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Abstract

The main objective of this paper is the analysis of the behaviour of concrete pavements subjected to blast
loads produced by the detonation of high explosive charges above them. This subject is of particular interest
in terrorist attacks in cities, since important conclusions about the location and magnitude of the explosive
charge can be drawn from simple observation of the pavement damage. Experimental results for a concrete
slab lying on the ground and subjected to blast loads are presented. The slab was lying on the ground and was
tested with different amounts of explosive suspended in air over it. Numerical results are compared with those
obtained with a simplified plastic limit analysis and those obtained with two types of numerical simulations
performed with two different codes. Some conclusions about the effect of the blast load on the concrete slab
and about different tools available for the analysis of this type of problem are stated in the paper.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to different accidental or intentional events in connection with important structures all
over the world, blast loads have received considerable attention in recent years [1-3]. The activity
related to terrorist attacks has increased and, unfortunately, the present tendency suggests that it
will be even larger in the future. This paper is concerned with the effect of dynamic loading
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produced by the detonation of high explosives on concrete pavements, a situation likely in a
significant number of terrorist attacks.

When the attack has already occurred, a very important issue is the determination of the
location of the explosion and the mass of explosive used. A useful tool to achieve this objective is
the evidence of the crater generated by the explosion in the pavement.

A blast wave originating from a closed or free explosive detonation behaves, when interacting
with structures, as a short duration dynamic load. In recent years, studies have shown that such
loads with short duration and high magnitude influence significantly the response of the structure
and can modify substantially the expected material behaviour [4-9].

Much research has been carried out in recent years concerning the behaviour of structural
elements and materials under blast loads. Experimental results about the behaviour of steel [10,11],
concrete [12,13] and fibre reinforced [14] panels subjected to blast loads can be found in References.

In the literature, beams, slabs and shells under blast loads are mostly studied with limit analysis
theory which assumes a rigid-plastic behaviour for the material [12,15]. Yi [12] tested concrete
slabs under blast loads and studied the behaviour using a non-linear dynamic analysis. For close-
in explosions the problem was solved by an approximate procedure. First a check is performed to
determine if the zone just below the load has disintegrated or not. If it has disintegrated, the level
of damage is estimated. The tension failure of the other side of the plate is also studied with the
aid of elastic theory. For the assessment of the dynamic displacement of the plate centre, a one
degree of freedom model is used.

On the other hand, with the rapid development of computer hardware over the last decades, it
has become possible to make detailed numerical simulations of blast loads on personal computers,
significantly increasing the availability of these methods.

Although there are still many uncertainties, material behaviour under blast loads has been
widely studied experimentally [16-19] and many sophisticated numerical models have been
proposed, especially for steel and concrete [4,6,9,20-23]. The behaviour of concrete under blast
loads is characterized by a different response in tension and compression, the progressive
degradation of elastic properties accompanied by increasing permanent strains and the
dependence of the strength, stiffness and fracture energy on strain rate. This last feature has
been normally taken into account through viscoplastic models or rate-dependent damage models.
[4-9]. These models have been included in different computer programs [4,23,24], which can be
used for the analysis of the blast behaviour of structural elements and small structures and
validated with available experimental results.

In this work the experimental results for a concrete plate lying on the ground, subjected to different
blast loads, are compared with the results of a simplified limit analysis and numerical results obtained
with the ABAQUS/Explicit [25] program and AUTODYN 2D and 3D [26]. The dimensions of the
damage zone are also compared with those obtained by Yi [12] and with the dimensions of the craters
that would have been produced by the explosions acting directly on the ground.

2. Experimental tests

The experimental results described below belong to a series of tests carried out by the Structures
Institute of the National University of Tucuman. The complete series of tests consisted of the
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detonation of explosive charges lying on the ground and elevated above the ground [10,11] and
above a concrete plate lying on the ground. Pressure loads were registered at different distances,
together with the size of the craters formed in the soil, the response of two metallic panels and the
cracking and damage patterns of the concrete slab. In order to measure the overpressure
generated by shock waves, pressure sensors were used. In addition, accelerometers were used to
measure the dynamic response of the steel plates. A dynamic strain amplifier amplified the signal
generated by the accelerometers. A data acquisition board was mounted on a notebook computer
in order to record and process the signals by means of data acquisition software.

