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Abstract: The Nazca Plate subducting beneath the South American Plate has strongly influenced
Cenozoic mountain growth in western Argentina and Chile sectors (32—34°S; 70—-66°W). At these
latitudes, the Pampean flat slab has induced the development of prominent mountain systems such
as the Frontal Cordillera, the Precordillera, and the associated Sierras Pampeanas in the eastwards
foreland region. Through a gravity study from the Frontal Cordillera to the Sierras Pampeanas
region between 32 and 34°S, we delimit a series of geological structures that are accommodating
shortening in the upper crust and others of regional and subsurface development, without any
clearly defined mechanics of deformation. Additionally, through an isostatic residual anomaly
map based on the Airy-Heiskanen local compensation model, we obtain a decompensative
gravity anomaly map that highlights anomalous gravity sources emplaced in the upper crust,
related to known geological structures. In particular, by applying the Tilt method which enhances
the gravity anomalies, the NW-trending Tunuyan Lineament is depicted south of 33.4°S following
previous proposals. Using the decompensative gravity anomaly, two profiles were modelled
through the northern sector of the study area using deep seismic refraction lines, borehole data
and geological information as constraints. These density models of the upper crust of this structu-
rally complex area accurately represent basin geometries and basement topography and constitute a

framework for future geological analysis.

At the transitional zone between the Pampean flat
subduction zone and the normal subduction system
located immediately to the south, the area between
the Frontal Cordillera and the Sierras Pampeanas
is of great interest due to the existence of crustal dis-
continuities, attributed to sutures between different
allochthonous and parautochthonous Palaeozoic
terranes (Ramos er al. 2002). These lithospheric
blocks are known as the Pampia, Cuyania and Chi-
lenia terranes and constitute the Andean base-
ment at these latitudes (latitude 27-33°S). Basin
development is thought to have been influenced by
reactivation of these basement discontinuities in
Late Triassic and Early Cretaceous times; under-
standing the anatomy of this system is important
for geological analyses.

Located in the north-central region of Argentina,
the Pampia terrane collided (according to certain

hypotheses) with the Rio de la Plata craton during
latest Proterozoic—Early Cambrian time (Ramos &
Vujovich 1993; Brito Neves et al. 1999; Almeida
et al. 2000). This led to deformation, metamor-
phism and magmatism (Gonzalez Bonorino 1950;
Caminos 1979; Casquet et al. 2008) exposed in
the Pampean Orogen beyond the area of interest.
To the west, the Cuyania exotic microcontinent
detached from Laurentia during Cambrian time
collided in Late Ordovician time with western
Gondwana (Thomas & Astini 2003). Its definition
is based on fauna, palacomagnetic position and
isotopic and geochemical composition (Abbruzzi
et al. 1993; Benedetto & Astini 1993; Kay et al.
1996; Rapalini & Astini 1997; Benedetto et al.
1999; Keller 1999; Ramos 2004). However, a para-
utochthonous origin was proposed for it in other
studies (Acefiolaza et al. 2002; Finney et al. 2003;
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Peralta et al. 2003). During the amalgamation
of Cuyania — which potentially occurred during
the Famatinian orogenic cycle (Late Ordovician)
(Rapela et al. 2001) — magmatism affected the west-
ern sector of the Sierras Pampeanas in La Rioja
province (Pankhurst et al. 1998; Quenardelle &
Ramos 1999) and to the south in the Sierra de San
Luis (Llambias et al. 1996).

Mesoproterozoic basement, attributed to the
Cuyania exotic microcontinent, is exposed in the
Western Sierras Pampeanas. In particular, in
the Sierra Pie de Palo the basement is thrust on
top of an Early Cambrian carbonate platform in
metamorphic facies, considered laterally equivalent
to the Precordillera sedimentary facies (Ramos
et al. 1986; Ramos 1988, 1995; Vujovich et al.
2004). According to these hypotheses, Mesoproter-
ozoic rocks exposed in this region would have had a
complex evolution prior to its final amalgamation
with the Gondwana supercontinent, in which a
suprasubduction system would have accreted in
the Greenvillian Orogen showing typical mid-ocean
ridge and island-arc basalt (MORB and IAB)
components. Alternative models have considered
Sierra de Pie de Palo basement as part of the proto-
Andean margin (Galindo et al. 2004) and, even as an
independent block, amalgamated to Cuyania before
the Ordovician (Mulcahy et al. 2007).

