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Abstract Urvillea chacoensis is a climber with 2n = 22

and some terminal AT-rich heterochromatin blocks that

differentiate it from other species of the genus. The

AT-rich highly repeated satellite DNA was isolated from

U. chacoensis by the digestion of total nuclear DNA with

HindIII and XbaI and cloned in Escherichia coli. Satellite

DNA structure and chromosomal distribution were inves-

tigated. DNA sequencing revealed that the repeat length of

satDNA ranges between 721 and 728 bp, the percentage of

AT-base pairs was about 72–73% and the studied clones

showed an identity of 92.5–95.9%. Although this monomer

has a tetranucleosomal size, direct imperfect repetitions of

*180 bp subdividing it in four nucleosomal subregions

were observed. The results obtained with FISH indicate

that this monomer usually appears distributed in the ter-

minal regions of most chromosomes and is associated to

heterochromatin blocks observed after DAPI staining.

These observations are discussed in relation to the satellite

DNA evolution and compared with other features observed

in several plant groups.
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Introduction

Urvillea Kunth (Paullinieae, Sapindaceae) comprises 17

species and is widely distributed in the neotropical regions

of America, from southern United States to northern

Argentina (Ferrucci 2006). Urvillea has two basic chro-

mosome numbers, x = 12 (Stenelytron), with a single

diploid level, and x = 11 in section Urvillea, with diploid,

tetraploid, and octaploid levels (Lombello and Forni-Mar-

tins 1998; Ferrucci 2000; Urdampilleta et al. 2006).

Urvillea chacoensis Hunz. is a climber that occurs in

‘‘chaqueña’’ regions from Argentina, Brazil and Paraguay.

As the other species of the Urvillea section, its diploid

number is 2n = 22 (Ferrucci 2000; Urdampilleta et al.

2006), but it is cytogenetically differentiated by the pres-

ence of large terminal AT-rich heterochromatin blocks and

three chromosome pairs bearing NOR (Urdampilleta et al.

2006).

Highly repetitive DNA appears to be one of the main

components of plant genomes, and changes in these

sequences may be responsible for the variations in genome

size and karyotypical features (Flavell 1986; San Miguel

and Bennetzen 1998). Different types of repetitive DNA

exist within each genome, and the satellite DNA (satDNA),

which is formed by tandemly arranged monomers of tens to

thousands base pairs (Charlesworth et al. 1994), often

constitutes heterochromatin blocks up to 100 Mb.
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Additionally, the whole heterochromatin of a genome can

be composed of different families of satellite DNA (Kurbis

et al. 1998; Sharma and Raina 2005), which can also be

located or accumulated in specific chromosomal positions

(Flavell 1986). Some new sequences of satDNA have

recently been reported and a database was created to

understand the evolution and distribution of satDNA in

plant genomes (Macas et al. 2002). Since satDNA can be

species-specific or typical to some groups of species

(Schmidt et al. 1991; Svitashev et al. 1994), it represents a

useful tool in the field of taxonomy.

Different techniques can be used to isolate satellite

DNA, as centrifugation in density gradients (Deumling

1981), screening of fractions referred to as low Cot DNA

(Neumann et al. 2001; Ho and Leung 2002), purification

and cloning of band fragments obtained by gel electro-

phoresis of enzyme-digested genomic DNA (Kato et al.

1984; Ganal and Hemleben 1986; Lakshmikumaran and

Ranade 1990; Lorite et al. 2001) and genomic self-priming

PCR (GSP-PCR) (Buntjer and Lenstra 1998; Macas et al.

2000). Since we intended to characterize and localize a

satellite DNA family of U. chacoensis in situ, we isolated

and characterized satDNA sequences by purifying and

cloning fragments of enzyme-digested genomic DNA. To

do so, this marker was FISH mapped and the results were

matched with the distribution of 45S rDNA loci and the

heterochromatin pattern obtained with DAPI.

Materials and methods

Plant material

Seeds of U. chacoensis obtained from the voucher speci-

men U. chacoensis: Bolivia. Dpto. Chuquisaca. Prov.

Calvo, 22 km N de Tarairı́ camino a Boyuibe, 18VII 2003,

Ferrucci et al. N� 1763, deposited at the herbarium of the

Instituto de Botánica del Nordeste (CTES), Argentina,

were collected and cultivated in pots under greenhouse

conditions.

Isolation of genomic DNA, cloning and sequencing

of repetitive DNA fragments

Leaf genomic DNA was isolated according to the method

described by Hoisington et al. (1994) and digested with

HindIII and XbaI. The selected bands of about 750 bp were

eluted and purified from the agarose gel. The fragments of

repetitive DNA were cloned using Escherichia coli DH5a
as host and pBluescript KS plus (Stratagene) as vector.

