

Aalborg Universitet

The SOPHY Framework

Laursen, Karl Kaas; Pedersen, Martin Fejrskov; Bendtsen, Jan Dimon; Alminde, Lars

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Laursen, K. K., Pedersen, M. F., Bendtsen, J. D., & Alminde, L. (2005). The SOPHY Framework: Simulation,
Observation and Planning in Hybrid Systems. Aalborg: Department of Control Engineering, Aalborg University.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 25, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60331119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/the-sophy-framework(06da41f0-9c2d-11db-8ed6-000ea68e967b).html

The SOPHY framework:
Simulation, Observation and Planning in Hybrid Systems

Karl Kaas Laursen, Martin Fejrskov Pedersen, Jan Dimon Bendtsen, Lars Alminde
Department of Control Engineering, Institute of Electronic Systems

Aalborg University, Denmark
Email: {karl, mfpe01, dimon, alminde}@space.aau.dk

Abstract

The goal of the Sophy framework (Simulation, Obser-
vation and Planning in Hybrid Systems) is to implement
a multi-level framework for description, simulation, ob-
servation, fault detection and recovery, diagnosis and au-
tonomous planning in distributed embedded hybrid systems.
A Java-based distributed, hybrid simulator is implemented
to demonstrate the virtues of Sophy. The simulator is set up
using subsystem models described in human readable XML
combined with a composition structure allowing virtual in-
terconnection of subsystems in a simulation scenario. The
performance of the simulator has shown to be very depen-
dent on the way its distributability is utilised revealing both
the limitations and strengths introduced by delegating com-
putation tasks in a distributed architecture.

1. Introduction

Recently, a revived interest in the field of artificial in-
telligence (AI) has surfaced in research areas without any
prior history in AI. One such scientific territory is the area
of space exploration, which is starting to see the possible
advantages of a more autonomous way of system opera-
tion. As of today, unmanned spacecraft are completely iso-
lated and self-contained systems without physical human
contact, remotely controlled via round-the-clock teleopera-
tion by specialists. Such personnel may have to spend six
to seven hours a day devising operational procedures and
flight plans and the rest of the time on actual operation, data
collection, maintenance, fault analysis and error handling,
making it a full time job to operate the remote system [7].

Controlling a highly complex system like a spacecraft
from a distant location brings about the inevitable risk of
unrecoverable human errors resulting in mission goal re-
duction or even mission failure due to the extremely re-
stricted access to the system itself. If the spacecraft were
able to handle some, if not all, of the tasks required to ful-
fill its mission goals, the required human intervention would

be lessened, leading to less stress on the mission person-
nel and less likelihood of failure. To achieve this, a certain
level of on-board intelligence on the remote platform is re-
quired. The system must be able to sense its surroundings,
simulate likely behavior in response to various control ac-
tions, and choose the optimal actions according to relevant
criteria, such as achievement of mission goal, energy con-
sumption, collision danger etc.

These considerations are obviously not only valid for
spacecrafts, but indeed for any autonomous system [2]. This
motivates the development of a structured framework for
constructing systems that are able to operate without hu-
man intervention, both for the purposes of control design,
but also to facilitate integrated design and testing of au-
tonomous systems. Such a framework must necessarily in-
volve methods for simulating and observing the system, as
well as easy implementation of control and planning algo-
rithms.

Since autonomous systems very often operate in differ-
ent modes in order to carry out their tasks, the framework
must be able to support formulations of systems involving
both continuous and discrete dynamics, i.e. hybrid systems.
For example, a mobile exploration robot on a mission to
gather rock samples might drive to a specified waypoint us-
ing a tracking controller (see e.g., [3]). Then, at the way-
point, it might activate a robot arm for gathering up the rock
sample, requiring an entirely different controller to be ac-
tive (see e.g., [4]). Instead of attempting to describe every
part of this complex system as one large state space model,
it is more logical to model and control each subsystem sep-
arately and let the framework handle the composition and
simulation. Furthermore, it must be possible to describe the
subsystems using a simple formalism that lends itself to
easy interpretation on and exchange of data between com-
puters for the sake of distribution of tasks.

