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Abstract. We investigate the influence of intermixing on heteroepitaxial growth
dynamics, using a two-dimensional point island model, expected to be a good
approximation in the early stages of epitaxy. In this model, which we explore
both analytically and numerically, every deposited B atom diffuses on the surface
with diffusion constant DB and can exchange with any A atom of the substrate
at constant rate. There is no exchange back and emerging atoms diffuse on
the surface with diffusion constant DA. When any two diffusing atoms meet,
they nucleate a point island. The islands neither diffuse nor break and grow by
capturing other diffusing atoms. The model leads to an island density governed
by the diffusion of one of the species at low temperature and by the diffusion of
the other at high temperature. We show that these limit behaviors, as well as
intermediate ones, all belong to the same universality class, described by a scaling
law. We also show that the island-size distribution is self-similarly described by
a dynamic scaling law in the limits where only one diffusion constant is relevant
to the dynamics and that this law is affected when both DA and DB play a role.
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1. Introduction

Much of the recent research on heteroepitaxial growth is focused on developing nanometer-
scale devices with novel properties. Quality, performance and lifetime of these devices
are determined by the purity, structural perfection and homogeneity of the epitaxial
layers. Surface flatness and interface abruptness obtained through epitaxial crystal growth
depend on the relative values of the interfacial energy and the surface free energy
of the substrate and the film, under equilibrium conditions. However, in most cases
thin films are grown far away from thermodynamic equilibrium, leading to kinetically
controlled processes. Surface structures, thus depend in a very complicated way on
several variables, which in simplest models include the deposition flux, the mobility the
deposited particles, nucleation and detachment rates and the interfacial energy between
substrate and epitaxial film [1, 2]. Besides these processes, an additional mechanism,
shown to be important in many cases of heteroepitaxial growths, is that of exchange,
in which a deposited atom becomes embedded into the substrate and a substrate atom
is removed. Exchange leads to growth of islands of mixed composition. Intermixing is
especially undesireable in the case of magnetic materials, as it produces a decrease in the
interface magnetization with respect to what is expected. It has been reported that V [3],
Fe [4], Co [5], Ni [6], Cr [7], Ir [8] intermix with Cu atoms at their interfaces forming
alloy layers and for instance, the average magnetic moment of 4 monolayer Ni film on
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Cu(0 0 1) is half of that in the bulk Ni, as detected by x-ray magnetic circular dichroism
measurements [9].

It is not at all surprising that exchange occurs for two elements that are completely
miscible such as, for instance, Au and Ag [10]. Deposition of Au on Ag(1 1 0) forms
alloy-like structures that are not energetically costly and the comparatively open atomic
geometry of an fcc(1 1 0) surface makes place exchange possible with fairly small bond
distortions. However, intermixing of the constituents may also well occur for bulk
immiscible systems. The phase diagram of the Ir-Cu system shows a massive miscibility
gap. At temperatures up to around 1000 K only 3 at.% Ir appears soluble in Cu and in
the reverse case only 1 at.% Cu in Ir [11]. No intermixing would be expected for these
elements, at least at low temperatures. As the surface free energy of Ir is considerably
higher than of Cu (3 J m−2 and 1.83 J m−2, respectively [12]), when Ir is deposited on Cu
one should observe 3D growing clusters composed only of Ir atoms. However, experimental
results for Ir on Cu(1 0 0) unequivocally show intermixing, even at room temperature [8].
Thus, structures resulting from heteroepitaxy are often complex and difficult to predict
from bulk material parameters.

