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Abstract
The effect of static electromagnetic fields on the propagation of light is analyzed
in the context of a particular class of scalar–tensor gravitational theories. It is
found that for appropriate field configurations and light polarization, anomalous
amplitude variations of the light as it propagates in either a magnetized or an
electrified vacuum are strong enough to be detectable in relatively simple
laboratory experiments.

PACS numbers: 04.50.Kd, 04.80.Cc, 04.40.Nr

(Some figures may appear in colour only in the online journal)

1. Introduction

Scalar–tensor (ST) gravitational theories are the most firm candidates for extensions of General
Relativity (GR). A great part of their interest comes from the fact that they are induced naturally
in the reduction to four dimensions of string and Kaluza–Klein (KK) models [1, 2], resulting
mostly in the form of a Brans–Dicke (BD) type of ST theory [3], often involving also non-
minimal coupling to matter, leading to the so-called fifth force [4]. It is also interesting that
ST theories are shown to be mathematically equivalent to theories with action depending non-
linearly on the Ricci scalar, the so-called f (R) theories [5]. Finally, ST theories are possibly
the simplest extension of GR that could accommodate cosmological issues as inflation and
universe-expansion acceleration, as well as possible space–time variation of fundamental
constants [6]. On the other hand, observational and experimental evidence puts strong limits
to the observable effects of a possible scalar field. For example, in the case of a massless
scalar the BD parameter ω is constrained by precise Solar-system experiments to be a large
number (ω > 4 × 104) [7]. In this way, ST gravity phenomenology appears to be very
similar to that of GR, thus putting strong limits to possible experimental verifications. There is
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however a very interesting extension of ST gravity put forward by Mbelek and Lachièze-Rey
(MLR) [8], which could allow electromagnetic (EM) fields to modify the space–time metric
far more strongly than predicted by GR and standard ST theories. The theory was applied in
cosmological [9] and galactic [10] contexts, and in [8] it was used to explain the discordancy in
the measurements of Newton gravitational constant as due to the effect of the Earth’s magnetic
field. In [11] it was also shown that a ST theory of the MLR type can explain the unusual
forces on asymmetric resonant cavities recently reported [12]. The key new element of the
MRL theory is an additional, external scalar field ψ , minimally coupled to gravity, which is
introduced in order to obtain bounded lower limits of the reduced action of a KK theory. The
postulated reduced action for ψ includes a self-interaction potential U (ψ) and a source J,
the latter including contributions from the matter and EM fields, and from the internal scalar
φ. It is the EM contribution to J which is responsible for a possible strong effect, relative
to GR, of the EM fields on the metric. An additional interesting feature of the MLR theory,
which was briefly discussed in [11], is that the matter contribution to J could allow a BD
parameter ω close to one, and still fit the constraints determined by Solar-system experiments
and observations.

2. The MLR Scalar–tensor theory

We will consider a MLR class of ST theory, whose action is given by (SI units are used)

S = − c3

16πG0

∫ √−gφR d� + c3

16πG0

∫ √−g
ω (φ)

φ
∇νφ∇νφ d�

+ c3

16πG0

∫ √−gφ

[
1

2
∇νψ∇νψ − U (ψ) − Jψ

]
d�

− ε0c

4

∫ √−gλ (φ) FμνFμν d� − 1

c

∫ √−gjνAν d� + 1

c

∫
Lmat d�. (1)

In (1) the internal, non-dimensional scalar field is φ, while the external scalar field is ψ . These
fields have vacuum expectation values (VEV) φ0 = 1 and ψ0, respectively. G0 represents
Newton gravitational constant, c is the velocity of light in vacuum, and ε0 is the vacuum
permittivity. Lmat is the Lagrangian density of matter. The other symbols are also conventional,
R is the Ricci scalar, and g the determinant of the metric tensor gμν . The BD parameter ω (φ)

is considered a function of φ, as it usually results in the reduction to four dimensions of
multidimensional theories [2]. The function λ (φ) in the term of the action of the EM field is
of the type appearing in Bekenstein’s theory and other effective theories [9]. The EM tensor
is Fμν = ∇μAν − ∇νAμ, given in terms of the EM quadri-vector Aν , with sources given by
the quadri-current jν . U and J are, respectively, the potential and source of the field ψ . The
source J contains contributions from the matter, EM field and the scalar φ. The model for J
proposed in [8] is

J = βmat (ψ, φ)
8πG0

c4
T mat + βEM (ψ, φ)

4πG0ε0

c2
FμνFμν, (2)

where T mat is the trace of the energy–momentum tensor of matter,

T mat
μν = − 2√−g

δLmat

δgμν
.

