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Abstract
After a more general assumption on the influence of the bulk on the brane, we
extend some conclusions by Maartens et al (2001 Phys. Rev. D 63 063509)
and Santos et al (2001 Phys. Rev. D 64 063506) on the asymptotic behaviour of
Bianchi I braneworlds. As a consequence of the nonlocal anisotropic stresses
induced by the bulk, in most of our models, the brane does not isotropize and
the nonlocal energy does not vanish in the limit in which the mean radius goes
to infinity. We have also found the intriguing possibility that the inflation due
to the cosmological constant might be prevented by the interaction with the
bulk. We show that the problem for the mean radius can be completely solved
in our models, which include as particular cases those in the references above.

PACS numbers: 98.80.Cq, 11.25.−w

1. Introduction

The main stream approach to solving the problems arising from the break down of Einstein’s
theory at high energies is to consider it a particular limit of a more general theory, as with
Newton’s theory in relation to that of Einstein’s. One of these schemes is the brane gravity
picture [3, 4], according to which matter fields are confined to a hypersurface (the brane) with
three spatial dimensions embedded in a higher-dimensional space (the bulk) on which gravity
can act also.

Considerable effort in this area of research has been directed towards testing that scheme
by deducing cosmological implications from it. The usual framework for these studies is the
geometric approach of [5], which provides the gravitational field equations induced on the
brane along with conservation equations for bulk degrees of freedom. Reviews on this topic
can be found, for instance, in [6–8].

Studies concerning FRW universes [9] hinted that the dynamics of the early universe in
this new scenario is rather peculiar because of the modifications in the Friedmann equation.
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Then, when anisotropic models were considered [10], it was shown that discrepancies with
respect to the standard scenario extended to the shear dynamics as well.

In the set-up of general relativity, Wald [11] showed that a positive cosmological constant
leads to the isotropization of expanding homogeneous cosmological models . The anisotropy
dissipation in braneworld inflation in the absence of effective cosmological constant was
analysed by Maartens et al [1]. Taking into account the cosmological constant, Santos et al
derived a set of sufficient conditions that allow Wald’s result to be extended to the braneworld
scenario [2] (see also [12] for an alternative view on the same problem). The last three
works were done directly on the brane, where an additional hypothesis has to be made for
the nonlocal anisotropic stresses induced by the bulk, for they are not given by any evolution
equation on the brane. This naturally raises the question of to what extent the results depend
on the aforementioned hypothesis.

The goal of this work is to extend the results in [1, 2] by considering a more general
additional hypothesis. We will analyse, as done in those works, a Bianchi I brane embedded in
a five-dimensional (5D) bulk. We assume that the nonlocal stresses satisfy a condition which
reduces to the one considered in [1, 2] in particular cases. We will show that the evolution
equations on the brane can be integrated and conclude that, generically, we have exponential
inflation or an asymptotic power law for the mean radius, but the models do not isotropize
unless they belong to the class considered in the aforementioned works.

2. Bianchi I brane models

Let us consider a Bianchi I brane with the induced metric

ds2 = −dt2 + a2
1(t) dx2 + a2

2(t) dy2 + a2
3(t) dz2, (1)

when the matter on the brane is a perfect fluid of density ρ and pressure p. We define as usual
the mean radius a ≡ (a1a2a3)

1/3 and the mean Hubble parameter H ≡ ȧ/a = 1
3

∑
i Hi , with

Hi = ȧi/ai .
We will be using the equations induced on the brane derived by Shiromizu et al [5] but

follow the notation of [1, 2]. For the metric (1), the dynamics of the mean radius a in this
model can be described by the following equations on the brane:

3H 2 = 6

κ2λ
U +

1

2
σ 2 + � + κ2ρ

(
1 +

ρ

2λ

)
, (2)

3Ḣ + 3H 2 + σ 2 +
6

κ2λ
U = � − κ2

2
(ρ + 3p) − κ2

2
(2ρ + 3p)

ρ

λ
, (3)

σ̇µν + 3Hσµν = 6

κ2λ
Pµν, (4)

