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ABSTRACT: Contemporary groups (CG) are used in
genetic evaluation to account for systematic environ-
mental effects of management, nutritional level, or any
other differentially expressed group effect; however, be-
cause the functional form of the distribution of those
effects is unknown, CG serve as an approximation to
a time-varying mean. Conversely, in semiparametric
models, there is no need to assume any functional form
for the time-varying effects. In this research, we present
a semiparametric animal model (AMS) using the covari-
ate day of birth (DOB) by means of penalized splines
(P-splines), as an alternative to fitting CG. In the AMS,
the functionality of the data on DOB is expressed by
means of a Basic segmented polynomial line (B-spline)
basis, and proper covariance matrices are used to reflect
the serial correlation among the points of support (or
knots) at different times. Three different covariance
matrices that reflect either short- or long-range depen-
dences among knots are discussed. Different models
were fitted to birth weight data from Polled Hereford
calves. Models compared were an animal model with
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Introduction

In genetic evaluation, contemporary group (CG) is a
discrete explanatory variable that accounts for a high
percentage of the total phenotypic variation in most
traits. An important issue is the definition of CG by
setting cut-off dates to form new CG (Crump et al.,
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CG, an animal model with CG and the covariate DOB
nested within CG (CG + DOB), and P-splines with the
first difference penalty matrix and three different AMS
with 20, 40, 60, 80, or 120 knots. Models were compared
using a modified Akaike information criterion (AICC),
which was calculated as a byproduct of the estimation
of variance components by REML using the expectation
maximization algorithm. All three AMS had smaller
(better) values of AICC than the regular model with CG,
while producing almost the same ranking of predicted
breeding values and similar average predicted error
variance. In all AMS, the inference and all measures
of comparison were similar when the number of knots
was equal ≥40. The model CG + DOB had analogous
performance to the AMS, but at the expense of using
more parameters. It is concluded that the use of penal-
ized regression splines using a B-spline basis with
proper covariance matrices is a competitive method to
the fitting of CG into animal models for genetic evalua-
tion, without having to assume any functional form for
the covariate DOB.

1997; Carabaño et al., 2004); bias may be introduced
for records close to a cut-off date between two adjacent
CG (Sivajarasingam, 1993). The reason is that the func-
tional form of the relationship between the evaluated
trait and the effects of herd environment in time is
unknown. Thus, CG is an approximation to a time-
varying mean in an attempt to describe the unknown
distribution of those effects.

Semiparametric models are employed when the func-
tional form of a covariate is unknown. In this situation,
the underlying smooth function is usually a nuisance
parameter, and the interest lies in accounting for the
effects of the regressor variable (Altman, 2000). Thus,
an alternative to CG is to fit a time covariate (e.g.,
day of birth [DOB]) without imposing any particular
functional form on its effect on the trait, as suggested
by Cantet (2002). Under this approach, one or more
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functions are fitted to the data that account for the
irregular behavior of DOB. To fit such a function, Eilers
and Marx (1996) proposed penalized splines (P-
splines), a methodology that is closely connected to
mixed models (Ruppert et al., 2003; Wand, 2003). Can-
tet (2002) suggested that regression splines may be
used to substitute CG in genetic evaluation models.
His presentation was expository and attempted to use
truncated rather than Basic segmented polynomial line
(B-spline) basis functions without details on how to
perform the numerical computations. Thus, the goals
of the present research were 1) to describe an animal
model with DOB using P-splines and proper covariance
matrices (AMS), and 2) to fit the AMS to birth weight
records of beef cattle and to compare them with the fit
obtained by the regular model with CG for genetic eval-
uation.

Materials and Methods

P-Splines, B-Splines, and Semiparametric
Animal Models

The process we attempt to model is a particular case
of functional data in which the time (t) varying covariate
DOB follows an underlying continuous time process f(t).
This process is described by some random trajectory or
trend within a herd, which results from environmental
effects: management, grass availability, or weather
characteristics such as temperature or rainfall, or a
combination of all effects. The idea is to model this
trajectory with a smooth function that is fitted using
P-splines (Eilers and Marx, 1996). In contrast to the
prediction of random regression models for functional
breeding values (White et al., 1999; Huisman et al.,
2002; Druet et al., 2003; Iwaisaki et al., 2005), in which
the unit with repeated observations in time is the indi-
vidual animal, in the approach used here, the herd is
the unit with repeated observations over time. Other
time-varying covariates such as age of dam may be
modeled using the approach presented here, although
a low-order polynomial can be used to describe such
data in a more parsimonious fashion. With suitable
modifications, the fit of trajectories in two or more di-
mensions (for example, in space), can be dealt with by
using a two-dimensional B-splines basis, but we do not
pursue the topic any further.

The P-splines are a combination of regression on a
spline basis with a discrete roughness penalty to
smooth data series or scatterplots (Eilers and Marx,
1996). The penalty controls the degree of smoothness
while fitting the function. For P-splines, Eilers and
Marx (1996) used equally spaced B-splines basis func-
tions (De Boor, 1993). When fitted to time-dependent
data, a covariate expressed on a B-spline basis results
in the union of k-degree polynomial segments that have
k − 1 continuous derivatives at the joining points, or
knots. The resulting fit is smooth, with better numerical
properties than a polynomial fit of high degree (e.g., k

> 5; Green and Silverman, 1994). The B-splines of de-
gree k have local support, which means that they are
defined only in a small part of the real line between k
+ 1 knots, being equal to 0 outside this small segment
of the real line. Compared with least squares, this pre-
vents any observation that may affect the entire shape
of the function. Eilers and Marx (1996) observed that,
in P-splines, the number of knots is not a critical param-
eter as long as “there are enough of them.” This lack
of sensitivity to the number of knots is due to the control
exercised by the penalization. Thus, problems of multi-
collinearity can be fixed by changing the penalty param-
eter (P. Eilers, Leiden Univ., The Netherlands and B. D.
Marx, Louisiana State Univ.; personal communication).
Moreover, Ruppert and Carroll (2000) found that in-
creasing the number of knots to >40 resulted in slight
differences in fit after extensive simulation studies. Us-
ing a number of knots in the order of 40 has the effect
of dramatically decreasing the dimensionality of the
parameter space compared with other smoothing spline
methods. Notwithstanding this, increases in the num-
ber of records may require enlarging the parameter
space. We dealt with this issue by comparing models
with different numbers of knots.