Colonies containing recombinant plasmids were identified

for selection on LB agar medium supplemented with X-gal

and IPTG. Recombinant plasmid was isolated using

alkaline minipreparation procedure and the insert nucleo-

tide sequences were determined with an ABI377 automated

DNA sequencer (Applied Biosystems). Sequences were

analysed with Lasergene 7 (DNAStar, Madison, WI, USA)

and aligned by using the ClustalW option of the MegAlign

program.

Preparation of mitotic chromosomes

Root tips were pretreated with 2 mM 8-hydroxyquinolin

for 4–5 h at 15�C, fixed in ethanol–acetic acid (3:1, v:v)

and digested at 37�C in a solution composed of 2% cel-

lulase and 20% pectinase. After squashing the meristems in

a drop of 45% acetic acid, the preparations were frozen in

liquid nitrogen and the coverslips were removed. To

identify AT-rich heterochromatin blocks, slides were

stained with 2 mg ml-1 DAPI for 30 min and mounted

with glycerol/McIlvaine buffer pH 7.0, 1:1 (v:v), plus

2.5 mM MgCl2.

Fluorescent in situ hybridization

To compare the distribution of satDNA sequences in

relation to genes of rDNA and to DAPI heterochromatin

pattern, we used probes marked with nick translation.

Recombinant plasmids isolated by alkaline miniprepara-

tion containing 18S-5.8S-26S rDNA of wheat (pTa71)

(Gerlach and Bedbrook 1979) was labeled with biotin-14-

dUTP (Bionick, Invitrogen) and the cloned fragments of

satDNA were labeled with DIG (DIG Nick translation

mix, Roche). In situ hybridization followed the protocols

of Heslop-Harrison et al. (1991) and Schwarzacher and

Heslop-Harrison (2000). Slides were incubated in

100 lg ml-1 RNAse, post-fixed in 4% (w/v) parafor-

maldehyde, dehydrated in a 70–100% graded ethanol

series and air-dried. Later, 30 ll of the hybridization

mixture (4–6 ng ll-1 of probe, 50% (v/v) formamide,

10% (w/v) dextran sulfate, 3.3 ng ll-1 of calf thymus

DNA, 29 SSC and 0.3% (w/v) SDS), previously dena-

tured at 70�C for 10 min, were applied. Samples were

denatured/hybridized at 90�C for 10 min, 48�C for

10 min and 38�C for 5 min, using a thermal cycler

(Mastercycler, Eppendorf) and the slides were kept

overnight in a humid chamber at 37�C. Hybridization

signals were detected with avidin-FITC (Sigma) for

pTa71 and anti-DIG-Rhodamine (Roche) for satDNA.

The slides were counterstained with DAPI and mounted

with 25 ll of VectaShield (Vector Laboratories). Photo-

micrographies were obtained with a BX51 Olympus

coupled to an Evolution MT CCD photosystem and

Image ProPlus v6 software was used to capture the

images.
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Results

Isolation of Uch725 satellite DNA

The genomic DNA of U. chacoensis digested with HindIII

and XbaI showed clear electrophoretic bands at *750 and

1,500 bp (Fig. 1), indicating the presence of tandemly

arranged repetitive elements in the genome. Such band

pattern suggested the presence of satDNA with a site for

HindIII and another one for XbaI in the same repetitive

units. The 750 bp repetitive DNA fragments cloned and

sequenced represent monomers of satDNA with *725 bp,

since they ranged between 721 and 728 bp in all the

studied clones. The pUch1, pUch6 and pUch8 clones

contained the monomer element digested with HindIII, and

the pUch11, pUch13 and pUch15 clones contained the

monomer element digested with XbaI. Figure 2 shows the

aligned nucleotide sequences of the studied clones and a

sequence analysis revealed some differential characteristics

of these sequences. The satDNA family was thus named

Uch725. This repetition unit possesses a restriction site for

HindIII and another one for XbaI, separated by 53–54 bp,

which allows to obtain fragments of equal size after the

digestion of the genomic DNA. The analyzed sequences

were highly AT-rich, with 72.1–73.2% of A or T, and an

identity of 92.5–95.9% was observed in the studied clones.

Although no significant inverted repetition was detected

within the repetition units, we observed direct imperfect

repetitions of *180 bp. These subrepetitions allow to

divide the monomer in four sub-regions (Fig. 2). The

alignment of these sub-regions (Fig. 3a) showed an identity

of about 70–80% (Fig. 3b).