This paper is focused on the behaviour of the concrete slab. The geometrical configuration of
the reinforced concrete slab lying on the ground is shown in Fig. 1. The reinforcement consisted of
4.2 mm diameter bars spaced 150 mm in both directions. The average compressive strength of the
concrete (25 MPa) was obtained from compression tests at 28 days of a series of cylindical proof
samples cast with the same concrete as the slab.

The soil was soft-OL type (Unified System for the Classification of Soils), i.e. an organic soil
without fine particles (more than 50% passing through sieve #200) with a liquid limit of less than
50 and a plastic limit of less than 4.

The load location on the concrete slab is also depicted in Fig. 1. Spherical explosive charges of 5
and 12.5kg of Gelamon VF80 were employed placed at 0.50 m height above the top surface of the
slab as shown in Fig. 2. The nominal TNT equivalence factor for Gelamon VF80 is 0.8. Table 1
summarizes the sequence of the applied loads and their locations.

The cracking patterns registered after the experimental tests are shown in Figs. 3 and 4. The
charge of 5kg Gelamon produced the crushing of concrete in a circular zone of about 250 mm
diameter, while the diameter of the concrete crushing zone was about 300 mm for the 12.5kg
charge. The first test produced a fracture of the slab parallel to the short side. As a result, for the
following detonations, the original slab behaved as two square independent slabs. Furthermore,
circumferential cracks could be found around the crushing zone in both cases. Such cracks defined
two circumferences, the first one with a diameter of about 1.0m and the second one coincident
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Fig. 1. Concrete slab dimensions and charge positions.
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Fig. 2. Placement of the explosive charge suspended above the slab.

Table 1

Explosion sequence

Test Position Height (m) Charge (kg of Gelamon)
1 A 0.5 5

2 A 0.5 5

3 B 0.5 12.5

with the border of the slab and both centred on the point on the slab directly beneath the charge.
Radial cracks could be seen quite clearly, in particular the ones parallel to the sides of the slab.

The relative maximum vertical displacements were found to be located directly beneath the two
charge locations A and B. The values registered were 23 mm for position A, and 75mm for
position B.

The relative diameter of the crushing zone D to the height of the charge /4 is shown in Fig. 5a as
a function of the inverse of the scaled distance W'/3 /h. The results obtained by Yu [12] for
explosions in direct contact with a concrete plate have also been included in Fig. 5a together with
the results corresponding to craters in soils [27]. It can be observed that, although the crushing
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Fig. 3. Cracking patterns (a) after test 1, (b) after test 2, (c) after test 3.

zone in concrete is always smaller than the corresponding crater in soil, the results follow the same
trend. Fig. 5Sb shows the results of craters on concrete slabs and a curve corresponding to and
exponential approximation of the relation presented in Eq. (1). This equation can be used either
for the estimation of explosive charges from crater diameters or crater dimensions from explosive
charge, depending on what the purpose of the analysis is

In(3.63D/h) = 0.1838(W'/3 /). (1

3. Limit analysis

The limit analysis of plates with different geometry and boundary conditions subjected to
dynamic loads is well documented in the literature [15].

The equation of motion of a circular rigid perfectly plastic plate, of radius «, simply supported
on its boundary and subjected to uniform distributed pressure, as indicated in Fig. 6a, is given by
Lubliner [15]

o(rM,) T Pw
o —M()—/O <p+,uat2 rdr, 2)

where u is mass per unit area, p is pressure, M, is radial moment, M, is circumferential moment, w
is vertical displacement and r is radius. The generalized Tresca yield criterion with ultimate
bending moment M, is assumed (see Fig. 6b). All the plate is supposed to be in regime BC
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Fig. 4. Damage of the slab after the tests.

(Fig. 6b): My = M,, whereas for the centre of the plate M, = My = M, (Point C in Fig. 6b).
Consequently, it can be assumed that the plate has a conic deformation (Fig. 6¢) described by the
following equation:

Ww(r, 1) = —A(z)[l - 2] (3)

where the parameter A(7) represents the deflection of plate centre at time z.
Eq. (3) together with Eq. (2), My = M, and the boundary condition M(a,t) = 0, gives,
2

M=M= [p=0-pp)(2-1)]; @

where p;; = 6M y/a?* is the static limit pressure.

