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An h-adaptive solution of the spherical blast wave problem
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3450, 3000, Santa Fe, Argentina

(Received 28 April 2010; final version received 12 November 2010)

Shock waves and contact discontinuities usually appear in compressible flows, requiring a fine mesh in order to
achieve an acceptable accuracy of the numerical solution. The usage of a mesh adaptation strategy is convenient as
uniform refinement of the whole mesh becomes prohibitive in three-dimensional (3D) problems. An unsteady h-
adaptive strategy for unstructured finite element meshes is introduced. Non-conformity of the refined mesh and a
bounded decrease in the geometrical quality of the elements are some features of the refinement algorithm. A 3D
extension of the well-known refinement constraint for 2D meshes is used to enforce a smooth size transition among
neighbour elements with different levels of refinement. A density-based gradient indicator is used to track
discontinuities. The solution procedure is partially parallelised, i.e. the inviscid flow equations are solved in parallel
with a finite element SUPG formulation with shock capturing terms while the adaptation of the mesh is sequentially
performed. Results are presented for a spherical blast wave driven by a point-like explosion with an initial pressure
jump of 105 atmospheres. The adapted solution is compared to that computed on a fixed mesh. Also, the results
provided by the theory of self-similar solutions are considered for the analysis. In this particular problem, adapting
the mesh to the solution accounts for approximately 4% of the total simulation time and the refinement algorithm
scales almost linearly with the size of the problem.

Keywords: mesh adaptation; unstructured grids; hanging nodes; refinement constraints; blast waves; SUPG
formulation

1. Introduction

Transonic and supersonic inviscid flow problems are
common candidates for being adaptively solved
because discontinuities usually develop in very thin
regions compared to some characteristic lengths of the
problem. The adaptation of unstructured meshes
allows to reduce the computational effort required to
solve the numerical problem since smaller elements are
introduced only where they are needed. This feature
has been exploited for capturing shock waves and
contact surfaces in both steady and transient problems
(Berger and Collela 1989, Löhner and Baum 1992,
Kallinderis and Vijayan 1993, Bell et al. 1994, Berzins
and Speares 1997, Usmani 1998, 1999, Remacle et al.
2002). Among the various adaptation algorithms, h-
refinement is regarded as the best method for transient
problems (Löhner and Baum 1992).

Since a great number of refinements and derefine-
ments are required for adapting the mesh in unsteady
problems, the refinement algorithm should be fast. In
addition, a desirable feature of any adaptation method
is to minimise the geometrical quality degradation of

the mesh. To address these issues, an h-refinement
strategy for linear tetrahedra based uniquely on the
regular 1: 8 element subdivision is adopted. No
transition elements are used to match zones with
different levels of refinement so that hanging nodes
appear and the refined mesh is non-conforming. An
extension to three-dimensional (3D) meshes of the
well-known one-irregular vertex refinement constraint
is used as a smoothing procedure. This refinement
scheme avoids the effort of considering and managing
a great number of transition templates or transition
elements (Staten 1996, Löhner and Baum 1992,
Remacle et al. 2002) for the elimination of hanging
nodes and also keeps bounded the quality degradation
of the mesh (Rı́os Rodriguez et al. 2005, 2009). As a
consequence, the refinement algorithm proposed in
this work gives simple results, scaling almost linearly
with the number of refined elements. The solution
procedure is partially parallelised since the adaptation
of the mesh is sequentially performed while the
solution of the flow equations is computed in parallel
on a Beowulf cluster (Storti 2005–2010) using the
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PETSc-FEM software (Storti et al. 1999–2010, Son-
zogni et al. 2002). The latter is a multi physics OOP
code which uses both a finite element SUPG formula-
tion to stabilise the advective terms of the equations
and shock capturing methods for the treatment of non-
linear instabilities in the neighbourhood of shocks
(Brooks and Hughes 1980, 1982, Hughes and Mallet
1986a,b, Tezduyar and Senga 2006). Since continuous
finite element functions are used, constraints to the
solution field at irregular vertices are applied. A
classical density-based gradient indicator is used to
mark the cells of the mesh that need to be refined
(Mavriplis 1995, Berzins and Speares 1997, Waltz
2004, Young and Kwon 2005).

