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Abstract
A new interatomic potential in the framework of the modified embedded atom
method (MEAM) to model U metal is presented. The potential acceptably
reproduces the lattice parameters and cohesive energy of the orthorhombic αU.
The relative stability of the experimentally observed phase at low temperatures
with respect to several other structures (bct, bcc, simple cubic, tetragonal βNp,
fcc and hcp) is also taken into account. Intrinsic point defect properties compare
reasonably well with data from the literature. To determine the quality of the
interaction, the potential is used to study a number of properties for the pure
metal at finite temperatures and the results are compared with the available data.
The obtained allotropic αU ↔ γ U transformation and melting temperatures
are in good agreement with experimental values. Based on the simulations, a
new αU ↔ γ U transformation mechanism is proposed.

Keywords: uranium, MEAM interatomic potential, computer simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

The purpose of replacing traditional high-density nuclear fuel U alloys, which has been under
discussion for several years, is to increase the burning of fissile material and decrease the
amount of high-level waste [1–3]. In practice, the U–Mo alloy is dispersed in an Al matrix
which acts as a mechanical support and allows for the fast transmission of heat generated by
fission. However, there are some problems due to the formation of intermetallic phases at the
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Al/U–Mo interface, the formation dynamics of which is of interest for both technological and
academic purposes [4–6]. This fuel replacement plan created renewed interest in the study of
metallic U and its alloys.

As for the case of many actinides, U has very unique properties due to its f electrons [7]. At
normal pressures, the pure metal undergoes different allotropic transformations as temperature
increases. At low temperatures, the orthorhombic α phase (strukturbericht A20) is stable for
T < 935 K. At intermediate temperatures (935 K < T < 1045 K), the β phase occurs,
which has a complex tetragonal structure containing 30 atoms per unit cell (Ab). Finally, the
body-centered cubic (bcc) γ phase (A2) is stable up to the melting point (Tm = 1405 K) [8, 9].

Investigations of the structure and properties of U and its alloys have been performed by
a number of authors using ab initio methods. Söderlind et al’s [10–13] early works studied
many of the structural properties of light actinides in order to establish common trends among
f-electron metals. Taylor [14] calculated several structural and thermodynamic properties for
αU and reported the first studies of the vacancy formation energy and the (0 0 1) surface in
the same structure. The contemporary work of Xiang et al [15] showed studies for all of the
allotropic phases and the vacancy in γ U. More recently, Li et al [16] reported on the structural
parameters and energies of the experimentally observed phases and other metastable phases,
and discussed the different structural possibilities for the βU phase. On the other hand, Beeler
et al [17, 18] have also obtained the lattice parameters and elastic constants of all three solid
phases of U, and have characterized the vacancy and self-interstitial point defects in αU and γ U.
Finite temperature calculations have also been performed for this metal. Quantum molecular
dynamics (MD) over a range of pressures and temperatures have been carried out by Hood
et al [19], who characterized the αU, γ U and liquid phases. An explanation for the temperature
stabilization of the bcc phase of actinide metals was proposed by Söderlind et al [20] by means
of a self-consistent ab initio lattice dynamics scheme. Recently, there has been increasing
interest in the study of U alloys with other transition elements, mainly Zr and Mo. Huang and
Wirth [21] reported calculations for the mobility of point defects in the low-temperature phase
of U in the presence of Zr and other fission products. Regarding the bcc high-temperature
phase, Landa et al [22] provided a rational explanation for the higher constituent redistribution
in the U–Zr alloys compared to U–Mo by comparing the calculated heat of formation in U–Zr
and U–Mo over the whole composition range. The list is not exhaustive and only a sample of
the works is shown here.

Nevertheless, first-principles methods are only useful for relatively small systems still
cost a huge computational effort. For larger systems, a more reasonable option is the use of
semi-empirical potentials. There has been increased interest in developing these interaction
schemes. One of the first attempts to model metallic U by means of an embedded atom
method (EAM) interatomic potential was made by Pascuet et al [23–25], hereafter referred
to as EAM1. The obtained potential reproduced some structural properties of the α phase
and was able to transform from the α phase to the γ phase in the course of a MD simulation,
although at a lower temperature than that observed by experiments. Belashchenko et al [26]
developed an appropriate EAM interaction that was mainly intended to describe the properties
of the liquid but which was also able to represent some aspects of γ U. A much more accurate
interaction was determined by Smirnova et al [27], who obtained an EAM potential (EAM2)
by using the force-matching method, which they claim to be adequate to model αU, γ U and
liquid phases. On the other hand, Beeler et al [28] were the first to develop a modified EAM
(MEAM) interatomic potential to model the bcc properties of the γ U phase, but it does not
seem to be appropriate for describing αU as reported by the authors. Other interaction schemes
have been investigated, like the charge optimized many body (COMB) classical interaction for
orthorhombic U derived by Li et al [29], although some limitations are found.
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In this paper, an interatomic potential of the MEAM type [30] for pure U is developed
for use in future studies in Al–Mo–U alloys. This interaction scheme is an improvement
over previous ones [31, 32], since it takes into account the atomic directional bonding. The
addition of angular forces is found to be critical for reproducing the behavior of complex crystal
structures, like those found in technologically important U alloys.

