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Abstract

We consider solutions to the equation det D2’ = � when � has a doubling property.
We prove new geometric characterizations for this doubling property (by means of the so-called
engul6ng property) and deduce the quantitative behaviour of ’. Also, a constructive approach
to the celebrated C1; �-estimates proved by L. Ca8arelli is presented, settling one of the open
questions posed by Villani (Amer. Math. Soc. 58 (2003)).
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1. Introduction

Let ’ : Rn → R be a convex function and let @’ denote its normal mapping (or
sub-di8erential). The Monge–Amp%ere measure �’ associated to ’ is de6ned on any
Borel set E by

�’(E) = |@’(E)|;
where | · | stands for Lebesgue measure. For x∈Rn, p∈ @’(x) and t ¿ 0, a section
of ’ centered in x at height t is the open convex set

S’(x; p; t) = {y∈Rn : ’(y)¡’(x) + p · (y − x) + t}:
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Throughout this paper, we shall only consider functions ’ whose sections are bounded
sets. Geometrically, this means that the graph of ’ does not contain half-lines. If ’ is
di8erentiable, then we identify @’(x) and ∇’(x). In this case, we just write S’(x; t)
for the sections.

If we consider the archetypal convex function ’0(x)= 1
2 |x|2, then the Monge–Amp%ere

measure associated to ’0 is exactly Lebesgue measure, and for x∈Rn and t ¿ 0

S’0 (x; t) = B(x;
√

2t):

Hence, the family of sections of ’0 consists of the usual balls in Rn. Many conditions
on a general ’ have been proposed in order to preserve the harmony between measure
theory and geometry enjoyed in the case of ’0. The study of these properties began
with the fundamental papers of Ca8arelli [2,3], Ca8arelli and GutiKerrez [4,5]; and was
continued by GutiKerrez and Huang [9], and the Forzani and Maldonado [6,7]. Some
of these conditions are imposed on the sections of ’. For instance, we say that the
sections satisfy the engul8ng property if there exists a K ¿ 1 such that for every
section S’(x; p; t) it holds:

y∈ S’(x; p; t) ⇒ S’(x; p; t) ⊂ S’(y; q; Kt)

for all q∈ @’(y). Also, some of the conditions are imposed on the measure �’, for
instance, we say that �’ satis6es the (DC)-doubling property if there exist constants
C ¿ 0 and 0¡�¡ 1 such that for all sections S’(x; p; t), we have

�’(S’(x; p; t))6C�’(�S’(x; p; t));

where �S’(x; p; t) denotes �-dilation with respect to the center of mass of S’(x; p; t).
This property of �’ plays a remarkable role in the regularity theory for solutions to
the linearized Monge–Amp%ere equation, see [5,8]. In [9], GutiKerrez and Huang proved
that the (DC)-doubling property for �’ implies the engul6ng property for the sections
of ’. On the other hand, in [6] the authors proved the converse of that result. The
interplay between geometry and measure theory can be summarized in the following
theorem (see [6,9] for these and other equivalent conditions).

Theorem 1. Let S’(x; p; t); x∈Rn; p∈ @’(x); t ¿ 0 be the bounded sections of a con-
vex function ’. Then the following are equivalent:

(i) The sections of ’ satisfy the engul8ng property.
(ii) The measure �’ satis8es the (DC)-doubling property.
(iii) The Monge–Amp=ere measure �’ satis8es

ctn6 |S’(x; p; t)|�’(S’(x; p; t))6 tn;

for all sections S’(x; p; t) and some positive constants c; C.

Moreover, the (DC)-doubling property implies two important properties for ’ when
its sections are bounded sets: ’ is strictly convex, and ’∈C1;�(Q), where Q ⊂ Rn is
any compact set and � depends on Q. These results were 6rst proved by Ca8arelli [3].
See also GutiKerrez’ book [8] for a comprehensive exposition of these and other results
related to the Monge–Amp%ere equation.
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On the other hand, if ’ : Rn → R is strictly convex and di8erentiable, we set

�’(x; y) = inf{r : y∈ S’(x; r); x∈ S’(y; r)}
and

d’(x; y) = (∇’(x) −∇’(y)) · (x − y);

then it is immediate to check that

�’(x; y)6d’(x; y)6 2�’(x; y);

for every x; y∈Rn. In [1] Aimar et al. proved that: if the sections of ’ satisfy the
engul6ng property with constant K , then �’ (as much as d’) is a quasi-distance on
Rn whose balls are topologically equivalent to the sections of ’, that is, there exist
positive constants 0¡�1 ¡ 1¡�2, depending only on K , such that

