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Abstract

Antarctica offers a range of extreme climatic conditions, such as low temperatures,
high solar radiation and low nutrient availability, and constitutes one of the harshest
environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’
fungi, which play a key role in decomposition cycles in cold ecosystems. However,
knowledge about the ecological role of yeasts in nutrient or organic matter recycling/
mineralization remains highly fragmentary. The aim of this work was to study the yeast
microbiota in samples collected on 25 de Mayo/King George Island regarding the scope
of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one
yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones.
Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified
at the species level and could be classified in the genera Leucosporidiella, Rhodotorula,
Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous
species. In total, 33% of the yeast isolates examined showed significant activity for dye
decolorization, 25% for laccase activity and 38 % for ligninolytic activity. Eleven yeasts
did not show positive activity in any of the assays performed and no isolates showed
positive activity across all tested substrates. A high diversity of yeasts were isolated in this
work, possibly including undescribed species and conspicuous Antarctic yeasts, most of
them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous
genera. Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction regions have been investigated for the presence and
exploitation of psychrophilic bacteria, archaea,
algae and, more rarely, fungi (Ruisi et al., 2007;

Kostadinova et al., 2009).

The Antarctic continent offers a range of extreme
climatic conditions and constitutes one of the

harshest environments conditions on Earth (low
temperature, low humidity, high radiation, etc.)
(Nedialkova and Naidenova, 2004). The exposed
land area in Antarctica comprises < 2% of the land
mass of the continent, including both continental
and maritime regions. The soil habitats span a wide
range of moisture and organic carbon contents
(Connell et al., 2008). In recent decades the Antarctic

Copyright © 2013 John Wiley & Sons, Ltd.

25 de Mayo/King George Island is the largest
island within the South Shetland archipelago, north-
west of the Antarctic Peninsula in the maritime
Antarctic. The local climate is typical of the peri-
Antarctic islands: humid and windy, cool with an
average temperature of 1-3°C in the warmest
month and -7 °C in the coldest month, and very
few sunny days indeed (Kostadinova et al., 2009).
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Studies on these islands indicate that minimal soil
temperature in winter are commonly buffered by
overlying snow and remain above about —5 °C to
9 °C, even though short-term minimal air tempera-
tures may be much lower. Similarly, short-term
maximal soil temperatures in the range 14-26 °C
are typically experienced (Krishnan et al., 2011).

Psychrophilic and psychrotolerant fungi signifi-
cantly contribute to soil microbial biomass, playing a
key role in decomposition cycles in cold ecosystems
(Margesin et al., 2007; Xin and Zhou, 2007). These
organisms present several adaptations in their mem-
branes, enzymatic systems and genes of great biotech-
nological potential (Margesin and Schinner, 1994).

Although meta-genomic-based studies offer the
opportunity to find an array of species that are
not culturable, they may identify some individuals
that are not active in the soil community. Further-
more, with culture-based methods, isolates can be
assessed for individual physiological capabilities,
such as nutrient utilization, maximum growth
temperature and freeze—thaw survivability. Connell
et al. (2008), showed that 43% of Antarctic yeast
isolates were assigned to undescribed species,
reflecting the lack of knowledge regarding cultivable
yeasts that colonize the Antarctic soils.

Reactive dyes are among the most recalcitrant
synthetic dyes against biodegradative processes
and are considered a worldwide problem. Their
pollution hazard is primarily based on carcinogenic
or toxic components, such as aromatic amines and
related compounds. Also, due to light absorption,
they could significantly reduce photosynthetic
activity in water bodies (Meehan et al., 2000;
Stolz, 2001).

Most dye decolorization studies are nowadays
focused on the employment of white rot fungi
(WRFs), including Phanerochaete chrysosporium
and Trametes versicolor (Yang et al., 2005). It is
widely assumed that these WRFs could degrade
synthetic dyes through their oxidative and non-
specific ligninolytic enzyme system, which includes
mainly lignin peroxidase (LiP), manganese-dependent
peroxidase (MnP) and laccase (Lac) enzymes (see e.g.
Solis et al., 2012; Koyani et al., 2013). However,
lignin has an extremely low nitrogen content when
compared with reactive azo dyes.

The current study was designed to isolate yeasts
from soils of the Potter Peninsula, 25 de Mayo/
King George Island in Antarctica, and to study
the polyphenolic substrates and dyes degradation.