We have not included a term proportional to the energy tensor of the scalar φ, present in
the original proposal of MLR, because in the weak-field (WF) limit to be considered it only
amounts to a rescaling of the β coefficients in (2) [11]. These coefficients are in principle
unknown functions of the scalars, but in the WF approximation they only contribute through
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the values of their first-order derivatives at the VEV φ0 and ψ0, thus appearing as adjustable
constants.

Variation of (1) with respect to gμν results in (T EM
μν is the usual EM energy tensor, and T φ

μν

the energy tensor associated to the scalar φ)

φ

(
Rμν − 1

2
Rgμν

)
= 8πG0

c4

[
λ (φ) T EM

μν + T mat
μν

] + T φ
μν

+ φ

2

(
∇μψ∇νψ − 1

2
∇γ ψ∇γ ψgμν

)
+ φ

2
(U + Jψ) gμν. (3)

Variation with respect to φ gives

φR + 2ω∇ν∇νφ =
(

ω

φ
− dω

dφ

)
∇νφ∇νφ − 4πG0ε0

c2
φ

dλ

dφ
FμνFμν

− ∂J

∂φ
ψφ + φ

[
1

2
∇νψ∇νψ − U (ψ) − Jψ

]
,

which can be rewritten, using the contraction of (3) with gμν to replace R, as

(2ω + 3) ∇ν∇νφ = −dω

dφ
∇νφ∇νφ − 4πG0ε0

c2
φ

dλ

dφ
FμνFμν + 8πG0

c4
T mat

+φ

[
1

2
∇νψ∇νψ − U (ψ) − Jψ

]
− ∂J

∂φ
ψφ, (4)

where it was used that T EM = T EM
μν gμν = 0.

The non-homogeneous Maxwell equations are obtained by varying (1) with respect to Aν ,

∇μ {λ (φ) Fμν} = μ0 jν, (5)

with μ0 the vacuum permeability.
Finally, the variation with respect to ψ results in

∇ν∇νψ + 1

φ
∇νψ∇νφ = −∂U

∂ψ
− J − ∂J

∂ψ
ψ + 1

φ

8πG0

c4
T mat. (6)

Having included G0, it is understood that φ takes values around its VEV φ0 = 1. The
scalar ψ is also dimensionless and of VEV ψ0.

These equations can be approximated in the WF limit keeping only the lowest significant
order in the perturbations hμν of the metric gμν about the Minkowski metric ημν , with signature
(1,−1,−1,−1), and of the scalar fields about their VEV φ0 and ψ0

− ηγ δ∂γ δhμν = 2(∂μνφ − ηγ δ∂γ δφημν ), (7)

∂γ h
γ

ν = 0, (8)

(2ω0 + 3) ηγ δ∂γ δφ = − ∂J

∂φ

∣∣∣∣
φ0,ψ0

ψ0, (9)

∂νFμν = −μ0[1 − λ′
0(φ − φ0)] jμ − Fμν∂ν (λ

′
0φ − h/2) (10)

ηγ δ∂γ δψ = − ∂J

∂ψ

∣∣∣∣
φ0,ψ0

ψ0, (11)

where ω0 = ω (φ0), λ′
0 ≡ dλ/dφ|φ0

, and

hμν ≡ hμν − 1
2 hημν,

with h = ημνhμν . In these equations only the EM sources were included, as we assume that
the effect of the near matter on the metric is also weak, and can thus be included, do to the

3
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linearity of the WF equations for hμν , as an additional term in hμν , determined from its own
independent equations, and considered also as a perturbation to a local Minkowski metric.