In the Precordillera, limestones and associated
siliciclastic successions belonging to this terrane
are exposed as a thin-skinned fold-and-thrust belt
that to the south merges in a thick-skinned belt
(Ramos 1995; Ramos et al. 1998).

Most of these crustal discontinuities, potentially
related to sutures between different terranes, have
suffered extensional reactivations in Late Triassic
and Early Cretaceous times. The Cuyo basin consti-
tutes one of the Late Triassic rift systems that inter-
sect the Andean trend obliquely with a predominant
NW orientation. Eastern-most depocentres are
sparse over the foreland area beneath thick sections
of Cenozoic synorogenic strata (Uliana & Biddle
1988; Legarreta et al. 1993), while those at the oro-
genic wedge in the west were selectively incor-
porated during Andean growth stages. These Late
Triassic depocentres are related to the initial
stages of the western Pangea break-up, while the
Cretaceous depocentres are spatially and temporally
associated with the Parana hotspot that affected the
early Atlantic margin (Boll & de la Colina 1993;
Lagorio 2008).

In particular, the south-western section of the
Sierras Pampeanas corresponding to the Sierra del
Gigante and Sierra de las Quijadas has been the
locus of a Cretaceous rift system which led to the
accumulation of within-plate volcanic rocks inter-
fingered with continental facies (Rivarola & Spal-
letti 2006; Martinez et al. 2012).

Between the eastern Precordillera and Sierras
Pampeanas, the Jocoli basin registers Andean exhu-
mation as a frontal foredeep due to the flexure of the
eastern Cuyania block (Fig. 1a).

The western and central sectors of the Precordil-
lera in the Pampean flat slab segment (Baldis &
Chebli 1969; Baldis et al. 1982) are composed
of typical east-vergent thin-skinned thrust sheets
(Allmendinger et al. 1990; von Gosen 1992). Con-
trastingly, the eastern Precordillera and Sierras
Pampeanas to the east are thick-skinned blocks
with opposite vergences (Bracaccini 1946; Rolleri
& Baldis 1969; Ortiz & Zambrano 1981; von
Gosen 1992; Zapata & Allmendinger 1994; Zapata
& Allmendinger 1997).

These two systems interfere at a triangular
thick-skinned zone (Zapata & Allmendinger 1994,
1996). South of Mendoza city, this triangular zone
disappears at the zone where the inclination of the
Wadati—Benioff zone increases, passing to a nor-
mal subduction zone (Figueroa & Ferraris 1989).

The Jocoli basin is partially located on that tri-
angular zone (Cominguez & Ramos 1991). Its
infill records the beginning of the uplift of the
Frontal Cordillera that began at c. 15 Ma (Ber-
cowski et al. 1993). Afterwards, the basin records
the uplift of the Sierra de Pedernal in the Precordil-
lera simultaneously to the uplift of the Western
Sierras Pampeanas to the east (Ramos et al. 1997).

The aim of this paper is to make a density model
that reflects the structure and basin geometry in
this transition zone from a flat to a normal subduc-
tion zone (32-34°S and 70-66°W; Fig. la), using
a large database of high-quality gravity data, bore-
holes and deep seismic refraction lines, constrained
with pre-existing geological models in the area.
The model will describe Andean anatomy at this
key area, a valuable tool in structural, basin and
tectonic studies.

Methodology
Database

This study is based on a dataset which comprises
23 680 gravity stations that are the property of the
Geophysical Seismological Institute of the National
University of San Juan (IGSV). The dataset covers
the central region of Argentina in an area between
27.5° and 36.5°S and from 71° to 65°W, extending
outside of the boundaries of our study area in
order to avoid border effects. The spatial distri-
bution of gravity stations from the original sources
is shown in Figure 1b.