Covariate DOB Expressed Using a B-Spline Basis

Consider a random vector y (n × 1) of records, which
is functionally dependent on time (t) through a general
vector valued function f(t). We will consider t to be
DOB in Julian days. It is desired that f(t) be a smooth
function of t that can be fitted using mixed model theory.
To do so, let

f(t) = ∑
nx

i=1

B(k)
i bi. [1]

In [1], f(t) is a linear combination of parameters (bi)
that are to be estimated, and elements of B-spline basis
functions B(k)

i i = 1, 2, ..., nx (De Boor, 1993). The number
of basis functions B(k)

i needed to express DOB is nx + 6
(Eilers and Marx, 1996); three additional knots are
added to each extreme. Usually the degree of a B-spline
is ≤3 (k ≤ 3). In the present research, cubic splines (k =
3) were used because they are sufficiently flexible to
retain most features of the data.

Calculations of the B(3)
i coefficients were performed

with the recursive algorithm of De Boor (1993). A brief
explanation follows. Let t1, t2, ..., tnx+6 be the set of knots
that expand the range of DOB. Then, B(0)

i = 1 if DOB
is in the interval between ti and ti+1; otherwise, B(0)

i =
0. For example, suppose t10 = 3303.5 and t11= 3390.8,
then for DOB = 3353, B(0)

10 = 1, whereas B(0)
1 , ..., B(0)

9 ,
B(0)

11, ..., and B(0)
nx+6 are all 0. The next step in the algo-

rithm is to calculate the B(1)
i s, then the B(2)

i s and finally
the B(3)

i s, using the scheme displayed in Figure 1, which
is called the blossom. Four B(3)

i elements (B(3)
i−3, B(3)

i−2,



Cantet et al.2484

Figure 1. Order of calculation of the Basic segmented
polynomial line coefficients.

B(3)
i−1, and B(3)

i ) are needed to express one value of DOB
in terms of a cubic B-splines basis. These four values
add up to 1, and the recursion formula (De Boor, 1993)
to calculate them is equal to

B(1)
i =





1, if DOB � [ti, ti+1)
0, otherwise

B(m)
i =

DOB − ti

ti+m−1 − ti
B(m−1)

i

+
ti+m − DOB
ti+m − ti+1

B(m−1)
i+1 m = 2, 3. [2]

For the sake of completeness, truncated bases are an
alternative to B-splines bases. Using truncated bases,
the function in [1] is expressed as

f(tij) = b0 + ∑
m

l=1

bl
ltl

ijl + ∑
m

l=1
∑
nx

k=1

ukl (tij − κk)l
+,

where tij is the DOB measure for herd i at time j, m is
the order of fit (usually m = 1, 2, or 3), and b0, bj, and
the ukl are the parameters to estimate. The values of
the knots are κk (k = 1, 2 ..., nx), and the quantity (tij

− κk)+ is taken to be equal to tij − κk whenever tij > κk,
or 0 otherwise. If l = 1, the fit is linear; it is quadratic
for l = 2 and cubic for l = 3.

Expression [1] can be written in matrix form as Bb,
where B is the n × nx matrix that contains the B(3)

i , and
b is the parametric vector (nx × 1) containing the bi for
f(t). Each row of B has all elements equal to zero except
for basis coefficients B(3)

i−3, B(3)
i−2, B(3)

i−1, and B(3)
i in columns

i − 3, i − 2, i − 1, and i, respectively. Thus, each value
of the covariable DOB is transformed into four B-spline
coefficients in the interval (0, 1) for each animal with
a record in y.

P-Splines

To obtain the estimators of b in the model

y = B b + e, [3]

Eilers and Marx (1996) proposed maximizing the likeli-
hood while penalizing the sum of squares of the differ-

ences between adjacent bi, either for first ∑
nx

i=1

(bi −

bi+1)2 or for second squared differences ∑
nx

i=1

(bi −

2bi+1 + bi+2)2. The resulting function is then propor-
tional to

(y − B b)′(y − B b) + λ b′ D′ D b. [4]

The scalar λ controls the amount of smoothing. For
first differences, matrices D (nx − 1 × nx) and D′D are
respectively equal to

D =









1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
. . . . .

0 0 0 1 −1









[5]

D′D =










1 −1 0 . 0 0
−1 2 −1 . 0 0
0 −1 2 . 0 0
0 0 −1 . −1 0
0 0 0 . 2 −1
0 0 0 . −1 1










.

Notice that D′ D (nx × nx) is singular. If second differ-
ences are considered, then matrices D and D′D are

D =









1 −2 1 0 0
0 1 −2 1 0
. . . . .
. . . . .

0 0 1 −2 1









[6]

D′D =










1 −2 1 . 0 0
−2 5 −4 . 0 0
1 −4 6 . 1 0
0 1 −4 . −4 1
0 0 1 . 5 −2
0 0 0 . −2 1










.