U̇ + 4HU + σµνPµν = 0, (5)

where a dot denotes uµ∇µ, with uµ = ∂/∂t . Throughout the paper, κ2/8π and κ̃2/8π will,
respectively, be the effective Newton constant on the brane and in the bulk; � will be the
effective four-dimensional (4D) cosmological constant, and the tension on the brane will be
λ ≡ 6κ2/κ̃4. On the other hand, U stands for the effective nonlocal energy density, and σµν

denotes the shear scalar, which satisfies (4) and

σ 2 ≡ σµνσµν =
3∑

i=1

(Hi − H)2. (6)
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In addition, if uµ is the four velocity of an observer on the brane comoving with matter, then
hµν = gµν + uµuν projects into the comoving rest-space, and U and Pµν will be related to Eµν ,
which is the projection on the brane of the 5D Weyl tensor, through

U = −κ2λ

6
Eµνu

µuν, (7)

Pµν = −κ2λ

6

(
hα

µhβ
ν − 1

2
hαβhµν

)
Eαβ. (8)

There is also, in principle, the constraint that the projected spatial covariant derivative of
Pµν vanishes:

DνPµν = 0, (9)

but this result holds identically for the metric (1). On the other hand, as a consequence of
system (2)–(5), we get the conservation law

ρ̇ + 3H(ρ + p) = 0. (10)

3. Exact examples and asymptotic behaviour

Since there is no evolution equation on the brane for the nonlocal anisotropic stress Pµν , but
only the constraint (9), which in this case does not provide any information, some additional
hypothesis is necessary to integrate the system (2)–(5).

In order to get some insight on the problem, we will restrict ourselves for a moment to
the vacuum case ρ = p = 0, where we get from (2), (3)

U = κ2λ

2
(Ḣ + 3H 2 − �). (11)

Let us consider under which conditions the stable asymptotic behaviour may approach a
power-law a ∼ t k , (k > 0). In such a case Ḣ ,H → 0, U → −κ2λ�/2 and, because of (5),

σµνPµν → 2κ2λ�H. (12)

We will show in the following that, if one chooses the unknown Pµν so that this condition is
satisfied, the asymptotic behaviour described by a power law is stable. Furthermore, this will
happen even in the presence of a fluid.

So as to integrate the system (2)–(5) one often [1] assumes U = 0 or the more general
σµνPµν = 0, which has been used in [2] to discuss the stability of the de Sitter spacetime.
It has been proved [13] that spatial homogeneity follows from the integrability conditions
for vanishing nonlocal anisotropic stress and energy flux, which are two of the three bulk
degrees of freedom. Therefore, the considerable simplification arising from switching off
those quantities is consistent with having a Bianchi I metric on the brane.

It must be pointed out that other choices can be found in the literature; Barrow and
Maartens [14], in an investigation of early times shear anisotropy in an inhomogeneous
universe, assumed that Pµν behaves qualitatively like a general 4D anisotropic stress. In
particular they chose Pµν to be proportional to the energy density of the anisotropic source
(which we will denote with ρ̃) so that Pµν = ρ̃Cµν with Ċµν = 0,

√
CµνCµν = O(1) and

ρ̃ � ρ.
Although the asymptotic behaviour (12) may happen with many choices of σµνPµν , we

will consider only a simple family of models. In the following, we will assume that σµνPµν

is proportional to the Hubble parameter, so that it can be written as

σµνPµν = 2κ2λ�(a)H, (13)
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which reduces to the cases discussed in [1, 2] when the function �(a) vanishes. By making
this hypothesis, we use a less restrictive assumption to check whether the conclusions reached
in [1, 2] hold in a more general context, while still being able to integrate the evolution
equations. Note that (12) is recovered, even before the asymptotic behaviour is reached,
provided �(a) = �.

Exactly as happens with the restrictive � = 0 case often used in the bibliography, it
remains an open problem whether the more general assumption we make is compatible with
a full 5D solution (see [15] for a recent attempt at tackling the 5D problem). Judging on the
suitability of such guesses is, therefore, not possible for the time being, but they definitely
help unveiling possible unexpected consequences of the interference between bulk and brane.