In section 2, the MEAM formalism is described. Section 3 is devoted to the fitting method
for all of the model parameters. The different physical properties calculated using the obtained
potential through static and dynamic simulations at finite temperatures are reported in section 4.
All of the simulations are performed with LAMMPS [33], a freely available computation code
which integrates a large number of force fields and calculation algorithms. Finally, in section 5,
we draw some conclusions.

2. Formalism

A full description of the original MEAM formalism has been published in the report of Gullett
et al [34]. In the MEAM, the total energy of a unary system is approximated as

E =
∑

i

F (ρ̄i) +
1

2

∑
j �=i

φ(Rij ), (1)

where F is the embedding function, ρ̄i is the background electron density at site i and φ(Rij )

is the pair interaction between atoms i and j, separated by a distance Rij . The energy system
is given by the calculation of the F and φ functions.

The embedding function is given as follows:

F(ρ̄) = AEc
ρ̄

ρ̄0
ln

[
ρ̄

ρ̄0

]
, (2)

where A is an adjustable parameter, Ec is the cohesion energy and ρ̄0 is the background electron
density for a reference structure. In the present work, the bcc structure will be taken as the
reference. The background electron density ρ̄i is composed of a spherically symmetric partial
electron density ρ
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. (3d)

Rij is the distance between the i and j atoms, Rα
ij is the α component and ρ

α(h)
j is the atomic

electron density of the j atom located at a distance Rij from the i atom:

ρα(h)(R) = exp[−β(h)(R/re − 1)], (4)
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where β(h) are adjustable parameters and re is the nearest-neighbor distance in the equilibrium
reference structure. The partial electron densities are combined:

�i =
3∑

h=1

t (h)[ρ(h)
i /ρ

(0)
i ]2, (5)

where t (h) are adjustable parameters. The total electron density at site i is evaluated as

ρ̄i = ρ
(0)
i G(�i) (6)

where the G(�) function can take different expressions [35]. In the present case of uranium,

G(�) = 2/(1 + e−�). (7)

There is no specific form for the pair interaction φ(R) in the MEAM formalism. Its value is
computed by means of the total energy (equation (1)) and the embedding function as a function
of distance R (equation (2)) as follows.

The total energy per atom for the reference structure is obtained with a variation of the
universal state equation of Rose et al [36] as a function of R.

Ea(R) = −Ec

(
1 + a∗ + d

re

R
a∗3

)
e−a∗

(8)

where d is an adjustable parameter,

a∗ = α(R/re − 1) (9)

and

α = (9B�/Ec)
1/2 (10)

where B is the bulk modulus and � is the equilibrium atomic volume. The parameter d of
equation (8) can be used to slightly modify the shape of the total energy Ea by choosing
the different values d1 or d2, whenever a∗ is positive (expansion) or negative (contraction),
respectively, as implemented in the LAMMPS code [33]. To define the pair potential φ(R),
the total energy Ea is expressed in terms of the function F and the pair potential, considering
up to second neighbor interactions [37] in the reference structure:

Ea(R) = F [ρ̄0(R)] + (Z1/2)φ(R) + (Z2S/2)φ(aR), (11)

where Zi is the number of neighbors in the i shell, a is the ratio between the first and second
neighbor distances and S is the screening factor. Lee et al [37] have shown the details for
extracting φ(R) from equation (11). The screening factor S represents the influence of the
neighbor atoms k on the interaction between i and j . For each neighbor atom k it is possible
to calculate a C factor:

x2 +
1

C
y2 = R2

ij

4
, (12)

where x and y are the coordinates of the atom k with respect to the ellipse defined by the
positions i, j and k. The screening of the k atom varies gradually in the rangeCmin < C < Cmax.
If C < Cmin, then the screening is total (S = 0) and there is no direct interaction between i

and j , while if C > Cmax the interaction is independent of k (S = 1) [35].
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Table 1. Optimized parameters for the U-MEAM interatomic potential.

