ) is the function defined in (11) and
(ρ1, ρ2) is a pair of auxiliary parameters that appear
in the function G1. Furthermore, the next equality
is valid

H(µ0, (0, 0)) = G1(ω0, µ0, (0, 0)) = −1 . (21)

Thereby, the hypothesis about the transversality of
the Hopf bifurcation theorem degenerates.

Observation. From now on, it will be noted ρ =
(ρ1, ρ2) and (µ, ρ) = (µ, (ρ1, ρ2)). Thus, it can be
considered H = H(µ, ρ) = H(µ, (ρ1, ρ2)). More-
over, it will be supposed that µ0 = 0.

Forthwith, analyzing a system like (3) with a
pair of auxiliary parameters ρ = (ρ1, ρ2), sufficient
conditions to guarantee the existence of a cusp sin-
gularity at the point (µ, ρ) = (µ0, 0) = (0, 0) in the
parameter space are established.

Theorem 4.2. Under the assumptions of Proposi-
tion 3.3 (b) with n = 3 at the point (ω0, 0), (21)

and if the Jacobian

J

(
H,

∂H

∂µ

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ1

∂H

∂ρ2

∂

(
∂H

∂µ

)
∂ρ1

∂

(
∂H

∂µ

)
∂ρ2

∣∣∣∣∣∣∣∣∣∣∣∣
(0,0)

6= 0 ,

where H = H(µ, ρ), there is a cusp singularity
that results at the point (µ0, 0) = (0, 0) in the
parameter space.

Proof. From the assumed hypotheses it follows
that

H(0, 0) = −1,
∂H

∂µ

∣∣∣∣
(0,0)

=
∂2H

∂µ2

∣∣∣∣∣
(0,0)

= 0 ,

∂3H

∂µ3

∣∣∣∣∣
(0,0)

6= 0 .

Therefore, the function Ĥ(µ, ρ) = H(µ, ρ) + 1 has
a Taylor expansion about the origin like

Ĥ(µ, ρ) = a(ρ)+b(ρ)µ+
c(ρ)

2!
µ2+

d(ρ)

3!
µ3+R(µ, ρ) ,

where a(0) = b(0) = c(0) = 0, d(0) 6= 0 and
∀ε > 0 there exist δµ > 0 and δρ > 0 such that
|R(µ, ρ)| < ε|µ|3 when |µ| < δµ, ‖ρ‖ < δρ.

Provided that the Jacobian

J

(
Ĥ,

∂Ĥ

∂µ

)
= J

(
H,

∂H

∂µ

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∂H

∂ρ1

∂H

∂ρ2

∂

(
∂H

∂µ

)
∂ρ1

∂

(
∂H

∂µ

)
∂ρ2

∣∣∣∣∣∣∣∣∣∣∣∣
(0,0)

6= 0 ,

and according to the results established in [Hale &
Koçak, 1991], the solution set of Hopf points of (20),
in the neighborhood of (µ0, 0) = (0, 0), is defined
through a cusp singularity in the (ρ1, ρ2) parameter
space. �

Hereafter, some application examples about the
aforementioned theorems are analyzed in detail.



Characterization of Dynamic Bifurcations in the Frequency Domain 93

5. Applications

Example 1. The nonlinear system analyzed in
[Moiola et al., 1999] is considered

ẋ1 = −x1x2 + x2
2 + µ+ u(x; µ, α) ,

ẋ2 = −x2 + x3
1 + µx2 ,

(22)

where x = (x1, x2), µ is the main bifurcation
parameter, u is a nonlinear control law and α is
an auxiliary control parameter.

It is established as the control law: u(x; µ, α) =
αẋ2 and thus, the following system is attained

ẋ1 = −x1x2 + x2
2 + µ+ α(−x2 + x3

1 + µx2) ,

ẋ2 = −x2 + x3
1 + µx2 . (23)

Through a convenient realization in the frequency
domain, (23) can be written as

A =

[
−β 0

0 −1

]
, B = C = I2 ,

where β is a positive constant, introduced to guar-
antee that the open-loop poles are located in the
left half-plane. In agreement with the notation of
Sec. 2,

G(s) = C(sI −A)−1B =


1

s+ β
0

0
1

s+ 1


and

g(y; µ, α, β)

=

[
g1((y1, y2); µ, α, β)

g2((y1, y2); µ, α, β)

]

=

[
−y1y2 + y2

2 + µ− βy1 + α(y2 − y3
1 − µy2)

−y3
1 − µy2

]
,

where

y =

[
y1

y2

]
= −C

[
x1

x2

]
.