S’(x; �1t) ⊂ B�’(x; t) ⊂ S’(x; �2t); (1.1)

for every x∈Rn and t ¿ 0. Moreover, the quasi-triangular constant of �’ depends only
on K . Conversely, if � is any quasi-distance on Rn whose balls are topologically equiv-
alent to the sections of ’, then the sections of ’ have the engul6ng property; this is
just due to the quasi-triangular inequality for �. Also, since the (DC)-doubling property
of �’ implies another doubling condition of �’ on the sections, now with respect to
the parameter t (see [8,9]), we have that the engul6ng property turns (Rn; d’; �’)
into a space of homogeneous type. Consequently, the real analysis (types of the
Hardy–Littlewood maximal function, CalderKon–Zygmund decomposition, BMO, Hardy
spaces, singular integrals, Muckenhoupt’s classes, etc.) with respect to �’ and the sec-
tions of ’ follows in a standard way. This is another important application of convex
functions satisfying the engul6ng property.

To cite some other recent applications of these ideas, let us mention that in [7], the
authors proved the following characterization for the engul6ng property in dimension
1 which, in turn, is useful to characterize all doubling measures and quasi-symmetric
mappings on R.

Theorem 2. Let ’ : R→ R be a strictly convex di>erentiable function. The following
are equivalent:

(i) (Engul8ng property of the sections of ’.) There exists a constant K ¿ 1 such
that if x∈ S’(y; t) then

S’(y; t) ⊂ S’(x; Kt);

for every x; y∈R and t ¿ 0.
(ii) There exists a constant K ′ ¿ 1 such that if x; y∈R and t ¿ 0 verify x∈ S’(y; t),

then y∈ S’(x; K ′t).
(iii) There exists a constant K ′′ ¿ 1 such that for every x; y∈R

K ′′ + 1
K ′′ (’(y) − ’(x) − ’′(x)(y − x))

6 (’′(x) − ’′(y))(x − y)

6 (K ′′ + 1)(’(y) − ’(x) − ’′(x)(y − x)):
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Let us denote by Eng(n; K) the set of all convex functions ’ : Rn → R whose
bounded sections satisfy the engul6ng property with constant K . Let us also de6ne

Eng(n) =
⋃
K¿1

Eng(n; K)

and

Eng0(n) =
⋃
K¿1

Eng0(n; K);

where Eng0(n; K) = {’∈Eng(n; K) : ’(0) = 0;∇’(0) = 0}.
The purpose of this paper is to exhibit new characterizations for the engul6ng prop-

erty and to describe the quantitative behaviour of functions in Eng(n). We do this
by means of a multi-dimensional version of Theorem 2. Then, several properties of
functions in Eng(n) are deduced. We also stress the importance of convex conjugate
functions, in particular, we prove that Eng(n) is invariant under conjugation. The last
part of the paper is devoted to the constructive estimates of Ca8arelli’s C1;�-theory.

2. Examples of functions in Eng(n)

Let ’ : Rn → R be a strictly convex di8erentiable function.
(i) If det D2’ = p, where p is a polynomial, then ’∈Eng(n; K) for some K de-

pending only on the degree of p (in particular, K does not depend on the coeOcients
of p), see [8, p. 52].

(ii) If �’ veri6es the �∞ property, i.e., given �1 ∈ (0; 1), there exists �2 ∈ (0; 1) such
that for every section S = S’(x; t) and every measurable set E ⊂ S,

|E|
|S| ¡�2 ⇒ �’(E)

�’(S)
¡�1

then ’∈Eng(n). To see how �∞ implies the (DC)-doubling condition, given �1 ∈ (0; 1),
pick �∈ (0; 1) such that

|S − �S|
|S| = 1 − �n ¡�2;

then
�’(S − �S)

�’(S)
¡�1

and the (DC)-doubling property follows with C = 1=(1 − �1). By Theorem 1, we
get ’∈Eng(n). This �∞ property plays an important role in the proof of Harnack’s
inequality for non-negative solutions to the linearized Monge–Amp%ere equation, see [5].

(iii) If ’∈C2(Rn) and there exist constants �; �¿ 0 such that

�6 det D2’6�; (2.2)

then ’∈Eng(n). This follows from the fact that in this case �’ clearly veri6es the �∞
property. Actually, the same is true if we only ask (2.2) to hold in the Aleksandrov
sense.