α 4.150 266 9 t (1) 3.460 123 1
A 0.807 662 6 t (2) 1.524 604 7
β(0) 6.084 075 6 t (3) 3.112 947 7
β(1) 5.286 634 3 d1 −0.256 5517
β(2) 8.014 071 2 d2 0.306 801 2
β(3) 4.444 697 7 Cmin 0.327 255 0
A(Å) 3.463 412 0 Cmax 3.358 370 9
Ec (eV) 5.397 236 0

3. Determination of parameters

The parameters of the model are determined by minimizing the objective function:

Q =
∑

i

wi

(q ref
i − qcalc

i )2

(q ref
i )2

, (13)

where qref
i are reference values, qcalc

i are values calculated using the MEAM potential and wi

are the corresponding weights. The minimization is carried out using the downhill simplex
method [38], a very robust iterative algorithm in which the derivatives of Q are not required.
First, an initial set of parameters is chosen in order to obtain all of the target values (energies,
lattice parameters, elastic constants, etc). The obtained values are then compared with the
references by evaluating equation (13) and a new set of parameters is calculated. At each
iteration, all of the calculated properties are fully relaxed by using the LAMMPS code [33].
The best set of optimized parameters, achieved after several initial tries, is shown in table 1.
The fully relaxed values calculated with the best set of values and the reference values (in bold)
are compared in tables 2 and 3. Experimental values at low temperatures, when available, are
usually preferred as reference values. Otherwise, first-principles values are chosen. It is worth
noting that all references correspond ideally to T = 0 K. Values obtained with the potential
EAM1 [25], the EAM2 of Smirnova et al [27] and those extracted from the work of Li et al [29]
are also reported for comparison with other interaction frameworks.

The fitting process is a trade off, as an exact reproduction of all of the target properties has
not been possible with any of the optimized set of parameters. The main emphasis is placed
on the vacancy mobility [21] and on the hierarchy of energies for the available structures as
obtained by first-principles calculations [11, 13, 39]. All of the sets that stabilize the body-
centered tetragonal (bct) structure with c/a < 1 against bcc [11] lead to an incorrect order of
structure energies or completely wrong values of the vacancy jumps and therefore have been
disregarded. Instead, a very low energy bct with c/a > 1 (named struckturbericht A6 in table 2)
is easily obtained and care must be taken to force it to be less stable than the αU fundamental
structure. Finally, the target values of the elastic constants are given a relatively low weight.
As a result of these fitting characteristics, the lattice parameters and elastic behavior of αU
are reproduced only moderately well, and the vacancy formation energy is much higher than
suggested by first-principles calculations. These downturns are a worthwhile price to pay in
order to ensure good stability for the αU structure at higher temperatures and are an appropriate
description of the different vacancy jumps.
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Table 2. Calculated (MEAM) and reference values (experimental and calculated by
first principles, Exp and FP) for lattice parameters; cohesion energies Ec; and vacancy
formation volume V f

v (in terms of the atomic volume �) and formation Ef
v and migration

Em
v energies for neighbor jumps to the fourth shell (shell numbers in parenthesis,

explanation in section 4.4) for αU. The energy differences �E with several other
structures from αU are shown. Results for other interatomic potentials from the literature
are also reported. Values shown in bold are used in the fitting of the potential parameters.

Structure Property MEAM EAM1 [25] EAM2 [27] COMB [29] FP Exp w

A20,ort a(Å) 2.721 2.775 2.824 2.7776 2.845 [13] 2.836 [43] 5 × 103

2.797 [14]
2.798 [21]
2.790 [40]

b(Å) 6.381 6.072 5.762 6.1519 5.818 [13] 5.867 [43] 5 × 103

5.867 [14]
5.866 [21]
5.866 [40]

c(Å) 4.858 4.936 4.941 4.7974 4.996 [13] 4.935 [43] 5 × 103

4.893 [14]
4.899 [21]
4.872 [40]

y 0.093 0.104 0.105 0.0921 0.103 [13] 0.102 [43] 5 × 103

0.098 [14]
0.097 [21]
0.102 [40]

Ec (eV/at) 5.547 5.773 4.284 — 5.550 [44] 105

V f
v (�) 0.621 0.555 0.822 —

Ef
v (eV) 2.597 1.358 2.13 1.95 [14] 102

1.86 [17]
1.69 [21]

Em
v 0.299 0.29 0.563 0.33 [21] 102

Em
v 0.361 0.17 0.410 0.33 [21] 102

Em
v 1.524 0.71 1.089 1.58 [21]

Em
v 1.252 0.60 1.311 1.24 [21]

A1,fcc a(Å) 4.481 4.328 4.226 4.48 [14] 5 × 103

4.30 [41]

4.44 [16]

�Efcc−ort 0.255 0.169 0.328 0.26 [13] 105

(eV/at) 0.39 [16]

A2,bcc a(Å) 3.463 3.485 3.553 3.509 3.428 [17] 3.47 [45] 5 × 103

3.43 [14]
3.45 [42]
3.46 [13]
3.46 [16]

�Ebcc−ort 0.150 0.007 0.053 0.45 0.22 [13] 105

(eV/at) 0.28 [16]

6
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Table 2. (Continued.)