Copyright © 2013 John Wiley & Sons, Ltd.
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Methods

Soil sampling and fungal isolation

Soil samples were collected during the 2011-2012
austral summer (January—March 2012) near the
Argentinean scientific research station, Carlini
(ex-Jubany) Base, located on the Potter Caleta,
25 de Mayo Island (62°14'18”"S, 58°40'00"W).

Samples were collected from a range of locations
around the Caleta, including an ornithogenic site;
near to nesting birds (Punta Stranger); on the beach,
near Refugio Elefante, two human-impacted areas
(under the main dining room and near the gas oil
tanks); and a largely pristine and naturally vegetated
area (Tres Hermanos hill).

Samples (around 10 g) were taken from soil at a
depth of 0-10cm, using a sterile spatula. After
collection, the samples were stored in sealed sterile
bags or sterile flasks and immediately returned to
the research station, where they were refrigerated
at 4°C, and subsequently treated for incubation
and isolation.

For yeast isolation purposes, samples were
subjected to two parallel procedures. A portion of
each soil sample was excised under sterile condi-
tions, using a sterile spoon or spatula, and directly
spread onto Petri plates containing culture medium
(see below). Simultaneously, another portion of
the same sample was homogenized in an orbital
shaker with a minimal volume of YM 1/10 medium
(composition in g/l: yeast extract 0.3, malt extract
0.3, peptone 0.3, dextrose 0.5) for 3h at 200 rpm
and 15 °C; 100 ml of the resulting homogenate was
spread onto Petri plates with the same medium
plus 20% agar-agar. The plates were then incubated
at 15 °C for 18-25 days under natural lighting con-
ditions. Actively growing colonies were then taken
from the plates and subcultured onto fresh YM 1/10
agar plates as individual isolates.

Yeast isolates are deposited in the Microbiological
Resources Center Culture Collection (MIRCEN)
of PROIMI-CONICET Institute, San Miguel de
Tucumadn, Argentina.

rDNA amplification, sequencing and analysis

The divergent domain at the 5" end of the LSU rDNA
gene (around 600bp) was symmetrically amplified
with primers NL-1 (5'-GCATATCAATAAGCGGA
GGAAAAG) and NL4 (5'-GGTCCGTGTTTCAA

Yeast 2013; 30: 459—470.
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GACGQG) according to standard methods, as described
by Kurtzman (2011). An additional first step (97 °C,
10min) was included before standard cycling
conditions.

Sequences were analysed, and edited if necessary,
using Invitrogen Vector NTI Advance 10.3.0 soft-
ware (Invitrogen, San Diego, CA, USA). All isolates
were sequenced and their DNA sequences were
submitted to GenBank under Accession Nos listed
in Table 1. Strain identification was performed by
comparison with the GenBank (only type strains)
and AFToL databases. Arbitrarily, a > 99% identity
criterion was employed to identify strains at the
species level. Taxonomy was checked against
Kurtzman (2011). Sequences showing 96-99%
identity were tentatively identified to the genus
level. Sequences showing 96% identity were con-
sidered unidentified.

Qualitative assays for ligninolytic enzymes

Precultivation on basal medium

Yeasts inocula were precultivated on basal me-
dium (BM; composition in g/l: KH,PO, 1, yeast
extract 0.01, C4;HI,N,0¢ 0.5, CuSO,4-5H,0 0.001,
MgSO47H20 05, Fez(SO4)3 0001, CaC122H20
0.01, MnSO4-H,O 0.001) (Pointing, 1999)
supplemented with 0.4% w/v glucose and solidified
with 1.6% w/v agar. This preculture was carried on
in order to limit any nutrient carry that could inter-
fere with assay results interpretation.

Ligninolytic screening on solid media was
performed on Petri dishes containing basal medium
supplemented with 0.25% w/v lignin (lignin, alkali,
low sulphonate content; Aldrich) and 1.6% w/v
agar. Yeast were inoculated and incubated for
10-20days at 15 °C in darkness. After incubation,
the plates were flooded with a standard staining
solution, 1% w/v aqueous solution of FeCl; and
K;[Fe(CN)gl, according to Pointing (1999). Phenols
in undegraded lignin will stain blue-green, with
clear zones around colonies indicating oxidation of
phenolic components.