L. Forzani, D. Maldonado /Nonlinear Analysis 57 (2004) 815–829 819

(iv) If n = 1 and ’(x) = |x|p with p¿ 1, then ’∈Eng(1). In general, if � is a
doubling measure on R, then ’�(x) =

∫ x
0

∫ t
0 d� dt belongs to Eng0(1), see [7].

3. Some immediate properties of Eng(n)

Lemma 3. Let ’ be in Eng(n; K).

(i) If �¿ 0, then �’∈Eng(n; K).
(ii) If  ∈Eng(n; K ′), then ’ +  ∈Eng(n; 2(K ∨ K ′)).
(iii) If for x; y∈Rn we set ’x;y(s) = ’(sy + (1 − s)x); s∈R, then ’x;y ∈Eng(1; K).
(iv) A8(Rn;Rn) acts on Eng(n; K) by composition.
(v) A8(Rn;R) acts on Eng(n; K) by addition.

Proof. In order to prove (i), we observe that given z ∈Rn and �, s¿ 0, we have

S�’(z; s) = S’(z; s=�): (3.3)

Now, if y∈ S�’(x; t), then y∈ S’(x; t=�). By the engul6ng property of ’, S’(x; t=�) ⊂
S’(y; Kt=�). And, according to (3.3), S�’(x; t) ⊂ S�’(y; Kt). Hence, �’∈Eng(n; K).

To prove (ii), 6rst note that for every z ∈Rn and s¿ 0,

S’+ (z; s) ⊂ S’(z; s) ∩ S (z; s) ⊂ S’+ (z; 2s): (3.4)

In particular, the sections of ’ +  are bounded sets. Now, if y∈ S’+ (x; t) then
y∈ S’(x; t) ∩ S (x; t), which implies S’(x; t) ⊂ S’(y; Kt) and S (x; t) ⊂ S (y; K ′t).
Therefore, setting K ′′ = K ∨ K ′ and using (3.4), we obtain

S’+ (x; t)⊂ S’(x; t) ∩ S (x; t) ⊂ S’(y; Kt) ∩ S (y; K ′t)

⊂ S’(y; K ′′t) ∩ S (y; K ′′t) ⊂ S’+ (y; 2K ′′t):

(iii) For r; s∈R and t ¿ 0, we have

r ∈ S’x; y (s; t) ⇔ ry + (1 − r)x∈ S’(sy + (1 − s)x; t): (3.5)

Thus, if r ∈ S’x; y (s; t) then, by (3.5) and the engul6ng property of ’, we have sy +
(1− s)x∈ S’(ry+ (1− r)x; Kt). By (3.5) again, we have s∈ S’x; y (r; Kt). The engul6ng
property for ’x;y now follows from Theorem 2, with constant K independent of x
and y.

(iv) Given T ∈GL(n;R) and b∈Rn, set ’A = ’ ◦ A, where Ax = Tx + b. First note
that for all u; v∈Rn and s¿ 0 we have

u∈ S’A(v; s) ⇔ Au∈ S’(Av; s): (3.6)

Now, y∈ S’A(x; t) ⇒ Ay∈ S’(Ax; t). By the engul6ng property we have S’(Ax; t) ⊂
S’(Ay; Kt). Now, this last inclusion and (3.6) imply that S’A(x; t) ⊂ S’A(y; Kt), the
engul6ng property for ’A. Finally, we use the condition det T �= 0 to assure the
boundedness of the sections of ’A. Thus, ’A ∈Eng(n; K).
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(v) Fix v∈Rn; b∈R and de6ne a(x)=v·x+b. Set  (x)=*(x)+a(x). It is immediate
that

S (x; t) = S’(x; t); (3.7)

for every x∈Rn and t ¿ 0. Thus, if *∈Eng(n; K) then  ∈Eng(n; K).

4. New characterizations for the engul%ng property

The following result is the n-dimensional version of Theorem 2.