The nonlocal energy density U is given by the conservation equation (5), which is easily
solved under the assumption (13):

U = κ2λu0

a4
− 2κ2λ

a4

∫
a3�(a) da, (14)

where u0 is an arbitrary integration constant. We see here that, for expanding universes,

lim
a→∞U = − 1

2κ2λ lim
a→∞ �(a), (15)

(provided the limit on the right-hand side exists or is infinite) so that it does not always vanish
asymptotically, although it will go to zero in the special cases in which �(a) → 0 (which, of
course, include the choice �(a) = 0 of [1, 2]), where it reduces to the result by Toporensky
[16]. Expression (15) suggests there is the possibility that, as a consequence of the interaction
of the brane with the bulk through Pµν , the asymptotic vanishing of U arising in the cases
studied in [2] might be evitable.

By contracting (4) with σµν and using (13), one readily gets

σ 2 = σ 2
0

a6
+

24

a6

∫
a5�(a) da, (16)

for any constant σ0, so that

lim
a→∞ σ 2 = 4 lim

a→∞ �(a). (17)

Then, it is clear that asymptotically � must be non-negative. If � → 0 the braneworld
isotropizes as a → ∞, as described in [1, 2], but, for all other asymptotic behaviours of �,
there will be a remaining anisotropy induced by the nonlocal anisotropic stresses. Note that
there is also the possibility that the anisotropy grows with a, which would correspond to U < 0
at late times. Models which do not isotropize in a recollapsing situation, unlike ours, were
found in [17], and they were characterized by Pµν and U < 0.

Clearly, our work and many others suggest that the interplay between the bulk degrees of
freedom and the dynamics on the brane is rather non-trivial. An interesting illustration of this
is a recent work [18] which investigated the dynamics of a flat isotropic braneworld with a
perfect fluid with equation of state p = (γ −1)ρ and a scalar field with a power-law potential.
There it was found that the number and the stability of fixed points of the system describing
the dynamics of the model would depend not only on whether U vanishes or not, but also on
its sign.

If we assume the equation of state p = (γ − 1)ρ, the conservation law (10) is equivalent
to

ρ = ρ0

κ2a3γ
, (18)

with an arbitrary constant ρ0.
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If we insert (14), (16) and (18) in (2), we get the generalized Friedmann equation

3H 2 = 6u0

a4
+

σ 2
0

2a6
+

ρ0

a3γ
+

ρ2
0

2κ2λa6γ
+ � − 24

a6

∫ [
a

∫
a3�(a) da

]
da. (19)

The orbits (H(U), σ (U)) were found in [2] for the special case � = 0, but we can see that,
for any �(a), the problem for a(t), σ (t) andU(t) may be completely solved from equation (19)
by means of a quadrature and a function inversion. The integrals may be explicitly computed
(in terms of elementary or elliptic functions) for different choices for the constants u0, σ0, ρ0,
γ and � and the function �(a). The simplest cases are solutions with no fluid (ρ0 = 0). If
�(a) = �, by using the parameter 0 < w < ∞ one may write the solution as

t = σ 2
0

48
√

2u3
0

(sinh w − w), (20)

a = σ0

2
√

3u0
sinh

w

2
, (21)

which at late time corresponds to a ∼ t1/2.
In contrast if u0 = ρ0 = 0 and �(a) = α for a constant α < �, we get

a6 = σ 2
0

2(� − α)
sinh2

√
3(� − α)t. (22)

Other exact solutions with u0 = 0 can be obtained with dust (γ = 1) or a stiff fluid
(γ = 2). Let us look first at the dust cases, which, arguably, are very interesting from the
observational point of view [19]. For �(a) = α we have

a3 = ρ0

� − α
sinh2

√
3(� − α)t

2
+

√
ρ2

0 + κ2λσ 2
0

2κ2λ(� − α)
sinh

√
3(� − α)t. (23)

The latter is a generalization of the Heckmann–Shucking metric [20, 21] that has not been
discussed in the literature so far. Clearly, the α → � limit of the solution (23) is regular,
with the form of a second-order polynomial in t. The effects of the shear and the quadratic
corrections are of the same order, they dominate at early times, and a ∼ t1/3. In contrast, at late
times the model is neither aware of the anisotropy nor of the extra-dimensional ingredients,
and log a ∝ t , or a ∼ t2/3 if � = α. On the other hand, for a stiff fluid (γ = 2), and �(a) = α,
we have

a6 = 2ρ0 + σ 2
0

2(� − α)
sinh2

√
3(� − α)t +

ρ0√
2κ2λ(� − α)

sinh 2
√

3(� − α)t. (24)

This solution too has a regular α → � limit in the form of a second-order polynomial in t.
As in the dust solution above, the effects of the shear and the quadratic corrections are equally
important, but they dominate at late times, instead; in that regime we either have log a ∝ t , or
a ∼ t1/3 if � = α. In contrast, at early times the model becomes isotropic and relativistic,
and a ∼ t1/6.

