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(including Kondo effect)

Abstract – This work explores a simple approximation to describe isolated impurity scattering
in a strongly correlated host. The approximation combines conventional one-electron scattering
theory and the Dynamic Mean-Field Theory to describe strong correlations in the host. It becomes
exact in several limits, including those of very strong interactions. We study the problem for a
large range of parameter strengths and focus on the case of a strongly correlated metal host near
the Mott metal-insulator transition. We find interesting effects on the electronic structure at the
impurity site with the appearence of bound states at frequencies that are strongly renormalized
from the bare impurity potential value. However, the strength of the threshold potential for
the onset of the bound states remains of the order of the bare host bandwidth, i.e. essentially
unrenormalized with respect to the non-interacting case. Our results may provide useful guidance
for interpretation of scanning tunneling microscopy experiments in strongly correlated systems.

Copyright c© EPLA, 2008

The physics of dilute impurities in broad-band metals
such as Cu or Al is one of the success stories of quantum
mechanics in the fifties and sixties [1]. By dilute we mean
that the physical effect due to interactions between impu-
rities can be neglected, and that the properties described
vary linearly with the concentration of impurities. For
broad-band metals, electron-electron interactions may
be treated as perturbations, because its ratio to the
kinetic energy is small compared to unity. U ≈ 1–2 eV
is the screened Coulomb interaction between electrons,
and the electronic kinetic energy ≈10 eV, is of the order
of εF , the Fermi energy measured from the bottom
of the conduction band. Historically, the treatment of
electron-electron interactions in impure metals has
concentrated for a long time on the Kondo problem,
for which electron-electron interactions in the host are
usually irrelevant [2]. Nevertheless, the renormalizations
of the Kondo screening due to correlation effects in the
host have also been investigated [3,4]. On the other hand,
impurity scattering with electron-electron interactions on
the impurity site and in the host, have been treated within
weak coupling methods in a few simple cases, such as the
PdNi system [5]. In addition, motivated by experiments in
impure cuprate superconductors, Ziegler et al. introduced

a T -matrix formulation for the strong-coupling case, and
focus their study on the problem of impurity defects
(vacancies) in a correlated 2D antiferromagnetic Mott
insulator host [6]. In recent years, improvements in local
probe techniques such as nuclear magnetic resonance and
scanning tunneling microscopy shed new light on the
problem of impurity effects in strongly correlated metallic
materials, underlying the need for improved theoretical
methods [7]. This work is a contribution towards that
goal. We shall introduce and discuss a simple approach to
the problem of isolated impurity scattering in a strongly
correlated metallic host near the Mott metal-insulator
transition. Our method combines the familiar expressions
for potential impurity scattering [8] with the propagators
of a strongly correlated electron host system that is
driven across a paramagnetic Mott transition, obtained
within the Dynamical Mean-Field Theory (DMFT) [9].
Though we address a different physical question, our

approach can be cast within the general T -matrix formu-
lation of Ziegler et al. [6]. In that approach the correlation
effects of the impurity and the host where encoded in
two self-energies: one containing many-body effects only,
and another with correlation diagrams with at least
one scattering interaction. The approach that we shall
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describe here can be viewed as an approximation where
a very good estimate for the first self-energy is adopted,
while the second self-energy is neglected. We shall show
that in several limits the approximation becomes asymp-
totically exact, however, the accuracy at intermediate
couplings is harder to assess. Thus, our approach provides
an interpolation between various limiting cases, with
physical sensible results in all parameter regimes.
A key ingredient of our approach is the use of propa-

gators that can properly describe the strong correlations
in the bulk, as it is driven across a Mott-Hubbard
metal-insulator transition. The pioneer works on the
Mott transition by Hubbard [10] and Brinkman and
Rice [11], predicted the existence of a correlation driven
metal-insulator transition at a critical value of the ratio of
the Coulomb repulsion to the conduction electron band-
width Uc/W . These early approaches became embodied
within the DMFT for strongly correlated systems. DMFT
predicted a scenario where a heavy electron metal with
a narrow quasiparticle band of spectral intensity Z is
formed as the interaction U is increased. In addition, at
higher energies (∼U) two Hubbard bands are formed
describing the localization effects. At a critical value Uc,
the effective mass of the carriers diverge and their spectral
intensity goes to zero Z ∼ (Uc−U). Beyond Uc the elec-
trons become localized, and one obtains a Mott insulator
state with a large charge gap (∼U). Recently, predictions
of DMFT for the detailed nature of the metal-insulator
transition were verified in experiments on V2O3 [12].
A number of important properties of the impurity in