A3,hcp a(Å) 2.990 3.060 2.945 2.99 [16]
c/a 1.916 1.633 1.732 1.85 [16]
�Ehcp−ort 0.255 0.169 0.24 0.24 [13] 105

(eV/at) 0.23 [16]
Ad ,βNp a(Å) 4.908 4.928 5.002 4.9 [11]

c/a 0.706 0.707 0.637 0.69 [11]
u 0.376 0.5 0.352 0.4 [11]
�EβNp−ort 0.078 0.007 0.015 0.14 [11] 5 × 103

(eV/at)
Ah,sc a(Å) 2.635 2.737 2.768 2.7 [39]

�Esc−ort 0.101 0.194 0.352 0.15 [39] 5 × 103

(eV/at) >0.1
A6,bct a(Å) 2.722 2.775 2.779 2.82 [11]

c/a 2.124 1.946 1.851 1.85 [11]
�Ebct−ort 0.014 0 0.054 0.15 [11] 5 × 103

(eV/at) >0.1

Table 3. Calculated values for the elastic constants Cij (GPa) and bulk modulus B (GPa)
for αU with the present potential (MEAM). Results from other interaction schemes are
also shown. Experimental values (Exp) in bold are included in the fitting process.

MEAM EAM1 [25] EAM2 [27] COMB [29] Exp [46] w

C11 436.1 182 151 257.6 214.7 25
C22 210.6 138 218 222.6 198.6 25
C33 281.9 162 330 298.9 267.1 25
C12 75.7 105 109 99.1 46.5 25
C13 19.3 121 130 46.0 21.8 25
C23 84.2 103 108 66.5 107.6 25
C44 88.7 26 — 100.0 124.5 25
C55 41.7 21 — 61.7 73.4 25
C66 59.0 21 — 89.2 74.3 25
B 143.0 132 149 133.47 135.5 [12] 50

4. Calculation of physical properties

The developed MEAM interatomic potential is characterized by studying the static properties
and temperature effects on some structures. Unless otherwise specified, most of the simulations
have been performed with an almost cubic simulation box of 9×4×5 unit cells of αU containing
720 atoms. Periodic boundary conditions are applied in all cases. MD simulations have been
performed at constant volume and energy (NVE) or at constant pressure and temperature (NPT)
according to the studied property. A constant simulation step of 1 fs was used at all times.
The usual reference axis in which the [1 0 0], [0 1 0] and [0 0 1] crystallographic directions are
correspondingly parallel to the x, y and z axes is chosen for the αU orthorhombic structure.

7
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Figure 1. Calculated energy per atom (eV) for the bct structure as a function of the basal
lattice parameter a and its axial ratio c/a. The positions of the equilibrium fcc and bcc
structures are shown. The long dashed lines correspond to the Bain path at a constant
atomic volume of 21.087 Å [3].

4.1. Bain path

Figure 1 shows a contour plot for the calculated total energy per atom as a function of the lattice
parameter a and the axial ratio c/a of the bct structure for a wide range of values. Two local
minima are clearly seen, one corresponding to a long bct cell with c/a = 2.124 (denoted as A6
in table 2) and another belonging to the bcc structure. The face-centered cubic (fcc) structure
is on the saddle point between the two minima. All three points lie on a curved valley that is
known as the Bain path, which is usually approximated by a transformation of the bct structure
in which the c/a ratio changes at constant volume. The approximate path corresponding to the
equilibrium αU atomic volume given by the present potential is indicated by the long dashed
line on the contour plot. As this description of the path is not accurate, the exact positions
of the fully relaxed A6, fcc and bcc structures lie close to but not exactly on that line. In his
work on light actinides, Söderlind [11] studied different metastable structures in U by means
of first-principles calculations. He found that the Bain path at constant atomic volume has a
minimum at c/a = 0.82 and that the bcc (c/a = 1) and fcc (c/a = 21/2) structures were local
maxima. He also predicts a local minimum at c/a ≈ 1.85, which is not explicitly mentioned
in his work. Hood et al [19] found similar results by using appropriate pseudopotentials for U.
The present potential seems to disagree in the behavior of the bcc structure and the existence
of a stable bct with c/a < 1, although it successfully predicts the fcc instability as well as the
appearance of a stable bct lattice with c/a ∼ 2.

4.2. Surfaces

Surface energies and layer relaxations are calculated for different crystal orientations in αU.
For this purpose, a slab with more than 15 atomic layers is constructed with the appropriate
orientation and using the equilibrium lattice parameters given by the MEAM potential. The
surfaces are separated by an empty space that is several lattice parameters wide so that there

8
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Table 4. Calculated surface energies γ and interlayer relaxations �dij for the first low
index surfaces.