As done in [9] and [10], the condition of recovering GR–Maxwell equations when the
scalar fields are not excited requires that the β coefficients in (2) and the potential U (ψ) be
all zero when evaluated at the VEV φ0 and ψ0, and also that λ (φ0) = 1.

With these considerations, using the expression of the source J given in (2), with only the
EM terms, we finally obtain the complete set of equations for the EM field (making explicit
the electric and magnetic field vectors E and B, respectively)

�� = �(B2 − E2/c2), (12a)

∇ · E = ρ̃

ε0
− ∇� · E, (12b)

∇ × E = − ∂B
∂t

, ∇ · B = 0, (12c)

∇ × B = μ0 j̃ + 1

c2

∂E
∂t

+ 1

c2

∂�

∂t
E − ∇� × B, (12d)

where the auxiliary field � is defined as � ≡ λ′
0φ − h/2, and the EM sources were redefined

as j̃μ ≡ [1 − λ′
0(φ − φ0)] jμ. The constant � is given by

� = −8πG0ε0
(
λ′

0 − 3
)

(2ω0 + 3) c2
ψ0

∂βEM

∂φ

∣∣∣∣
φ0,ψ0

. (13)

According to [8], except for the factor
(
λ′

0 − 3
)
, the constant (13) can be determined in order

to fit the values of G measured at different places on Earth, and has thus a value

� � 5
(
λ′

0 − 3
) × 10−8 A2

N2
. (14)

Incidentally, for the particular KK theory proposed in [8] λ′
0 = 3, so that � = 0. We anyway

will consider a non-zero � since different KK theories can have λ′
0 �= 3, and also to study some

of the effects predicted by the system (12) with � �= 0 in order to compare them with those
predicted by an alternative reformulation of the theory, to be presented in the following section,
in which the first equation of the system (12) is modified, and which predicts observable effects
even in the case � = 0.

To study the propagation of EM waves we consider the case of a vacuum with uniform
and static electric and magnetic fields E0 and B0, so that one can linearize the system (12) in
the perturbations as

∇ · δE = −∇δ� · E0 − ∇�0 · δE, (15a)

∇ × δE = −∂δB
∂t

, ∇ · δB = 0, (15b)

∇ × δB = 1

c2

∂δE
∂t

+ 1

c2

∂δ�

∂t
E0 − ∇δ� × B0 − ∇�0 × δB, (15c)

∇2�0 = −�
(
B2

0 − E2
0

/
c2

)
, (15d)

�δ� = 2�(B0 · δB − E0 · δE/c2). (15e)

Starting with this system we consider now different simple configurations.

4
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2.1. Case E0 = 0

For the case without zero-order electric field, E0 = 0, and perturbations δE, δB, δ� ∼
exp i (k · x − � t) one has from (15)

k · δE = i∇�0 · δE, (16a)

k × δE = �δB, (16b)

k × δB = − �

c2
δE − k × B0δ� + i∇�0 × δB, (16c)

(k2 − � 2/c2)δ� = 2�B0 · δB. (16d)

For propagation along the magnetic field, B0 ‖ k, with ∇�0 ⊥ k, one has

δE� = i∇�0 · δE⊥/k, (17a)

δE⊥ = − �

k2
k × δB, (17b)

k × δB = − �

c2

(
δE⊥ + δE�

k
k

)
+ i∇�0 × δB, (17c)

replacement of the first two equations in the last results in(
1 − � 2

k2c2

)
k × δB + i

[
∇�0 × δB + � 2

k4c2
∇�0 · (k × δB) k

]
= 0. (18)

Projection of equation (18) in vector components parallel and perpendicular to k, results in a
homogeneous, linear system for the components of δB, which has non-zero solutions only if

� 2 = k2c2,

the usual dispersion relation for EM waves in vacuum. For the kind of propagation considered
we thus have the standard plane EM wave for δE⊥ and δB, with only the addition of a
longitudinal component of amplitude

δE� = i∇�0 · δE⊥/k.