This database was measured using geodetic gra-
vimeters with precisions of +0.1 mGal. In order to
ensure the accuracy of the measurements and to
homogenize all stations obtained on different
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Fig. 1. (a) Digital elevation model (DEM 90 m x 90 m) that indicates the study area (red box) in a complex zone
characterized by the transition from a flat subduction zone of the Nazca plate in the north, to a normal subduction
segment. Nazca plate isodepth contours obtained by Alvarado et al. (2007) are represented by white dotted lines. The
proposed boundaries between Palaeozoic terranes are indicated by grey dashed lines (see text for references). (b)
Geophysical databases available in the region of study. Green dashed line: area under study; red dots: gravity data
courtesy of Instituto Geofisico Sismoldgico Volponi (IGSV); light blue dots: deep seismic refraction data available in
the area by Yacimientos Petroliferos Fiscales (YPF) boreholes. 1-1": Modelled profiles in Figures 9 and 10.

campaigns, each gravity station has been linked
to the national altimetry network. This process
allows any possible artefact due to problems in the
levelling of the different sources to be avoided, as
all were referred to the IGSN 71 network (Inter-
national Gravity Standardization Net 1971) and
linked to the fundamental station Miguelete (Buenos
Aires) through the nodal 145 City of San Juan and
PF9 into the N24 line (Morelli et al. 1974). More
details about the homogenization and reductions
to the altimetry network are provided in Villella &
Pacino (2010). This methodology allows a proper
data reduction to be performed for anomaly calcu-
lation using classical corrections detailed below
(Blakely 1995; Hinze et al. 2005).

The theoretical or normal gravity accounting for
the mass, shape and rotation of the Earth is the pre-
dicted gravitational acceleration on the best-fitting
terrestrial ellipsoidal surface. We have used the
latest ellipsoid recommended by the International
Union of Geodesy and Geophysics: the 1980 Geo-
detic Reference System (GRS80) (Moritz 1980).
The Somigliana closed-form formula (Somigliana
1930) for theoretical gravity gr on this ellipsoid at
latitude (south or north) ¢ is:

ge(1 + ksin® @)
T e ———

;
1 — e2sin’

M
where the GRS80 reference ellipsoid has the value
g of 978 032.67715 mGal, where g. is normal
gravity at the equator; k of 0.001931851353 where
k is a derived constant; and &2 of 0.0066943
800229, where e is the first numerical eccentricity.

The height correction is called the free-air cor-
rection and is based on the elevation (or orthomet-
ric height) above the geoid (sea level) rather than
height above the ellipsoid. The revised standards
use the ellipsoid as the vertical datum rather than
sea level. Conventionally, the first-order approxi-
mation formula of Agh in milligal, where gravity
anolamy Ag = 0.3086, is used for this correction.

The Bouguer correction accounts for the gravita-
tional attraction of the layer of the Earth between the
vertical datum (i.e. the ellipsoid) and the station.
This correction, AgB in milligals, is traditionally
calculated assuming that the Earth between the ver-
tical datum and the station can be represented by an
infinite horizontal slab with equation:

AgB = 27Goh = 4.193 x 103 oh )

where G the gravitational constant is 6.673 +
0.001 x 10" m* kg™' s (Mohr & Taylor 2001)
and o is the density of the horizontal slab (kg m ™).
The mean used density is 2670 kg m > (Hinze
2003), and £ is the height of the station (m) rela-
tive to the ellipsoid in the revised procedure or rela-
tive to sea level in the conventional procedure.
The terrain correction adjusts the gravity effect
produced by a mass excess (mountain) or deficit
(valley) with respect to the elevation of the obser-
vation point. The terrain correction was obtained
using two digital elevation models, a local and a
regional DEM. Software program OASIS v.7.2
combines the algorithms developed by Kane
(1962) and Nagy (1966), where elevation models
were obtained from the Shuttle Radar Topography
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Mission (SRTM) of the United States Geological
Survey (USGS). Through the use of a sampling pro-
cedure, the corresponding topographic correc-
tion value was assigned to each gravity station.
The resulting maximum error for this correction
was =+ 1.8 mGal. Finally, the complete Bouguer
anomaly values (Fig. 2) were calculated on a
regular grid cell size of 5 x 5 km using the min-
imum curvature method (Briggs 1974).

Isostatic anomaly

The ‘regional’ flexural compensation models pro-
posed by Watts et al. (1995), Tassara et al. (2007),
Wienecke et al. (2007), Pérez-Gussinyé et al.
(2008) and Tassara & Echaurren (2012) for the
Central Andes have enabled the determination of
equivalent elastic thickness variables that are
progressively higher eastwards in the foreland
area, beyond the magmatic arc locus associated
with the subduction process in the west. However,
crustal thickening in the hinterland of the Central
Andes, where the arc is located and was hosted
(Introcaso et al. 1992b), can be explained by relative

low values of the effective elastic thickness which
justify the use of a ‘local’ compensation model
(Airy—Heiskanen) in the study area.