γ (J m−2) �d12 (%) �d23 (%)

(0 0 1) 2.02 +6.0 +0.8
(0 1 0)A 2.05 –2.3 +5.7
(0 1 0)B 2.23 +3.1 +3.5
(1 0 0) 2.27 –4.4 +11.6
(0 0 1) PAW [14] 1.8 –3.6 +1.0
Polycrystals [49] 1.0–1.49
Fission bubbles [50] 1.0 ± 0.5

is no interaction between periodic images. The slab is then relaxed at constant cell volume.
The surface energy γ is defined as

γ = (Eslab − NEc)/2A, (14)

where Eslab is the relaxed energy of the slab with N atoms and A is the area of the surface.
The obtained values for three low index surfaces are shown in table 4. No reconstructions
have been observed in any of the studied cases. Lattice relaxations are reported as �dij , i.e.
the change in the spacing dij between the ith and j th layers relative to the bulk. For the
(0 1 0) orientation, two crystallographically different terminations are possible: one in which
the spacing between the last two atomic planes is d12 = 2yb, referred to as (0 1 0)A and which
is lower in energy, and another in which d12 = (1 − 2y)b, indicated as (0 1 0)B. The lowest
energy corresponds to the (0 0 1) orientation. Although some control of the crystallography in
the epitaxial growth of αU is possible by choosing the substrate [47], the latter result seems
to agree with the experimental evidence found by Opeil et al [48], who observed that an αU
monocrystal obtained by electro-refinement grows with its c axis perpendicular to the surface.
The energy value for the (0 0 1) surface is consistent with that calculated by Taylor [14] using
a PAW method, differing in the relaxation sign of the first layer. The obtained values for all of
the studied orientations are higher than the available experimental estimations [49, 50].

4.3. Bulk properties

MD simulations were performed to study the temperature effects on the αU structure. After
a short thermalization of 1 ns at 200 K, the temperature of the simulation box of 720 atoms
described above is linearly increased during 10 ns up to 2000 K. The evolution of the average
atomic volume as a function of temperature is shown in figure 2. The observed abrupt changes
could be identified as corresponding to the αU ↔ γ U allotropic transformation (around
1100 K) and the melting of γ U (around 1650 K). The βU phase was not studied because of
the short experimental temperature range of stability and because, from a technological point
of view, it is not important. Periodic boundary conditions, homogeneous nucleation and size
effects delay the initiation of the higher temperature phase, yielding overestimated values
for these transformation temperatures [51]. A different technique is used to calculate these
temperatures with better accuracy (see later).

The volume coefficient of thermal expansion can be obtained as

αV = 1

�

∂�

∂T

∣∣∣∣
P

. (15)

By fitting the atomic volume � (figure 2) to a polynomial function of the temperature, a
value of αV = 16.5 × 10−6 K−1 is obtained for αU around room temperature, which is rather

9
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potential.
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Figure 3. Linear thermal expansion for αU. The points correspond to MEAM calculated
values. The lines correspond to experimental values [54].

low when compared with the experimental value of 39×10−6 K−1 [43]. This value is consistent
with U at 17GPa as measured by Yoo et al [12]. For γ U, the result is αV ∼ 14 × 10−6 K−1 for
the bcc existence temperature range, which is also low compared with the experimental value
of αV = 22.5 ± 1.3 × 10−6 K−1 [52]. Finally, for the liquid state αV ∼ 45 × 10−6 K−1, while
100 ± 3 × 10−6 K−1 is obtained experimentally [53]. Although αV differs appreciably from
their experimental values, it is interesting to note that the potential captures the anomalous
thermal expansion behavior of the αU lattice, i.e. the a and c lattice parameters expand while
b contracts with increasing temperature (see figure 3) as in the real metal [54, 55].

Regarding the transformation αU ↔ γ U that occurred during the simulation shown in
figure 2, the orientation relationship between the two phases is found to be [1 0 0]α ‖ [1 1 1̄]γ ,
[0 1 0]α ‖ [1 1 2]γ and [0 0 1]α ‖ [1 1̄ 0]γ . Axe et al [56] and Söderlind [11] suggested
that γ U would transform to αU by means of a Burgers mechanism, passing through and
rejecting the unstable hexagonal close-packed (hcp) structure at some intermediate point.
The present simulations show a different transformation mechanism involving a shear of
contiguous {1 1 0} planes in opposite 〈1 1 1〉 directions, as sketched in figure 4(a). The
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Figure 4. (a) Two different paths for the αU ↔ γ U transformation. Path 1–2–5
corresponds to the Burgers mechanism and path 3–4–5 to that suggested by the present
simulation. The black (grey) circles correspond to atoms at z = 0 (z = c/2). (b) Energy
path for both mechanisms; the numbers correspond to configurations in (a).

energy barrier calculated statically using the present MEAM potential is shown in figure 4(b)
for both transformations, the Burgers mechanism and the mechanism found in the present
work . Intermediate configurations are linearly interpolated between the initial and final
states. The path suggested by Axe et al shows a finite energy barrier in both directions of
the transformation, while the one observed in the reported simulations indicates that the bcc
structure is unstable under this distortion. The αU/γ U orientation relationship suggested by
the simulations completely agrees with the experimental evidence in dilute alloys of Zr in
U [57], although other authors have found different orientation relationships in dilute alloys
of Ti and Mo in U [58].