Eq. (4) is valid for p<2 py,. For the case p>2 p,, the plate configuration is a truncated cone,
with a circular hinge of radius ry separating the external conic zone from the internal one, see
Fig. 6d. The latter corresponds to the point B of the Tresca criterion (M, = My = M) and the
equations of motion that result are

%4

Hag =P for r<ry, (5a)
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Fig. 5. Variation of the relative diameter of the crushing zone D/h as a function of the inverse of the scaled distance
w3 /h (a) comparison with the dimensions of craters in soils, (b) exponential approximation.

orM,) p(2r = 3rgr? + rg)
o Y 6(a — ro)
Integrating Eq. (5b) with the initial condition M, = My at r = r¢, the following cubic equation
is obtained for ry:
_ v

(-2 0+ =7

Notice that the substitution of ro = 0 in Eq. (6) gives p =2 py,.

(5b)

for r>ry.

(6)
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Fig. 6. Circular rigid perfectly plastic plate (a) Undeformed shape, (b) Tresca Criterion, (c) Ultimate configuration for
p<2p, and (d) Ultimate configuration for p>2p,.

According to Lubliner [15], an estimation of the upper bound for the limit load of a clamped
plate of arbitrary shape can be obtained from the previous results. It could be considered that the
largest circle that can fit into the plate is a hinge. The material inside this circle collapses like a
clamped circular plate and the material outside it remains rigid.

An approximate solution for the tested slab can be obtained carrying out ultimate analysis,
making the assumption that the soil under the slab does not alter its collapse mechanism.
Following Lubliner [15], a circular clamped plate of radius ¢ = 0.75m is considered. As the
reinforcement is placed at the back face of the plate, the negative ultimate moment is almost zero
and the circular plate can be supposed to be simply supported at its border. Therefore, Eq. (6) can
be used to estimate an upper limit for the ultimate load or an upper limit to ro. The ultimate
positive moment is defined by the yielding of the reinforcement. The external cone radius r, can
be obtained from Eq. (6), with p, = 6My/a®> = 9.28 MPa. The results obtained can be
summarized as follows:

e Position A: 4kg TNT at 0.5m height (p = 63.8 MPa): ro = 0.45m,
e Position B: 10kg TNT at 0.5m height (p = 151.1 MPa): ry = 0.55m.

It can be observed that the radius ry, calculated using the classical theory, is almost coincident
with the radius of the smallest circumferences that are shown in Fig. 3. It can be assumed that the
slab responded as a simply supported circular plate whose boundary was the external
circumferential crack, almost coincident to the border of the slab. As the slab was slightly
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reinforced, the reinforcing steel was not enough to spread the cracking effect, like in the
continuum model used, and appreciable discrete cracks were formed. Moreover, as the external
crack was not exactly circular but parallel to the sides of the slabs radial cracks can be found
where My = My and where the plastic deformation was concentrated.

4. Numerical simulation

The numerical analysis has been carried out with two different codes: the finite element
program ABAQUS/Explicit 5.8-18 [25] and the hydrocode AUTODYN v. 4.3 [26].

4.1. Finite element program [25]

The finite element mesh of the whole system is given in Fig. 7. The slab was modelled with 1000
C3DS8R tri-dimensional elements arranged in five layers of equal height. The reinforcement was
modelled by adding two layers of steel (REBAR) placed between the first and second layer and in
both directions 1 and 2.

For the soil, a combination of C3D8R tri-dimensional elements and CIN3DS8 semi-infinite tri-
dimensional elements were used, so that the soil could be approximately modelled as a semi-
infinite space. The semi-infinite elements represent smooth boundaries through which energy can
pass without being absorbed or reflected.

Materials were characterized using simple constitutive models, with the idea of capturing the
global response of the system with the use of few observable parameters.

L~

Fig. 7. Finite element mesh (ABAQUS CAE 2-5).
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An elasto-plastic material model with properties dependent on the strain rate has been used for
the concrete. The material model is the extended Drucker—Prager with the parameters reported in
Table 2.

Steel was characterized with an elasto-perfectly plastic model with the properties presented in
Table 3.

The elasto-plastic material model used for the soil was the modified Drucker—Prager/Cap. All
the model material properties were estimated on the basis of the type of soil (due to the lack of
experimental data) and are presented in Table 4.