In [6], D is of order (nx − 2 × nx), and D′D is again
singular. Eilers and Marx (1996) obtained the penalized
estimator of b as the solution of the following system
of equations:

(B′B + λ D′D)b̂ = B′y. [7]

The effect of the penalty is to shrink b in an amount
proportional to λ. The connection between P-splines
and mixed models (e.g., Ruppert et al., 2003; Wand,
2003) is now apparent. In a mixed-model setting, b can
be viewed as random effects, λ to the ratio of the error
variance to the variance of the bs (Ruppert et al., 2003),
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whereas D′D may be interpreted as some g-inverse of
the variance-covariance matrix of the linear spline pa-
rameters. From a Bayesian viewpoint, a singular D′D
induces the prior distribution of the linear spline pa-
rameters to be improper, which, in turn, causes the
posterior distribution to be improper (Hobert and Ca-
sella, 1996; Lang and Brezger, 2004). A way around
this problem is to formulate an equivalent mixed model
(Henderson, 1984) such as the one discussed by Currie
and Durban (2002); however, the fitting of such a model
is computationally involved, as it makes the mixed
model equations extremely dense and does not behave
in a numerically stable manner. Alternatively, proper
covariance matrices of the bs at the knots provide a
better fit to the model than singular penalty matrices
as shown subsequently.

Animal Models with a Functional Covariate Using a
B-Spline Fit

To specify an animal model suitable for genetic evalu-
ation, we now incorporate fixed effects (e.g., age of dam
and sex) and breeding values to the specification of DOB
in [1] and [3]. The resulting animal model is equal to

y = Xβ + Bb + Za + e. [8]

The incidence matrix X (n × p) associates data to the
p × 1 parametric vector β of fixed effects; Z (n × q)
relates elements of y to the random vector a (q × 1) of
breeding values, whereas e is the n × 1 vector of random
errors. We assume a full-rank parametrization in β so
that rank [X] = p. The Gaussian vectors a and e are
stochastically independent; both have zero expectations
and covariance matrices equal to Aσ2

A and Iσ2
e, respec-

tively. Matrix A contains the additive relationships.
The random variables that relate to the knots are as-
sumed to be distributed as b ∼ N(0, GSσ

2
b), where σ2

b is
the variance component between knots and GS is a posi-
tive definite matrix that portrays the covariance struc-
ture in time for the knots. Three alternative specifica-
tions for GS are described in the next section. The expec-
tations and the variances and covariances of all random
vectors in [8] are equal to

E









y
b
a
e









=









Xβ

0
0
0









Var









y
b
a
e









= [9]









V BGSσ
2
b ZAσ2

A Iσ2
e

GSB′σ2
b GSσ

2
b 0 0

AZ′σ2
A 0 Aσ2

A 0

Iσ2
e 0 0 Iσ2

e









,

where V = ZAZ′σ2
A + BGSB′σ2

b + Iσ2
e. The variance compo-

nents are the additive genetic variance σ2
A, the variance

between knots σ2
b, and the error variance σ2

e. Mixed-
model equations for [8] are:






X′X X′B X′Z
B′X B′B + G−1

S λ B′Z
Z′X Z′B Z′Z + A−1α











β̂

b̂
â






=






X′y
B′y
Z′y





, [10]

where λ = σ2
e/σ2

b and α = σ2
e/σ2

A.

Covariance Matrices of the Elements in b

There are several considerations in the search for a
suitable covariance matrix GS. First, it should be able
to account for “serial correlation” (Diggle et al., 1994)
in such a way that pairs of knots that are closer in time
are likely to be more strongly correlated than pairs
farther distant in time. A second consideration is that
correlation structures that, after inversion, are similar
to the banded matrices of differences [5] and [6] would
behave similarly to the original formulation of P-
splines. It also was desirable to choose a linear covari-
ance structure (i.e., GS = Pσ2

b) from a regular multivari-
ate normal density rather than from a “curved” normal
density (Lehmann, 1983). In this latter case, the covari-
ance structure depends on dispersion parameters in a
nonlinear fashion, such as in an autoregressive process.
Linear dispersion structures allow the use of REML-
expectation maximization or Gibbs sampling, avoiding
the need for more involved algorithms such as Metropo-
lis-Hastings. Finally, it was considered to be important
that inversion of GS not be computationally expensive.
As a result, we used the covariance structure (P) that
accounts for a linear decay of the correlation with time
originally proposed by Cantet (2002). Off-diagonal ele-
ments of P (Pij) are functions of time lag tj − ti, between
the knots i and j. Then, for any pair of knots at times

t and t + w, cov(bt, bt+w) =



1 − w

nx



σ2

b. This covariance

structure is stationary, as it depends on time lag w but
not on the time moments t or t + w. If the time measures
(expressed in days, weeks, or months) are t1 < t2 < ... <
tnx−1 < tnx, diagonal elements of P are equal to 1 and

off-diagonals are



1 − tj − ti

nx



for tj > ti. This has the effect

of mapping the difference tj − ti into the interval [0,1)
such that, as tj − ti decreases (i.e., knots are positioned
closer), the correlation between the spline effects in-
creases linearly. This formulation of P also allows deal-
ing with irregular timings, whereas the inverse of P
can be computed proportional to O(nx) calculations such
as for A−1, a development shown in Appendix A. To
model P with equally spaced knots, let j be a nx × 1
vector with all elements equal to 1; then tnx = (tj − ti)
nx, and P is equal to
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jj′ − 1
nx










0 1 2 . (nx − 2) (nx − 1)
1 0 1 . (nx − 3) (nx − 2)
2 1 0 . (nx − 4) (nx − 3)
. . . . . .

(nx − 2) (nx − 3) (nx − 4) . 0 1
(nx − 1) (nx − 2) (nx − 3) . 1 0










.

[11]

To exemplify, let nx = 5, then P is









1 0.8 0.6 0.4 0.2
0.8 1 0.8 0.6 0.4
0.6 0.8 1 0.8 0.6
0.4 0.6 0.8 1 0.8
0.2 0.4 0.6 0.8 1









,

which is a matrix with Toeplitz structure (Marin and
Dhorne, 2002).