We attempt to determine the solutions ŷt = (ŷ1, ŷ2)
such that

ŷ = −G(0) · g(ŷ; µ, α, β) . (24)

From now on, let β = 1 for simplicity. Thereby, the
resulting algebraic system is

ŷ1ŷ2 − ŷ2
2 − µ = 0 ,

ŷ3
1 + (µ− 1)ŷ2 = 0 ,

(25)

which coincides with the equilibrium points of the
system (22). Apropos of analyzing the Hopf bifur-
cations of the system, the eigenvalue of the system
G(s)J which crosses through Pc = −1 + i0 is con-
sidered for some frequency s = iω, ω 6= 0. In
other words, it is required to find the solution of the
following equation:

h(−1, iω, µ, α) = det(−1−G(iω)J(µ, α)) = 0 ,

where

J(µ, α) =


∂g1

∂y1

∂g1

∂y2

∂g2

∂y1

∂g2

∂y2


y=ŷ

=

[
−J11 −J12

−3ŷ2
1 −µ

]
,

and J11 = 1 + ŷ2 + 3αŷ2
1, J12 = ŷ1− 2ŷ2−α(1−µ).

Thus,

h(−1, iω, µ, α)

= 1− J11 + µ

(1 + iω)
+

1

(1 + iω)2
[µJ11 − 3ŷ2

1J12]

= 1− 1

(1 + iω)
D +

1

(1 + iω)2
E = 0 ,

where D = J11 + µ, E = µJ11 − 3ŷ2
1J12.

In order to find the dynamic bifurcation points
of (23) in the frequency domain, it is necessary to
solve the system (8) for ω 6= 0, which is particularly

F1(ω, µ, α) = 1− D

1 + ω2
+
E(1− ω2)

(1 + ω2)2 = 0 ,

F2(ω, µ, α) =
Dω

1 + ω2
− 2Eω

(1 + ω2)2
= 0 . (26)

The last equation of (26) yields

D(1 + ω2)− 2E = 0 , (27)

and finally, substituting D into F1 = 0, results in
E = 1 + ω2 and D = 2. Furthermore, considering
the following equilibrium values of the system (25)
(µ0, ŷ10 , ŷ20) = (−0.3237359, 1.248025, 1.468481)
with α0 = −0.0309768, it can be determined that
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E = 6.948013 and ω0 = 2.438854. This start-
ing point has been obtained by using LOCBIF
[Khibnik et al., 1993] when continuing a Hopf
bifurcation curve and after arriving at a degenerate
Hopf point. It can be observed that in the neigh-
borhood of the aforementioned equilibrium point,
the implicit function theorem can be applied. In
other words, there are two functions ŷ1(µ) and ŷ2(µ)
defined in a neighborhood of (µ0, ŷ10 , ŷ20), whose
first and second derivatives evaluated at µ = µ0 are

dŷ1

dµ

∣∣∣∣
µ=µ0

= −0.6395257 ,

d2ŷ1

dµ2

∣∣∣∣∣
µ=µ0

= −0.4775182 ,

dŷ2

dµ

∣∣∣∣
µ=µ0

= −1.1481372 ,

d2ŷ2

dµ2

∣∣∣∣∣
µ=µ0

= −1.1066949 .

(28)

Moreover, it can be obtained that

F1(ω0, µ0) = −4.2707122 ∗ 10−7 ,

F2(ω0, µ0) = −4.2100343 ∗ 10−7 .

Furthermore, taking into account the values of
all the variables and the results in (28),

∂F1

∂µ

∣∣∣∣
(ω0,µ0)

= 1.3161361,
∂F2

∂µ

∣∣∣∣
(ω0,µ0)

= 1.2975384,

and

∂F1

∂ω

∣∣∣∣
(ω0,µ0)

= 0.4999489,
∂F2

∂ω

∣∣∣∣
(ω0,µ0)

= 0.4928460 .