Both the adaptation of the mesh and the solution
computation are coupled through an interface which
automates the process. In this manner, the boundary
conditions for the problem are specified for the starting
mesh and are automatically updated later. Also, a
projected state is given in order to resume the flow
computation.

The described strategy is used in this work to solve
the spherical blast wave problem driven by a point-like
explosion. Besides, the set of ordinary differential
equations derived under the Taylor–Sedov self-similar
assumptions (Thorne 2002) are determined. The
solutions computed with the adaptive strategy are
compared to those obtained on a fixed mesh and also
to the self-similar ones.

Time measurements of the two main stages in the
adaptive solution procedure are realised for analysing
the adaptation algorithm from the computational cost
point of view as well as its scalability.

2. Refinement schemes and constraints

Since the work of Babuska and Aziz (1976) it is known
that the accuracy of the solution in the finite element
method strongly depends on the shape of the elements
in the mesh. More recently Shewchuck (2002) describes
the relationship among the interpolation error, the

condition number of the global stiffness matrix in
the finite element method and the geometry of the
elements. Since refinement procedures usually reduce
the quality of the mesh, some care has to be taken. The
approach taken in this work only applies regular
(isotropic) 1:8 subdivision patterns to the elements.
However, as no regular 1:8 subdivision exists for
tetrahedra, a refinement scheme that shows a good
trade-off between the required computational effort
and the geometrical quality of the resulting tetrahedra
is desirable. In Rı́os Rodriguez et al. (2009), it is shown
through numerical experiments that in most of the
cases, refining a tetrahedron by joining the midpoints
of its edges and choosing then the shortest diagonal of
the inner octahedron (see Figure 1) allows to maximise
the minimum value of the quality index for the
resulting elements. Also, the successive application of
this refinement scheme to the minimum quality element
shows that the minimum quality diminishes only in the
first refinement and then keeps constant. The geome-
trical quality of the tetrahedra was measured with
both the minimum dihedral angle and the mean ratio
shape measure Z introduced by Liu and Joe (1994),
namely

ZðTÞ ¼ 12ð3VÞ2=3P
i¼1...6 l

2
i

ð1Þ

where V is the volume of the tetrahedron T and li are
the lengths of its edges.

But besides the shape’s quality of the elements,
their size distribution also influences the condition
number of the stiffness matrix in the finite element
method (Shewchuck 2002). A smooth change in the
size among neighbour elements in the mesh is required
in this sense. Because no transition elements are used
to match zones with different levels of refinement,
some refinement rules must be assumed. We adopt the
one-irregular vertex mesh refinement constraint which

Figure 1. Tetrahedron refinement sequence.
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was initially proposed by Babuska and Rheinboldt
(1978) and has been used in many commercial and
academic adaptive codes since then (Remacle et al.
2002, Popinet 2003, Greaves 2004). The rule states that
no more than one hanging node should be shared among
neighbour elements through the common edge to which
the hanging node belongs.

However, for 3D meshes the neighbourhood
among elements through edges and faces as well as
the refinement of orphan edges on triangular faces have
to be considered. In this work, we call orphan edge to
that one which is not obtained by the refinement of
another edge.

Consider the tetrahedral mesh shown in Figure 2a.
Assume that the element that ‘touches’ the face defined
by the vertices a7b7c with the orphan edge n1n2
needs to be refined. Figure 2b shows how the refined
mesh would look like after refinement if the two-
dimensional constraint was just considered. It can be
seen that a difference of more than one level of
refinement would exist among nearby elements in the
mesh. To avoid this situation, the strategy developed in
this work also refines the element that shares the face
a7b7c if at least one of the orphan edges on that face
has to be refined. Figure 2c shows the refined mesh that
is obtained in this latter case.