Textile dye decolorizing ability

Decolorization screening on solid media was
performed on Petri dishes containing 20 ml BM,
1.6% agar and a mixture of Vilmafix® Blue RR-BB

Copyright © 2013 John Wiley & Sons, Ltd.
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(CI, Reactive Blue 221), Vilmafix® Red 7B-HE
(CI, Reactive Red 141), Vilmafix® Black B-V(CI,
Reactive Black 5) and Vilmafix® Yellow 4R-HE
(CI, Reactive Yellow 84) to 200 mg/l (ppm) final
concentration. Plates were inoculated with actively
growing yeast from YM-agar, incubated at 15 °C and
examined for decolorization during 10-20days of
cultivation. As controls, plates without dye were
also inoculated (Pajot et al., 2008).

Laccase activity screening

Organisms were screened for laccase activity, using
guaiacol and syringaldazine as indicator compounds.
Screening of laccase-producing organisms was done
on BM-agar plates with 0.02% guaiacol (Wang
etal.,2010; Kumar et al., 2011a, 2011b). Yeast strains
were inoculated in sterile Petri plates containing the
supplemented medium and were incubated at 15 °C
for 10days. In the presence of guaiacol, an intense
reddish-brown colour was produced in the medium
around laccase-producing organisms (Viswanath
et al., 2010; Ang et al., 2010). Similarly,
syringaldazine was oxidized to a purple-coloured com-
pound in the presence of laccases (Wang et al., 2010).

Statistical analysis

All statistical analysis were performed using Minitab
Statistical Software, v. 16.0. Correlations between
enzymatic abilities were calculated from two-by-two
contingency tables. Categorical variables were analysed
using y? test. All comparisons were done using two-
tailed tests and p < 0.01 was considered significant.

Results and discussion

Isolation

Samples from different areas of 25 de Mayo/King
George Island were processed as described in
Methods. Suspensions from each sample were
seeded onto YM-acid—agar plates and incubated
in triplicate at 15 °C. After 15-20days of incuba-
tion, isolates were grouped according to their col-
ony characteristics, such as pigmentation, texture,
elevation, size and time of appearance. In this
way, 61 morphotypes were ultimately recovered
as pure cultures and deposited at the MIRCEN cul-
ture collection.

Yeast 2013; 30: 459—-470.
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10.3

Dry grass

62°1522.06'S 58°38'49.58°'W

Beach near

Black

Exophiala sp.

60

Refugio Elefante
Beach near the foot

3,0

Lichen

58°38’39.60'W

62°13’53.42'S

White

Unidentified

6l

of the glacier

ascomycetous

Activities: Dec, dye decolorization; Lacc, laccase activity (guaiacol oxidation); Lig, lignin degradation;

+, positive reaction; —, negative reaction.

J. 1. Rovati et al.

Yeasts are saprophytes, playing mainly a degra-
dative role. Sub-Antarctic islands are home to a
flora of mosses, liverworts, algae, cyanobacteria,
lichens and phanerogams. Although primary pro-
ductivity in this environment remains very low, a
variety of yeast species have been reported from
Antarctic sources and new species continue to be
described (Vishniac, 2006).

Psychrophily, psychrotolerance and mesophily
definitions form a continuum in which the boundaries
are usually hard to establish. However, it is widely
accepted that both psychrophilic and mesophilic
organisms are able to grow at 15 °C. In this way,
it is unsurprising that mesophilic yeasts, i.e.
Cryptococcus victoriae and Debaryomyces hansenii
(Vishniac, 2006), were also isolated.

Enzymatic activities

Eleven yeasts (17%; numbers 12, 13, 22, 24, 25, 28,
35, 47, 48, 55 and 59) did not show positive activity
in any of the performed assays. Contrarily, none of
the isolated yeasts showed positive activity across all
four tested substrates (Table 1). No obvious correla-
tions between taxonomy, enzymatic activity, collec-
tion sites or isolation substrate could be observed. In
total, 33% of the yeast isolates examined showed sig-
nificant activity for dye decolorization, 25% for
laccase activity and 38% for ligninolytic activity.

Although guaiacol has been widely employed as
a substrate for ligninolytic enzymes such as laccase
(Klonowska et al., 2002), peroxidases (Kim and
Shoda, 1999) and lignin peroxidase (Wong and
Yu, 1999), no evidence of association was detected
between guaiacol oxidation and lignin degradation
(> <191, p=>0.091).