Therefore, the value of the determinant of degen-
eracies is obtained

M(ω0, µ0)=

∣∣∣∣∣∣∣∣∣
∂F1

∂µ

∂F1

∂ω

∂F2

∂µ

∂F2

∂ω

∣∣∣∣∣∣∣∣∣
(ω0,µ0)

=−5.048344∗10−5.

This value is in correspondence with the preci-
sion of LOCBIF in order to detect the failure of
the transversality condition. Then, according to
Definition 3.1, the system (23) has a degenerate
Hopf bifurcation at (ω0, µ0).

To see that all the assumptions of Proposi-
tion 3.3 (a) with n = 2 are satisfied, it remains be

seen that ∆2 = d2H/dµ2|µ=µ0
6= 0, and in that case,

then it could be asserted that the transversality con-
dition of the Hopf theorem fails. In the considered
example, the function ω = ω(µ) is the solution of
(27) in a neighborhood of (ω0, µ0). Taking deriva-
tives implicitly in that equation, the following can
be deduced

dω

dµ

∣∣∣∣
µ=µ0

= −2.6327484,
d2ω

dµ2

∣∣∣∣∣
µ=µ0

= −1.2664337.

Hence, we attempt to analyze the function

H(µ) = G1(ω(µ), µ) = F1(ω(µ), µ, α)− 1 ,

and its derivatives in the neighborhood of µ0 =
−0.3237359 when α = α0. Thus, given that

dH

dµ
=
∂F1

∂ω

dω

dµ
+
∂F1

∂µ
,

and

d2H

dµ2
=
∂2F1

∂ω2

(
dω

dµ

)2

+ 2
∂2F1

∂ω∂µ

dω

dµ
+
∂F1

∂ω

d2ω

dµ2
+
∂2F1

∂µ2
,

we obtain results

dH

dµ

∣∣∣∣
µ=µ0

= −1.0355665 ∗ 10−4 ,

d2H

dµ2

∣∣∣∣∣
µ=µ0

= 0.5360830 6= 0 .

It can be then concluded that the transversality
condition of the Hopf bifurcation theorem fails at
(ω0, µ0) giving a type of H01 degeneracy.

With the purpose of determining the set of Hopf
points that exists in the neighborhood of (µ0, α0),
the solution set is considered of the following two-
variable equation

H(µ, α) = G1(ω(µ), µ, α) = −1 .

Furthermore, it is known that the next equality
holds

H(µ0, α0) = G1(ω0, µ0, α0)

= F1(ω0, µ0, α0)− 1 = −1 .



Characterization of Dynamic Bifurcations in the Frequency Domain 95

We attempt to verify Theorem 4.1, so it remains to
prove that

∂H

∂α

∣∣∣∣
(µ0, α0)

6= 0 .

Given

H(µ, α) = G1(ω(µ), µ, α)

= − D

1 + ω2(µ)
+
E(1− ω2(µ))

(1 + ω2(µ))2 ,

and in agreement with (27),

H(µ, α) = G1(ω(µ), µ, α) = −D
2
.

Thereby,

∂H

∂α

∣∣∣∣
(µ0,α0)

=
∂G1

∂α

∣∣∣∣
(ω0,µ0,α0)

= −1

2

dD

dα

∣∣∣∣
(µ0,α0)

= −2.3363496 6= 0 .

Then, it can be asserted that the system (23) has a
fold singularity at (µ0, α0) in the parameter space.