Theorem 4. Let ’ : Rn → R be a strictly convex di>erentiable function. The following
are equivalent:

(i) There exists a constant K ¿ 1 such that if x∈ S’(y; t) then

S’(y; t) ⊂ S’(x; Kt);

for every x; y∈Rn and t ¿ 0.(Engul8ng property.)
(ii) There exists a constant K ′ ¿ 1 such that if x; y∈Rn and t ¿ 0 verify x∈ S’(y; t),

then y∈ S’(x; K ′t).
(iii) There exists a constant K ′′ ¿ 1 such that for every x; y∈Rn

K ′′ + 1
K ′′ (’(y) − ’(x) −∇’(x) · (y − x))

6 (∇’(x) −∇’(y)) · (x − y)

6 (K ′′ + 1)(’(y) − ’(x) −∇’(x) · (y − x)):

Proof. The proof for (i) ⇒ (ii) is obvious since y∈ S’(y; t) for every y∈Rn and
t ¿ 0. Thus (ii) holds with K ′ = K .

Proof of (ii) ⇒ (iii): Given x; y∈Rn and +¿ 0, we have

’(x)¡’(x) + + = ’(y) + ∇’(y) · (x − y) + ’(x) − ’(y)

−∇’(y) · (x − y) + +;

(note that the convexity of ’ implies ’(x)−’(y)−∇’(y) · (x− y)¿ 0), this means
that x∈ S’(y; ’(x) − ’(y) − ∇’(y) · (x − y) + +). By property (ii), we must have
y∈ S’(x; K ′(’(x) − ’(y) −∇’(y) · (x − y) + +)), which means

’(y)6’(x) + ∇’(x) · (y − x) + K ′’(x) − K ′’(y) − K ′∇’(y) · (x − y) + K ′+:

Letting + go to 0 and summing up we get

(K ′ + 1)’(y)6 (K ′ + 1)’(x) + (∇’(x) + K ′∇’(y))(y − x): (4.8)

Now interchanging the roles of x and y, we obtain

(K ′ + 1)’(x)6 (K ′ + 1)’(y) + (∇’(y) + K ′∇’(x))(x − y): (4.9)
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From (4.8) and (4.9), we get

1
K ′ + 1

∇’(x) · (x − y) +
K ′

K ′ + 1
∇’(y)(x − y)

6’(x) − ’(y)

6
(

1
K ′ + 1

∇’(y) +
K ′

K ′ + 1
∇’(x)

)
(x − y): (4.10)

By using the 6rst inequality in (4.10) we get
1

K ′ + 1
(∇’(x) −∇’(y)) · (x − y)6’(x) − ’(y) −∇’(y)(x − y): (4.11)

The second inequality in (4.10) yields

’(x) − ’(y) −∇’(x) · (x − y)6
1

K ′ + 1
(∇’(y) −∇’(x))(x − y); (4.12)

which implies

’(x) − ’(y) −∇’(y) · (x − y)6
K ′

K ′ + 1
(∇’(x) −∇’(y))(x − y): (4.13)

Now (iii) follows from (4.13) and (4.11) with K ′′ = K ′.
Proof of (iii) ⇒ (ii): Suppose x∈ S’(y; t), then

’(x) − ’(y) − ’′(y)(x − y)¡t;

now, by the second inequality in (iii), we get

(∇’(x) −∇’(y))(x − y) = (∇’(y) −∇’(x)) · (y − x)6 (K ′′ + 1)t

and by using the 6rst inequality in (iii),

’(y) − ’(x) −∇’(x) · (y − x)6K ′′t:

That is, y∈ S’(x; K ′′t); and (ii) follows with K ′ = K ′′.
(ii) ⇒ (i): Let x∈ S’(y; t). We want to prove the existence of a constant K ¿ 1

such that

S’(y; t) ⊂ S’(x; Kt):

Let us assume 6rst that ’(y)=0 and ∇’(y)=0 (in particular, we get ’¿ 0). Consider
the line going through x and z, sx + (1 − s)z, s∈R, and let s1; s2 ∈R such that

’(s1x + (1 − s1)z) = ’(s2x + (1 − s2)z) = t:

By the strict convexity of ’, the segment I = {s∈R : sx + (1 − s)z} ∩ S’(y; t) equals
a certain section S’x; z (h; l) of ’x;z (as de6ned in Lemma 3) for some h∈ I and l¿ 0
such that

’x;z(s1) − ’x;z(h) − ’′
x; z(s1 − h) = ’x;z(s2) − ’x;z(h) − ’′

x; z(s2 − h) = l; (4.14)

which implies

’x;z(s1) − ’x;z(s2) − ’′
x; z(h)(s1 − s2) = 0;
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and, since s1 �= s2 and ’x;z(s1)=’x;z(s2)= t, we get ’′
x; z(h)=0; this equality, together

with the non-negativity of ’ and (4.14), implies l6 t. Since x∈ S’(y; t), we have
’x;z(1) = ’(x)¡t. Hence,

