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Abstract — We study the relation between Josephson dynamics and topological excitations in
a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips
responsible for the self-trapping regime are created by vortex rings entering and annihilating inside
the weak-link region or created at the center of the barrier and expanding outside the system.
Large amplitude oscillations just before the onset of self-trapping are also strictly connected with
the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze
the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the
“ac” Josephson effect of superconducting and superfluid helium systems.

Introduction. — Phase coherence and superfluid-
ity are two characteristic and most intriguing features
of quantum fluids. Both phenomena are marked by a
complex-valued order parameter. The nature of the order
parameter is different in superconductors, helium super-
fluids or ultracold gases, but the most important common
feature is a rigid (due to inter-particle interactions) local
phase (arising from macroscopic coherence) whose gradi-
ent is proportional to the superfluid velocity. This de-
scribes a class of universal phenomena such as the quan-
tization of vortices or the stability of persistent currents.

One of the most important and counterintuitive conse-
quences of a non-vanishing order parameter with a non-
linear dynamics is the Josephson effect between two su-
perfluid bulks. In particular, Bosonic Josephson Junc-
tions (BJJs) created with two weakly linked, dilute Bose-
Einstein condensates, are characterized by a rich class of
dynamical regimes [1]. In the “plasma” oscillations, both
the relative population and the relative phase between the
two bulks oscillate sinusoidally at a frequency decreasing
with the height of the tunneling barrier renormalized by
the strength of the interatomic interaction. In the “ac”

Josephson regime, the relative phase increases in time due
to an external force (induced for instance by a linear po-
tential superimposed to a symmetric double-well). In the
“macroscopic quantum self-trapping” regime (MQST), the
relative phase increases in time driven by a difference in
internal energy between the two bulk regions of the weakly
linked system. The internal energy difference is induced by
a self-sustained relative population imbalance due to the
intrinsic non-linearity of the system. Moreover, 7 modes
with a relative phase oscillating around an average value 7
are also possible. Most of these effects have been recently
experimentally observed with Bose-Einstein condensates
(BECs) trapped in double-well [2-4] and optical lattice
potentials [5], in the internal BEC dynamics between two
hyperfine levels [6] as well as in different physical systems
like two weakly coupled polariton condensates [7].

The “ac” and the “MQST” regimes are both character-
ized by a “running” relative phase monotonically increas-
ing with time. The phase is of course single valued. In
particular, when it is calculated in a closed loop around
a zero-density region of the order parameter the phase
can return to its original value £2nm. This leads to the
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concept of phase slippage induced by the creation of a
singly quantized vortex crossing the barrier or the bridge
weakly linking two superfluid bulks, introduced to explain
the “ac” Josephson effects of superfluid helium [8]. An ex-
perimental signature of phase-slips during Josephson os-
cillations has been found as jumps of the macroscopic cur-
rent between two weakly linked superfluid helium reser-
voirs driven by an external induced pressure difference [9].
However, this behavior was observed only far outside the
Josephson tunneling regime, whereas in the latter the cur-
rent shows smooth sinusoidal oscillations.

In this work, we study the dynamics of phase-slippage
in the macroscopic quantum self-trapping regime of two
weakly linked Bose-Einstein condensates. We focus on
a 3D case and show that the topological excitation re-
sponsible for the phase slippage is a vortex ring crossing
the junction by radially shrinking (expanding) to (from) a
point at the center. We also observe a non-trivial vortex
dynamics just before the onset of MQST, where the large
amplitude population oscillations are driven by vortices
floating in the low density barrier region. The creation of
topological excitations and their dynamics are both very
fast compared to the relative phase and population dy-
namics among the two bulk regions. This justifies the use
of a two-mode approximation (TMA), where the dynamics
is described only in terms of collective variables. In con-
trast to the full numerical solution, in the TMA the phase
slippage takes place through the creation of a dark soliton-
like structure which creates a zero-density surface across
the barrier. TMA also, somehow surprisingly, reproduces
well the sudden jump in the value of the local superfluid
velocity inside the barrier induced by a phase-slip. Tak-
ing into account a correction factor that renormalizes the
interaction term [10], we show that the predictions of the
TMA are also quantitative.

Phase slips are also a mechanism for superflow decay in
the “dc¢” Josephson experiment. In the context of BEC,
they have been predicted [11,12] to occur when the con-
densate flows through a barrier at a velocity larger than
a critical value, and observed experimentally as jumps in
the macroscopic current [13-17]. The creation of vortices
and their relation to self-trapping dynamics in a dipolar
self-induced Josephson junction was discussed in [18].

The model. — Compared to superfluid helium, the
advantage of studying the phase slippage mechanism in
BECs is that their microscopic dynamics is quantitatively
well described by the time-dependent Gross-Pitaevskii
equation (GPE)
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where m is the atomic mass, V' is the double-well exter-
nal potential shown in fig. 1, g is the interaction coupling
constant giving rise to nonlinearity, and ¢ is the wave
function or order parameter. The local dynamics will be
mostly contained in the phase, ¢(r), of the order param-

eter, which in terms of hydrodynamic variables is written
as 1 = /ne'®, with n(r) the density. A relevant quantity
describing the microscopic dynamics is the velocity field
of the BEC projected along the junction axis (which we
label here as x axis) and integrated around the junction
region:

1
14junc

(2)