The second formulation considered is related to the
stochastic interpretation of f(t) given by Wahba (1990),
who showed that a polynomial smoothing spline is the
solution to the stochastic differential equation of a Wie-
ner process. Wecker and Ansley (1983) and De Jong
and Mazzi (2001) pursued this idea and obtained an
expression for the variance-covariance matrix of the
spline function and its derivative. Guo (2002) used this
formulation to write down a mixed model for functional
data. Finally, Hyndman et al. (2005) used the expres-
sion for the variance of the stochastic process involving
splines that was obtained by De Jong and Mazzi (2001)
to derive the following expression for the covariance

between knots i and j: cov(bi, bj) =
i2(3j − i)

6nx3 σ2
b. In terms

of a covariance matrix for the cubic spline functions,
we have

Σσ2
b =

σ2
b

6(nx)3









2 5 8 . 3nx − 1
5 16 28 . .
8 28 54 . .
. . . . .

3nx − 1 . . . 2(nx)3









. [12]

Matrix Σ also shows a decay of correlation in time, but
this is not linear as in P. We were not able to find an
algorithm that allows inverting Σ as simply as P.

In the correlation structures induced by matrices P
and Σ, all off-diagonal elements are non-zero, indicat-
ing dependency among all random variables in b, al-
though long-range covariances may be quite small. Al-
ternatively, one may want to model a correlation struc-
ture in which there is covariance only with the next
neighbor knot. For this formulation, Durban et al.
(2001) presented a covariance matrix for the spline
function using a decomposition of the penalty matrix
discussed by Green and Silverman (1994). The resulting
matrix is tridiagonal, with main diagonal elements

equal to Ui,i = 2/3 i = 1, 2, . . ., nx, and off-diagonals
Ui+1,i = Ui,i+1 = 1/6, for i = 1, 2, . . ., nx − 1, being
0; otherwise,

Uσ2
b =

σ2
b

6










4 1 0 . 0 0
1 4 1 . 0 0
0 1 4 . 0 0
0 0 1 . 1 0
0 0 0 . 4 1
0 0 0 . 1 4










. [13]

The matrix U can be viewed as the covariance structure
of a first-order moving average process with correlation
between adjacent knots equal to ¹⁄₄ and 0 thereafter. All
AMS discussed in this section, plus the regular animal
model with CG and the original P-spline formulation
with matrix D′D in [5], were fit to a data set containing
birth weights of beef cattle.

Number of Knots

Although knot selection methods exist, P-splines rely
on using a large number of knots (Eilers and Marx,
1996), and on limiting the effect of the knots, while
constraining the size of the spline coefficients (the bi).
However, for genetic evaluation purposes, the variable
DOB expands several years and calving seasons, and
its range increases as new data arrive. Therefore, the
dimension of the parameter space (the number of knots)
may have to increase when the number of records in-
creases. Brumback and Rice (1998) observed that the

curve ∑
nx

i=1

Bi
(k)bi is a finite nx-dimensional approximation

of the function f(t), which lies in an infinite dimensional
parameter space. An appropriate reduction of the pa-
rameter space can be produced using the method of
sieves (Chen, 2005). By sieves, it is meant a sequence
of approximating, and significantly less complex pa-
rameter spaces, which optimize some criterion function.
The consistency of the method is ensured by increasing
the dimension of the parameter space with the increase
in sample size. Whereas the asymptotics of the method
of sieves are complicated because of the dual approach
to infinity of the dimension of the parameter space and
the number of data (nx → ∞ and n → ∞), the implemen-
tation is easily achieved by fitting models with in-
creased numbers of knots and by comparing them us-
ing, for example, the Akaike information criterion
(AICC) as a criterion function. In general, if too many
knots are used, the fit tend to be unstable and highly
variable (the curve is too “wiggly”). Conversely, fitting
too few knots leads to bias. To quantify the effect of the
increase in the number of knots, models with 20, 40, 80,
or 120 equally spaced knots may be fitted and compared
according to convergence, AICC, and the way they han-
dle periods in which DOB are not observed.
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Differential Management Effects

For multiple herd evaluations or to model interrup-
tions of measures, different herds, or types of manage-
ment, GS can be taken to be block-diagonal. Whenever
some records in a herd cannot be considered as part of
the stochastic process related to herd-time effects, the
fitting of DOB requires a modification of model [8]–[9].
For example, suppose the trait of interest is weaning
weight and, throughout the years, a few animals re-
ceived a different nutritional management than the ma-
jority of them. One possible solution is to modify [8] to
incorporate unrelated time-varying parameters to the
function in [1]. Let the vector of these CG effects be bG,
which is related to the records by the incidence matrix
BG. Rows in BG will be equal to zero, except for those
belonging to animals from the differential manage-
ment, which will have a 1 in the column related to the
CG in bG. This vector may be treated as either fixed or
random. In the latter case, bG ∼ N(0, Iσ2

c), with σ2
c either

being equal to or different from σ2
b, in which case this

variance has to be estimated too.

Data

Records were 5,175 birth weights from a purebred
Polled Hereford herd, belonging to Estancias y Cabaña
Las Lilas S.A. and located in Pasteur, western Buenos
Aires province, Argentina. Data were collected from
1972 to 2000. A total of 9,742 animals were included
in the pedigree file. The records were from 2,739 males
and 2,436 females calves, respectively, sired by 177
bulls and from 1,825 dams. The cow herd was kept
in cultivated pastures without supplemental feeding
throughout the entire year. During most years, there
were calving seasons in spring and fall. Therefore, a
CG was defined for each calving season within year,
creating 53 CG. The average CG day span was 54 d
(range = 12 to 107 d), and the average number of calves
per CG was 98 (range = 9 to 204).