The transformation temperatures TC can be obtained more accurately using a technique
developed by Morris et al [51]. This technique is based on simulations where the two involved
phases coexist simultaneously in equilibrium, avoiding the nucleation problem altogether.
Here, a long supercell of 5760 atoms is constructed for this purpose, as shown in figure 5.
First, two sub-blocks of each phase are built by juxtaposing four times the same cell of the
previous run of 720 atoms before and after the transformation under study (αU → γ U or
γ U → liquid). Then, the two sub-blocks are brought into contact arbitrarily in the y direction
by appropriately rescaling the x and z edges. A short thermalization at constant NPT is
performed at P = 0 and an initial estimation of TC to remove as much stress as possible. In
the case of the γ U ↔ liquid, stresses can be effectively removed because the liquid phase
can adopt any shape and follow the γ U crystallography. The αU ↔ γ U transformation, on
the other hand, will have some residual stresses due to the incommensurability of the crystal
structure of each phase. When developing an EAM Zr potential, Mendelev and Ackland [59]
discarded this technique for finding the hcp ↔ bcc transformation parameters, as the authors
claimed that a single supercell cannot be compatible with two different crystal structures.
On the other hand, Smirnova et al [27] study the same phase changes in the development
of their EAM2 potential for pure U by using this technique, although no calculation details
are mentioned. In the present study, the stresses σij on both phases have been checked to
validate the use of the coexistence phase technique for this allotropic transformation. It is seen
that the absolute value of the difference |σα

ij − σ
γ

ij | between stress components on each phase
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Figure 5. Construction steps of the simulation block for the study of the αU ↔ γ U
allotropic transformation: (a) two units of 720 atoms are extracted from a previous
run at linearly increasing temperatures before and after the transformation takes place;
(b) four similar units are juxtaposed to obtain a longer cell of each phase; (c) finally, the
two sub-blocks are brought into contact in the y direction by previously rescaling the
edges of the block in the x and z directions.

Table 5. Calculated (MEAM) and experimental (Exp) transformation temperatures TC,
latent heats L and volume changes �V for each of the studied phase changes.

αU ↔ γ U γ U ↔ liquid

MEAM Exp. MEAM Exp.

TC (K) 972.5 ∼ 1075 (P = 3.15 GPa) [60] 1505.4 1408 [61]
L (kJ mol−1) 9.9 ∼ 30 (P = 3.15 GPa) [60] 6.5 8.5 [61]
�V (cm3 mol−1) 0.12 0.8 (P ∼ 0) [12] 0.21 0.29 [62]

does not exceed 10−1 GPa once equilibrium has been achieved, and therefore they are not
expected to influence significantly the final value of TC. The large block with the two phases
is simulated at NVE under periodic boundary conditions at different volumes for 50 to 100 ps.
Since energy is conserved during the simulation, the values adopted by T and P will be those
corresponding to the equilibrium phase transformation at the given volume as long as the two
phases are present [51]. By extrapolation to P = 0, the transformation temperatures TC for
each phase change can be derived. If the volume change �V for the transformation is known,
then the latent heat L involved can be calculated by using the Clausius-Clapeyron equation, i.e.
dP/dT |V = L/TC�V . Table 5 shows all of the calculated quantities characterizing each phase
change compared with the experimental values. As in nature, the αU ↔ γ U transformation
is only possible for P > 3.15 GPa [60] and the reported values of TC and L correspond to
estimated quantities in the α/β/γ triple point, while that of �V is an extrapolation to P = 0
of Yoo et al [12].

4.4. Point defects

Formation energies of intrinsic point defects in αU are calculated by fully relaxing the atomic
positions and box edges of the previously described simulation cell. Migration energy barriers
are obtained using the climbing image nudged elastic band (CI-NEB) [63], as implemented in
LAMMPS, with at least five system images.

The obtained value for the vacancy formation energy Ef
v in αU is much higher than those
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Figure 6. Some of the interstitial configurations studied in αU. Approximate site
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the sites correspond to dumbbells along different crystallographic directions (not all
possible configurations are shown).

calculated for other authors using first-principles techniques [14, 17, 21] (see table 1). To the
authors’ knowledge, there are no experimental results available in the literature to compare
with. An upper bound Ef

v < Q is possible to establish, assuming that Q = Ef
v + Em

v holds,
where Q = 1.7 − 1.9 eV is the experimental activation energy for self-diffusion in αU [64].
In the case of γ U, a fully relaxed static calculation with the present potential is not possible
because the extraction of an atom from the perfect structure completely destabilizes the lattice
which decays to βNp, a bcc related structure [11]. Since temperature effects are important to
the bcc stability, MD simulations at constant NPT have been performed for 103 ps at several
temperatures between 1000 and 1500 K. A simulation block of 8×8×8 bcc unit cells containing
N = 1024 atoms was used. Simulations of the lattice with and without a vacancy allow us
to estimate the formation energy as Ef

v = 〈EN−1〉 − (N − 1) 〈EN 〉 /N , where 〈EN 〉 is the
average energy along the MD run for the system with N atoms. Unfortunately, for the chosen
simulation times the statistical errors in the determination of the different 〈EN 〉 are not small
enough to establish a confident value of Ef

v. Large variations with temperature only allow us
to determine values in the range 1.3 eV < Ef

v < 2.6 eV. This range is close to that measured
by the positron annihilation technique of Matter et al [65], 1.2 ± 0.25 eV, and even closer to
that recently reported by Lund et al [66], 1.6 ± 0.16 eV. First-principles calculations of Xiang
et al [15] produce a lower value of Ef

v = 1.08 eV, while Beeler et al [17] obtain 1.32 and
1.38 eV with different density functional approximations.