This assumption has already been applied in
this region by several authors with fairly good
results (Gotze & Evans 1979; Introcaso et al. 1992a;
Chapin 1996; Gotze & Kirchner 1997; Whitman
1999; Introcaso er al. 2000; Tassara & Yanez 2003).

In order to obtain the isostatic root, we per-
formed the calculation of the Airy—Heiskanen
model frame using different parameters (see Table
1). We have taken into consideration other mod-
els integrating (1) gravity with seismic data; (2)
the global model presented by Assumpg¢do et al.
(2013); and (3) the Moho depths determined by
Gans et al. (2011) using receiver functions (see
Fig. 3). Finally, the isostatic root that best fits
with the above models was calculated using the
following parameters: normal thickness crust
T,, = 40 km; contrast density p = 400 kg m > and
density crust p = 2670 kg m~3. This 7, value was
found by Christensen & Mooney (1995) as
the mean global crustal thickness. The adopted
crust—mantle density contrast (p.,, = 400 kg m~?)

1
20 km

-300 -250 -200

e —

-150 -100 -50

Fig. 2. Bouguer anomaly map obtained from 23 680 stations of terrestrial gravity data. The Bouguer anomaly
values were calculated on a regular grid cell size of 5 x 5 km, using the minimum curvature method. To the west
at Frontal Cordillera, the negative effect of the Andean root has a clear influence on the gravity signal; the effect of this

decreases towards the east at Sierras Pampeanas.
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Table 1. Parameters used in the isostatic
root calculation

Crustal thickness (km) Tu1 30
T2 35

n3 40

Contrasts of crust—mantle interface Pemi 330
densities (kg m %) Dem> 350
Pem3 400

Topographic load density (kg m~>) Pt 2670

was used previously by Martinez et al. (2006)
and Gimenez et al. (2009).

With the exception of the south-western edge of
Figure 3 (where there is a lack of data), there exists a
good correspondence between the depths deter-
mined by the hydrostatic Moho model with the sol-
utions (coloured dots) obtained by Gans et al.
(2011). Likewise, our results are consistent with
depths found by the global model presented by
Assumpgao et al. (2013). The comparison

is plotted with dashed white lines on Figure 3. For
this case, we observed a trend deepening to the
west (with the exception of isoline 40%).

Using the Moho hydrostatic geometry (Fig. 3),
the isostatic gravity root effect was calculated
(Fig. 4). This map presents a high negative gravity
gradient ranging from —25 to —275 mGal. By sub-
tracting the gravity effect of the isostatic root from
the Bouguer anomaly (Figs 2 & 4), an isostatic
residual anomaly is obtained (Fig. 5). These residual
anomalies could mask short-wavelength anoma-
lies, generated from more superficial sources
(Simpson et al. 1986).The isostatic corrections
could therefore be used to partially remove the
effect of the crustal roots produced by the topo-
graphic elevations and depressions. Nevertheless,
they fail to resolve the problem when the crustal
roots are derived from high-density crustal regions
with or without topographic expression. To over-
come this drawback, we apply the decompensative
gravity anomaly technique as proposed by Cordell
et al. (1991).

¥
¥
’
r
]
[
[
20
H
J Depth to Moho
{ 60 km -64 km
'.' @55 km - 59 km
I

® 50 km - 54 km
45 km - 49 km

Fig. 3. Depth of mantle—crust interface corresponding to the geometry of the computed hydrostatic Moho in the region
of study. Circular dots represent the differences between the Moho depth obtained by Gans ez al. (2011) and the
gravimetric results, and dashed white lines represent the differences between a global model by Assumpgio ez al. (2013)
and the gravimetric results. Our results present a general good fit with the Gans et al. (2011) results, with the exception of
the region within the white rectangle. Assumpcgao et al. (2013) results are also consistent with our results, with a deeper
root under the Andes and a shallowing trend towards the east (with the exception of 40%).
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Fig. 4. Gravity response of isostatic root. Isoanomalies decreasing to the west indicate the importance of the horizontal
component of the Andean root. Recall that the gravity effect of the root is equal and opposite to the isostatic correction.