Models of Analysis. Six animal models were fitted to
the records. All models included fixed effects of sex of
calf and age of dam and random breeding values and
error terms. Four models had DOB as a covariate ex-
pressed with a cubic B-spline basis, such as in [1] and
[8]. The fifth model included CG as a fixed classification
variable, and the sixth also included the covariate DOB
nested within CG, as suggested by a reviewer. For X
to have full column rank, the sex effect of females was
set to 0. In the two models with CG, the last age of dam
also was set to 0.

B-Spline Fit of DOB. Covariate DOB was calculated
using Julian days. Day 1 was the day the first registered
calf in the herd was born (July 2, 1972). The B-spline
coefficients for DOB were calculated using the FOR-
TRAN subroutine BSLPVN (De Boor, 1977), with 46 (=
nx + 6, or nx = 40) equally spaced knots; however, the
order of the vector b, as well as of the penalty matrix

D′D or the covariance matrices P, Σ, and U, was equal
to nx = 40.

Estimation of Variance Components. The procedure
used to estimate the dispersion parameters was REML
(Patterson and Thompson, 1971) by means of the expec-
tation maximization algorithm (Dempster et al., 1977).
A program was written in FORTRAN to perform all
calculations. The estimator of the additive variance
σ2

A at the r-iteration was equal to

σ2[r]
A =

[â′A−1â][r−1] + tr[(A−1Caa)σ2
e][r−1]

q ,

where â is BLUP(a), and Caa is the portion of the in-
verse of the mixed model equations associated with a
in the inverse matrix:






X′X X′B X′Z
B′X B′B + G−1

S λ B′Z
Z′X Z′B Z′Z + A−1α






−1

= [14]






Cββ Cβb Cβa

Cbβ Cbb Cba

Caβ Cab Caa





.

The REML-EM estimator of σ2
b is

σ2[r]
b =

[b̂′G−1
S b̂][r−1] + tr[CbbG−1

S σ2
e][r−1]

nx ,

where b̂ = BLUP(b), and Cbb is as in [14]. Finally, the
error variances in all AMS were estimated using the
formula

σ2[r]
e =

[ê′ê][r−1] + [{p + nx + q − tr(Cbb)λ − tr(A−1Caa)α}σ2
e][r−1]

n ;

whereas in the two models with GC, the estimated error
variance was equal to

σ2[r]
e =

[ê′ê][r−1] + [{p + k + q − tr(A−1Caaα)}σ2
e][r−1]

n .

In all cases n = 5,175, and ê = BLUP(e). The algorithm
was performed until the difference in the estimates
from two successive iterates for any variance compo-
nent was <10−2 kg2. To make the estimates from all
models comparable, regardless of the definition of either
fixed CG or random DOB effects, heritability (h2) was
estimated as ĥ2 = σ̂2

A/(σ̂2
A + σ̂2

e).
To compare the fit obtained with the different models,

AICC, as adapted by Hurvich et al. (1998) to local
smoothing spline estimators, was calculated as
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Table 1. Estimates of the variance components, heritability (h2), and a modified Akaike
information criterion (AICC)

Parameterb

Itema No. σ̂2
A, kg2 σ̂2

b, kg2 σ̂2
e , kg2 ĥ2 AICC

Fixed CG 53c 11.15 — 14.34 0.43 4.77
Fixed CG + DOB(CG) 106c 10.42 — 14.16 0.42 4.62
D′D 20d 12.99 21.24 13.99 0.48 4.74

40d 13.71 25.43 13.09 0.51 4.80
60d 14.96 26.78 11.93 0.55 4.92
80d 14.21 25.82 11.91 0.54 4.85

120d 13.78 26.30 11.82 0.53 4.81
P 20d 11.68 12.67 14.81 0.44 4.67

40d 11.27 5.82 14.71 0.43 4.65
60d 11.13 7.86 14.32 0.43 4.64
80d 11.04 8.41 14.11 0.43 4.64

120d 11.02 4.49 14.00 0.44 4.64
Σ 20d 11.12 0.06 15.10 0.42 4.63

40d 10.87 5.45 14.85 0.42 4.62
60d 10.74 59.15 14.44 0.42 4.62
80de — — — — —

120de — — — — —
U 20d 11.50 57.60 14.90 0.44 4.66

40d 11.10 96.07 14.69 0.43 4.64
60d 11.09 71.93 14.22 0.44 4.64
80d 10.99 94.14 13.92 0.44 4.64

120d 11.00 101.28 13.69 0.45 4.65

aCG = contemporary group, DOB = day of birth, D′D = model with first-order penalty matrix, P = model
with covariance matrix proposed by Cantet (2002), Σ = model with covariance matrix proposed by Hyndman
et al. (2005), and U = model with covariance matrix proposed by Durban et al. (2001).

bσ̂2
A = estimated additive genetic variance, σ̂2

b = estimated variance of B-spline coefficients, σ̂2
e = estimated

error variance, ĥ2 = estimated heritability, and AICC = Akaike information criterion modified by Hurvich
et al. (1998).

cNumber of fixed CG and fixed regression coefficients.
dNumber of B-spline random coefficients.
eDid not meet the convergence criterion (10−2 kg2 for all three variance components) after 1,000 iterations,

and parameters could not be estimated.

AICC = log σ̂2
e + 1 +

2(tr(H) + 1)
n − tr(H) − 2; [15]

the estimated error variance and H is a symmetric ma-
trix such that ŷ = Hy. The statistic AICC was calculated
as a byproduct of the EM algorithm when estimating
the variance components using the expression (see Ap-
pendix B for its derivation):

tr(H) = p + nx + q − [tr(U−1Cbb)λ + tr(A−1Caa)α].

The model with the smallest value of AICC is to be
selected (Hurvich et al., 1998).