1∈ S’x; z (h; t): (4.15)

On the other hand, since ’ veri6es (ii) with constant K ′ then it is straightforward
that ’x;z veri6es (ii) in Theorem 2 with the same constant K ′, and by Theorem 2
we get that ’x;z ∈Eng(1; K), where K depends only on K ′. Actually, we can take
K = 2K ′(K ′ + 1), see [7]. Thus, (4.15) implies

S’x; z (h; t) ⊂ S’x; z (1; Kt): (4.16)

But, the fact that z ∈ S’(y; t) can be written as 0∈ S’x; z (h; t). And, by (4.16), we obtain
0∈ S’x; z (1; Kt), which means z ∈ S’(x; Kt), and we prove the Theorem when ’(y) = 0
and ∇’(y) = 0.

The general case for ’ is treated as follows: given y∈Rn, de6ne the strictly convex
auxiliary function ’y as

’y(x) = ’(x) − ’(y) −∇’(y)(x − y) x∈Rn;

then we have ’y(y) = 0 and ∇’y(y) = 0. Moreover, for every x∈Rn and t ¿ 0

S’y(x; t) = S’(x; t);

and the theorem follows.

Corollary 5. ’∈Eng(n; K) if and only if for every x; z ∈Rn, ’x;z ∈Eng(1; K ′), K ′

independent of x and z.

Proof. The proof is clear from Lemma 3 and the proof of Theorem 4.

Given two objects A and B (numbers or functions), we shall write A. B if there
exists a constant c, depending only on K (the engul6ng constant), such that A6 cB.
If A . B and B . A, we shall write A � B. Thus, the condition on Theorem 4
reads

’(y) − ’(x) −∇’(x) · (y − x) � (∇’(x) −∇’(y)) · (x − y); (4.17)

for every x; y∈Rn.

Corollary 6. Set B(x; y) = ’(y) − ’(x) −∇’(x) · (y − x). If ’∈Eng(n; K), then the
function �’(x; y) = max{B(x; y); B(y; x)} is a quasi-distance in Rn and �’ � d’.

Proof. The proof is immediate from Theorem 4. The function B is known as the
Bregman distance. Even if the Bregman distance is not a distance, under the presence
of the engul6ng property it becomes essentially a quasi-distance.

The following result relates the Euclidean balls and the d’-balls, providing the quan-
titative behaviour of ’.
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Theorem 7. Let ’∈Eng(n; K) and r ¿ 0. For y∈Rn de8ne ’y(x) = ’(x) − ’(y) −
∇’(y)(x − y). If |x − y|6 r, then(

min
z:|z−y|=r

’y(z)
)( |x − y|

r

)1+K

6’(x) − ’(y) −∇’(y)(x − y)

6
(

max
z:|z−y|=r

’y(z)
)( |x − y|

r

)1+1=K

: (4.18)

If |x − y|¿ r ¿ 0, then(
min

z:|z−y|=r
’y(z)

)( |x − y|
r

)1+1=K

6’(x) − ’(y) −∇’(y)(x − y)

6
(

max
z:|z−y|=r

’y(z)
)( |x − y|

r

)1+K

: (4.19)

Proof. We shall 6rst prove that if ’∈Eng0(n; K) and |x|6 r,(
min
z:|z|=r

’(z)
)( |x|

r

)1+K

6’(x)6
(

max
z:|z|=r

’(z)
)( |x|

r

)1+1=K

; (4.20)

and, if |x|¿ r ¿ 0, then(
min
z:|z|=r

’(z)
)( |x|

r

)1+1=K

6’(x)6
(

max
z:|z|=r

’(z)
)( |x|

r

)1+K

: (4.21)

Consider 6rst a function *∈Eng0(1; K). By Theorem 4 we know that
1
K

*(t)6*′(t)t − *(t)6K*(t); (4.22)

for every t ∈R. Let us work out the second inequality in the 6rst place. For t ¿ 0, we
get

*′(t)
*(t)

6 (1 + K)
1
t

recognizing the derivatives of the corresponding logarithms, we get that the function
*(t)=t1+K is decreasing in (0;∞). Now, given x∈Rn, write x = tx0, where |x0| = 1,
and de6ne *(t) = ’(tx0). By Lemma 3, *∈Eng0(1; K). If |x|6 r, then t6 r and we
use the mentioned monotonicity to get

*(r)=r1+K 6*(t)=t1+K

which is

’(rx0)
1

r1+K 6’(tx0)
1

t1+K = ’(x)
1

|x|1+K

and the 6rst inequality in (4.18) follows. The other inequalities are proven in similar
fashion, by remarking that the function *(t)=t1+1=K is increasing in (0;∞).