We consider now propagation perpendicular to the zero-order field. Taking E0 = 0,
B0 = B0ez, ∇�0 = aex, k = kxex + kyey, the general system (15) can be reduced to

(� 2 − k2c2)δBz + iakxc2δBz = k2c2B0δ�, (19a)

(� 2 − k2c2)δBx − iakyc2δBy = 0, (19b)

(� 2 − k2c2)δBy + iakxc2δBy = 0, (19c)

(k2c2 − � 2)δ� = 2�c2B0δBz. (19d)

In the case δBz = 0, this system has non-trivial solution only for the dispersion relation

� 2 − k2c2 + iakxc2 = 0,

from which, � = kc + iγ , with (cos θ = kx/k)

γ = −ac cos θ

2
. (20)

5
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In the case δBz �= 0, one also has � = kc + iγ , with

γ = −1

2

⎡⎣±
√

2�c2B2
0 +

(
ac cos θ

2

)2

+ ac cos θ

2

⎤⎦ . (21)

Using the equation for �0 in (15) one can estimate that

a = |∇�0| ∼ �B2
0L,

with L a characteristic length of the zero-order magnetic field distribution, so that
a√
�B0

∼ √
�B0L, (22)

which, using the value (14) is seen to be much smaller than one for reasonable field distributions
(B0 ∼ 1T , L ∼ 1m), so that the expression (21) can be approximated by

γ = ±
√

�

2
B0c, (23)

a value much larger, according also to (22), than that corresponding to the case δBz = 0,
equation (20).

2.2. Case B0 = 0

For the case without zero-order magnetic field, B0 = 0, and perturbations δE, δB,
δ� ∼ exp i (k · x − � t) one has

k · δE = −k · E0δ� + i∇�0 · δE, (24a)

k × δE = �δB, (24b)

k × δB = − �

c2
δE − �

c2
E0δ� + i∇�0 × δB, (24c)

(k2c2 − � 2)δ� = − 2�E0 · δE. (24d)

For propagation along the electric field, E0 ‖ k, with ∇�0 ⊥ k, one then has

δ� = (i∇�0 − k)

k · E0
· δE, (25a)

(k − i∇�0) × (k × δE) = − � 2

c2
δE + � 2

c2
E0

(k − i∇�0)

k · E0
· δE. (25b)

The scalar product of equation (25b) with k leads to an identity satisfied by any arbitrary
longitudinal component δE�, while the homogeneous, linear system for the components δE⊥
obtained from equation (25b) has non-zero solutions only if � 2 = k2c2, thus resulting the
standard plane EM wave relations for δE⊥ and δB. On the other hand, the longitudinal
component δE� must be zero in order to satisfy equation (24d). In this way, the standard plane
EM wave is the only solution in this case.

For propagation perpendicular to the zero-order field, one has now B0 = 0, E0 = E0ez,
∇�0 = aex, k = kxex + kyey, and the general system (15) can be reduced to

(� 2 − k2c2)δBz + iakxc2δBz = 0, (26a)

(� 2 − k2c2)δBx − iakyc2δBy = 2�� 2E2
0 ky

k2(� 2 − k2c2)
(kxδBy − kyδBx), (26b)

(� 2 − k2c2)δBy + iakxc2δBy = − 2�� 2E2
0 kx

k2(� 2 − k2c2)
(kxδBy − kyδBx). (26c)

6
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If δBz �= 0, one has � = kc + iγ , with the same value (20) as in the case of E0 = 0.
For the polarization δBz = 0, one obtains, analogously to the case δBz �= 0 of the previous
subsection, � = kc + iγ with

γ = −1

2

⎡⎣±
√

2�E2
0 +

(
ac cos θ

2

)2

+ ac cos θ

2

⎤⎦ , (27)

which, proceeding as after equation (21), can be approximated by

γ = ±
√

�

2
E0. (28)

3. Experimental possibilities

From the previous section it is seen that the more noticeable effects are obtained for propagation
perpendicular to the zero-order fields, with the appropriate polarization of the wave in each
case. Moreover, comparing (28) with (23) it is clear that, from a practical point of view,
magnetic fields are preferable. In any case, when the beam traverses a length �L, the relative
variation of the amplitude A of any field is given by

�A

A
= exp

(
γ�L

c

)
. (29)

For the case of a magnetic field of 1 T, with δBz �= 0, one can thus estimate from (14)
and (23)

γ

c
∼ 10−4 m−1.