Results

To improve convergence for the model with GS = P,
P−1 was divided by its (1, 1) or (nx, nx) element, which
is equal to 2/nx (see A1 in Appendix A). This is equiva-
lent to Var(b) = Pσ2

b′, where σ2
b′ = (nx/2)σ2

b. Notice that
the resulting matrix is similar to the first difference
penalty matrix D′D in [5], except for the non-zero ele-
ments in (1, nx) or (nx, 1), which makes P be nonsingu-
lar. In addition, the matrix Σ was multiplied by the

cube of the constant interval between equally spaced
knots (ti+1 − ti)3 to improve convergence. Having done
that, the four models with DOB and 20, 40, and 60
knots and the two models with CG met the criterion of
convergence in <200 rounds of iteration. The conver-
gence criterion was not met after 1,000 rounds of itera-
tion for the models that included matrix Σ with 80 or
120 knots. The REML-EM estimates of σ2

A, σ2
b, σ2

e, h2,
and the value of AICC from all models are displayed in
Table 1. Within any AMS, estimates of σ2

A and σ2
e were

similar across models with different numbers of knots,
and the model with matrix D′D had the largest range
of estimates. As a result, ĥ2 values in all AMS were
similar to the values observed for both models with CG,
whereas the model with D′D showed the largest value
of ĥ2. The estimates of σ2

b were different in the four
AMS and tended to increase as the number of knots
increased. This was not the case for the model with P,
where σ̂2

b showed a somewhat erratic downward trend.
Comparisons using AICC (last column of Table 1)

favored the model with CG and the covariate DOB
nested within CG (AICC = 4.62) and all AMS, with
respect to the models with CG (AICC = 4.77) or the D′D
penalty (AICC = 4.74 to 4.92). Among the three AMS,
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Figure 2. Differences in birth weight plotted against Julian day of birth (DOB) for different models that differ in
the covariance matrices for B-spline coefficients. Covariance matrices are D′D, first-order penalty matrix; P, as proposed
by Cantet (2002); Σ, as proposed by Hyndman et al. (2005); U, as proposed by Durban et al. (2001), and the usual
model with fixed contemporary group (CG).

the model with Σ showed the smallest set of values of
AICC whenever convergence was met (AICC = 4.62 to
4.63), being slightly higher than the range for the mod-
els with P (AICC = 4.64 to 4.67) and U (AICC = 4.64 to
4.65). The Pearson and Spearman correlations among
the predicted breeding values (BLUP(a)) for the 20
models in Table 1 were all ≥0.96, so that animals ranked
similarly using the predictions across all models. The
average PEV(a) and accuracy were respectively equal
to 0.39 and 0.67 for all models, except for those with
the D′D penalty, which ranged from 0.53 to 0.55 for
PEV(a) and from 0.70 to 0.71 for accuracy, reflecting
the higher ĥ2 in the model with penalty matrix [5].

Figure 2 displays the solutions of CG effects (the
thickest line with irregularities), and the BLUP(b) of
all AMS from the models with 40 knots. The shapes of
the fitted curves were affected by the model. The curve
from the AMS with matrix U was more wiggly, whereas
the one from the model with penalty matrix D′D was
smoother than the curves from the other models. The
diagonal lines in the curve for the model with CG are
caused by a lack of observations at that time. Of particu-
lar interest is the period expanding from 5,012 to 5,219
d of DOB, in which no birth weights were recorded.
Notice that the solution of the CG on the left of 5,012
d is lower than the one on the right of 5,219 d. The
curve from the model with penalty matrix D′D passes
above the solution of the CG on the left and below the
CG on the right. The path from the AMS with P went
up in a more or less straight fashion; however, the
curves from the models with Σ and U went down after
5,012 d to a local minimum at 5,127 d and then in-
creased to 5,219 d. Thus, this effect seems to be an
artifact of both models, which is not supported by the
data. During most time intervals with observed birth

weights, the curves from the AMS with matrices P and
Σ tended to have a similar shape.

The effect of the number of knots on the fit is shown
in Figure 3, in which the curves for the models with
matrix P and 20, 40, 80, or 120 knots are shown. The
effects of the number of knots for the other AMS were
similar to the one in Figure 3, so they are not shown
here. Increasing the number of knots from 20 to 120
resulted in more wiggly curves. In the interval between
2,000 and 3,000 d of DOB, the AMS with 20 knots went
upward softly, missing the peaks observed in Figure 2
for the model with CG. Notice that those peaks were
not missed by the models with ≥40 knots. The curves
from the AMS with 80 and 120 knots were similar.
At the interval in DOB between 5,012 and 5,219 d, a
minimum of 5,062 d is observed for the AMS with 80
or 120 knots, which also is not supported by the data.

Discussion

Whether herd environmental conditions manifest
themselves in a continuous or in a discrete fashion is
debatable, but certainly time is the central criterion to
form CG within a herd or management unit. Although
time is inherently a continuous variable, it is discret-
ized for the purposes of genetic evaluation. Nonethe-
less, the categorization of a continuous variable into a
discrete variable in linear models results in a loss of
statistical information and creates bias (Taylor and Yu,
2002). This is especially true for animals with records
near the cut-off date after which a new CG is created.
This bias arises by the introduction of a “sudden jump”
in expected value at the cut-off point (Taylor and Yu,
2002): all records in the CG to the left of the cut-off
have an equal mean that is different from the CG mean
to the right of the cut-off. Sivarajasingam (1993) recog-
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Figure 3. Differences in birth weight plotted against Julian day of birth (DOB) for the models with covariance matrix
for B-spline coefficients P σ2

b, as proposed by Cantet (2002), for different numbers of knots.