3. Mesh adaptation strategy

The adaptive solution of the problem begins by solving
the Euler equations on a conforming mesh, hereafter
called the base mesh. After a fixed number of time steps
(nsteps), the regions of the base mesh that need to be
refined are selected. In this work the selection criterion is
based on the magnitude of the density gradient
computed in an element-wise fashion. Consequently, if
the magnitude of the solution gradient for the element,

times its size is equal to or greater than a given
percentage of the maximum corresponding value for all
the elements in the mesh, then the element is marked to
be refined,

c1 �
k rir k �hi

max iðk rir k �hiÞ
ð2Þ

where c1 is a constant set beforehand by the user, hi is a
measure of the element size (e.g. the length of
the longest edge for the element) and ||rir|| is the
magnitude of the density gradient computed for the
element. The accurate choice of c1 mostly depends on
the user’s experience.

A succession of nested non-conforming meshes is
then generated by applying the refinement rules
described in the previous section until a maximum
level of refinement is reached. This constraint on the
number of refinement levels is applied because in
problems where discontinuities in the solution exist,
there is no stopping criterion if Equation (2) is used to
select the elements to be refined.

It is worth to mention that although the adapted
meshes introduce hanging nodes on the edges or faces
of an element and assuming that linear finite elements
are used, constraining the solution at these hanging
nodes to the average at the nodes which define those
edges or faces, ensures the solution’s continuity among
nearby elements.

As the base mesh is refined, the state computed by
the solver is linearly interpolated and the boundary
conditions are updated. When the maximum level of
refinement is attained the interpolated state is used as
the initial condition to resume the numerical solution
procedure.

After the solution is advanced nsteps time steps, the
selection criterion given by Equation (2) is applied again

Figure 2. Refinement constraint for 3-D meshes - orphan edge case. (a) Element to be refined has an orphan edge on a
triangular shared face. (b) Refined mesh considering only the 2D constraint. (c) Refinement of neighbour element through the
face with an orphan edge that needs to be refined.
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to the last computed solution and elements are marked
to be refined. The adaptation strategy developed here
assumes that all the elements that are not selected for
refinement should be unrefinedup to the basemesh level.
Also, since a maximum level of refinement is imposed,
only those elements that do not belong to the maximum
level of refinement are finally included in the list of
elements to be refined. On the other hand, an element is
unrefined only if all its brothers (seven in three
dimensions and three in two dimensions) are also
marked to be unrefined. If this is so, they are replaced
by their parent element in the mesh. This search parent
procedure is recursively applied on the data structure
that stores the hierarchical relationship of the elements
in the mesh until the base mesh level is attained. It must
be taken into account that although some elements are
initially marked to be unrefined, the subsequent
application of the refinement and unrefinement con-
straints may not allow it.

A few words about the frequency for the adapta-
tion of the mesh would like to be mentioned, since it is
set constant for the whole simulation. First of all, the
time step size for the fluid flow problem is updated
after every mesh adaptation in order to satisfy the
Courant-Friedrich-Lewy (CFL) condition for com-
pressible flows (Laney 1998) so the time simulated
between two successive adaptations of the mesh is not
constant. Because the most refined regions of the mesh
are expected to be at the discontinuities, the time step
size will be dictated by the size of those elements. This
helps to prevent the discontinuities to move outside of
the most refined regions until the mesh is adapted
again.

The proper choice of the adaptation frequency
depends on various factors. Several authors (Remacle
et al. 2002, Ripley et al. 2004, Waltz 2004) find in
practice that the adaptation of the mesh takes just a
small fraction of the overall simulation time (approxi-
mately less than 5%). This result induces us to choose
a high updating frequency for the mesh for not
compromising the overall performance of the adaptive
solution procedure. If the time required by the
adaptation of the mesh was found to be a greater
percentage of the overall simulation time, then a lower
updating frequency should be chosen. However, in this
latter case a bigger cost would be transferred to the
flow computation stage since the refined regions of the
mesh would need to be wider to ensure that
discontinuities will be kept inside them until the mesh
is adapted again. Choosing a higher frequency for
adapting the mesh enables to use narrower refined
regions around discontinuities and the fluid flow
problem is less expensive to solve.