The SOPHY (Simulation, Observation and Planning in
HYbrid systems) framework is a common framework for
hybrid model description and composition that intends to
address these issues. It utilizes object-oriented design and
implementation methodologies and is intended to be fully

distributed. In this paper, based on the master’s thesis [5]
founding SOPHY, we present the initial design and imple-
mentation of a fully distributed simulation tool within this
framework, which is able to simulate distributed hybrid sys-
tems, including interactions between them. In the rest of the
paper, we first present an overview of the hybrid systems
considered in the simulator as such, followed by a brief de-
scription of the framework and software structure. Then we
present a distributed simulation example and end with a few
concluding remarks.

2. Hybrid Systems

Hybrid systems are systems involving both continuous
and discrete dynamics. An example of a hybrid system com-
prised of two hybrid subsystems is shown in Figure 1. Each
subsystem consists of two discrete locations each with its
own continuous dynamic equations and two transistions to
allow location changes. Furthermore, the locations in sub-
system 1 has invariant sets described by state-dependent in-
equalities i1 and i2.

i1 = {u1 < 10} i2 = {u1 > 4}

y2 = h21(x2) y2 = h22(x2)

y1 = h11(x1) y1 = h12(x1)

Subsystem 1

Subsystem 2

Event π

g1

π

u1

y2 u2

y1

ẋ1 = f11(x1, u1) ẋ1 = f12(x1, u1)

ẋ2 = f12(x2, u2) ẋ2 = f12(x2, u2)

Figure 1. Two interconnected hybrid subsys-
tems each with two locations, two sets of in-
variants and no exogenous inputs.

The behavior in each discrete location can be described
as an ODE governing the dynamics at the location, fvs , an
output equation hvs and an invariant map, ivs , describing a
powerset of states and inputs which gives the domain of the
location:

ẋ(t) = fvs(x(t), u(t)) y = hvs(x(t), u(t)) (1)
ivs : vs → 2X

n×Um

(2)

where x ∈ Xn ⊆ R
n is a vector of continuous states, u ∈

Um ⊆ R
m are exogenous inputs, y ∈ Yp ⊆ R

p are outputs
and t is the time. Xn, Um and Yp are state, input and output
spaces. vs is discrete location s.

As time progresses the system state evolves within a sin-
gle location, until an external event occurs or the invariant
inequality is unsatisfied, i.e. (x, u) /∈ ivs . At this point, a
transition can be triggered, causing the system to shift to
the other set of continuous dynamics, possibly after a re-
set of the continuous states. If a location has more than one
possible transition to other locations the transitions can be
guarded by a guard set which, like the invariant set, is a
powerset of states and inputs. In order for a transition to be
enabled, the guard set must be satisfied.

2.1. Events

In discrete event systems events and transitions are
closely coupled: a transition can only occur when trig-
gered by the occurrence of an event. This is due to the fact
that all dynamics in a discrete event system is caused by the
stochastic or deterministic occurrence of events. This is,
however, not the case with hybrid systems and for this rea-
son events are explicitly defined separately from transi-
tions: events are emitted from a subsystem if and only if
a certain transition has occurred. In an Event-Open Hy-
brid Automaton an event originates deterministically
internally to a system as a result of a transition. The in-
tended use of events according to the above description
is thus as an inter-(sub)system communication infrastruc-
ture.

2.2. Transition types

We consider three types of transitions:
Event transitions; Event transitions are those transitions
associated to events (if any), which are triggered instanta-
neously when a subsystem receives an event, if the transi-
tion is enabled. If the associated transition is not enabled,
the event is simply discarded.
Rate transitions; Rate transitions are the equivalent of
events as defined in stochastic timed discrete event systems:
Rate transitions occur stochastically according to a Poisson
process with the Poisson rates Q. The main difference be-
tween the rate transitions defined here and the events in a
normal DES or a PDMP [1] (called “switching transitions”)
is that the rates may be dependent on the states and inputs.
Invariant transitions; Invariant transitions occur when the
state crosses the invariant boundary. If one or more tran-
sitions are enabled or become enabled when the invariant
boundary is crossed, one of these transitions occurs instan-
taneously. If no transition is enabled, no transition occurs.
Invariant transitions are common in hybrid systems defini-

tions but in many cases these are defined to be triggerable
even if the guard and/or the invariant set in the destination
location are not satisfied.

2.3. Synchronized Guards

The parallel compositional equivalent of the aforemen-
tioned events is synchronized guards. When simulating hy-
brid systems composed of several subsystems, it is nec-
essary to employ a signaling mechanism where the sys-
tems, containing a guard that must be synchronized, set a
“flag”. Upon the registration of the flag from all synchro-
nized guards, the transition is enabled in all subsystems and
the transition can be triggered by one of the three above
mentioned transition methods.