A common fact of heteroepitaxial systems with intermixing is that the surface free
energy of the deposited atoms is higher than that of the substrate [13–18]. At high enough
coverage, this results in step roughening, which might then be considered as an indicator of
intermixing. However, well before 3D islands arise on the substrate, the question remains
about what are the effects of intermixing at the early stages of heteroepitaxy. The case
where deposited monomers can react with the substrate was studied in [19, 20]. After
an irrevesible exchange, these atoms become immobile and act as centers of nucleation,
which form inclusions in the substrate. The emerging atoms become mobile but are
assumed to adhere to a step elsewhere and play no role in the dynamics. The effects
of intermixing on the structures formed on the substrate where analyzed in [21]. In this
work, islands nucleate by the encounter of any pair of diffusing atoms. The authors studied
the properties of the concentration and the spatial correlation of substrate atoms which
become part of the islands. However, in order to keep the analysis simple, they assume
that both species diffuse equally fast on the surface.

In this paper, we address the problem of growth dynamics with intermixing according
to a model of point islands (which occupy a single site [22, 23]), expected to be a valid
approximation at low enough coverages. The exchange rate is entered as a parameter, and
both constants of diffusion are taken into account Our approach is two-fold: theoretical
analysis and numerical Monte Carlo (MC) simulations.

The paper is organized as follows. In section 2 we define the model. We consider
two species of atoms. The dynamics depend on the intermixing and deposition rate, as
well as on the diffusion constants of both species. The main results are presented in
section 3. In section 3.1, we analyze the behavior of the density of islands. The composition
of the interface at low coverage is studied in section 3.2 and the results of simulations
are compared with experiments. In section 3.3, we state and solve mean-field evolution
equations for island and monomer densities. These equations lead to a scaling form for
the island density, described in section 3.4. A reduced form of the dynamic scaling of
the island-size distribution is presented in section 3.5. Finally, in section 4, we state our
conclusions.

doi:10.1088/1742-5468/2015/01/P01015 3

http://dx.doi.org/10.1088/1742-5468/2015/01/P01015


J. S
tat. M

ech. (2015) P
01015

Low-coverage heteroepitaxial growth with interfacial mixing

Figure 1. Schematics of the elementary processes. B atoms are deposited with
a flux F . Once on the surface, they can diffuse with diffusion constant DB,
aggregate to an island, nucleate one, or exchange vertically with a underlying A
atom of the substrate at an effective rate r. Emerging A atoms can diffuse with
diffusion constant DA, aggregate to an island or form a new one, but cannot
exchange back. Every island, composed of one or two types of atoms, occupies a
single lattice site and grows by aggregation. Atom detachment and evaporation
are not allowed.

2. The model

A substrate, which consists of A atoms, is represented by a square lattice of L × L sites,
with periodic boundary conditions to avoid edge effects. On this lattice, we deposit B
atoms, which perform random walks and undergo place exchange with substrate atoms
by a phenomenological constant rate r. When any two diffusing atoms meet, they form a
point island. Theses islands do not diffuse or break and grow irreversibly by aggregation
of other atoms. Every island occupies only one lattice site, in spite of the number of
atoms that compose it. Detachment and evaporation are not considered. Structures are
of mixed composition because two kinds of atoms are involved. During time evolution, we
take into account the following processes (shown schematically in figure 1):

(a) Deposition: starting from an initially flat substrate consisting of A atoms, each empty
site of the lattice is occupied by an B atom with probability per unit time F . Every
simulation runs until the number of atoms deposited per site reaches a desired value Θ.

(b) Intermixing: when a diffusing B atom (not bounded to an island) lays on an A atom
of the substrate, the former exchanges with the latter with rate r. After an exchange,
the B atom remains irreversibly incorporated to the substrate (no exchange back) and
the A atom starts diffusing.

(c) Diffusion: any unbounded A (B) atom on the surface diffuses with diffusion constant
DA (DB), by hopping among nearest-neighbors lattice sites.

(d) Nucleation: when any two diffusing atoms (either A or B) meet, they form a stable
non-moving island. Each island acts as a nucleation center and occupies only one site
on the lattice.

(e) Aggregation: when an diffusing atom, regardless of its type, hops to a site occupied by
an island, the former aggregates to the latter, which increases its number of particles
by one. Detachment events are not allowed, i.e. islands grow irreversibly.
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We are interested in island formation at low enough densities, at which the lattice
mismatch and most of the interactions among diffusing atoms can be neglected. We expect
that, in early stages of growth, this point island model is useful to describe different
properties of the system, such as island density and interface composition. We perform
simulations with Θ always below 0.2 monolayer (ML).