a broad-band metal host are given by the impurity site
Green’s function. If electron-electron interactions may be
neglected altogether, then the propagator of the system
can be exactly computed. This is done by using standard
potential scattering theory [8], where the isolated impurity
Green’s function is computed in terms of the potential
V , which we will assume for simplicity to be a point
scattering one, and of the pure host (non-interacting)
Green’s function G0(k, ω) = 1/(ω− εk), where εk is the
lattice dispersion.
On the other hand, if one considers the case of an

impurity in a narrow-band metal, the correlations effects
in the host cannot be neglected and scattering theory in
terms of G0(k, ω) is no longer applicable. Nevertheless,
DMFT has been shown to account for the main correlation
effects in pure correlated metals through the corrections
to G0(k, ω) introduced by local self-energy ΣDMFT(ω).
Therefore, one may expect the DMFT pure host Green’s
function to provide a good starting point for the study of
the potential scattering effects.
In fact, while the DMFT is formally exact in the limit

of large lattice connectivity (or large spatial dimensions),
it may nevertheless provide a very good approximation
for finite-dimensional lattices. This is at the core of
the recent efforts to develop ab initio realistic band-
structure methods for strongly correlated systems known
as LDA+DMFT [13]. Thus, here we shall assume that the

DMFT can provide a good description of the narrow-band
host of the impurity.
We consider a model for an impurity embedded in a

correlated system which exhibits a Mott metal-insulator
transition. It reads,

H =HH +Himp, (1)

HH =
∑

i,j

tijc
†
i,σcj,σ +h.c.+U

∑

i

ni,↑ni,↓, (2)

Himp =−V (no,↑+no,↓), (3)

where HH denotes the host’s Hubbard Hamiltonian with
hopping t. The minus sign in front of the impurity
potential is to consider an attractive potential with V > 0.
To capture a Mott-Hubbard transition in the pure host,
we consider it to be half-filled and in the paramagnetic
phase.
The site diagonal pure host Green’s function is

computed within the DMFT as [9]:

G0,Uoo (ω)=
∑

k

G0,U (k, ω)=
∑

k

1

ω− εk −ΣDMFT(ω) , (4)

where εk is the host lattice electronic dispersion relation
and the local (i.e. k-independent) self-energy is obtained
from the solution of the DMFT self-consistent equa-
tions [9]. For simplicity we consider the well studied case
of a Bethe lattice that has a semicircular non-interacting
density of states (DOS) of bandwidth W=4t. In this case,
the DMFT equations can be efficiently solved at T = 0
using the Iterative Perturbation Theory (IPT) method
which produce very good approximate solutions in the
whole range of U/W . In particular, close to Uc, it also
captures all the features of the Mott-Hubbard transition
scenario that we described in the introduction [9]. We
set the half-bandwidth W/2 as the unit of energy, thus
Uc ≈ 3.3 within IPT.
From standard isolated impurity scattering theory [8],

the electron Green’s function for the case U=0 is exactly
computed as

GV,0(k, k′, ω)=G0(k, ω)δk,k′+V
G0(k, ω)G0(k′, ω)
1−V ∑kG0(k, ω)

. (5)

Then, the local impurity-site diagonal Green’s function
GV,0oo (ω) =

∑
k,k′ G(k, k

′, ω) is given by

GV,0oo (ω) =
G0oo(ω)

1−V G0oo(ω)
, (6)

where G0oo(ω) =
∑
kG

0(k, ω).
The scheme that we propose amounts to replacing the

uncorrelated Green’s function of eqs. (5) and (6) by the
DMFT expression of the correlated one. Explicitly,
the lattice Green’s function becomes

GV,U (k, k′, ω) =G0,U (k, ω)δk,k′+V
G0,U (k, ω)G0,U (k′, ω)
1−V ∑kG0,U (k, ω)

(7)

67002-p2



Impurity scattering in a strongly correlated host

and the impurity site Green’s function is given by

GV,Uoo (ω) =
G0,Uoo (ω)

1−V G0,Uoo (ω)
. (8)