These concepts were formulated in an object-oriented
framework by means of Unified Modelling Language
(UML). This formulation was then used in the de-
sign and implementation of the SOPHY simulation tool.

2.4. UML Description

UML is a powerful tool to describe connections between
entities of different types. This also applies to the elements
of the hybrid systems definition which can be seen as a col-
lection of classes with certain associations each with a spec-
ified multiplicity. Using a class association diagram from
the UML family it is possible to graphically illustrate how
locations, transitions, states, guards, etc, are associated to
each other, including the multiplicity of the output of map-
pings. The hybrid system model structure proposed in this
paper can be illustrated as in Figure 2 and it is described in
detail in [5].

Figure 2. UML description of hybrid systems.

3. Framework

As outlined in the introduction, SOPHY is a framework
architecture aimed at implementing advanced autonomy in
systems that can be described as hybrid systems; in general,
this concerns complex systems often composed by multi-
ple subsystems. The full architecture of SOPHY is defined
and a hybrid simulation component has been implemented
and tested. The framework architecture is outlined in Fig-
ure 3 and the following describes the components in greater
detail.

Figure 3. The SOPHY framework.

3.1. Input Models

A key architectural point in the framework is that it is
declarative meaning that the user should only be concerned
about describing a system and not about implementing spe-
cific controllers and observers for the system. This is a ma-
jor break from traditional thinking in automatic control.

To facilitate this the only human inputs to the framework
are hybrid models described in human readable XML files.
On Figure 3 these are indicated as rectangles at the top con-
stituting hybrid models of the different subsystems in the
system and a file describing the interconnections between
the different subsystems. An optional file describes the sys-
tem in the ”hyper-domain” (to be explained in the following
sections).

3.2. Hybrid Executor

The Hybrid Executor (HE) is the architectural element
in the framework that is responsible for simulation, obser-

vation and control of a single subsystem. Presently, a gen-
eral purpose simulator that can simulate hybrid systems (as
described in section 2) is implemented. The framework an-
ticipates that also a general hybrid observer is implemented
together with a general purpose hybrid controller. General
purpose control and observation is envisioned to be im-
plemented using, for example, Unscented Kalman Filtering
(UKF) for observation and Model Predictive Control (MPC)
for control. Both of these techniques are suited to operate in
a declarative environment with a system model as their only
input and without the need for comprehensive manual tun-
ing.

Finally, each HE contains an element dubbed ”Hybrid
Abstraction Layer (HAL)”. For some applications there
may be a high degree of high-level coordination requiring
the knowledge of most internal states of the subsystems and
in other applications each subsystem may be almost de-
tached from the rest of the system. The HAL is responsi-
ble for implementing the degree of transparency that is re-
quired for each subsystem as dictated by the model.

3.3. Composer

The Composer coordinates the information flow be-
tween the attached HEs and contains elements for
high-level control and supervision. The switchboard con-
nects data-channels on a subscription basis, meaning that
any HE can subscribe to an output of another HE as de-
scribed in the ”Composer Switchboard Structure” XML
file. The ”Hybrid Mode Reconfiguration” engine is re-
sponsible for goal oriented coordination and control
of the HEs. A system similar to the Planner/Scheduler
(PS) of the Deep Space 1 project (DS1) [6] is envi-
sioned to fulfill this role. Finally the ”Hyper-Mode Iden-
tification” and ”Hyper-Hybrid Abstraction Layer” are
included in the framework as a mean to facilitate yet an-
other level of Composers if the grouping of Composers is
desirable in very complex systems. As an example, a Com-
poser might compose the HEs describing the engine of a
car, and another Composer might compose the HEs de-
scribing the driver. Then another, higher-level, Composer
might compose the engine Composer with the driver Com-
poser to create a “car with driver” object.

3.4. Comparison to Deep Space 1

The design of the SOPHY framework was motivated by
the design of the autonomy system for the NASA DS1 space
craft. However, there are many architectural differences.
Firstly, SOPHY, like DS1, is based on declarative models,
but in SOPHY these models only enter at one level in con-
trast with DS1 where each engine in the architecture has its
own model of each subsystem. This means that it is more

time efficient to write models for SOPHY and the risk of
ambiguity is eliminated.