The detonation of an explosive charge generates a pressure wave in the air. The evolution of the
pressure is characterized by a strong increment of pressure at the wave front followed by an
exponential fall. The peak value of the overpressure depends on the mass of explosive and on the
distance to the detonation point.

To define the blast load the ABAQUS/Explicit user subroutine VDLOAD was used [25]. This
subroutine allows the user to define the load as a function of position and time. The blast load was
modelled as pressure acting on the exposed face of the slab. The value of the pressure is a space
and time dependent function which must take into account the time taken by the overpressure
peak to meet the slab, the decrease of the peak pressure value with the distance and its exponential
reduction with time [28]. In order to define those aspects the following empirical expressions were
used [28]:

p(t) =0 1<ty
t—t, t—to b(t—t,)
Hn=@p,—p)l1-—2— | —r - <<l
p() = (p; ps)< t_t,_t()) +ps[ T. ]exp{ T 0<t< ™
r—t b(t—t
P(l)=ps[1— Tso} exp{—(TSO)} (>t + 1
14072 0.5540 0.0357 0.000625
= - 05<Z<0.
Po=mm St [MPa] 005<Z<03
_ 0619400326 02132 03s2<10 &
Ps = 7 ZZ Z3
0.0662 0.405 0.3288 10<Z<10
po= o [MPa)

Table 2
Concrete mechanical properties

Density: 2400 kg/m?

Elastic modulus: 2.5 x 10*MPa
Poisson’s ratio: 0.15

Compressive elastic limit: 18 MPa
Compressive strength: 25 MPa
Internal friction angle: 30°
Dilatancy angle: 20°
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Table 3
Steel mechanical properties

Density: 7800 kg/m’
Elastic modulus: 2.1 x 10° MPa
Poisson’s ratio: 0.3

Table 4
Soil mechanical properties

Density: 1200 kg/m>
Elastic modulus: 100 MPa
Poisson’s ratio: 0.3
Cohesion: 0.11 MPa
Internal friction angle: 20°

R Tpy +4
s, R pr=2p5<po+ ps>,
P + P

)
6
{=3S/U; U=, | Dtloy. 1 —R/u,
U

where R is the distance to the charge, W is the mass of the explosive [kg of TNT], Z is the scaled
distance, p the pressure acting on the slab, pg is the overpressure at the wave front, p, is the
reflected pressure, p,, is the atmospheric pressure, 7 is the time, ¢, is the time when the overpressure
meets the structure, 7 is the duration of the positive overpressure phase that can be obtained
from tables as a function of Z, ¢ is the time of incidence of the reflected pressure, b is the wave
shape parameter that depends on p,, Us is the velocity of the wave front, a, is sound velocity at
ambient conditions, S is half the slab short side length.

Normal reflection and validity of Rankine-Hugoniot (R—H) relations were assumed. These
simplifying assumptions were made in order to obtain simple analytical expressions that could be
written in a user subroutine. It should be noted that these constitute great simplifications taking
into account the proximity of the blast load to the slab. This fact shows one of the major
drawbacks of this type of numerical analysis where the blast load has to be approximated since a
complete coupled analysis cannot be performed.

To get an idea of the value of the resultant pressure magnitude and the positive phase duration,
for the 12.5kg Gelamon charge (equivalent to 10kg TNT), for instance, the maximum resultant
pressure is 110 MPa and the duration of the positive phase is around 3 x 10™*s.

In order to define the load history, the blast loads were assumed to be applied at time intervals
such that the superposition of pressure waves was negligible and the response was stabilized. The
total duration of the load for the three tests was approximately 2.0 x 10~2s.

An explicit dynamic analysis was carried out based on the central difference integration rule,
which is suitable for impulsive loads and strong discontinuous responses. The central difference
method is conditionally stable and the stability limit depends on the highest frequency of the
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system @pmax [25,29]

A< (10)

COII’IB.X

An approximation for this stability limit can be obtained as the shortest time interval necessary
for p-waves to pass the elements of the mesh,

At< min{£}, (11)

Cd

where L is the length of the element and ¢, the propagation velocity of p-waves.

ABAQUS/Explicit program [25] allows the automatic estimation of a stable time increment.
With this purpose, the velocity of the dilatation wave is calculated in each element, for each time
increment, assuming a hypo-elastic material model.

At first, the problem was run with automatic time increment and element by element
estimation, but the response was unstable. This was due to the simplified material model
employed for the estimation of the critical time increment.