nized this effect as problematic for CG formation and
suggested the use of a similarity matrix to link various
observations across CG. Although this formulation mit-
igates the effects of bias on borderline records from
contiguous CG, it still assumes a parametric form for
these effects. Conversely, employing a semiparametric
fit of DOB does not require assuming any functional
form of the covariate, and the need for discretization
does not arise. In this regard, we used P-splines with
proper covariance matrices to avoid fitting CG (or herd-
year-seasons) into an animal model for genetic evalua-
tion. All AMS had smaller (better) values of AICC, pro-
duced almost the same ranking of predicted breeding
values, and had similar average PEV(a) compared with
the regular model with CG. Including the linear effects
of the covariate DOB nested within CG in the model
produced a similar value of AICC as those obtained with
the AMS, but at the expense of doubling the number
of parameters for CG. Carabaño et al. (2004) argued
that other procedures to mitigate the cut-off date effect
described previously, such as the one proposed by Sivar-
ajansigam (1993), or the modeling of a covariance struc-
ture for random CG effects, while still defining CG-
classes (Chauhan and Thompson, 1986), found no clear
advantage with respect to the classic formulation of
fixed CG. From an animal breeding view of model com-
parison, the criteria that we used (ĥ2 correlation be-
tween BLUP(a) or their rankings, average PEV(a) or
accuracy) permit a similar conclusion. However, in the
data structure we used, 1) there were a large number
of animals in any CG; 2) indicators of connectedness
suggested records were extremely well distributed—
most CG had calves from several sires, and at least
one-half of the sires were repeated every year; and 3)
each CG represented a calving season within a year so
that 95% were ≤89 d, 75% were ≤65 d, and 5% (one CG)
had a spread of 12 d. Therefore, it would be difficult
for any other well-posed model to produce differences

in predicted breeding values or PEV(a); however, all
AMS performed similarly to models with CG using
fewer “parameters” (40 knots compared with 53 or 106).
Moreover, the AMS require neither definition of cut-off
date as models with CG nor the assumption of any
parametric form of the effect being modeled. Finally,
in the current application, the unit in which repeated
measures are made is the herd and not the animal. As
CG are defined on a within-herd basis, herds had more
records than CG classes, allowing more direct compari-
sons of animals, which in theory should decrease prob-
lems of connectedness across herds. Overall, the AMS
are more parsimonious; fitting DOB with P-splines does
not imply any assumption on the functional form of the
curve, and its performance in terms of genetic evalua-
tion would be similar to the regular animal model
with CG.

Most other applications of splines in animal breeding
are based on modeling functional breeding values
(White et al., 1999; Huisman et al., 2002; Druet et al.,
2003; Iwaisaki et al., 2005). The literature on smoothing
methods with splines has become abundant, and the
fit of semiparametric methods using mixed linear model
software has become popular (Ruppert et al., 2003;
Wand, 2003). This is especially true for P-splines (Eilers
and Marx, 1996), either viewed from the frequentist
(Wand, 2003) or the Bayesian (Lang and Brezger, 2004)
camps. There are many reasons for the appeal of this
methodology that generalizes ordinary smoothing
splines to knot sequences, which are usually much
smaller than the response variable. The P-splines have
the stable numerical properties of B-splines compared
with other basis function approaches, such as truncated
basis (Eilers and Marx, 2005). We have shown the flex-
ibility of P-splines to accommodate different specifica-
tions of covariance matrices as penalties. Moreover, the
fit of the function does not require any assumption on
the parametrization of the curve.
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In this research, we compared curves fitted with P-
splines in models with different numbers of knots but at
equal intervals or spacings. Within any type of penalty
matrix or covariance structure, the values of all statis-
tics used for comparison (σ̂2

A, σ̂2
e, ĥ2, AICC, average

PEV(a), average accuracy, and ranking of predicted
breeding values) were similar for models with different
numbers of knots. The only parameter that showed
sizeable changes with the increase in the number of
knots was σ̂2

b, which is the denominator of the smoothing
parameter λ. These results are consistent with the ob-
servation of Eilers and Marx (1996) that the number
of knots is not a critical parameter in P-splines but the
smoothing parameter λ is. After extensive simulation,
Ruppert and Carroll (2000) found that increasing the
number of knots to >40 resulted in marginal decreases
in mean square error for all models and examples they
worked out. Furthermore, setting the knots at equal
spacings performed slightly better than knot sequential
procedures. In the words of Altman (2000), “penalized
regression splines appear to be robust to the choice of
knots (as long as there are sufficiently many).” The
curves fitted with matrix P (Figure 3) suggest that 20
knots are not adequate to take care of all features of
the trend, whereas 80 or 120 are less parsimonious than
40 knots, but give some inconsistencies in intervals of
DOB with no birth weight recorded. In cases where
more than one curve has to be fit (for example, a curve
per herd or per system of management within a herd),
the B-spline coefficients and the knots have to be calcu-
lated on a herd-by-herd basis, and Var(b) will be a block
diagonal matrix.

The choice of covariance matrix in the AMS at-
tempted to take into account the situations of either
complete dependence among the random variables re-
lated to the knots (covariance structures from matrices
P and Σ) or to reflect covariance only with the next
neighbor knot (matrix U) in the other extreme. The
performance of all three AMS, in terms of the estimates
of the variance components and h2, PEV(a), and AICC,
were similar. However, there were differences in the
shape of the fitted curves (model with matrix U pro-
duced more wiggly curves) and in the approach to con-
vergence when the number of knots increased (model
with matrix Σ not converging when 80 or 120 knots
were fitted). All things considered, the AMS with matrix
P and 40 knots seems to be the model of choice for
this data.