Although this effect is relatively large, there is the problem that both, growing and
decreasing modes are always present, so that a wave entering the region with a static magnetic
field results in a superposition of both modes, and so the variation of amplitude of the growing
mode cancels with that of the decreasing mode at first order in γ�L/c, and the effect is only
observable at second order, much hindering the experiment.

There is however a further possibility. It was argued in [11] that, in order for the MLR
theory to be consistent with the lack of strong gravitational effects due to the magnetic field
of the Earth, the nonlinear terms in equations (4) and (6) should come into play. This does
not mean that the WF approximation breaks down (second-order terms are still much smaller
than first-order terms), but rather that the Laplacian terms in equations (9) and (11) are zero
for this particular type of source, so that the equalities are satisfied by the higher order terms.

More explicitly, for the case of a static magnetic field outside its sources one can write
B = ∇�, with ∇2� = 0, so that, from equations (4) and (6) for the static case, one has instead
of equations (9) and (11),

(2ω0 + 3)∇2φ + ω′
0∇φ · ∇φ − 1

2∇ψ · ∇ψ = χφ∇� · ∇�, (30a)

∇2ψ + ∇φ · ∇ψ = χψ∇� · ∇�, (30b)

where ω′
0 ≡ (dω/dφ)φ0

, and

χφ ≡ 8πG0ε0

c2
ψ0

∂βEM

∂φ

∣∣∣∣
φ0,ψ0

,

χψ ≡ 8πG0ε0

c2
ψ0

∂βEM

∂ψ

∣∣∣∣
φ0,ψ0

.

7
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These equations have the solutions ∇φ ∝ ∇ψ ∝ ∇�, so that ∇2φ = ∇2ψ = 0, thus nullifying
the contribution of the vacuum magnetic field as a source of h (from which the gravitational
force is derived in the WF limit). This solution for the case of the Earth’s magnetic field
is compatible with the proposal in [8], where the solution with ∇2φ �= 0 was used, on the
condition that

ω′
0 ∼ 2ω0 + 3. (31)

In this way, from the contraction of equation (7) with ημν , one sees that to a static magnetic
field corresponds h = 0, so that equation (15d) in the system (15) is replaced by

∇�0 = λ′
0∇φ ≡ �∇� = �B0,

where the constant � depends, other than on λ′
0 , on χφ , χψ and ω′

0, and is directly determined
from the system (30) with the condition ∇2φ = ∇2ψ = 0. From the data in [8], together with
the assumption χψ ≈ χφ , and condition (31), one has

� � λ′
0

√
− 8πG0ε0

(2ω0 + 3) c2
ψ0

∂βEM

∂φ

∣∣∣∣
φ0,ψ0

≈ λ′
0 × 10−4 A

N
. (32)

In this case the system (15) can be written as (with E0 = 0)

∇ · δE = −�B0 · δE, (33a)

∇ × δE = −∂δB
∂t

, ∇ · δB = 0, (33b)

∇ × δB = 1

c2

∂δE
∂t

− �B0 × δB, (33c)

where the term with δ� can be neglected as it is small, since from (15) one can estimate that∣∣∣∣∇δ� × B0

∇�0 × δB

∣∣∣∣ ∼ �B0L, (34)

with L a characteristic length of spatial variation of the zero-order magnetic field. Note that
the magnitude of the right-hand side of equation (34) is similar to that of equation (22).

Proceeding as before one has

k · δE = i�B0 · δE, (35a)

k × (k × δE) = − �

c2
δE + i�B0 × (k × δE) . (35b)

For propagation perpendicular to B0 one thus obtains(
� 2

c2
− k2

)
δE⊥ + � 2

kc2
δE‖k = i�B0δE⊥ cos α k, (36a)

kδE‖ = i�B0δE⊥ cos α, (36b)

where α is the angle between B0 and δE⊥. As a result the dispersion relation is that of a normal
EM wave, � = kc, and the only anomalous effect is the presence of a small longitudinal
component of the electric field.