According to the above described processes, the model dynamics depend on four
parameters: the deposition flux F , the exchange rate r and the diffusion constants DB

and DA. However, at a given coverage Θ (or time t = Θ/F ), the surface structure is
determined by only three non-dimensional numbers, which are the ratios ε = a4F/DB,
κ = DA/DB and π = a2r/DB, where a is the lattice constant (for simplicity, we will use
a = 1). In this work, we will show results for κ � 1, though it is easy to extend them to
other values of κ. Note that this model reduces to the standard point islands one, when
all atoms diffuse with the same constant, i.e. for κ = 1 [22]. In the following, we study
the density and composition of the islands as a function of ε, for different values of the
non-dimensional intermixing and diffusion ratios π and κ, respectively.

3. Results

3.1. Island density

In this part, we analyze the island density N as a function of model parameters. Surface
composition will be addressed in section 3.2. At a given temperature T , which determines
the diffusion constants of atoms, the number of islands depends on ε, a measure of the
relationship between deposition and diffusion of B atoms. As ε increases each diffusing
atom performs a lower number of hops in the mean time between incoming particles. This
leads to a higher density of monomers and to a greater nucleation probability. Thus, the
island density increases with ε. It is known that, at a fixed coverage, the average number
of island per lattice site N behaves as N ∼ εχ, for ε small enough. The exponent χ
depends on the effective dimensionality of diffusion. For the two-dimensional case, χ = 1

3
[22–25]. Examples of the behavior the island density, obtained numerically, as a function
of the non-dimensional incoming flux are shown in figure 2 for κ = 0.01, Θ = 0.1ML and
π = ∞, 5 × 10−4, 1 × 10−4, 1 × 10−5 and 0. The two-dimensional exponent χ = 1

3 is in
agreement with these results for ε small enough.

To go beyond the slow deposition regime, in what follows we discuss the dependence
of N on π, for intermediate values of ε. A simple situation corresponds to π = 0, when no
intermixing takes place, and the model reduces to the standard point islands model. Note
that, with respect to island density, this condition is equivalent to κ = 1 (and any π),
which means that all particles diffuse in the same manner, with diffusion constant DB (B-
like behavior). Another simple situation occurs when π = ∞. In this case, each entering B
atom exchanges instantaneously with the first A atom it lays on. Thus, diffusing atoms all
come from the substrate and island dynamics are governed by the diffusion constant DA

(A-like behavior). These limit behaviors are summarized in table 1. Let us establish that
the function N(ε) for π = ∞ can be obtained from that for π = 0 by rescaling ε → κε.
We return to this point in section 3.3.
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Figure 2. The island density against the non-dimensional incoming flux in log–
log scales, for fixed diffusion rate κ and coverage Θ, and different values of the
non-dimensional intermixing π. When π = 0, diffusing atoms are B (crosses),
while for π = ∞, most of the B atoms are incorporated to the substrate and
exchanged A atoms move with a diffusion constant DA = kDB. A data collapse
of the solid squares and crosses can be obtained through the scaling ε → κε. Note
that, given κ < 1 and π, we observe an A-like behavior when ε is low enough
and a B-like behavior when ε is large enough.

Table 1. Limit behaviors. Island dynamics are governed by diffusion of either A
or B atoms for extremely large or small values of π or ε. For the special case in
which both species diffuse in the same manner, the model reduces to the standard
point island model (last row) [22].