Karyotypical features in U. chacoensis

Urvillea chacoensis, with 2n = 22 chromosomes, which

are mostly metacentrics, showed several large terminal

heterochromatic blocks after DAPI staining (Fig. 4a). The

six longest chromosome pairs showed heterochromatin

blocks in both terminal regions, while the smallest chro-

mosomes showed small bands at their tips or no band at all.

This banding pattern indicates the presence of a high pro-

portion of AT-rich heterochromatin, usually located in the

subtelomeric regions. FISH using the pTa71 probe (18-5.8-

26S rDNA) located terminal signals in the short arms of

three chromosome pairs (five sites were observed in

Fig. 4b, d). DAPI? bands were not observed in the short

arms in NOR carrier chromosomes.

The DAPI banding pattern coincided with the hybrid-

ization sites of the pUch6 probe (Fig. 4). The hybridization

signals with the pUch6 probe were detected in the two

terminal regions of the six largest chromosome pairs. Two

chromosome pairs exhibited pUch6 signals in the terminal

region of the long arm, and of three small chromosome

pairs, only one showed reliable hybridization signals in

both terminal regions. Some chromosomes presented

hybridization signals with both the pUch6 and pTa71

probes, but pTa71 hybridized at terminal regions of short

arms, while pUch6 hybridized at long arms (Fig. 4b–d).

Discussion

The results obtained with DAPI banding and in situ

hybridization with the pTa71 probe coincide with the

observations by Urdampilleta et al. (2006) for U. chaco-

ensis. In addition, in our study, the coincident DAPI

banding pattern and FISH with satDNA probes suggest that

this satellite DNA represents a structural component of the

heterochromatin blocks within the U. chacoensis genome.

Our results confirmed the presence of a high proportion of

subterminal AT-rich heterochromatin with an equilocal

distribution.

Fig. 1 Restriction enzyme

analysis of total genomic DNA

of U. chacoensis. Genomic

nuclear DNA digested with

HindIII (A) and XbaI (B) and

restriction fragments resolved

on 1% agarose gel. M, 100 bp

leader
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According to Urdampilleta et al. (2006), some karyo-

typical features in U. chacoensis are important and allow to

distinguish this species from other species of the Urvillea

genus (Urdampilleta et al. 2006). Urvillea laevis and

U. filipes, for example, do not present C-bands, but these

authors reported small, scarce DAPI? sites in U. laevis. On

the other hand, U. ulmacea showed abundant terminal

C-bands constituted by CMA3
?, and DAPI? bands in

several chromosomes. GC-rich terminal regions (CMA3
?)

may be associated to NORs in U. chacoensis, but not in

U. ulmacea (Urdampilleta et al. 2006). These results also

confirm that the heterochromatin is not homogeneous and

can vary both qualitatively and quantitatively among the

Fig. 3 Alignment of all four

subrepetitions of pUch6 (a) and

percent identity of sequences of

each sub-region (b)

Fig. 4 Chromosome banding and fluorescence in situ hybridization

in metaphasic chromosome of U. chacoensis. a AT-rich heterochro-

matin terminal blocks observed with DAPI staining; b localization of

rDNA 18-5.8-26S using pSa71 probe; c terminal distribution of

Uch725 family observed for FISH with pUch6 probe; and d idiograms

by indicating the localization of rDNA and satDNA. Bar = 5 lm

Fig. 2 Sequence analysis of the studied clones. a Alignment of the

six clones, pUch1, pUch6, pUch8, pUch11, pUch13 and pUch15.

Imperfect direct repeats are indicated by arrows. b satDNA monomer

scheme showing subunit with arrows

b
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species, within a same group (Guerra 2000), valuing these

features as taxonomic markers.

The occurrence of AT-rich terminal repeated sequences

is a frequent characteristic in plant genomes (Flavell 1986;

Kurbis et al. 1998; San Miguel and Bennetzen 1998). The

sequence analysis of plant genomes also emphasizes that

*60% of the satDNA families studied are AT-rich

sequences (Macas et al. 2002) and the comparison of

banding patterns in different plant groups suggests that the

proportion of species with AT-rich heterochromatin is even

higher (Guerra 2000). These data thus suggest that the

distribution and chemical composition of these sequences

are not casual and might be related to still unknown

functions of the genome structure.