This equation is similar to the final T -matrix expression
of ref. [6], but already contains the DMFT self-energy
ΣDMFT(ω) to describe the pure many-body correlation
effects. Due to the locality of this self-energy, our approach
only describes scattering in the s-symmery channel. Near
the paramagnetic Mott metal-insualtor transition the
physics becomes dominated by local effects, therefore one
may expect this approximation to be appropriate for
the correlated metal near the transition and also on the
paramagnetic insulator side.
Another physical motivation for our approach follows

from the observation that within DMFT, the main effect
of correlations is to merely “shrink” the non-interacting
electron dispersion by a renormalization factor Z (the
quasiparticle residue). In fact, near the Fermi energy, the
electronic states form a quasiparticle band approximately
given by Zεk (i.e. the effective mass is increased in
1/Z). Therefore, besides this renormalization effect, the
electronic structure of the metallic states of the host
remains qualitatively similar to the non-interacting one.
Of course, in addition to the quasiparticle band, the
DMFT solution also produces the incoherent Hubbard
bands; but those are higher-energy features that do not
affect the electronic structure near the Fermi energy.
Equation (8) is obviously exact for both, the U = 0 and

V = 0 cases. Less evident is that it also asymptotically
captures the strong-coupling limits of large U/W or large
V/W . This is checked by replacing into eqs. (4) and (8)
the large-U expression of ΣDMFT(ω)≈ (U/2)2/ω [9], and
verifying that the correct limits are obtained (essentially
given by atomic-like expressions).
Therefore, as several weak- and strong-coupling limits

are correctly captured, one may expect that eq. (8) may
provide a good approximation in the challenging inter-
mediate case. Our approach does not include the vertex
corrections; though it is not an easy task to evaluate
their contribution near the metal-insulator transition, the
sensible behavior of the solutions in the whole parameter
regime implies that our method, at least, provides a
successful interpolative scheme.
We should also mention that the model (1-3) can be

treated fully within DMFT (i.e. following [4] and setting
the impurity site U = 0). However, within DMFT, spatial
fluctuations (i.e. Friedel oscillations) are suppressed
as 1/d. In contrast, in the present approach the elec-
tronic structure around the impurity site in real space
can be simply obtained by Fourier transformation of
GV,U (k, k′ω).
In our study we treat V as a free parameter. However,

when describing actual impurities, the strength of the
effective scattering potential is set from the perfect screen-
ing constraint. In the language of scattering theory, this
constraint results in the well-known Friedel sum rule [1],

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ρ

V=0
V=0.25
V=0.5
V=0.8
V=1.5
V=3

-5 -4 -3 -2 -1 0 1 2 3 4

ω
0

0.4

0.8

1.2

1.6

ρ

V=0
V=0.8
V=1.5
V=2
V=2.5
V=3

Fig. 1: Top panel: evolution of the impurity density of states
ρ(ω) for increasing V in a non-correlated host (i.e. U = 0).
Bottom panel: same quantity when the host is in the Mott
insulator state with U = 4.

which connects the spherical harmonics phase shifts of
the scattered wave function to the charge which has to
be screened locally in order to ensure electrostatic equi-
librium of the host metal. In the present formulation, the
effective scattering potential is such that the integrated
displaced density below the Fermi level must counterbal-
ance the difference between the impurity nuclear potential
and the host one. If the series of 3d transition elements Ti,
Cr, Mn, Fe, Co, Ni are dissolved as dilute impurities in,
say, V2O3, each impurity will be described by a potential
which attracts below or above the Fermi level the number
of states required for electric neutrality of the alloy.
We now turn to the discussion of the results of our model

equations for the impurity site density of states. We begin
by considering the systematic evolution of the DOS as a
function of the scattering potential, when the host is in
two extreme cases, either a non-correlated metal or a Mott
insulator. The first case corresponds to standard impurity
scattering theory (Wolf model). As is well established,
the effect of the potential is to initially deform the local
DOS of the host by shifting spectral weight towards lower
energies (since we assume an attractive potential). This
continues until V becomes strong enough (V �W/2) to
create a bound state out of the conduction band [8]. The
other extreme case, that of a Mott insulating host is
shown in the bottom panel of fig. 1. The local DOS of the
Mott insulator corresponds to the V = 0 case (continuous
line), where symmetric lower and upper Hubbard bands
are split by a gap ≈U −W . In this case, as V increases,
both Hubbard bands get their spectral weight shifted to
lower energies. In addition, there is an expected inter-
band transfer of spectral weight, from the upper Hubbard
band to the lower one. Interestingly, as the strength of
the scattering potential continues to increase, impurity
resonant states form simultaneously at the bottom of both
Hubbard bands. The threshold value for the appearance
of the bound states remains of the order of W/2. It is
also worth noting that, unlike the U = 0 case, the states
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Fig. 2: The evolution of the impurity site ρ(ω) when the host is
close to the Mott transition with U = 2.9. The panel series show
the effect of increasing the strength of the scattering potential
V . The bottom panel inset shows the detail of the evolution
of the mid gap resonance for V = 0, 0.5 and 2 (solid, dotted,
dashed line, respectively).