Secondly, SOPHY is built to support models of hybrid
systems from the bottom up, whereas in DS1 low-level
models were Discrete Event Systems (DES) and high-level
models were DES with augmented simple algebraic mod-
els for resource consumption. SOPHY gathers the models
in hybrid systems for more realistic model implementation
for the sake of versatility, reliability and framework opera-
tion speed.

4. Software

A key issue of the SOPHY framework is its distributed,
object oriented software implementation. It is implemented
in the Java 1.5 language and all data traffic in the distributed
framework uses the TCP/IP protocol. This allows the com-
ponents to be distributed as depicted in Figure 4 where a
computer is appointed the role of composing the activities
carried out on a number of servers each hosting a Hybrid
Executor. The core and infrastructure of the SOPHY soft-
ware package, together with a hybrid simulation compo-
nent, is implemented and tested.

Figure 4. The deployment of the software
components.

4.1. Simulator

The main architecture of the simulator is designed with
the designated goal of making it modular and versatile such
that different simulation algorithms can be implemented
and chosen to fit any given simulation job at hand. This
is achieved mainly through the delegation of the simula-
tion task onto three sub-components: Simulator, Transition-
Generator and Solver. The relationships between the main

classes involved in a simulation scenario are depicted in the
class diagram in Figure 5.

Figure 5. The classes essential to the simula-
tor core.

The responsibilities of the Simulator are to communicate
with the composer switchboard via the IOManager, decide
when to investigate the hybrid system for possible transi-
tions and to get output from HybridSystem after each simu-
lation step and ship it out to the switchboard and possibly to
a PlotViewer component. The TransitionGenerator makes
transitions in the HybridSystem via its Transitionable inter-
face. The Solver propagates the continuous states of the hy-
brid system model via the Solvable interface to HybridSys-
tem. The Solver and TransitionGenerator sub-components
are the most essential parts in that they compose the al-
gorithmic behaviour of the simulator. Therefore, these are
made interchangeable by utilizing a variant of the object
oriented design pattern bridge design which allows for run-
time change of simulation algorithms without program re-
compilation. Currently implemented solvers include Euler,
Heun, RK, RKF and ABM.

5. Simulation Example

In order to demonstrate the feasibility of the distributed,
hybrid simulator, an example of a multi-body hybrid dy-
namic system is simulated. The example system consists
of five hovering vehicles (hovercraft) which are actuated in
two dimensions by force-linear thrusters. Each of the vehi-
cles has an associated hybrid controller to control the force
generated by the thrusters. The inputs to the controller are
the velocity of its hovercraft and the position of all other
vehicles and obstacles such as the walls of the confinement
where the craft are operating. The output is a force refer-
ence to the thrusters of the hovercraft.

5.1. Hovercraft Dynamics

The motion of the hovercraft is governed by the simple
linear rigid body dynamics in the described by equation 4.

˙[
v
p

]
=

[−µ/m 0
0 1

]
·
[
v
p

]
+

[
1/m

0

]
· u (3)

y =
[
v
p

]

where v is velocity, p is position, m is the mass of the craft,
µ is viscous friction, u is the thruster force equal to the con-
troller input and y is the output.

5.2. Hybrid Controller Automaton

The hybrid controller operates in two discrete locations:
nominal and avoid. In nominal the controller is a speed con-
troller that simply tries to keep the vehicle at a constant
speed reference in the direction it is moving. The domain of
nominal is the set of vehicle positions where the minimum
distance to every other vehicle and obstacle is greater than
2 m. If the distance is less than this, the controller makes a
transition to the avoid location where a proportional con-
troller takes over. This uses the inverse of the distance to
nearby objects as an error signal to generate a control out-
put resulting in a force directed away from these objects.
The domain of avoid is the set where the minimum distance
to all objects is less than 4 m. The controller is described as
a hybrid automaton in the simplified equation 4.

V = (v1, v2) = (nominal, avoid) (4)
E = (e1, e2) = ((v1, v2), (v2, v1))
x = (x1)
u = (v, p1, . . . , p5)
y = (y1)

f(v, x, u) =

{
(3 − ‖v‖)/33, if v = nominal

0, if v = avoid

h(v, x, u) =

{
333 · (3 − ‖v‖ + x1) · v

‖v‖
1000 · ∑n

p1−pn

‖p1−pn‖

i(v, x, u) =

{
{min(‖p1 − p2‖, . . . , ‖p1 − p5‖) > 2}
{min(‖p1 − p2‖, . . . , ‖p1 − p5‖) < 4}

5.3. Simulation Results

A simulation of five hovercraft and five hybrid con-
trollers has been carried out using the distributed simula-
tor. In this case, there is a total of ten subsystems (five craft
plus five controllers), and the simulation is distributed to
five computers. Figure 6 depicts the trajectories of the ve-
hicles showing how the hybrid controller makes them stay
within the confinement while avoiding collisions.