Example 2. Consider the system investigated by
Byeon and Chung [1989], Farr [1986], and Moiola
and Chen [1993, 1996], the mathematical model
for a perfectly mixed reactor with a coiling coil,
in which two consecutive, irreversible, exothermic
and first-order reactions A → B → C occur. The
described system can be written in its dimensionless
form as

ẋ1 = −x1 +D(1− x1) exp(x3) ,

ẋ2 = −x2 +D(1− x1) exp(x3)−DSx2 exp(x3) ,

ẋ3 = −(1 + β)x3 + B̃D(1− x1) exp(x3)

+ B̃DSαx2 exp(x3) , (29)

where D is the main bifurcation parameter and B̃,
S, α and β are the auxiliary system parameters.
In the frequency domain, the following realization
is proposed, considering the matrices A, B, C and
the vectorial function g

A =


−1 0 0

0 −1 0

0 0 −1− β

 ,

B =


1 0

1 −1

B̃ B̃α

 , C = I3

and

g(y; D, S) =

[
g1(y; D, S)

g2(y; D, S)

]

=

[
D(1 + y1) exp(−y3)

−DSy2 exp(−y3)

]
,

where

y =


y1

y2

y3

 = −C


x1

x2

x3

 .
Thereby, the transfer matrix G(s):

G(s) = C(sI−A)−1B =



1

s+ 1
0

1

s+ 1
− 1

s+ 1

B̃

s+ 1 + β

B̃α

s+ 1 + β


.

Henceforth, we attempt to find the equilibrium
solutions ŷ of (29), ŷt = (ŷ1, ŷ2, ŷ3) that satisfy
the following equation

ŷ = −G(0) · g(ŷ; D, S) .

Solving this system, we obtain

D = − ŷ1

1 + ŷ1
exp(ŷ3) ,

ŷ2 =
ŷ1(1 + ŷ1)

1 + (1− S)ŷ1
,

ŷ3 =
B̃ŷ1

(1 + β)
− B̃αSŷ2

1

(1 + β)[1 + (1− S)ŷ1]
,

(30)

where it can be observed that the values of the
bifurcation parameter D are in one-to-one corre-
spondence with the values of ŷ1. The Jacobian
matrix J(D) has the following form:

J(D) =

[
J11 0 J13

0 J22 J23

]

=

[
J11 0 −(1 + ŷ1)J11

0 −SJ11 Sŷ2J11

]
,

where J11 = D exp(−ŷ3) = −ŷ1/(1 + ŷ1).
With the purpose of determining the bifurca-

tions of the system, the eigenvalues λi; i = 1, 2, 3,
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of the matrix G(s)J(D) are considered. They are:
λ3 = 0 and the roots of the equation

λ2 + a1(s; ŷ1)λ+ a0(s; ŷ1) = 0 , (31)

where

a1(s; ŷ1) =
J22 − J11

s+ 1
− B̃(J13 + αJ23)

s+ 1 + β
,

a0(s; ŷ1) =
B̃[αJ23J11 − J22J13(1 + α)]

(s+ 1)(s+ 1 + β)
− J11J22

(s+ 1)2
.

It is important to note that an artificial
bifurcation parameter ŷ1 has been introduced, from
which the main bifurcation parameter D can be
obtained immediately, as it has been pointed out
before.

Substituting λ = −1 and s = iω in (31), apply-
ing (30) and the expression of J(D), the functions
F1 and F2 can be obtained

F1(ω, ŷ1) = 1− a

p1
+
b(1 + β)

p2
+
c(1 + β − ω2)

p3

+
d(1− ω2)

p4
,

F2(ω, ŷ1) =
aω

p1
− bω

p2
− c(2 + β)ω

p3
− 2dω

p4
, (32)

where

a(ŷ1) =
ŷ1(S + 1)

1 + ŷ1
,

b(ŷ1) =
B̃ŷ1[1 + (1− S − Sα)ŷ1]

1 + (1− S)ŷ1
,

c(ŷ1) =
−B̃Sŷ2

1[1 + α+ (1− S − Sα)ŷ1]

(1 + (1− S)ŷ1)(1 + ŷ1)
,

d(ŷ1) =
Sŷ2

1

(1 + ŷ1)2
,

p1 = 1 + ω2, p2 = (1 + β)2 + ω2 ,

p3 = (1 + ω2)((1 + β)2 + ω2), p4 = (1 + ω2)2 .