that are pulled down from the Hubbard bands produce
a resonance of a finite width. This is understood from
the fact that they are not band-like quasiparticle states,
but belonged to incoherent Hubbard bands, which already
have rather short lifetimes [9].
We now turn to the interesting case of a strongly corre-

lated metallic host. The results are shown in fig. 2. We set
the interaction U = 2.9<Uc which places the host near the
correlation driven Mott transition [9]. The clean host DOS
corresponds to the case V = 0 (top panel). As discussed
before, the DOS shows a narrow quasiparticle band at low
frequencies with an effective bandwidth ZW , where Z� 1
is the quasiparticle residue. The semi-elliptical shape
reflects that its band-structure simply gets “shrunk”
with respect to the non-interacting one. The remaining
spectral weight 1−Z goes to frequencies of order ±U/2,
forming broad lower and upper Hubbard bands.
As V is stepped up, all three features, the two Hubbard

bands and the central quasiparticle peak in the DOS
at the impurity site are affected. On the one hand, the
evolution of the Hubbard bands towards resonances with
finite width is similar as in the Mott insulator host
case discussed before (fig. 1, bottom). On the other, in
contrast, the changes induced by V on the DOS of the
central quasiparticle peak are more subtle. As can be seen
in the inset to the bottom panel of fig. 2, the narrow
semi-elliptical resonance gets deformed towards lower
energies as the attractive potential is increased. When V
is sufficiently strong, a resonance is fully pulled down from
the narrow quasiparticle band (dashed line in the inset).
This behavior is indeed qualitatively similar to the one
that we discussed before for the U=0 case (fig. 1, top),
but with the exception that the changes occur within the
renormalized small energy scale ZW . We note, however,
that the threshold value of V to pull down the resonance
does not get renormalized by Z and remains ∼W/2.
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Fig. 3: Evolution of the impurity density of states ρ(ω), for a
fixed strong attractive impurity potential V = 1.5. The panel
series show the effect of increasing the strength of correlations
U , as the host is driven across the Mott transition (Uc ≈ 3.3).

Eventually, when the scattering strength V is large
enough, the whole band-structure of the host at the
impurity site breaks down, and a sole resonant state at a
frequency ω≈−V is left (which is the correct asymptotic
limit for large V ).
To complete our study, in fig. 3 we consider the case

of a strongly attractive impurity potential V >W/2, and
obtain the systematic evolution of the local DOS at the
impurity site, as the electron-electron interactions in the
host are increased. As we discussed already, the clean
host undergoes a Mott metal-insulator transition at Uc =
3W/2 [9]. For weak U , the main effect of el-el interactions
is to transform the impurity bound state to a resonant
state. This is because the interactions provide a self-
energy to the electronic states of the metallic host, and
their finite life-times are then reflected as a width for the
resonant states pulled down by V . As U is stepped up, the
Hubbard bands form in the host, and they are reflected
as a multi-resonant peak structure in the impurity site
DOS. These peaks occur at energies ∼±U −W/2 that
correspond to the lower energy edge of the Hubbard bands.
The central feature near the Fermi energy emerges only
when the host is in a strongly correlated metallic state,
and disappears immediately after U becomes greater than
Uc, i.e. when the host undergoes the Mott transition and
its DOS acquires a gap. Thus, our results predict the
presence of spectral weight at low frequencies only in
a rather narrow range of interaction U , just below the
critical Uc. This prediction may provide useful guidance
for the interpretation of STM experiments of impurities
in correlated metals.
To conclude we mention some experimental studies

that may test the predictions that may be computed
within the present approach and which will be worked
out in detail elsewhere. A strongly correlated candidate
system which should exhibit the effects described here
would be V2O3, with a small concentration (∼ 10−2) of
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Sc, Ti, Cr, Mn, Fe, Co, Ni, or Cu. Measurements of
interest are, for instance, residual resistivity, temperature
dependence of the resistivity, and thermoelectric power,
for the transport properties, and also the Knight shift and
T1, for the NMR. However, the most clear cut predictions
of the present approach may be more directly tested by
comparison to the local electronic density measured by
scanning tunneling spectroscopy.
One final remark is that our approach is quite general.

In fact, one may easily extend eqs. (7) and (8) for the case
of a host with a symmetry-broken phase, such as in a Néel
state. These extensions open new exciting perspectives for
the study of impurities within strongly correlated hosts.
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