Decompensative gravity anomaly

A ‘decompensative’ correction to the isostatic
gravity anomaly also allows us to remove the grav-
ity effect of isostatic compensation of geological
loads. Under a hypothesis of local (as opposed to
regional) compensation, the gravity effect of a shal-
low mass can be separated from the effect of
gravity of a geological body emplaced on upper
crust by its deep compensating root. The decom-
pensative anomaly is the Bouguer gravity anom-
aly with isostatic and decompensative corrections
added. The decompensative correction (Cordell
et al. 1991) is calculated based on the upwards
continuation of the isostatic anomaly (Al) in order
to minimize the effects of the short-wavelength
structures. The decompensative anomaly is then
obtained by subtracting the regional anomaly (up-
wards continuation) from the isostatic anomaly (AlI).

In this work we apply a variant of this proce-
dure (Cordell et al. 1991), working with the power
spectrum method of the isostatic anomaly instead
of performing an upwards continuation in order to
separate the different wavelengths (Fig. 6) through
the proposed transformation by Mishra & Naidu
(1974).

The above-mentioned improvement allows a
depth value of the sources causing anomalies to be
estimated; average depths of the anomalous sources
are then determined, as proposed by Spector &
Grant (1970). Additionally, spectral analysis deter-
mines the cut-off frequency for long wavelengths
and applies the filter more efficiently.

As indicated, the lower frequencies of the power
spectrum indicate an approximate depth of 20 km.
This value coincides with the décollement of the
main contractional structures determined for this
region by Cominguez & Ramos (1990) using deep
seismic reflection data. These results were con-
firmed by Gilbert et al. (2006) using receiver func-
tions. The décollement of the fold-and-thrust belt
are located in a brittle-ductile transition that could
constitute a natural discontinuity, where magmas
associated with Late Triassic—Early Cretaceous rift-
ing stages reside temporally or permanently, consti-
tuting an anomalous mass in the middle—upper crust.

To fulfil the objective of studying structures
shallower than 20 km above this mass anomaly
area, we used a high-ass filter with a cut-off wave
number k. of 0.022 cyc km ™' (Fig. 6). Using this
cut-off parameter, we obtained the decompensative
isostatic residual anomaly map (Fig. 7).
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Fig. 5. Map of isostatic residual anomaly computed by subtracting the gravity isostatic root (Fig. 4) from the Bouguer
anomaly map (Fig. 2).

Enhancement of anomalies: Tilt method gravity field, assuming a vertical contact model.

This method uses the horizontal and vertical gradi-
The Tilt method is effective in enhancing the edges ents of the gravity field, and does not require pre-
of bodies that generate anomalous effects in the vious knowledge about the geometry. The Tilt

A
filtered

L R e e e T T I T
0 001 002 003 004 005 006 007 008 009 01 0.1
cyc km”'
Fig. 6. Power spectrum of the radial isostatic anomaly obtained from the proposed transformation of Mishra & Naidu

(1974). The isostatic anomaly input signal is used. Numbers in kilometres indicate the average depths obtained for each
line. The shaded area indicates the filtered frequency range.
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Fig.7. Decompensative gravity anomaly map. Even although this map is morphologically similar to Figure 5, the range
of values is different and physically represents residual anomalies of shallow sources.

method has therefore been applied with success to
highlight edges and shapes of geological structures
(e.g. Salem er al. 2008; Garcia Torrejon et al.
2011; Orug & Selim 2011). The tilt angle (Miller
& Singh 1994; Thurston & Smith 1997; Verduzco
et al. 2004) is defined:

T.
Tilt = arctan = 3)

NEERE

where the denominator represents the horizontal
gravity gradient and T, is the vertical gravity gradi-
ent. Figure 8 depicts the results obtained by apply-
ing this method. From this analysis two regional
structures with an unknown direct significance are
identified: the San Pedro Ridge and the Tunuyan
Lineament that are subsequently described.

2D models

In order to relate the gravity signal to the potential
basement segmentation observed in the decompen-
sative gravity anomaly map and the Tilt map, we
constructed two density models over selected
NW-trending profiles (Fig. 7). Constraints used in

these models are deep seismic refraction lines, bore-
hole data and geological information (Fig. 1b).