In order to obtain stability, fixed time increments of 5.4 x 107®s were used (0.05 times the
original estimation). A total of about 7.3 x 10* time increments and 90 min of CPU time were
required for the simulation of the 2 x 10~ history.

The deformation of the slab after each of the three experiments is presented in Fig. 8. It can be
seen, especially in the later tests, there is elevation of the plate corners that was also observed in
experimental tests. Points A and B suffered the highest displacements which amounted to 19 and
40 mm, respectively.

Fig. 9 depicts the maximum stress distribution occurring during the first test on the upper and
lower face, respectively. It is interesting to notice the traction zones in coincidence with the
circumferential external cracking as revealed experimentally. Stress and strain states obtained for
the lower reinforcement indicate that the yield tension was reached in correspondence to the
internal circumferential crack, confirming the failure mechanism experimentally observed.
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Fig. 8. Slab deformation (amplification factor: 20) (ABAQUS CAE 2-5) (a) test 1, (b) test 2, (c) test 3.
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4.2. Hydrocode [26]

In contrast with the analysis done with the finite element program, the complete phenomenon
was modelled in this case. New developments in integrated computer hydrocodes [30], such as the
AUTODYN Software [26] used in this section, are especially suitable for the study of interaction
problems involving multiple systems of structures, fluids, and gases and highly time-dependent
and non-linear problems.

The analysis began with the modelling of the detonation and propagation of the pressure wave
inside the explosive and in the air in contact with the explosive. As this analysis must be
performed with much detail, it was done in a previous stage in which a spherical explosive was
modelled with AUTODYN 2D [26,31]. Then the results of this first analysis were mapped into the
three dimensional model [26]. Starting from this point, the propagation of the blast wave in air
and its interaction with the plate were simulated with AUTODYN 3D.

The model was composed of the plate, the underlying soil and the air volume surrounding the
plate, as shown in Fig. 10a.

A three-dimensional Euler FCT [26] (higher order Euler processor) subgrid was used for the air.
Flow out of air was allowed at all the borders. To model the air a fluid with the properties
presented in Table 5 was used.
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Fig. 9. Maximum stress contours (Pa) (test 1) (ABAQUS CAE 2-5)—(a) Upper face and (b) Lower face.
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The reinforced concrete slab was modelled with three-dimensional solid elements that were
solved with a Lagrange processor. The mesh was similar to cells that are used for the finite element
analysis.

Although reinforced concrete elements can be modelled as a combination of concrete and steel
elements joined together with the assumption of perfect bond, this type of model is prohibited for
actual structures, as it requires a great number of elements. Moreover, the time step in explicit
dynamic programs is directly related to the size of the elements. Elements which have dimensions
similar to the actual reinforcement usually lead to extremely reduced time steps, making the
analysis too slow.

Material Location

CONC-25MPA
REIN.CONC. I
GSOIL

GAIR

Velocity vectors (m/s)
2.932e+03

2639e+)3

2.346e+03 [
2.052e+03 [
1.759e+03 [
1.466e+03 [
1.173e+03 [

8.796e+02 [

5.864e+02 [

2.932e+02

(b) 0.000e+00

Fig. 10. Model for the simulation with AUTODYN—(a) Mesh, (b) Propagation of blast wave and interaction with the
concrete plate.
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Table 5

Air properties

Equation of state Ideal gas
y=14
Y

p=1225x% 1072 g/em®
Ref. energy=0.0mJ
Press. shift=0.0kPa

Initial conditions p=1225x 1072 g/ecm®
Ref. energy =2.068 x 10° mJ/mg

Table 6
Reinforced concrete mechanical properties

Density: 2400 kg/m’

Elastic modulus: 2.6 x 10* MPa
Poisson’s ratio: 0.15
Compression strength: 25 MPa
Tension strength: 4 MPa

Taking into account the above considerations, an approximate material model was defined to
simulate the behaviour of reinforced concrete. The model used is a homogenized elastoplastic
material similar to elastoplastic models of concrete but with higher stiffness and tension strength
to take into account the influence of the reinforcement. The lower layer of the plate was filled with
that material while the upper layers were all filled with concrete with the same properties used for
the finite element analysis. The mechanical properties of the homogenized model used for
reinforced concrete are shown in Table 6.