The boundary conditions and other properties
applied to the mesh entities are handled by a property

identifier or flag associated to the entities of the base
mesh. This flag is inherited from a parent entity to its
children during the adaptation procedure. The flag is
defined by the user and can describe a set of features of
different nature for an entity (e.g. the identifier
assigned to a face could mean that a slip boundary
condition has to be enforced on that face and also that
the face belongs to a curved surface which defines a
particular section of the boundary). The user must
supply a list of vertices which define the entities of the
mesh that have a particular set of properties. Then the
flag is only assigned to an entity provided certain
conditions on the list of vertices are satisfied (e.g. if a
set of properties is to be applied to faces then the
condition might be that all the vertices of the faces
should be in the list for the identifier to be assigned).
After refinement, the entities with the same properties
are identified in order to update the boundary
conditions supplied to the flow solver.

4. The spherical blast wave problem

The blast wave problem was formerly and indepen-
dently studied by Taylor (1946, 1950a,b) and Sedov
(1959), and describes what happens if a point-like
explosion occurs in a uniform density gas. After a
short lapse of time one expects to find a spherical
shock wave travelling radially outward at supersonic
speeds with a transonic flow behind it. This shock wave
comes to an end because the source of pressure (i.e. the
release of energy) also comes to an end. This allows the
rarefaction wave generated in the centre of the
explosion to weaken the spherical shock until it
becomes a pressure wave. When this kind of phenom-
ena takes place it is said that a blast wave happens.

4.1. Self-similar solutions

Taylor and Sedov analysis assumes a self-similar
solution for the problem, which means that the
solution profiles for the density r, velocity u and
pressure p keep their shape in time and only depend on
a single parameter x that is defined as the ratio of the
radial coordinate r measured from the centre of the
explosion to the spherical shock front position R, so
that 0 � x � 1. Taylor and Sedov formulate the
following relationship between the physical variables
and the self-similar profiles for the velocity U(x),
density O(x) and pressure P(x)

u ¼ _RUðxÞ; r ¼ r0OðxÞ; p ¼ r0 _R2PðxÞ ð3Þ

where r0 is the density of the surrounding gas
(assumed uniform). This solution holds as long as the
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mass swept up by the spherical shock front is much
greater than the mass of the explosive material and as
long as the shock wave can be considered strong. The
equations for the self-similar solutions are derived
from the Euler equations in radial coordinates

@r
@t
þ 1

r2
@

@r
r2ru
� �

¼ 0 ð4Þ

@u

@t
þ u

@u

@r
þ 1

r
@p

@r
¼ 0 ð5Þ

@p

@t
þ u

@p

@r
� c2s

@r
@t
þ u

@r
@r

� �
¼ 0: ð6Þ

The latter can be reduced to a system of ordinary
differential equations if it is further assumed that the
density shows a power law dependence in space and
time and the shock front position obeys to a power law
in time. The resulting equations

½UðxÞ � x�xO0ðxÞ þ ½xU0ðxÞ þ 2UðxÞ�OðxÞ ¼ 0 ð7Þ

� 3

2
UðxÞOðxÞ þ ½UðxÞ � x�U0ðxÞOðxÞ þ P0ðxÞ ¼ 0 ð8Þ

� 3OðxÞPðxÞ þ ½UðxÞ � x�½OðxÞP0ðxÞ � gPðxÞO0ðxÞ� ¼ 0

ð9Þ

are then numerically integrated with a fourth-order
Runge-Kutta method assuming the following bound-
ary conditions immediately behind the shock front
(at x ¼ 1)

U ¼ 2

gþ 1
; O ¼ gþ 1

g� 1
; P ¼ 2

gþ 1
: ð10Þ

The self-similar computed profiles plotted against
the similarity parameter are shown in Figure 3. It is
seen that the pressure in the centre of the blast wave is
almost half the maximum pressure immediately behind
the shock and it is fairly uniform within the blast wave.
It can also be seen that most of the ambient gas mass
processed by the shock wave is compressed within a
thin spherical shell immediately behind the shock
which moves slightly slower than the shock itself
(u ’ 0:83 _R if g ¼ 1.4). Finally, the velocity profile is
almost linear in the blast wave, with the fluid being at
rest in the centre of the explosion.