In plants, the size of the satellite DNA usually varies

between 135–195 and 315–375 bp, corresponding to the

length of mono and dinucleosomes (Macas et al. 2002;

Sharma and Raina 2005). However, some plants have

satellite DNA with monomers longer that 600 bp. Secale

cereale, for example, presents satDNA with units of rep-

etition of 3,900 bp (Langdon et al. 2000). In U. chacoensis,

monomers of the Uch725 family show a size similar to that

of the satDNA found in Aegilops speltoides (Anamthawat-

Jonsson and Heslop-Harrison 1993), Allium fistulosum (Seo

et al. 2007), Rumex acetosa (Shibata et al. 2000), Sinapis

arvensis (Kapila et al. 1996). Nevertheless, no homology

was found in the GenBank and EMBL databases for

Uch725, indicating that these sequence may be typical of

Urvillea group.

Heterochromatin was first identified by Heitz (1928) as a

cytological event to describe condensed regions in the

interphase. Although these structures have long been con-

sidered to be DNA without any function, different

functions have been attributed to them these last decades

(Yunis and Jasmineh 1971; Sýkorová et al. 2001), which

guarantees their maintenance. Both in mammalian and

plant cells, bulk chromatin presents a nucleosome period-

icity of 180 ± 5 bp (Fajkus et al. 1995; Vershinin and

Heslop-Harrison 1998) and the satDNA monomers often

correspond to mono or dinucleosomes (135 and 195 or 315

and 375 bp) (Macas et al. 2000; Sharma and Raina 2005).

Therefore, the satDNA could provide structural genetic

codes for the chromatin packing (Trifonov 1989). Sýko-

rová et al. (2001) found that satDNA sequences favor the

transition between telomeric domains and internal chro-

mosomal regions, acting directly in the telomeric

stabilization and regulation of genes from subterminal

regions. As in U. chacoensis, various families of repetitive

DNA occur in the subterminal regions of plants and con-

stitute the so called telomere-associated sequences or TASs

(Sharma and Raina 2005). In U. chacoensis, the presence

of four subrepetitions of *180 bp (tetranucleosome)

within the satDNA monomer suggests that this substructure

may be directly related to the establishment and packing of

chromatin in terminal regions.

The phylogeny within Sapindaceae is not well resolved,

since the tribal classification of many genera is confuse

(Harrington et al. 2005). Studies on the presence and dis-

tribution of satellite DNA can contribute to understand the

evolutionary aspects of the genome and thus to establish

the taxonomy of some groups (Schmidt et al. 1991; Svi-

tashev et al. 1994). The pUch6 probe, isolated from U.

chacoensis, has being previously tested in other species of

Urvillea and genera of Sapindaceae, tribe Paullinieae. For

the time being no signals were displayed after of hybrid-

ization with pUch6 probe in Cardiospermum grandiflorum

Sw., Paullinia elegans Cambess. and U. ulmacea Kunth.

However by mean of PCR and by using primers designed

from pUch6 were detected some products possibly related

to Uch725 (Urdampilleta et al. in preparation). As the

genomic studies on this family are scarce, the isolation of

Uch725 satellite DNA in U. chacoensis offers an important

chromosomal marker, whose presence and distribution in

related species and genera might contribute to the sys-

tematic of Paullinieae.
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Neumann P, Nouzová M, Macas J (2001) Molecular and cytogenetic

analysis of repetitive DNA in pea (Pisum sativum L.). Genome

44:716–728. doi:10.1139/gen-44-4-716

San Miguel P, Bennetzen JL (1998) Evidence that a recent increase in
maize genome size was caused by the massive amplification of

intergene retrotransposons. Ann Bot (Lond) 82:37–44. doi:

10.1006/anbo.1998.0746

Schmidt T, Jung C, Metzlaff M (1991) Distribution and evolution of

two satellite DNAs in the genus Beta. Theor Appl Genet 82:793–

799. doi:10.1007/BF00227327

Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybrid-

ization, 2nd edn. Bios, Oxford

Seo BB, Lee SH, Do GS (2007) Identification and nucleotide

sequence of highly repeated DNA sequence using combined

RAPD and FISH in Allium fistulosum. Retrieved from http://

www.ncbi.nlm.nih.gov/entrez/

viewer.fcgi?db=nucleotide&val=3550125 21/2/2007

Sharma S, Raina SN (2005) Organization and evolution of highly

repeated satellite DNA sequences in plant chromosomes. Cyto-

genet Genome Res 109:15–26. doi:10.1159/000082377

Shibata F, Hizume M, Kuroki Y (2000) Molecular cytogenetic

analysis of supernumerary heterochromatic segments in Rumex
acetosa. Genome 43:391–397. doi:10.1139/gen-43-2-391

Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T, von

Bothmer R (1994) Phylogenetic analysis of the genus Hordeum
using repetitive DNA sequences. Theor Appl Genet 89:801–810.

doi:10.1007/BF00224500
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