The soil was also modelled with three-dimensional solid elements and solution was carried out
with a Lagrange processor. A transmit boundary condition [26] was defined at the borders to
simulate semi-infinite space. An elastoplastic model with the same mechanical properties of Table
4 was used for the soil.

Detonation is a type of reaction of the explosive that produces shock waves of great intensity. If
the explosive is in contact with or near a solid material, the arrival of the shock wave at the surface
of the explosive generates intensive pressure waves that can produce the crushing or the
disintegration of the material. This shock effect is known as brisance [28]. Brisance produces
discontinuities in the material. In order to reproduce this type of effect, the erosion model of
AUTODYN [23,24,26] was used to remove from the calculation the cells that have reached certain
criteria based on deformations. When a cell is eliminated, its mass is retained and concentrated at
its nodes that begin to behave as free masses conserving their initial velocity.

This erosion model represents a numerical remedial measure to counteract the great distortion
that can cause excessive deformation of the mesh. For this reason, its application to the
simulation of a physical phenomenon requires calibration with experimental results.
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The slab was simulated with different erosion models and erosion limits in order to define the
appropriate erosion criteria and erosion limit. This analysis led to an erosion limit of 7.5 x 1072 of
incremental effective strain [31].

To study the structural behaviour of the plate, the propagation of the blast wave and its
interaction with the plate was analysed. To do this an interaction algorithm between the Lagrange
(plate) and Euler (air) processors was used [26].

As an illustration, Fig. 10b represents the velocity field in the air and pressure contours on the
solids. The alteration of the blast wave produced as a result of the reflections on the plate and the
ground should be noted. Because of the reflections, the blast wave increased its destructive effect
in the vertical direction and lost its spherical shape.

In the analysis, the solid—solid interaction [26] between the plate and the soil was also taken into
account through a contact algorithm.

The three explosions were simulated one after the other separated in time in order to assure that
air pressure returned to its reference value. The total real time history simulated was about 0.03s.
Increments of time of about 1 x 10™7 were automatically defined by the program and a total of 1 h
of CPU time was required.

Fig. 11 shows the results of the numerical tests. The maximum displacements registered at
points A and B in this case are 28 and 66 mm that are very close to experimental measures. Fig. 11
show the crushing of concrete in the zone of the slab directly beneath the charge. The deformed
shape obtained is in accordance with the failure mechanism assumed in limit analysis where the
effect of the underlying soil was supposed to be negligible.

5. Conclusions

Based on experimental results, an equation that approximately relates the crater diameter on
the pavement with the explosive charge and its height above the pavement was proposed.

Due to the relatively low strength and stiffness of the underlying soil, the presence of soil does
not alter the plate behaviour. The failure shape is almost coincident with that of a circular simply-
supported plate and with the diameter equal to the short side of the slab. The deformed shape of
the plate can be approximately depicted by a truncated cone.

For this case, limit analysis seems to be a simple and valuable tool to estimate the effect of a
blast load or to determine the magnitude of the explosive charge when the damage has already
been done. Eq. (6) can be used to estimate the pressure producing the damage observed and then,
with the aid of Eqgs. (8) and (9) or charts that can be found in blast references [28], the charge
producing that crater can be estimated.

Both the finite element program and the hydrocode used approximately reproduce the
deformation and the resultant failure shape of the plate under the blast load. In both cases an
explicit dynamic analysis was required with very small time increments and a high computational
cost. Nevertheless, hydrocodes seems to be more appropriate for the simulation of the complete
interaction problem with less computational effort.

Although the constitutive models used in the analysis were quite simple, they were able to
describe a similar response to the one observed experimentally. An important limitation is,
however, the modelling of the discrete cracking which cannot be done with the model employed.
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Fig. 11. Deformed shape (magnification factor: 2) and concrete crushing. (a) test 1, (b) test 2, (c) test 3.

In particular, it was not possible to reproduce the division of the plate in two parts. As a result,
the maximum vertical displacement obtained with the finite element model was significantly lower
than the one measured experimentally for the third explosion using a 12.5 kg charge.

More experimental data related to craters produced by explosive loads above concrete
pavements is needed. Some research effort must still be done in order to define a more suitable
erosion model for concrete. Erosion models for concrete must be based on damage and failure
criteria that take into account the different response in compression and tension.
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