In order to 6nish the proof we need to consider the general case ’∈Eng(n; K).
In this case, given y∈Rn, de6ne  y(x) = ’(x + y) − ’(y) − ∇’(y) · x. Thus, by
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Lemma 3,  y ∈Eng0(n; K) and we complete the proof by applying (4.21) and (4.20)
to the function  y.

We have the following immediate consequence of Theorem 7

Corollary 8. Let ’∈Eng(n; K). For y∈Rn, ’y de8ned as in Theorem 7, and r ¿ 0,

S’(y;m(’; y; r)) ⊂ B(y; r) ⊂ S’(y;M (’; y; r)); (4.23)

where m(’; y; r) = minz:|z−y|=r ’y(z) and M (’; y; r) = maxz:|z−y|=r ’y(z).

5. More properties of Eng(n). The convex conjugate

As we saw, given ’∈Eng0(n; K), the inequalities (4.22) imply that

’(x) � ∇’(x) · x
(in particular, if n = 1 the functions in Eng0(1; K) verify the 12-condition), now we
could ask if similar inequalities hold up to the second derivative, that is, is it true that
xD2’(x)x � ’(x) (provided that ’ is twice di8erentiable)? As we will see, the answer
is no.

Notice that Eng0(n; K) is not contained in C2(Rn) (take, for instance, ’(x) = |x|p
with 2¿p¿ 1). To prove that the estimate xD2’(x)x � ’(x) does not hold in general,
consider n=1 and pick a continuous doubling weight w on R which vanishes at certain
point x0 �= 0. Set ’(x) :=

∫ x
0

∫ s
0 w(t) dt ds∈Eng0(1; K) (see [7]), now we cannot have

w(x)x2 � ’(x), since ’ is strictly positive when x �= 0 and w(x0) = 0. However, an
integral version of the inequalities xD2’(x)x � ’(x) does hold. More precisely, we
have

Theorem 9. Let ’∈Eng(n; K) ∩ C2(Rn). Then

’(x) − ’(y) −∇’(y)(x − y) �
∫ 1

0
t(x − y)D2’(tx + (1 − t)y)t(x − y) dt:

(5.24)

Proof. Consider 6rst ’∈Eng0(n; K), 6x x∈Rn and de6ne f(t) = ’(tx)∈Eng0(1; K).
As proved in [7], there exist positive constants cK ; CK depending only on K such that

cKf(1)6
∫ 1

0
t2f′′(t) dt6CKf(1)

which yields

cK’(x)6
∫ 1

0
txD2’(tx)tx dt6CK’(x): (5.25)

To complete the proof, given any ’∈Eng(n; K), 6x y∈Rn and de6ne  y(x) = ’(x +
y) − ’(y) −∇’(y)x∈Eng0(n; K) and apply (5.25) to  y.
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We immediately have

Corollary 10. Let ’∈Eng(n; K) ∩ C2(Rn). Then

d’(x; y) �
∫ 1

0
t(x − y)D2’(tx + (1 − t)y)t(x − y) dt:

Lemma 11. If ’∈Eng(n; K), then ∇’ : Rn → Rn is a continuous bijection.

Proof. The continuity of ∇’ follows from Ca8arelli’s results mentioned in the Intro-
duction. Injectivity of ∇’ follows from the strict convexity of ’. We could also use
that ’∈Eng(n; K) to turn �’ into a quasi-distance, consequently

∇’(x) = ∇’(y) ⇒ �’(x; y) = 0 ⇒ x = y:

To prove that ∇’ is onto, note that it is enough to suppose ’∈Eng0(n; K) (subtract
a hyperplane from ’). Thus, (4.21), with r = 1, gives

lim
|x|→+∞

’(x)
|x| = +∞: (5.26)

Now, given a∈Rn we can minimize h(x) := ’(x) − ax to get that a∈∇’(Rn).