The initial reference model is a simple two-layer
model which includes depth of the basement and
sediments, which fill the basins. We then improved
the model by introducing potential lateral density
variations between the basements of Cuyania and
Pampia terrains. Variable sediment densities are
assigned for each basin based on log constraints
(see following section). From these models we
obtained the direct gravity response. Finally, the
difference between observed data and the calculated
response was minimized varying the geometry of
the polygons from the original model using a 2D
forward modelling algorithm (Talwani et al. 1959;
Marquardt 1963).

Geophysical constraints

Densities used to model profiles have been taken
from oil exploration borehole data, correspond-
ing to Las Pefias log (YPF.SJ.Sp.EP.-1) located
within the Jocoli basin (Fig. 1b). To determine the
mean density of the sedimentary basin filling, we
obtained the weighted averaged densities of each
lithological unit (by estimating its thickness). We
found a mean density value of 2390 kg m >, which
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Fig. 8. Application of the Tilt method on the isostatic residual anomalies map. This method allows enhancement of the
edges and shapes of geological structures that generate anomalous effects in the gravity field, assuming a vertical contact
model from the horizontal and vertical gradients of the gravity field. The high gradient located south of 33.4°S latitude
trending approximately westwards is associated with the Tunuyan Lineament, identified by Kostadinoff & Gregori

(2004). This feature, which has no surface expression, has been associated with the boundary between two regions with
different seismotectonic behaviour, possibly associated with the change in the Nazca plate subduction angle (Perucca &

Bastias 2005).

is similar to the density value of 2400 kg m > pro-
posed by Azeglio et al. (2010) towards the east of
the neighbouring Las Salinas basin. In order to
obtain the crystalline basement density, we used
the velocities obtained from deep seismic refraction
data available in the area from Yacimientos Petroli-
feros Fiscales (YPF). By means of the Gardner
equation (Gardner et al. 1974) we determined a
range of density values from 2676 to 2716 kg m >
corresponding to velocities from 5600 to 6000
ms~'. These velocity values are similar to those
of the crystalline basement in Western Sierras Pam-
peanas found by Snyder ef al. (1990).

The geometry of the crystalline basement
along the profiles was adjusted using information
obtained from: (1) seismic refraction data (YPF);
(2) seismic sections interpreted by Cominguez &
Ramos (1990) and Vergés er al. (2007) between
Precordillera and Sierras Pampeanas; and (3) surfi-
cial data from Western Sierras Pampeanas (Snyder
1990; Zapata & Allmendinger 1996).

Profile 1

This profile was traced in the northern region over
340 km (see location on Fig. 1b). This section cut
across the Eastern Precordillera, the Jocoli basin
and the northern part of Sierra de las Quijadas
(Western Sierras Pampeanas). The profile crosses
the Salinas basin up to the NW border of the
Sierra de San Luis. The gravity model obtained

along this section was adjusted through deep seis-
mic refraction profiles, borehole records and geo-
logical information available on this zone (Fig. 9).
The western border was modelled using a trian-
gular structural geometry determined by overthrusts
with opposite vergences proposed previously (Fig-
ueroa & Ferraris 1989; Ramos er al. 1997). In
Cerro Salinas, a series of thrust sheets are detached
from the contact between the sedimentary section
and the basement producing a west-vergent struc-
ture as described by Vergés et al. (2007).

The Jocoli basement geometry (p., = 2670
kgm %) is characterized by faulted blocks that
have a strong gravimetric contrast with the basin
fill (psea = 2390 kg m™?). The highest sedimentary
infill (¢. 3000 m) is located to the east of Cerro
Salinas, diminishing towards the Sierra de las Quija-
das (up to 1500 m). Eastwards in the Western
Sierras Pampeanas a pronounced increase in the
gravity residual anomaly is observed (Fig. 7). This
anomaly has been linked to potential mafic bodies
buried at the contact zone between the Cuyania
and Pampia terrains (Introcaso & Pacino 1987;
Ramos 1994; Miranda & Introcaso 1999; Gimenez
et al. 2000; Martinez et al. 2007). This was resolved
by modelling the crust assigned to the Pampia
terrain with a higher density (p = 2720 kg m™3).
In this model the Salinas basin with a sedimentary
thickness of 1km and a mean density of
2400 kg m > therefore has a basement constituted
by the Pampia terrain (Azeglio et al. 2010).
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Fig. 9. Modelled Profile 1 from western Precordillera to eastern Sierras Pampeanas through the Sierra de las Quijadas.
(a) The location of deep seismic refraction lines is shown in red and the velocities used to calculate densities from the
Gardner equation are indicated in blue. (b) Fit between the decompensative gravity anomaly and the modelled profile.