Fixing the values of the parameters B̃ = 8
and S = 0.06, it can be proved that a dynamic
degenerate bifurcation of the system (32) appears
at the point (ŷ11 ; ω1, (α1, β1)) = (−0.7973357;
1.4509548, (1.1365924, 2.2734795)) where ω1 is the
frequency at criticality. This situation repeats
at (ŷ12 ; ω2, (α2, β2)) = (−0.9235686; 0.8618195,
(0.7241262, 1.2856351)). Both results have been
obtained by using LOCBIF [Khibnik et al., 1993],
but in these cases we have looked for the failure
of higher-order derivatives in the transversality
condition. Next, it will be showed that the (higher-
order) transversality condition fails at the afore-
mentioned equilibrium points and cusp singularities
can be found next to (α1, β1) and (α2, β2).

First of all, some calculations are given

(ω1, ŷ11) (ω2, ŷ12)

F1 1.59511271 ∗ 10−4 −1.79688476 ∗ 10−3

F2 −8.41590000 ∗ 10−5 −1.60613163 ∗ 10−5

(33)

Apropos of evaluating the determinants of
degeneracies M

M(ω, ŷ1) =

∣∣∣∣∣∣∣∣∣∣
∂F1

∂ŷ1

∂F1

∂ω

∂F2

∂ŷ1

∂F2

∂ω

∣∣∣∣∣∣∣∣∣∣
,

at each one of the points (ωi, ŷ1i); i = 1, 2, the
expressions of the partial derivatives of F1 and F2

with respect to ŷ1 and ω are given below

∂F1

∂ŷ1
=− 1

p1

∂a

∂ŷ1
+

(1+β)

p2

∂b

∂ŷ1
+

(1+β−ω2)

p3

∂c

∂ŷ1

+
(1−ω2)

p4

∂d

∂ŷ1
,

∂F2

∂ŷ1
=ω

(
1

p1

∂a

∂ŷ1
− 1

p2

∂b

∂ŷ1
− (2+β)

p3

∂c

∂ŷ1
− 2

p4

∂d

∂ŷ1

)
,

where

∂a

∂ŷ1
=

S + 1

(1 + ŷ1)2
,

∂b

∂ŷ1
=
B̃[(1− S)(1− S − Sα)ŷ2

1 + 2(1− S − Sα)ŷ1 + 1]

[1 + (1− S)ŷ1]2
,
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∂c

∂ŷ1
= −B̃S

{
(1− S)(1− S − Sα)ŷ4

1 + 2(2− S)(1− S − Sα)ŷ3
1

[(1− S)ŷ2
1 + (2− S)ŷ1 + 1]2

+
[5 + 2α − 4S(1 + α)]ŷ2

1 + 2(1 + α)ŷ1

[(1− S)ŷ2
1 + (2− S)ŷ1 + 1]2

}
,

∂d

∂ŷ1
=

2Sŷ1

(1 + ŷ1)
3 ,

and with respect to ω are

∂F1

∂ω
= −a ∂

∂ω

(
1

p1

)
+ b(1 + β)

∂

∂ω

(
1

p2

)
− 2ωc

p3
+ c(1 + β − ω2)

∂

∂ω

(
1

p3

)

− 2ωd

p4
+ d(1− ω2)

∂

∂ω

(
1

p4

)
,

∂F2

∂ω
=

a

p1
− b

p2
− c(2 + β)

p3
− 2d

p4
+ ω

(
a
∂

∂ω

(
1

p1

)
− b ∂

∂ω

(
1

p2

)

− c(2 + β)
∂

∂ω

(
1

p3

)
− 2d

∂

∂ω

(
1

p4

))
,

where

∂

∂ω

(
1

p1

)
=
−2ω

p2
1

=
−2ω

(1 + ω2)2
,

∂

∂ω

(
1

p2

)
=
−2ω

p2
2

=
−2ω

((1 + β)2 + ω2)2
,

∂

∂ω

(
1

p3

)
=
−2ω(2 + 2β + 2ω2 + β2)

p2
3

=
−2ω(2 + 2β + 2ω2 + β2)

(1 + ω2)2((1 + β)2 + ω2)2
,

∂

∂ω

(
1

p4

)
=
−4ω

(p4)
3
2

=
−4ω

(1 + ω2)3
.