By a simple dimensional analysis, Sedov and
Taylor found that the power law dependence in time
for the shock wave position is given by

RðtÞ / Ex

r0

� �1=5

t2=5 ð11Þ

where Ex is the energy released by the explosive
material. The constant Q that allows to equate both
sides of Equation (11) can be computed by numerical
integration of the total energy profile

Ex ¼
Z R

0

p

g� 1
þ ru2

2

� �
4pr2dr: ð12Þ

Changing to variable x and substituting u, p and r
from Equation (3) in the integral of Equation (12),
taking into account that _R ¼ 2

5
R
t , then replacing Ex

given by Equation (12) into Equation (11) and finally
solving for Q it is found

Q ¼ 16p
25

Z 1

0

PðxÞ
g� 1

þ OðxÞUðxÞ2

2

 !
x2dx

 !�1=5
: ð13Þ

If a value of g ¼ 1.4 is assumed, the approximate
value for Q is 1.165.

4.2. Finite element solutions

The finite element problem is solved on a spherical
domain of radius Rext ¼ 5m. Although the problem
has spherical symmetry, it is solved as 3D since the

Figure 3. Self-similar profiles for the spherical blast wave
problem (g ¼ 1.4).

International Journal of Computational Fluid Dynamics 35

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
ó
p
e
z
,
 
E
z
e
q
u
i
e
l
 
J
o
s
é
]
 
A
t
:
 
2
3
:
0
3
 
1
9
 
F
e
b
r
u
a
r
y
 
2
0
1
1



goals of the simulation, besides verifying if there is an
improvement in the shock resolution, are both to
evaluate how much of the overall computational time
is required to adapt the mesh and how the recursive
refinement algorithm scales with the size of the
problem.

The assumed initial conditions are: the resting
ambient gas is air, at a constant pressure and density
equal to p0 ¼ 101325 P a and r0 ¼ 1.225 kg/m3, and
the energy released by the explosive instantly raises the
pressure to pblast ¼ 105 � p0 in a small spherical region
of radius Rblast ’ 0.25 m. The initial explosion that
generates the initial conditions is not simulated in this
work but it is assumed to be a constant volume
thermodynamic evolution.

The pressure fixation at the surface of the spherical
domain is the only numerical boundary condition
being prescribed. This condition can be applied as long
as the shock wave does not reach this boundary.

Tetrahedral elements are used to subdivide the
problem domain with elements of smaller size pre-
scribed towards the centre of the sphere (Schberl et al.
2004). The resulting mesh has 421.000 tetrahedra and
76.500 vertices approximately. This mesh is used for
both simulations, namely as the base mesh for the
adaptive simulation and as the mesh for the non-
adaptive one.

The Euler equations are solved in parallel with 15
processors on a cluster of workstations. A Forward-
Euler (explicit) scheme is used for time integration and
a Courant number equal to 0.2 is used for both
simulations. It is recalled that the magnitude of the
density gradient is chosen as an indicator for the
adaptive simulation since the flow field generated by
the blast wave is dominated by a strong shock and an
expansion wave. A value of c1 ’ 0.15 is considered in
Equation (2) for the adaptive simulation. Also, an
adapting frequency of 10 time steps is chosen and a
maximum of 2 levels of refinement is prescribed. The
final time for both simulations was set equal to
tf ’ 0.001 s.