(c¢) Density model of the upper crust. The highest sedimentary thickness (c. 3000 m) is located in the Jocoli basin
(pgn = 2390 kg m ). Eastwards in the Western Sierras Pampeanas, a pronounced increase in the decompensative
gravity anomaly has been linked to the contact zone between the basements of the Cuyania and Pampia terrains
(p=12670kgm > v. p= 2720 kg m™>). Pampia terrain constitutes the basement of the Salinas basin which has a
sedimentary thickness of 1 km and a mean density of 2400 kg m > (Azeglio er al. 2010). See the text for more details.

Profile 2

This section extends for 300 km from the Eastern
Precordillera to the western flank of the Sierra
de San Luis in the Western Sierras Pampeanas,
passing through the southern Jocoli basin and
Sierra del Gigante (see location on Fig. 1b). The
maximum sedimentary thickness of this basin is
located to the eastern border of Central Precordillera
as described in Profile 1, modelled with a density of
2670 kg m . In this case the sediment thickness
reaches up to 8000 m. The increasing depth of the
Jocoli basin towards the Precordillera deformational
front has been determined by Vergés et al. (2007)
from a seismic section a few kilometres to the
north (Fig. 10).

On the eastern-most region of this profile a high
gravity value, potentially related to a density vari-
ation between the Cuyania and Pampia terrains, is
observed in the Sierra del Gigante area. We do not
discard a certain contribution to this density contrast
derived from Early Cretaceous mafic bodies.

Results

The isostatic root found on the basis of the Airy—
Heiskanen isostatic model (Fig. 3) shows a good
correspondence with the Moho obtained by Gans
et al. (2011) based on receiver functions and by
Assumpgao et al. (2013) based on active source
experiments (deep seismic reflection surveys) and
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Fig. 10. Modelled Profile 2 from Precordillera to the western flank of the Sierra de San Luis in the Western Sierras
Pampeanas. (a) The location of deep seismic refraction lines used as constraints is shown in red and velocities used to
calculate densities from the Gardner equation are indicated in blue. (b) Fit between the decompensative gravity anomaly
and the modelled profile. (¢) Density model of the upper crust, where maximum sedimentary thicknesses reach up to
8000 m. On the easternmost region of this profile in the Sierra del Gigante area, a high gravity value is related to a
density variation between the basements of the Cuyania and Pampia terrains.

receiver functions. The minimum values of the
Bouguer anomaly (—300 mGal) found in Frontal
Cordillera (Fig. 2) are related to the crustal thicken-
ing of c¢. 65 km obtained by the application of
the Airy—Haiskenan local compensation model.
These results are consistent with previous work.
The gravity signal increases eastwards up to c.
—50 mGal at Sierras Pampeanas, in relation to a
progressive decrease in the crustal thickness to
the foreland zone (45 km) (see Fig. 3). The gravity
effect of the hydrostatic Moho (Fig. 4) behaves as

a warped plane in which the eastern part corre-
sponds to isoanomalies of the order —75 mGal,
descreasing towards the west up to —225 mGal.
The isostatic anomaly map (Fig. 5) and the
decompensative gravity anomaly (Fig. 7) are con-
sistent with previous studies that are detailed
below. Even though the figures are morphologically
similar, the absolute scale and consequently the cor-
responding values vary. In the decompensative
gravity anomaly map (Fig. 7), we identified differ-
ent regions related to the main geological features:
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(1) Frontal Cordillera (Introcaso et al. 1992b;
Miranda & Robles 2002).

(2) The relative positive gravity response of the
Precordillera within the general negative
trend marked by the Andean root is clearly
depicted (Introcaso et al. 1992a; Gimenez
et al. 2000, 2009; Alvarez et al. 2012).