Vacancy jumps in αU up to fourth neighbors are calculated and their migration energies
Em

v are reported in table 1. Jumps (1) and (2) allow the vacancy to move along the c and a

axes, respectively, and contribute to the mobility on the corrugated (0 1 0) planes. Jump (3) is a
basal jump along the [1 1 0] direction while jump (4) has components along the three axes [25].
Even when only jumps (1) and (2) are included in the fitting process, jumps (3) and (4) yield
corresponding values very close to those obtained by Huang and Wirth [21].

Interstitial sites in αU have been investigated by several authors [67–69]. Some of these
configurations, as well as split dumbbell self-interstitials, are shown in figure 6. Note that
dumbbells with similar indexes are not equivalent due to orthorhombic symmetry and have to be
studied independently. The interstitial formation energies calculated with the present MEAM
potential for all of the studied configurations are shown in table 6. The same configurations are
also studied with the EAM2 potential for comparison. All configurations that are marked as
unstable decay to one of the three stable configurations found: the dumbbells [1 1 0] and [0 0 1]
and the interstitial E, the former corresponding to the ground state. A different situation is

13



Modelling Simul. Mater. Sci. Eng. 22 (2014) 055019 J R Fernández and M I Pascuet

Table 6. Self-interstitial formation energies (eV) for configurations in figure 6. Results
obtained with the EAM2 potential [27] and first-principles values from the literature are
also reported.

Config. MEAM EAM2 [27] First principles

A Unstable 2.729
B Unstable Unstable
C Unstable 2.766
D Unstable 2.852
E 3.960 Unstable 4.42 [21]–4.28 [29]
[1 0 0] Unstable 2.868
[0 1 0] Unstable Unstable
[0 0 1] 3.956 2.714
[1 10] 3.436 Unstable
[1 0 1] Unstable 2.829
[0 1 1] Unstable 2.730

b

a

c

J1

J2

J3

b

a

c

J1

J2J2

J3

Figure 7. Interstitial jumps found in αU. The full circles indicate the dumbbell
configurations.

found for the EAM2 potential, although both interaction schemes agree in yielding the [0 0 1]
dumbbell as one of the configurations of lowest energy. First-principles studies of Huang and
Wirth [21] stated that the lowest energy configuration found corresponds to the E site, with
a formation energy 10% higher than that found with the present potential. A slightly lower
value is calculated by Li et al [29] using the same calculation method.

Regarding interstitial migration, three elemental migration paths necessary for 3D
diffusion are proposed in figure 7, based on the [0 0 1] and [1 1 0] dumbbell configurations.
Their migration energies, calculated through the CI-NEB technique, are 0.025 eV for jump J1,
0.142 eV for jump J2 and 0.684 eV (0.163 eV) for jump [1 1 0] → [0 0 1] ([0 0 1] → [1 1 0])
in the case of J3. An analysis of these migration energies shows that the interstitial diffusivity
in the (0 0 1) plane will be much faster than in the perpendicular direction. This will be evident
in the MD simulations of interstitials in αU reported in the next section.
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Figure 9. Diffusivity by vacancy mechanism in γ U.

4.5. Diffusion

Point defect mobility as a function of temperature is studied by means of MD simulations.
A vacancy or an interstitial is generated and the system is allowed to evolve at constant NPT
(P = 0) for a time t long enough (t = 103 ps) to reach equilibrium. Then, the simulation is
continued at constant equilibrium volume for a time substantially greater (104 ps for interstitials
and 4×104 ps for vacancies). In this second stage, the mean square displacement of atoms due
to the exchange with the defect is recorded. The resulting values of D∗

xx = lim
t→∞

〈
x2

〉
/2t for

each component of the diffusivity along each principal direction x are shown as Arrhenius plots
in figures 8 and 9 for the vacancy and interstitial mechanisms in αU (750 K � T � 1000 K)
and for the vacancy mechanism in γ U (1000 K � T � 1500 K), respectively. Self-interstitial
diffusivity in γ U is excluded from the present study. The results show that the vacancy
moves faster along the a and c axes than along b in αU. Substantially longer simulation times
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Table 7. Migration energies for the vacancy Em
v and interstitial Em

i mechanisms in αU.