In the case of propagation along B0 one has instead(
� 2

c2
− k2

)
δE⊥ = − i�kB0δE⊥, (37a)

kδE‖ = i�B0δE‖, (37b)

8
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so that E‖ = 0, and � = kc + iγ , with

γ = −�B0c

2
. (38)

This effect is similar in magnitude to that in (23) (for λ′
0 ∼ 1), but with the advantage that

only one sign is possible, so that there are not coexisting growing and decaying modes, and
the growth (or decay) could be observed at first order.

4. Table-top experiments with optical fibers

Due to the relevance of first-order effects in the propagation of EM waves, it seems plausible
that the use of simple and readily available nowadays fiber optics would allow the verification
of the theoretical results of the previous section. Especially, the last result of section 3 shows
a direct method for measuring the additional amplitude change caused by the propagation of
a single mode inside an ordinary polymer fiber. Given the significance of separating between
alternative extensions of general relativistic theories for modern cosmology we propose that
such an experiment is of great importance due to its simplicity.

Specifically, our proposal is to get a sufficiently large fiber appropriately coiled which, with
existing materials, can be made to easily reach a kilometer of total distance for the propagating
mode. By taking the logarithm of equation (29) as 10 log10

(
�A
A

)
, for the amplitude variation

to be in dB units, we see that a magnetic field of 2 T would result in an amplitude variation
of 1 dB in 1 km distance. It is possible to reduce such a distance by an order of magnitude
only through a large magnetic field of about 10 T or more which can be produced in current
NMR devices while use of superconducting elements could reach even higher values [13, 14].
Actually, recent reports from the NHMFL at Los Alamos claim a 100 T machine is already
operational [15]. At the moment we will only assume the strongest existing rare earth magnets
like Boron–Neodymium for a tabletop experiment where sufficiently high accuracy power
meters are available. The central idea is to detect the difference between measurement on the
fiber coil, with and without the B field. Present day power meters have a power resolution of
about 0.1 dB and lower level near −95 dBm [16]. Fortunately, existing manufacturers may be
able to provide bobbins totaling 25 km of fiber or more so that a measurement of 10–20 dB of
additional amplitude variations is in principle possible.

With respect to the fiber coiling process, one has to take into account that any angles
introduced to the fiber material introduce additional attenuation to any propagating mode.
Technical data for existing fiber materials suggest that there should be a certain curvature with
angles small enough not to cause severe damping during normal propagation. This can be
achieved with a flattened coil frame like the one shown in figure 1.

As our scope is not in the engineering details of an actual experiment we only emphasize
the main points where care must be taken using some simplified configurations. In the flattened
fiber coil of figure 1 care must be taken so that on the upper path the fiber is parallel to the
direction of the external magnetic field. The return path, though, must be outside the region
of influence or else the amplitude variation effect will be cancelled and no difference will be
measured. For this reason we also made the flattened electromagnets shown in such a way that
the homogenized flux of the applied B field will only affect the upper part of the fiber’s path.

It is also possible to make up an homogeneous magnetic field using Neodymium magnets
in a special configuration known as a cylindrical ‘Halbach array’ [17]. Such arrays have been
in use for a long time in magnetic trains, very fast brushless motors and similar electrical
engineering applications. In such a case, the upper- or lower-part of the flattened fiber coil
should be put inside the region of homogeneous B flux of a Halbach cylinder.

9
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Figure 1. Proposed configuration of the optical fiber and Helmholtz coils.

5. Conclusions

We have here reported for the first time some new results on the possible gravitational influence
on classical EM fields in a particular class of scalar–tensor extentions of General Relativity. We
also used the linearized version of the perturbed Maxwell equations to analyze the propagation
of ordinary modes. The analysis led us to conclude the possibility of easy, low cost experiments
with fiber optics that would allow the verification of the said theories. We believe that the present
state of cosmology with the recurring acute problems of inflation and initial conditions, the
CMB anisotropy as well as the dark matter and dark energy, fully justifies the continuation
of the present research in more areas where evidence can be accumulated experimentally,
especially considering that the MLR theory considered has special relevance in cosmological
and galactic contexts [9, 10].
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