Thus, it is obtained

(ω1, ŷ11) (ω2, ŷ12)

M 9.5251799 ∗ 10−5 −2.6016338 ∗ 10−3

∂F2

∂ω
0.57795049 (6= 0) 3.0282261 (6= 0)

(34)

Due to (33) and (34) and in agreement with Defini-
tion 3.1, it has been shown that degenerate Hopf
bifurcations occur at (ωi, ŷ1i); i = 1, 2. More-
over, it can be verified that Proposition 3.3 (b) with
n = 3 is satisfied at the analyzed points. Related
to this, the following results have been attained

ŷ11 ŷ12

dH

dŷ1
1.6025978 ∗ 10−4 −8.5043342 ∗ 10−4

d2H

dŷ2
1

−1.3805291 ∗ 10−3 2.1660876 ∗ 10−2

d3H

dŷ3
1

4.8048344 ∗ 102 −1.1006330 ∗ 104

(35)

Taking into account the functional dependence
D = D(ŷ1), it is possible to transform all the
results in the previous table, in terms of the main
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bifurcation parameter D, as stated in Proposition
3.3. Thereby,

(ω1, D1) (ω2, D2)

M −2.3657267 ∗ 10−4 9.5931639 ∗ 10−3

∆1 −3.9803013 ∗ 10−4 3.1358552 ∗ 10−3

∆2 −6.0164822 ∗ 10−3 −6.5966378 ∗ 10−3

∆3 −7.3619480 ∗ 103 5.5182339 ∗ 105

where ∆j = djH/dDj ; j = 1, 2, 3. The last
table allows to assert that the transversality condi-
tion of the Hopf theorem degenerates at the points
(ωi, Di); i = 1, 2.

Henceforth, it remains to verify if all the as-
sumptions of Theorem 4.3 satisfy at the points
(Di, (αi, βi)); i = 1, 2. Therefore, we will analyze
the solution set of the following equation with three

variables

H(ŷ1, (α, β)) = G1(ω(ŷ1), ŷ1, (α, β)) = −1 .

It is known that

G1(ωi, ŷ1i , (αi, βi)) = F1(ωi, ŷ1i , (αi, βi))− 1 ,

where i = 1, 2 .

At first, it will be proved that

J

(
H,

∂H

∂ŷ1

)
=

∣∣∣∣∣∣∣∣∣∣∣

∂H

∂α

∂H

∂β

∂

(
∂H

∂ŷ1

)
∂α

∂

(
∂H

∂ŷ1

)
∂β

∣∣∣∣∣∣∣∣∣∣∣
(αi,βi)

6= 0,

where i = 1, 2 .

The required expressions for the calculation of
the previous determinant are

∂H

∂α
=

(1 + β)

p2

∂b

∂α
+

(1 + β − ω2)

p3

∂c

∂α
,

∂H

∂β
=

[
1

p2
+ (1 + β)

∂

∂β

(
1

p2

)]
b+

[
1

p3
+ (1 + β − ω2)

∂

∂β

(
1

p3

)]
c ,

∂

(
∂H

∂ŷ1

)
∂α

=
(1 + β)

p2

∂2b

∂ŷ1∂α
+

(1 + β − ω2)

p3

∂2c

∂ŷ1∂α
,

∂

(
∂H

∂ŷ1

)
∂β

=

[
1

p2
+ (1 + β)

∂

∂β

(
1

p2

)]
∂b

∂ŷ1
+

[
1

p3
+ (1 + β − ω2)

∂

∂β

(
1

p3

)]
∂c

∂ŷ1
,

where

∂b

∂α
=

−B̃Sŷ2
1

1 + (1− S)ŷ1
,

∂c

∂α
=

−B̃Sŷ2
1(1− Sŷ1)

(1 + (1− S)ŷ1) (1 + ŷ1)
,

∂

∂β

(
1

p2

)
=

−2 (1 + β)

((1 + β)2 + ω2)2
,

∂

∂β

(
1

p3

)
=

−2 (1 + β)

(1 + ω2)((1 + β)2 + ω2)2
,

∂2b

∂ŷ1∂α
=
−B̃Sŷ1(2 + y1(1− S))

(1 + (1− S)ŷ1)
2 ,

∂2c

∂ŷ1∂α
=
−B̃S[−(1− S)Sŷ4

1 − 2(2 − S)Sŷ3
1 + (2− 4S)ŷ2

1 + 2ŷ1]

[(1− S)ŷ2
1 + (2− S)ŷ1 + 1]2

.
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Fig. 1. Continuation of H01 singularities in the parameter space. The cusp points are H02 degeneracies (B̃ = 8 and S = 0.06).