Em
v (eV) Em

i (eV)

x 0.29 ± 0.03 0.14 ± 0.03
y — 0.11 ± 0.04
z 0.11 ± 0.04 0.77 ± 0.04
Total 0.25 ± 0.05 0.19 ± 0.05

than those reached here are needed to gather enough statistics to resolve the D∗
yy component.

It could only be established that it is at least one order of magnitude lower than D∗
xx and

D∗
zz for the whole temperature range. Self-interstitials are faster than vacancies and their

mobility is greater in the (0 0 1) basal planes than along the c axis. Based on bond lengths,
Seigle and Opinsky [70] predicted that the vacancy would move faster in the corrugated (0 1 0)
planes where covalent bonds are stronger. Meanwhile, they proposed that the self-interstitial
would move almost isotropically. However, it should be kept in mind that their study only
considers the atomic jump through interstitial holes in αU and does not take into account
dumbbell configurations, which are more anisotropic. In tracer diffusion experiments on αU,
it is observed that Dxx ∼ Dzz � Dyy [71] in agreement with the present results for the vacancy
mechanism. Neutron irradiation experiments also show a large growth anisotropy in which a
crystal of αU increases its length in the [0 1 0] direction and decreases in the [1 0 0] direction,
while in the transverse [0 0 1] direction no dimensional changes are observed [72]. The work
of Gonser [73] is based on an increased mobility of the vacancy in the [1 0 0] direction and
the interstitial in the [0 1 0] direction, similar to that found here, to explain these dimensional
changes. The vacancy and self-interstitial migration energies along the αU principal axes,
obtained by fitting the data to D∗(T ) = D∗

0 exp(−Em/kT ), are reported on table 7. The large
uncertainties are indicative of the difficulty in achieving acceptable statistics, even with the
relatively long simulation times used. There is a good correspondence with the jump energy
barriers calculated statically by means of the CI-NEB method of the previous section.

The vacancy diffusivity in γ U does not show any signs of appreciable curvature in the
Arrhenius plot of figure 9. Diffusion in γ U has been classified as anomalous more due to the
low values of D0 and Q rather than the curvature, as occurs in other metals like Zr and Ti in
their bcc high-temperature phase [74]. Although some controversy still exists, a temperature
dependence of Ef

v has been proposed to explain this behavior [65], in opposition to the Em
v

temperature dependence found in other normal bcc metals like tungsten [75]. The vacancy
migration energy in γ U extracted from figure 8 is 0.23 ± 0.01 eV. Adding the above obtained
value Ef

v = 1.7 ± 0.6 eV results in an activation energy of Q = 1.9 ± 0.6 eV, which is much
higher than the experimental value of 1.15 eV [64].

5. Summary and conclusions

The present paper provides an interatomic MEAM-type potential to model metallic U. Many
physical properties are reasonably reproduced, but care should be exercised when using this
potential in other studies than those approaches herein. The parameters of the interaction fit
experimental and/or first-principles values extracted from the literature, covering a wide range
of structural and elastic properties of the low-temperature phase αU and many other metastable
competing structures. This provides the potential with one of its main characteristics, which
is the stability achieved at finite temperatures for αU. Other MEAM potentials reported in the
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literature [28] lack physical accuracy as they do not give the αU phase as the lowest energy state.
The potential reproduces a simplified αU ↔ γ U allotropic transformation and melting

at temperatures relatively close to the experiment. Previous EAM potentials [23–25, 27] are
similar to the present one in that they all predict that αU is the ground state and γ U and
liquid phases show up at increasing temperatures, although they tend to underestimate the
αU ↔ γ U transformation temperature further. The simulations performed suggest a new
alternative mechanism for this allotropic transformation, different from that of Burgers which
was proposed in the literature but still not confirmed [11, 56]. Unfortunately, the potential
reproduces a βU energy higher than that of αU and γ U for the studied temperature range. For
this reason, we do not advise using this potential to study βU phase properties.

Similarly, the obtained potential is not suitable for simulations at finite pressures in αU
as it does not give the correct dependence of the c/a ratio as a function of pressure [76], and
therefore will not be able to describe properly transitions in U at high pressures.

Linear expansion agrees qualitatively with experimental observation in αU, i.e. the
contraction of b and expansion of a and c lattice parameters with increasing temperature,
although it falls short of the experimental value in each of the studied phases, α, γ and liquid
U, by half.

Regarding αU surface properties, the (0 0 1) surface energy show good agreement when
it is compared with Taylor first-principles calculations [14], but lattice relaxations of the first
layers have the opposite sign.

The resultant description of the intrinsic point defects and their anisotropic mobility in
αU shows good agreement with the observed dimensional changes suffered under neutron
irradiation [73]. Finally, no detectable curvature was found in the Arrhenius plot for the
vacancy diffusivity in γ U and we obtained values of Q that are higher than experiments.
All in all, the present potential provides a rather good description of the pure metal at finite
temperatures, even when its parameters are fitted to properties at T = 0 K. This potential will
be used to construct appropriate interactions for Al–Mo–U ternary alloys in future work.
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