4.3. Simulation results

In comparing the position of the shock front to that
given in Equation (11) it should be taken into account
that the FEM solution profiles will just approximate
those of the self-similar ones after a few time steps
because the initial conditions for the flow variables are
not those of the self-similar profiles from the theory.
Bearing this in mind, Figure 4 shows the shock wave
position as a function of time for both the adapted and
fixed mesh simulations superposed to the analytical
solution given in Equation (11). It can be stated that
although there is a good agreement for the first time

instants, both simulations are ahead of the analytical
one by almost 10.5% (adaptive) and 26.3% (non-
adaptive) at time t ¼ 0.00045 s. It is seen that the fixed
mesh simulation is interrupted at nearly t ’ 0.0005 s
because the shock wave reaches the boundary of the
computational domain. A similar situation happens
for the adaptive simulation at t ’ 0.00075 s.

The Mach number, the decimal logarithm of the
pressure and the density along the radius for different
time instants are respectively shown in Figure 5a–c,
computed with the adapted and the fixed meshes.
Figure 5b shows that the pressure within the blast wave
behaves like that predicted by the self-similar solution,
that is, it is fairly uniform within the blast wave and
has a value that is half the maximum reached
immediately behind the shock. The Mach number
within the blast wave is depicted in Figure 5a showing
that it is in the transonic-subsonic regime in agreement
with the theory of blast waves (Thorne 2002). The
three figures show that the entire flow field is better
resolved using the adaptive procedure because no
spurious oscillations appear in the expansion region
behind the shock wave and the shock front is sharply
defined. Figure 6 depicts a cut of the mesh on a plane
of symmetry at t ¼ 91.4 ms. This figure shows that the
region of two-level refined elements propagates in a
thin region of one-level refined elements because of the
refinement constraint. This mesh has approximately
2.34 million tetrahedra and 428,000 vertices.

4.4. Mesh adaptation cost

To evaluate the mesh adaptation code performance,
clock time to perform the adaptation of the mesh and

Figure 4. Shock wave position as a function of time.
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to compute the equations solution is measured throug-
hout the simulation. The adaptation time tadapt is
defined as that required to realise all the necessary
tasks to adapt the mesh, namely the error indication
computation, the refinement of the elements, the
boundary conditions update, the state projection, the
time step size update using the CFL condition and
the writing to disk of all the files required by the flow
solver. On the other hand, the solution time tsol takes
into account both the time required to advance the
solution plus the overhead incurred to restart the flow
computation. Overall time is then defined as tall ¼
tadaptþ tsol. Figure 7 shows that the ratio tadapt/tall
keeps almost constant and equal to 0.04, which enables
to state that, for this particular problem, the adapta-
tion of the mesh takes just a small fraction of the
solution time. Given that the biggest effort is involved
in the solution of the flow equations, maybe a

Figure 5. Time evolution of the flow field within the blast wave.

Figure 6. Adapted mesh on a plane of symmetry at time
t ¼ 91.4 ms.
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higher updating frequency for the mesh could have
been used.

On the other hand the refinement algorithm
scalability is depicted in Figure 8, where the clock
time measured taken by the recursive algorithm of
refinement is shown in the ordinates and the refined
elements number is shown in abscissa. It is seen that an
almost linear scalability is attained, at least for the
range of refined elements 50.0005Neleref 5240.000. A
linear fit is superimposed in the same picture as a
reference.

5. Conclusions

The mesh adaptation strategy is used to solve the
spherical blast wave problem, improving the sharpness
of the shock front and removing the spurious oscilla-
tions in the expansion which are present in the non-

adapted mesh solution. The behaviour of the flow field
variables agrees rather well with the theoretical results
from the Taylor and Sedov self-similar solution. It is
also found that the position’s prediction of the shock
wave improves if the adaptive scheme is used. This
suggests, in principle, that higher levels of refinement
in the adapted mesh could improve the solution even
further.

The overhead introduced by the adaptation of the
mesh is just a small percentage of the time required to
compute the flow, thus allowing to greatly reduce the
computational effort. If we were to solve the problem
with a fixed mesh to get a similar accuracy (in fact, if
each tetrahedron of the base mesh used for the
simulations and then all their sons were refined
following the 1:8 pattern used by the adaptation
procedure) a fixed mesh made up of 26.9 million
would have been required. So it is concluded that true
benefits are achieved because of adapting the mesh,
namely an accuracy improvement and a reduction of
the computational effort.
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