In this research, the estimation of dispersion parame-
ters and the model comparison procedure (AICC) fol-
lowed a likelihood approach; however, to estimate the
variance components, a Bayesian method and Gibbs
sampling (Sorensen and Gianola, 2002) also are em-
ployed in any of the models considered. In fact, models
[8]–[9] with covariance matrices [11], [12], or [13] are
Bayesian P-splines models (Lang and Brezger, 2004),
which results from an nx-variate normal prior for b
such that a priori b ∼ N(0, GSσ

2
b) with GS = P, Σ or U.

Implications

Semiparametric animal models with a penalized-
spline fit of the covariate day of birth of the animal and
a proper covariance matrix of the spline coefficients had
a better fit than the regular model with contemporary
groups. Moreover, the penalized-splines models pro-
duced similar ranking of predicted breeding values and
average accuracy for birth weights of beef cattle. Thus,
the use of penalized regression splines using a B-spline
basis with proper covariance matrices is a competitive
method to avoid fitting contemporary groups (or herd-
year-seasons) into animal models for genetic evaluation
without having to assume any parametric form for the
environmental effects of herd in time.
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Appendix A: Elements of P−1

Let the times of measure (expressed in days, weeks, or months) be t1 < t2 < ... < tnx−1 < tnx. All diagonal elements
of P are 1, whereas off-diagonals are equal to 1 − [(tj − ti)/tnx] whenever tj > ti. Let the matrix of knot differences be

ψ =










0 t2 − t1 t3 − t1 . tnx−1 − t1 tnx − t1

t2 − t1 0 t3 − t2 . tnx−1 − t2 tnx − t2

t3 − t1 t3 − t2 0 . tnx−1 − t3 tnx − t3

. . . . . .
tnx−1 − t1 tnx−1 − t2 tnx−1 − t3 . 0 tnx − tnx−1

tnx − t1 tnx − t2 tnx − t3 . tnx − tnx−1 0










.

So we can write P = jj′ − Ψ(tnx)−1, where j is a nx × 1 vector with all elements equal to 1. To invert P, we use the
formula for the inverse of a sum of matrices (Harville, 1997):

P−1 =



jj′ − ψ

tnx




−1 = (−tnx)




ψψ−1 + ψψ−1j





1
1 − j′ψψ−1j




j′ψψ−1



.

Rybicki and Press (1992) observed that Ψ−1 is equal to

ψψ−1 =
1
2


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













1
tnx − t1

− 1
t2 − t1

1
t2 − t1

0 . 0
1

tnx − t1

1
t2 − t1

− 1
t3 − t2

− 1
t2 − t1

1
t3 − t2

. 0 0

0
1

t3 − t2
− 1

t4 − t3
− 1

t3 − t2
. 0 0

. . . . . .

0 0 0 . − 1
tnx − tnx−1

− 1
tnx−1 − tnx−2

1
tnx − tnx−1

1
tnx − t1

0 0 .
1

tnx − tnx−1

1
tnx − t1

− 1
tnx − tnx−1

















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Although P may have all elements different from 0, its inverse shares the structure of Ψ−1. Again, on using the
inverse of a sum formula and after algebra, the elements of P−1 are

P−1
1,1 =

tnx(tnx + t2)
2(t2 − t1)(tnx + t1)

P−1
1,nx = P−1

nx,1 =
tnx

2(tnx + t1)
,

P−1
i,i =

tnx(ti+1 − ti−1)
2(ti+1 − ti)(ti − ti−1)

i = 2, . . ., nx − 1,

P−1
nx,nx =

tnx(2tnx − tnx−1 + t1)
2(tnx − tnx−1)(tnx + t1)

P−1
i,i+1 = P−1

i+1,i =
−tnx

2(ti+1 − ti)
.

With equally spaced knots, all differences tj− ti are equal, and P−1 is equal to

P−1 =










0.5nx −0.5(nx − 1) 0 . 0 0.5
−0.5(nx − 1) (nx − 1) −0.5(nx − 1) . 0 0

0 −0.5(nx − 1) (nx − 1) . 0 0
. . . . . .
0 0 0 . (nx − 1) −0.5(nx − 1)

0.5 0 0 . −0.5(nx − 1) 0.5nx










. [A1]

Appendix B: Corrected Akaike Information Criterion (AICC)

Hurvich et al. (1998) wrote the AICC statistics as follows:

AICC = log σ̂2
e + 1 +

2[tr(H) + 1]
n − tr(H) − 2, [B1]

where σ̂2
e is the estimated error variance, n is the number of data in y, and H is a symmetric matrix such that

the predicted data vector is ŷ = Hy. Under model [8], ŷ is equal to

Hy = Xβ̂ + Bb̂ + Zâ. [B2]

The left-hand side of [B2] can be written as

[X|B|Z]






β̂

b̂
â






= [X|B|Z]M






X′
B′
Z′





y,

where H = [X|B|Z]M






X′
B′
Z′






and M =






Cββ Cβb Cβa

Cbβ Cbb Cba

Caβ Cab Caa






as in [14].

Then, take tr(H) = tr





[X|B|Z]M






X′
B′
Z′











and rotate it so as to obtain

tr(H) = tr











X′
B′
Z′





[X|B|Z]M






= tr











X′X X′B X′Z
B′X B′B B′Z
Z′X Z′B Z′Z





M





. [B3]

Now, let S be equal to

S =






0 0 0

0 U−1λ 0

0 0 A−1α





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and add and subtract S from [B3] in tr(H). We then have

tr(H) = [M(L + S − S)] = tr[M[(L + S) − S]] = tr[M(L + S) − MS],

where MS is equal to MS =






0 0 0

0 CbbU−1λ 0

0 0 CaaA−1α





.

Finally,

tr(H) = tr[I − MS] = tr(Ip+nx+q) − tr(MS)

or

tr(H) = p + nx + q − [tr(U−1Cbb)λ + tr(A−1Caa)α]. [B4]

Expression [B4] is the operational formula to calculate tr(H).