It is worth mentioning that 25 de Mayo/King
George Island has a cold moist maritime climate and
thin soils with a low organic matter content. However,
no woody species occur and only lower plants (mosses
and liverworts) are frequent, and only two vascular
plant species, the Antarctic hairgrass (Deschampsia
antarctica) and the Antarctic pearlwort (Colobanthus
quitensis), are commonly reported in the South
Shetland Islands (Bridge and Spooner, 2012).

Molecular identification of yeasts

According to the adopted approach, 85% of the
isolates could be satisfactorily identified to the
genus level, representing eight basidiomycetous
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and three ascomycetous genera. As we previously
hypothesized, the isolation medium here employed,
with its low carbon content, could have biased results
towards oligotrophic, slow-growing, metabolically
diverse yeasts, found mainly between basidiomyce-
tous genera. Only 35 isolates could be identified to
the species level, representing a scarce 59%.

Although exceptions have been found, a differ-
ence > 1% in the rDNA D1/D2 region could be
employed as a species delimitation criterion for
ascomycetous and basidiomycetous yeasts (Kurtzman
and Suzuki, 2010; Scorzetti et al., 2002). Accord-
ingly, yeasts showing 98% or lower identity with
recognized species could represent new taxa and
require further characterization studies.

Yeasts identified at the species level belong to
four basidiomycetous genera (Leucosporidiella,
Rhodotorula, Cryptococcus and Bullera) and one
ascomycetous genus (Candida). Cryptococcus
and Rhodotorula were found to be the most repre-
sentative genera (three and four identified species,
respectively; Table 2).

The high number of unidentified yeasts could be
explained in the light of a concurrence of factors
affecting the isolation scheme, including tempera-
ture, media composition, fast processing and expo-
sure to light/dark cycles, among others. The use of
solid media, where colony appearance and growth
can be checked daily, certainly also played a key
role in the isolation of yeasts with different growth
profiles (Pajot et al., 2011).

Most of the species reported here are common to
Antarctic soils and have also been profusely
reported in the Arctic or near-Arctic regions
(Vishniac, 2006) or associated with Alpine or Andean
glaciers (Turchetti et al., 2007; De Garcia et al.,
2007), representing well cold-adapted yeasts.

The sampling sites at 25 de Mayo Island analysed
represent a variety of moderate microenvironments,
with temperatures in the range 2.8-11.6 °C. These
habitats present significant stress challenges to the
soil microbiota, including oligotrophy, chronically
low temperatures, long- and short-term temperature
variations and freeze—thaw cycles (Peck et al., 2007).

It is unsurprising that both mesophilic yeasts, such
as R. laryngis, R. pallida or R. mucilaginosa, and
recognized psychrophilic yeasts, such as C. victoriae
and C. sake, have been isolated in this study, since
it is widely accepted that both psychrophilic and
mesophilic organisms are able to grow at the incuba-
tion temperature employed (15 °C) (Vishniac, 2006).

Copyright © 2013 John Wiley & Sons, Ltd.
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Conclusions

Sixty-one isolates could be retrieved from 25 de Mayo/
King George Island and have been tested for textile
dyes and lignin degradation. The identified yeasts
belong to widely reported, cold-adapted yeast taxa,
most of them belonging to oligotrophic, slow-growing
and metabolically diverse basidiomycetous genera.
The rationale for basidiomycetous yeast prevalence in
Antarctic samples is not clear, but presumably it could
be related to the oligotrophy of soil samples and, al-
most marginally, to the isolation scheme employed.

As previously emphasized, oligotrophic microor-
ganisms are usually related to the ability to degrade
a broad spectrum of substrates, whilst copiotrophic
microorganisms are related to the efficient degrada-
tion of easily accessible substrates. In this context,
textile dye decolorization has been widely associ-
ated with lignin degradation.

We want to emphasize that several unidentified
yeasts could be isolated and are now available at
MIRCEN, representing a significant resource in
order to reach a deeper understanding of the
physiology, genetics, ecology and biotechnologi-
cal potential of Antarctic yeasts. Such availability
certainly represents a priceless advantage over
most metaphylogenomic methods.
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