We can also obtain directly from (19) some general late-time results of interest. If
asymptotically �(a) ∼ α is constant, then for � − α > 0, the brane inflates exponentially
when a → ∞, as happened for α = 0,� > 0 [2]. But now there is another interesting
possibility: the repulsion due to the cosmological constant may be neutralized by the bulk
influence, in which case the asymptotic behaviour of a is a power law. For simplicity, we
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show this in vacuum and write (11) in terms of the variable µ = −2Ḣ /3H 2, which becomes
a constant µ0 for the power-law solutions a ∝ t2/3µ0 , so

µ̇ +

[
3Hµ − 8HU + 2σµνPµν

2U + κ2λ�

]
(2 − µ) = 0. (25)

The existence of the constant solution, µ = µ0, in the last equation requires that

σµνPµν = 3H

[
µ0

(
U +

κ2λ�

2

)
− 4

3
U

]
; (26)

this means that, for any solution of (11) which asymptotically approaches a power law, the
quantity σµνPµν asymptotically behaves as (26). Now, inserting (26) in (5) and (4), we get
the asymptotic expression for the effective nonlocal energy density

U = κ2λα

a3µ0
− 1

2
κ2λ�, (27)

and the shear scalar

σ 2 = σ 2
0

a6
+

12α(µ0 − 4/3)

(2 − µ0)a3µ0
+ 4�, (28)

where α and σ 2
0 are arbitrary constants. In addition, introducing (26) into (25), it reads as

µ̇ = −3H(µ − µ0)(2 − µ). (29)

It is easy to see that, for ordinary fluids, µ0 < 2, the solutions of equation (29) converge,
respectively, to the stable fixed point µ = µ0, which describes the asymptotic power-law
solutions a = t2/3µ0 . For instance, if we additionally assume a perfect fluid source, after using
(18), (27) and (28), the Einstein equation (2) becomes

3H 2 = 6α

a3µ0
+

σ 2
0

2a6
+

4α

(2 − µ0)a3µ0
+

ρ0

a3γ
+

ρ2
0

2κ2λa6γ
. (30)

Hence, for γ > µ0, asymptotically, the brane will remain anisotropic (σ 2 ∼ 4�) and expand
as a ∼ t2/3µ0 or expand as a ∼ t2/3γ for γ < µ0. Note that the exact solution given by (20) and
(21) for a model with no fluid is also the approximated late-time solution when µ0 = 4/3 � γ

or γ = 4/3 � µ0. In both cases, asymptotically, the scale factor behaves as a ∼ t1/2.
In (26) we assumed that σµνPµν depends on a and U . We could instead assume that it

depends only on a so that asymptotically (13) holds with

�(a) = � +
β

a3δ
, (31)

for some constants β and δ > 0. It is easy to see that in this case also the asymptotic behaviour
of a is a power law. For instance, if we additionally assume that γ > 4/3 (or that there is no
fluid), asymptotically, the brane will remain anisotropic (σ 2 ∼ 4�) and expand as a ∼ t2/3δ

for δ < 4/3 and as a ∼ t1/2 for δ � 4/3 (or β = 0). For γ < 4/3, one would have a ∼ t2/3ν ,
with ν = min(γ, δ).

4. Conclusions

By making the more general assumption (13) on the (unknown) influence of the bulk on
the brane, we have shown that some conclusions on the asymptotic behaviour of Bianchi I
braneworlds in [1, 2] can be generalized. Due to the nonlocal stresses, in most of our models,
the nonlocal energy does not vanish in the limit a → ∞, and the brane does not isotropize.
We have also found that, although nearly all our models inflate, there also exists the possibility
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that the inflation due to the cosmological constant might be prevented by the interaction with
the bulk. Finally, we have shown that the problem for the mean radius a (as well as for σ 2

and U) can be completely solved in our models, which include as particular cases the Bianchi
I branes for which the orbits and stability were analysed in [2].
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