κ π ε Dynamics governed by

0 Any
DB

Any Large enough
�=1

∞ Any
DA

Any Small enough

1 Any Any DA = DB

It is interesting to note that the A-like and B-like regimes can also be observed for
other values of π, by tuning the parameter ε. For instance, as ε increases, both the
nucleation and aggregation mean times (tn and ta, respectively) decrease. For large enough
ε, they become much shorter than the intermixing mean time r−1 and island dynamics
are governed by diffusing B atoms, which have little exchange probability. In contrast,
for low enough ε, tn and ta are much longer than r−1 and most of the moving atoms
are of kind A. The presence of atoms from the substrate forming part of islands has been
observed in experiments carried out at high temperatures, which corresponds to the second
situation. For instance, the growth of Nb on Fe(1 1 0) and Fe on Nb(1 1 0) form surface
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Figure 3. (a) Density of B atoms that stay on the substrate ΘB, as a function
of the coverage Θ, for κ = 10−2 and ε = 10−11 and different values of π. ΘB
decreases with π, as expected. Except for π = 0, the curves are concave upward.
(b) Same plots in log–log scale. The slopes are, from top to bottom, β = 1, 1.116,
1.231, 1.266, 1.329, 1.335.

alloy at temperatures above 800 K and a sufficient epitaxial quality of layer by layer can
be obtained without intermixing of Nb and Fe, at room temperature [26], the growth
of Au on Fe(0 0 1) exhibits alloy at temperatures higher than 370 K [27]. Estimations of
the characteristic times tn and ta are given in section 3.4, where a scaling form of island
density is obtained using mean-field approximations.

3.2. Surface composition

The amount of B atoms incorporated to islands per site ΘB should decrease with the
increasing of the intermixing rate. This is clearly observed in figure 3(a), where we
show the behavior of ΘB as a function of Θ for ε = 10−11, κ = 0.01 and π =
∞, 1 × 10−2, 1 × 10−3, 5 × 10−4 and 1 × 10−4. Every set of data points fits with a
curve concave upward, i.e. its derivative is monotonically increasing, which originates in
the fact that, as the island density is a growing function of Θ, the larger the coverage,
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Figure 4. (a) Experimental density of deposited atoms staying atop as function
of the coverage, for Ir on Cu(1 0 0) (circles) and Cr on Fe(0 0 1) (triangles). The
working temperature was 200 K for the former and 300 K for the latter [8, 28].
The change in the concavity observed for Θ in the interval (0.2–0.3 ML) indicates
a crossover value of the coverage, at which the assembling of 3D islands starts.
The dotted line stands for the layer-by-layer growth without intermixing. Cr
concentrations were measured on exposed regions of the substrate, but no
significant difference has been found when taking into account Cr concentrations
on islands, in this range of coverages [28]. (b) Same plots in log–log scale. Effective
exponents greater than 1 are obtained at low coverages.

the higher the aggregation probability for diffusing B atoms before they intermix with A
atoms. Note that, at a given coverage, the concavity increases with π, due to the increasing
of the intermixing/aggregation ratio. In figure 3(b) we show the same plots in log–log scale
and the measured effective exponents (greater than 1) for the each value of π.

The upward concavity of ΘB as a function of Θ, has been observed in experiments
at low coverages. This is, for example, the case of epitaxial growth of Ir on Cu and Cr
on Fe [8, 28]. For Ir (Cr) atoms, it seems energetically more favorable to be embedded
via place exchange in the Cu (Fe) substrate rather than staying atop, which redounds
in intermixing. Experimental data of the amount of Ir (Cr) atoms that stays on the
surface as a function of coverage (extracted from [8,28]) are shown in figure 4(a). At low
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enough coverage, the experimental data fit to curves that are concave upwards. Thus,
effective exponents greater than one are measured for ΘIr(Cr) versus Θ, at low coverage
(see figure 4(b)). Similar behaviors were observed for Fe on GaAs [29] and Cu on Ir [30].