Figure 6. Simulation of five hovercraft with
hybrid speed and avoidance controller.

5.4. Benchmark

A number of tests have been carried out in order to
establish an empirical measure of the performance of the
simulation framework against an established alternative in
classical simulation, for example using Matlab. The bench-
marks were done using ten computationally heavy subsys-
tems containing a model of spacecraft rigid body dynamics
and kinematics. The following observations were made:

1. When running all simulators on a single host, the time
used to set up the simulation (start the Java Virtual Ma-
chines, build and distribute the ten models, send sim-
ulation parameters etc.) was approximately 15 s. The
time for the actual simulation was 20 s. The computer
load average was 1.1, approximately equivalent to one
fully utilized CPU.

2. When running each of the ten simulators and the com-
poser switchboard on a total of elleven hosts, the setup
time was approximately the same as above (15 s). The
total simulation time was approximately 9 s, and the
load average on the HE hosts was app. 0.1, equivalent
of a 10% utilization of a single CPU.

3. When doing a single-host simluation of a single sub-
system without using network, the simulation time
boils down to 1.4 s using an Adams-Bashforth-
Moulton solver algorithm.

4. Implementing and simulating the single rigid body
model in Matlab using a self-implemented Runge-
Kutta algorithm in an .m-file yields a total simulation
time of approximately 90 s. Using the fixed-step ver-
sion of the ODE45 function, however, yields a total
simulation time of approximately 0.5 s.

6. Conclusion

This paper presents a framework for simulation, plan-
ning and control of autonomous systems, along with an ini-
tial implementation of an automated, distributed simulation
tool for hybrid systems. The long-term aim of the work pre-
sented here is to implement a multi-tier framework for de-
scription, simulation, observation, fault detection and re-
covery, diagnosis and autonomous planning in distributed
embedded hybrid systems. The idea was to facilitate cap-
ture of the behavior of real-world systems by allowing not
only differential equations, locations, transitions, invariants
and guards, but also stochastic elements to be modelled into
a system description as well as the exchange of discretely
emitted events between subsystems. In addition, a new def-
inition of synchronous guards across subsystem boundaries
has increased the versatility of the hybrid systems defini-
tion.

A hybrid simulation tool has been developed and imple-
mented in the Java programming language. The simulator
is designed to work in multiple embedded systems with no
guaranteed human access to the actual computing devices
which is achieved through the use of a multi-purpose server
component called the SophyServer. The simulator is set up
using subsystem models described in human readable XML
combined with a composition structure, allowing virtual in-
terconnection of subsystems in a simulation scenario, which
is also described in XML. Tests showed that it is compara-
ble in terms of performance (speed and accuracy) with Mat-
lab’s ODE45 differential equation solver.

References

[1] Elena De Santis and Maria D. Di Benedetto and Stefano Di
Gennaro and Giordano Pola. Hybridge Work Package 7, Hy-
brid Observer Design Methodology, August 2003.

[2] M. L. Bujorianu and J. Lygeros and W. Glover and G. Pola .
Hybridge Work Package 1, A Stochastic Hybrid System Mod-
elling Framework, May 2003.

[3] B. d.-N. Benoit Thuilot and A. Micaelli. Modeling and feed-
back control of mobile robots equipped with several steer-
ing wheels. IEEE Transaction on Robotics and Automation,
12(3):375–390, June 1996.

[4] S. H. et al. The Rocky 7 Rover: A Mars Sciencecraft Proto-
type.

[5] K. K. Laursen and M. F. Pedersen. Online composition and
distributed simulation of hybrid systems. Master’s thesis, Aal-
borg University, Denmark, 2005.

[6] N. Muscettola, B. Smith, et al. On-board planning for new
millennium: Deep space one autonomy. IEEE Aerospace Con-
ference, Aspen, CO, 1997.

[7] Thomas Oberst. Restless rovers demand
long hours from CU’s ’Martians’, 2004.
www.news.cornell.edu/Chronicle/04/11.11.04/MarsLab.html.