Thus,

J

(
H,

∂H

∂ŷ1

)∣∣∣∣
(α1, β1)

= −1.3120942 ,

J

(
H,

∂H

∂ŷ1

)∣∣∣∣
(α2,β2)

= −1.5422259 ∗ 102 .

Finally, using (35), the recently obtained values
and keeping in mind ŷ1 = ŷ1(D,α, β) and some of
its derivatives up to second order,

J

(
H,

∂H

∂D

)∣∣∣∣
(α1,β1)

= 3.2596971 6= 0 ,

J

(
H,

∂H

∂D

)∣∣∣∣
(α2,β2)

= 5.6793746 ∗ 102 6= 0 ,

which imply, according with Theorem 4.3, that the
Hopf points next to (α1, β1) and (α2, β2) define
cusp singularities in the parameter space (α, β). A
continuation algorithm is developed using the defin-
ing and nondegeneracy conditions in the frequency
domain to compute theH01 curves in the parameter
space with great accuracy, and then finding by con-
tinuation the two higher-order singularities (cusps),
i.e. H02 degeneracies. These results are depicted in
Fig. 1.

We have also checked here that carrying out
a continuation in the parameter S from both H02

singularities, these H02 curves coalesce in a higher-
order H03 singularity (reported before by Moiola
and Chen [1996], but without giving the exact
location in the parameter space). This computa-
tion result is depicted in Fig. 2. Thus, the analysis
of the existing dynamic swallowtail, in the exam-
ined region of the space (α, β, S), is now completed
and the calculations using the results of this paper
follow.

For S = S∗ = 0.1034, the described continua-
tion process allows to find the following H02 points:

(ŷ∗11
; ω∗1, (α∗1, β

∗
1)) = (−0.8507932; 1.8393676,

(0.8273686, 2.5895093)) ,

(ŷ∗12
; ω∗2, (α∗2, β

∗
2)) = (−0.8720325; 1.8760678,

(0.8258880, 2.5843110)) ,

where these values are obtained

(ω∗1 , D
∗
1) (ω∗2 , D

∗
2)

M 1.8137826 ∗ 10−10 8.2322366 ∗ 10−10

∆1 2.8416388 ∗ 10−10 1.6954332 ∗ 10−9

∆2 −2.5600696 ∗ 10−9 −2.9460126 ∗ 10−8

∆3 −2.0515642 ∗ 102 1.8599129 ∗ 102.
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Fig. 2. Continuation of H02 degeneracies in the parameter space. In this case, the cusp point is a H03 singularity (B̃ = 8).

Now, notice that the accuracy of the computa-
tions has been improved in relation with the results
employing the previous seeds (which were obtained
by using LOCBIF), since we have computed the
zeroes of the defining conditions using the frequency
domain formulas. However, the use of LOCBIF
helped us to quite easily find the starting points.

For S = S∗∗ = 0.1046688, the H02 points
coalesce at

(ŷ∗∗1 ; ω∗∗, α∗∗, β∗∗) = (−0.8615206; 1.8725690 ,

0.8255016, 2.6074275) ,

where the following results appear

(ω∗∗, D∗∗)

M −2.9877608 ∗ 10−12

∆1 −2.9035251 ∗ 10−12

∆2 5.0495017 ∗ 10−11

∆3 −1.9039496 ∗ 10−9

The last table points out the degenerate condition
of the cusp singularity, at the foundH03 point. Near
this singularity under small perturbation in the aux-
iliary parameters up to four Hopf bifurcation points
are organized.

6. Conclusions

In this work, certain types of degenerate Hopf
bifurcations have been characterized in the fre-
quency domain. Specifically, the cases where
the transversality condition of the classical Hopf
theorem fails and give place to the appearance of
fold and cusp singularities, respectively, are ana-
lyzed in full detail. Furthermore, some nontrivial
engineering examples of the application of stated
results have been shown.
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