The change of concavity detected in experiments at intermediate values of Θ (�0.2–
0.3 ML in figure 4) can be explained by the onset of 3D island growth or by an intermixing
rate growing with Θ [30–32]. According to the model studied in this work, this effect cannot
be attributed to intermixing, if its rate does not depend on the coverage; even for large
values of π. As discussed above and shown in figure 3(b) (ΘB ∼ Θβ with β > 1 for π �= 0),
the derivative of ΘB always increases with Θ. In an attempt to minimize the free energy,
the atomic structures can reduce their surface by assembling 3D islands and the deposited
B atoms can intermix with substrate A atoms. At low enough coverages, the latter is the
most relevant process. As coverage increases, the configuration that minimizes the surface
free energy most likely involves 3D islands. The crossover between both behaviors will
depend on the particular reactants. Although interesting, the study of this crossover is
beyond the scope of our model.

3.3. Mean-field evolution

From the rules described in section 2, the rate evolution equations for the total monomer
and island densities, at low enough coverages and using mean-field arguments are
d (nA + nB)

dt
= F −

[
kAn2

A + kBn2
B + (kA + kB) nAnB

]
− (kAnA + kBnB) N (1)

dN

dt
= F (nA + nB) +

[
kAn2

A + kBn2
B + (kA + kB) nAnB

]
, (2)

where nA (nB) is the A (B) monomer density and kA (kB) governs the A (B) monomer
attachment rate (it is known that kA ∼ DA and kB ∼ DB, for point islands [25]).

The first term in the right-hand side of (1) corresponds to the increase of monomers due
to the deposition of B atoms. The second and the last, to its decrease, due to nucleation
and aggregation to islands, respectively. Note that the parameter r does not appear in
(1). This equation refers to total monomer density variation, which is not affected by
the intermixing. On the right-hand side of (2), both terms stand for nucleation. The first
is that which occurs when a B atom is deposited on a diffusing monomer, the second
corresponds to nucleation by diffusion. As islands cannot break, they always increase in
number with time.

We can rewrite the rate equations in terms of the coverage Θ = Ft (rather than time
t) as

d (nA + nB)
dΘ

= 1 − [κn2
A + n2

B + (κ + 1) nAnB]
ε

− (κnA + nB) N

ε
(3)

dN

dΘ
= (nA + nB) +

[κn2
A + n2

B + (κ + 1) nAnB]
ε

. (4)

For small enough ε, a quasi-stationary regime exists, in which (nB + nA) � N � 1 and
d (nA + nB) /dΘ ∼= 0. In addition, in this regime nB � nA, provided that π �= 0. Thus, by
retaining only the leading terms in (3) and (4), we get nA ∼ ε/κN and dN/dΘ ∼ κn2

A/ε,
which lead to

N ∼
(

Θε

κ

)1/3

. (5)
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This expression holds, for κ �= 0 and π �= 0, at small enough ε, as confirmed by the results
of simulations in figure 2.

Regarding the quantity ΘB as a function of Θ, it is easy to obtain the exponents
related to its power-law behavior in the limits π → ∞ and π → 0. In the first case, for ε
small enough, B atoms stay atop only if they are deposited directly on islands and then
dΘB/dt ∼= FN , which, using (5), gives

ΘB ∼ Θ4/3 (ε/κ)1/3 . (6)
In contrast, when π = 0, all diffusing atoms are B and ΘB = Θ. These limit behaviors are
confirmed by simulations, as shown in figure 3. We can observe in the same figure (part
(b)) that, for intermediate values of π and Θ in the range [0.01 ML–0.2 ML], ΘB ∼ Θβ;
with an effective exponent β that decreases from 4

3 to 1, when π moves from ∞ to 0.