(3) The Jocoli basin, which is limited to the
east by high anomalous values, is possibly
associated with the continuity of the basement
of Pie de Palo underneath (Martinez et al.
2008). The lowest values (—45 mGal) are
localized towards the west, constituting evi-
dence of the increase in sedimentary thickness
towards the Precordillera deformational front.

(4) To the north of Sierra de San Luis, a high
gravity value of more than 15 mGal is associ-
ated with a belt of mafic and ultra-mafic rocks
with densities of the order 3000 kg m > (see
Kostadinoff et al. 2010).

(5) The Cuyo basin with values of —30 mGal is
linked to a sedimentary fill with density esti-
mated as 2320 kg m > and thicknesses of

5 km (Miranda & Robles 2002).

Additionally, to enhance the anomalies related to
density contrasts, we applied the Tilt method (Fig.
8). Areas of high gradients are indicated with warm
colours, while cold colours indicate the sedimentary
basins. Analysing the Tilt map, we can distinguish
the following features.

(1) The Precordillera region is contoured by the
contrast between the areas of warm and cold
colours. This is in agreement with the decom-
pensative gravity anomaly results.

(2) The Jocoli basin edges are depicted by the Tilt
method, achieving a better resolution than in
previous work (Fig. 7).

(3) The Bermejo—Desaguadero basin, an exten-
sional basin associated with the reactivation
of the boundary between Cuyania and Pam-
pia terranes to the north, can be traced in the
studied zone bordered by the Sierra de las
Quijadas to the east. The Tilt method also
highlights the San Pedro Ridge, a NW-
oriented lineament of regional development
(Kostadinoff er al. 2003; Kostadinoff &
Gregori 2004; Azeglio et al. 2009). Even
although this lineament cannot be related to
a geological body with superficial expression,
its presence is gravimetrically constrained;
further work is necessary to understand its
significance.

(4) Another important feature in this map is the
high gradient located south of 33.4°S latitude,
in a roughly NW direction. This is associ-
ated with the continuation of the Tunuyan
lineament, identified east of 66.5°W by

Kostadinoff & Gregori (2004). The Tunuyan
lineament has been associated with a bound-
ary between two regions with different seis-
motectonic behaviour (to the north, the
Precordillera and to the south, the Southern
Mendoza area) by Perucca & Bastias (2005).
The seismotectonic behavioir has been associ-
ated with the transition zone between the flat
subduction of the Nazca plate to the north
and the segment of normal angle to the south
(Perucca & Bastias 2005). Its real significance
again merits further work, since it is transver-
sal to the structural and gravimetric grain.
Hypothetically, this feature could be related
to some kind of crustal structure associated
with the change in angle of the subduction
zone or to an inherited basement structure.

Finally, results obtained by applying the Tilt
method are consistent with the solutions found by
Gimenez et al. (2008) when implementing the 3D
Euler deconvolution method using gravity data.

Conclusions

The computed isostatic anomalies (Fig. 5) indicate
that in the potential cessation of the dynamic
forces that are sustaining the topography the
Frontal Cordillera and Jocoli basin would ascend
isostatically, while the Precordillera would ascend
to a lesser extent. Contrastingly, the Sierra de San
Luis and the Sierras Pampeanas to the foreland
area should descend in order to reach isostatic
equilibrium.

The decompensative gravity anomaly allows
us to identify geological features such as Frontal
Cordillera, Precordillera, Sierras Pampeanas, and
the Cuyo and Jocoli basins. When applying the
Tilt method, a technique that is used to highlight
gravity anomalies associated with sources emplaced
in the upper crust, the previously mentioned results
are enhanced. Two regional lineaments are clearly
delineated: San Pedro Ridge and the Tunuyan
Lineament. The latter, located south of 33.4°S
with an approximately NW orientation, coincides
with morphological changes that occur in the
subducted Nazca plate from flat to normal sub-
duction angle.

The gravity models obtained from the decom-
pensative gravity anomaly and constrained by the
existing geological and geophysical data reveal the
geometry of a segmented basement in the north of
this region. Results obtained from both modelled
profiles reveal that the basement deepens towards
the Central Precordillera region. The depths of
the modelled depocentres reach up to 8 km in the
Jocoli basin and 2 km for the Salinas basin. To the
foreland area, a significant increase in the residual
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gravity anomaly could be due to the presence of
high-density rocks associated with the closure of
Palaeozoic ocean basins.
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