Theorem 12. Let ’ be in Eng(n; K). If ’∗ denotes the conjugate of ’, then ’∗ ∈
Eng(n; K∗) with K∗ depending only on K . Moreover, the sections of ’ and ’∗ are
related as follows: for every x∈Rn; t ¿ 0

∇’(S’(x; t=K)) ⊂ S’∗(∇’(x); t) ⊂ ∇’(S’(x; Kt)): (5.27)

Proof. Recall that

’∗(x) = sup
z∈Rn

(xz − ’(z)):

Since ’ has the engul6ng property, we know that ’ is a strictly convex di8erentiable
function. By Theorem 26.5 in [10], we get that ’∗ is also a strictly convex di8erentiable
function whose domain is ∇’(Rn) which, by Lemma 11, equals Rn. We also have

∇’(∇’∗(x)) = ∇’∗(∇’(x)) = x ∀x∈Rn (5.28)

and

’∗(∇’(x)) = ∇’(x)x − ’(x) ∀x∈Rn; (5.29)

(remark that (5.29) and (4.22) imply ’∗(∇’(x)) � ’(x)). Moreover, (’∗)∗ = ’.
We 6rst note that for every x; y∈Rn

y∈ S’(x; t) ⇔ ∇’(x)∈ S’∗(∇’(y); t): (5.30)

To prove (5.30), we do as follows: y∈ S’(x; t) if and only if

’(y)¡’(x) + ∇’(x)(y − x) + t = ’(x) −∇’(x)x + ∇’(x)y + t
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Now, we use (5.29) to get the equivalent condition

’(y)y − ’∗(∇’(y))¡− ’∗(∇’(x)) + ∇’(x)y + t

which is the same as

’∗(∇’(x))¡’∗(∇’(y)) + y · (∇’(x) −∇’(y)) + t

and, by (5.28), this means ∇’(x)∈ S’∗(∇’(y); t). Thus, (5.30) and (ii) in Theorem
4 imply that ’∗ ∈Eng(n; K∗), for some K∗ depending only on K . Following up the
constants we can take K∗ = 2K(K + 1).

The next step is to prove the following inclusions for every x∈Rn; t ¿ 0:

∇’(S’(x; t)) ⊂ S’∗(∇’(x); Kt) ⊂ ∇’(S’(x; K2t)): (5.31)

To prove the 6rst inclusion, let us take z ∈∇’(S’(x; t)). Then, z = ∇’(y) for some
y∈ S’(x; t); and, by the engul6ng property for ’, x∈ S’(y; Kt). Now, by (5.30),
z = ∇’(y)∈ S’∗(∇’(x); Kt).

To prove the second inclusion, take z ∈ S’∗(∇’(x); Kt). By (5.28), z = ∇’(y) for
some y∈Rn. Then ∇’(y)∈ S’∗(∇’(x); Kt), and by using (5.30) we get x∈ S’(y; Kt).
Again by the engul6ng property, y∈ S’(x; K2t), which implies z ∈∇’(S’(x; K2; t)).
Applying ∇’∗ in (5.31), we obtain

S’(x; t) ⊂ ∇’∗(S’∗(∇’(x); Kt)) ⊂ S’(x; K2t): (5.32)

Corollary 13. If ’∈Eng(n), then ∇’ : Rn → Rn is a homeomorphism.

Proof. Immediate from Lemma 11 and Theorem 12, since the continuous inverse of
∇’ is ∇’∗.

Corollary 14. If ’;  ∈Eng(n), then the in8mal convolution ’�  ∈Eng(n).

Proof. Recall that the in6mal convolution of two convex functions ’ and  is the
convex function de6ned by

’�  (x) = inf
y∈Rn

{’(y) −  (x − y)};

and we always have (’�  )∗ = ’∗ +  ∗. Thus, we get the result applying Lemma 3
and Theorem 12.

6. A constructive approach to Ca1arelli’s C 1;� regularity result

As mentioned in the Introduction, Ca8arelli proved the C1;� regularity of any convex
function ’∈Eng(n; K). His proof is based on a compactness argument that does not
provide an estimate for � or the C1;� norm of ’ on compact sets. The task of 6nding
the explicit size of these constants was posed as an open problem in Villani’s recent
book (see [11, p. 141]).
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In this section we will get such estimates, in terms of K , through Theorem 7. To illus-
trate the main idea, let us take a look at the case n=1. Consider ’∈Eng0(1; K), |x|6 1,
and denote by M (’; 1) the maximum between ’(1) and ’(−1). Then, by (4.18), we
get ’(x)6M (’; 1)|x|1+1=K . On the other hand, by (4.22), we have 06’′(x)x6 (K +
1)’(x). Consequently, for every x with |x|6 1, we get |’′(x)|6 (K +1)M (’; 1)|x|1=K .
Which is the C1=K regularity of ’′ about 0. Before stating the general result some
notation is in order. Given a convex function *∈Eng(n; K); y∈Rn; and r ¿ 0, set