3.4. Scaling of the island density

As discussed in section 3.1, for low coverage and fixed π (�=0 or ∞) and κ (�=0), island
dynamics are governed by the diffusion of A (B) atoms for small (large) enough ε (see
table 1). The extensions of the A-like and B-like regimes in the parameter space depends
on the involved characteristic times tn and ta. The nucleation time of an island composed
of a pair of B atoms can be estimated by considering that, in an average time tn, a B
atom is deposited in one of the mean number of distinct sites visited by a diffusing B
atom S(tn), i.e. FS(tn)tn ∼ 1. As, for two-dimensional diffusion, S(tn) ∼ DBtn [33], we
arrive to the expression

tn ∼ 1
DBε1/2 . (7)

To estimate the aggregation time of a diffusing B atom, we assume that the mean number
of distinct sites visited by a B atom in this time S(ta) is proportional to the average
number of empty sites per island, i.e. S(ta) ∼ 1/N . Then, taking into account (5) and the
above mentioned behavior of S(ta), the estimates results

ta ∼ 1
DB

( κ

Θε

)1/3
. (8)

Note that ta < tn, for ε small enough.
When both ta and tn are much longer than the intermixing time, i.e. tn > ta � r−1,

most of the deposited B atoms intermix with the substrate and the diffusing atoms are
predominantly A. According to (8), the A-like behavior occurs for ε � εA, where

εA ∼ κπ3

Θ
. (9)

In contrast, most of diffusing atoms are B when ta < tn � r−1. Thus, from (7), the B-like
regime occurs when εB � ε, where

εB ∼ π2 . (10)
The crossover scales given by (9) and (10) allow to collapse the curves corresponding to
N as a function of ε, for different values of κ and π, provided that π is small enough. In
figure 5(a) we have plotted this function using the results of numerical simulations for
Θ = 0.1 ML, κ = 10−2 and 10−4 and π = 10−4, 10−5 and 10−6. Note that the behavior
of N(ε) (for fixed θ, κ and π) can be expressed as N(ε) = CεχG(ε). In this equation, Cεχ
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Figure 5. (a) The island density against the non-dimensional incoming flux,
in log–log scales, for different values of π and κ. The dotted and dashed lines
correspond to A-like behaviors (π = ∞); κ = 10−4 for the former, κ = 10−2 for
the latter. The solid line corresponds to π = 0. When ε � εA (see (9)), the data
points for κ = 10−4 (solid symbols) and κ = 10−2 (open symbols) approach the
dotted and dashed curves, respectively. The B-like behavior occurs when εB � ε
(see (10)). (b) Scaling form of the island density for the same data in part (a):
α = − log(κ), β = log(εB/εA) and the dashed lines represent A-like (upper) and
B-like (lower) behaviors; see the main text for further details.

stands for the B-like behavior, while the function G(ε) takes a constant value ∼ − log(κ)
for ε � εA and 1 for εB � ε; decreasing monotonically between εA and εB. Since two
different crossovers exist, at a given Θ the data collapse is achieved in two steps. First,
every curve corresponding to G(ε) in figure 5(a) is rigidly translated to move the second
crossover point to the origin, by plotting (N/Cεχ) as a function of ε/εB. Then, the y axis is
rescaled by α = (− log(κ))−1 and the x axis by β = (log(εB/εA))−1. A last transformation
(a backwards rotation y → y Cxχ) is included in order to recover the overall behavior of
N . The resulting plot, for the data in figure 5(a), is shown in the part (b) of the same
figure. The very good collapse on a single curve is apparent and gives support to the idea
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of universality, according to which, at low coverages, the island density satisfies

log
(

N(ε)
Cεχ

)
= − log(κ)G




log
(

ε

εB

)

log
(

εB

εA

)

 , (11)

where G(x) is a universal scaling function.

3.5. Dynamic scaling of the island-size distribution

An important quantity in the description of island growth, is the size distribution function
ns(Θ), which gives the number per site of islands of size s (composed of s atoms), at a
coverage Θ. It is well established [22, 24, 34, 35, 36] that, in the case of the standard
irreversible aggregation model, where all particles diffuse with same constant of diffusion
D, for low enough values of the ratio F/D, the low-coverage dynamics are self-similar and
the island size distribution is described by

ns(Θ) =
Θ

〈s〉2f

(
s

〈s〉

)
(12)

where the form of the scaling function f(x) is universal, in the sense that it does not
depend upon the details of the model, such as the lattice type and the coordination
number, but rather depends on more global variables.

As our model becomes the standard irreversible aggregation model when ε � εA or
εB � ε, the island size distribution should satisfy the scaling hypothesis (12) in these
asymptotic regimes. To check this, we have performed Monte Carlo simulations for the
B-like case, with κ = 10−2, ε = 10−9 and π = 10−6, which leads to ΘB/Θ < 0.016. For
the A-like case, we have chosen κ = 10−2, ε = 10−12 and π = 10−2, which results in
ΘB/Θ > 0.99. In figure 6(a), we have plotted with solid symbols the numerical island
size distributions which correspond to the first group and with open symbols those which
correspond to second; at the coverages indicated in the figure key. The plots of ns 〈s〉2 /Θ,
as a function of s/ 〈s〉, for the same data, are shown in figure 6(b). The good collapse of
the data points on a single curve is apparent and gives support to the scaling law (3.4),
when only one diffusion constant is relevant to the dynamics.

For intermediate values of ε, it is expected that the presence of a new rate, introduced
with a second constant of diffusion, invalidates the scaling form (3.4); in analogy to the
case of detachment, when f is affected because of the rate related to this process [37].
In figure 6(c) we show three numerical island size distributions for ε between εA and εB,
for which ΘB/Θ = 0.85, 0.62, 0.50. The corresponding scaled functions are plotted in
figure 6(d); we have also included the scaling function from panel (b), for comparison.
Clear differences among all these functions are easily observed, which indicates that the
scaling behavior of the island size distribution is indeed affected by the presence of two
species of atoms moving on the substrate according to different diffusion constants.
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Figure 6. Island size distributions. (a) Numerical results corresponding to the
asymptotic regimes B-like (ΘB/Θ > 0.99, solid symbols) and A-like (ΘB/Θ <
0.016, open symbols). (b) Rescaled distributions for the same data in panel (a).
(c) Results of simulations for intermediate values of ε; ΘB/Θ = 0.85 (down
triangles), 0.62 (squares) and 0.50 (up triangles). (d) Rescaled distributions
corresponding to the functions in panel (c) (solid symbols) and the scaling
function from panel (b) (open symbols).

4. Conclusions

Despite the complexity and variety in reached morphologies of heteroepitaxial growths
with intermixing, certain aspects of island growth appear to be common to many different
systems. In the interest of archiving a complete and predictive model for the earliest stages
of thin-film morphology that exhibit exchange between deposited and substrate atoms, it
is clearly desirable to have an approach that is as free as possible from arbitrary parameters
or assumptions. In this work, with an aim toward this ideal approach, we have presented
a simple model to study the influence of intermixing and the different diffusion constants
of the species moving on the surface, in island formation at low coverage. The model, only
controlled by three parameters: the ratio between diffusion constants of the species, the
non-dimensional incoming flux of particles and the non-dimensional intermixed probability
of these particles with of substrate, can explain the behavior of density island and the
variation of surface composition with time, for different values of these parameters. We
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found that the island dynamics are governed by the diffusion of the deposited atoms at
low temperature and by the diffusion of emerging particles from the substrate at high
temperature regardless their diffusion constants.

We show that the intermixing phenomenon is the predominant mechanism that can
explain the island composition profile at low coverage. Then, other mechanisms interfere in
this kind of thin film growth at higher coverage, such as the interactions between diffusing
atoms. Our model allows to study the effect of intermixing separated of the interactions
between atoms tending to form 3D islands when the exposed surface of islands increases
[13–18].

Mean-field evolution equations for island and monomer density have been written and
resolved in simple situations, such as strong intermixing and high working temperatures
and/or low deposition rates of atoms on the substrate. We found through these equations,
a collapse of the island density for different values of the parameters of the model.

Finally, we study the island-size distribution. The scaling behavior of this quantity
is observed to be the same that for the standard irreversible aggregation model, in
the asymptotic regimes where ε � εA or εB � ε. In contrast, this scaling law fails
at intermediate values of ε, because of the two species of atoms moving with different
diffusion constants.
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