M (*; y; r) = max
z:|z−y|=r

{*(z) − *(y) −∇*(y) · (z − y)}

and

m(*; y; r) = min
z:|z−y|=r

{*(z) − *(y) −∇*(y) · (z − y)}

Theorem 15. Let ’∈Eng(n; K); ’∗ ∈Eng(n; K∗), and y∈Rn. For every z ∈Rn with
|z − y|6 r, we have

|∇’(z) −∇’(y)|
|z − y|1=1+K∗ 6C(r; K; m( ∗

y ; 0; 1); M (’; y; r));

where  ∗
y is the convex conjugate to

 y(x) = ’(x + y) − ’(y) −∇’(y) · x:

Proof. As usual, let us begin considering the case ’∈Eng0(n; K) and y = 0. Take x
with |x|6 r, by (4.18) we get

’(x)6M (’; 0; r)
( |x|

r

)1+1=K

6M (’; 0; r):

Next, observe that if |∇’(x)|¿ 1, then, by (4.19) applied to ’∗,

m(’∗; 0; 1)|∇’(x)|1+1=K∗
6’∗(∇’(x))6K’(x)6KM (’; 0; r);

where we used (5.29) and Theorem 4 to write ’∗(∇’(x)) =∇’(x)x−’(x)6K’(x).
All this gives,

|∇’(x)|6max

{
1;
(
KM (’; 0; r)
m(’∗; 0; 1)

)K∗=K∗+1
}

:= C1 = C1(’; r; K):

Now we can apply (4.18) to ’∗ with C1 and at ∇’(x) to get

m(’∗; 0; C1)
( |∇’(x)|

C1

)1+K∗

6’∗(∇’(x))6K’(x)

that is,

|∇’(x)|6C1

(
K

m(’∗; 0; C1)

)1=1+K∗

’(x)1=1+K∗
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and dividing by |x|1=1+K∗
,

|∇’(x)|
|x|1=1+K∗ 6C1

(
K

m(’∗; 0; C1)

)1=1+K∗ (
’(x)
|x|

)1=1+K∗

:

Note that ’(x)=|x| = ’(|x|x=|x|)=|x| and for any z ∈Rn the function t → ’(tz)=t
is increasing. Therefore, since |x|6 r, we get

|∇’(x)|
|x|1=1+K∗ 6C1

(
K

m(’∗; 0; C1)

)1=1+K∗ (
’(rx=|x|)

r

)1=1+K∗

6C1

(
K

m(’∗; 0; C1)

)1=1+K∗ (
M (’; 0; r)

r

)1=1+K∗

: (6.33)

To complete the proof, given ’∈Eng(n; K) and y∈Rn, set  y(x)=’(x+y)−’(y)−
∇’(y)x∈Eng0(n; K) and z = x + y to get, for |z − y|6 r;

|∇’(z) −∇’(y)|
|z − y|1=1+K∗ 6Cy

(
K

m( ∗
y ; 0; Cy)

)1=1+K∗ (
M (’; y; r)

r

)1=1+K∗

;

where

Cy
:= max


1;

(
KM (’; y; r)
m( ∗

y ; 0; 1)

)K∗=1+K∗
 :

Thus, ∇’ is in C� with � = 1=1 + K∗ and K∗ = 2K(K + 1).

7. Further remarks

If the Monge–Amp%ere measure �’ satis6es the (DC)-doubling condition with con-
stants C and �, then ’∈Eng(n; K) with

K =
2n+2wnwn−1

�n+1
n

C
(1 − �)n

+ 1;

where wk is the volume of the k-dimensional unit ball and �n = n−3=2. In the case
�6 det D2’6�, if we set � = 1=2 we get C = 2n�=�. These constants can be easily
followed up from [8].

Although we consider solutions to det D2’= � in Rn, the main results in this paper
can be proved (after slight modi6cations) for solutions to the Monge–Amp%ere equation
in a bounded convex domain 5 ⊂ Rn.
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