Vy =

[ vwo)-adedy,
junc

where the local superfluid velocity v = i/mV¢ and the
integral is computed at the barrier region centered at
x =y = 0. We take the plane z = 0 for convenience, but a
3D integral would give an equivalent result. The quantity
Ajunc is the area of the junction over which the integral
is evaluated. As we shall see, v, is sensitive to the pres-
ence of topological excitations. The relevant macroscopic
quantity is instead the population imbalance Z between
the regions lying on the two sides of the junction:
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where N is the total atom number. The external po-
tential is similar to the one used in the experiments [2],
V(z,y,2z) = (1/2)mw?r? + Vycos®(rx/qo), with Vg the
strength of the optical lattice, gy its wavevector, and
r? = 22 +y?+22. The interatomic interactions are charac-
terized by the scattering length a, related to the coupling
constant as g = 47Th2a/m. We initialize the system with
the ground state wave function of a tilted double well (see
[19] for more details), which gives initial conditions Zj
and ¢o(r) = 0 everywhere. At t = 0 the tilting poten-
tial is switched off and eq. (1) is solved. For concreteness,
we have considered a 3"Rb condensate with parameters:
a =100.87ap, w = 27 x 70 Hz, Vi /h = 27 x 413 Hz and
go = 5.2um. The total number of atoms is N = 1150.
In this configuration the critical imbalance that gives the
onset of self-trapping is Z. ~ 0.33 , and the size of the
condensate is about 8um in the y and z directions and
10pm in the x direction.

Local dynamics close to the pendulum instabil-
ity. — In the two-mode model, the population imbalance
during small amplitude (or “plasma”) oscillations evolves
sinusoidally in time. The right panels of fig. 1 show the
GPE numerical evolution of population and velocity at
the junction with initial condition Zy = 0.25 (solid lines).
The imbalance evolves almost sinusoidally in time and the
local velocity is shifted by /2.

By increasing the initial amplitude the oscillations be-
come anharmonic: this is simply captured by the pendu-
lum analogy of the BJJ dynamics [1]. When the phase
approaches its maximum value 7 (the pendulum getting
close to the upright position) and the atomic flow is re-
versed, rugosities appear in the zero crossings of the pop-
ulation imbalance and the local velocity shows very sharp
peaks as can be seen in the left panels of fig. 2.
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Fig. 1: Left: Scheme of the double-well potential and the ge-
ometry of the system. Right: Time evolution of the population
imbalance (top) and local velocity at the junction (bottom) for
Zy = 0.25. Solid lines are numerical GPE results, and dashed

lines TMA. The quantity anow = 566.50um/s is the unit of
velocity, with ap, = \/h/mw the harmonic oscillator length.

These peaks are caused by vortex rings entering the
junction region but not crossing it completely, thus not
giving rise to a 27 phase-slip. Since our configuration
shows axial symmetry around the x axis, these topologi-
cal excitations are circular vortex rings (see, for instance,
Refs. 20, 21] for more details), which are vorticity lines
along a circumference lying in the x = 0 plane, appearing
as a vortex-antivortex pair in the z = 0 plane.

In the right panel of fig. 2 the local phase ¢(r) (for
z = 0 and y > 0) shows singularities in correspondence
to the vortex rings. As illustrated in fig. 3, there are two
different processes that can take place: (i) a vortex ring
is created at the center and tries to cross the junction
by expanding and (ii) a vortex ring is created at the sur-
face and tries to penetrate the barrier by shrinking. We
have seen both processes in the simulations, but only the
local phase for process (i) is shown in the right panel of
fig. 2, corresponding to the second velocity maximum. The
lower phase singularity belongs to the inner vortex ring ex-
panding outward while the upper singularity belongs to a
second vortex ring with opposite vorticity external to the
junction (seen as an anti-vortex in the z = 0 plane). As
will be discussed later for the MQST regime, these sec-
ondary vortices have the role of helping the expanding
vortices to fully cross the junction.

Local dynamics in self-trapping regime. — Above
the critical value of the initial imbalance the average im-
balance remains locked at positive values and the phase
grows linearly in time. Taking again the pendulum anal-
ogy, this corresponds to a situation where the pendulum
no longer oscillates but it keeps going about in circles with
the pendulum angle (the relative phase) steadily increas-
ing with time. In this case, the velocity is maximum at the
equilibrium position (minimum population imbalance).

The linear growth of the phase difference can be under-
stood in terms of phase slips, which are reflected in sharp
decreases of the local velocity when the imbalance has a
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Fig. 2: Left: Time evolution of the population imbalance (top)
and local velocity (bottom) for Zy = 0.32. Solid lines (dots) are
numerical GPE results, and dashed lines TMA. The quantity
anow = 566.50pum /s is the unit of velocity, with an, = \/h/mw
the harmonic oscillator length. Right: Cut of the phase at
z = 0 for t = 111.80 ms. The dashed lines correspond to the
equidensity contour at 10™*nyax, with k = 4,3,2,1 (inwards)
and nmax being the maximum density in the plane z = 0. As a
guide to the eye, the projection of the vortex rings on the plane
z = 0 is marked with a circle and the corresponding circulation
with an arrow.

minimum, as seen in the left panels of fig. 4. These sharp
decreases are caused by vortex rings that have now enough
energy to completely cross the junction (or, in other words,
no longer see any barrier against their crossing the junc-
tion), leaving the 27 phase-slips behind. Also in this case
both processes (i) and (ii) mentioned above are possible.
An example of vortex passage is shown in fig. 4, for ini-
tial condition Zy = 0.34, where the three phase snapshots
show a vortex (which results from the projection of the
vorticity line of the y > 0 part of the ring vortex on the
plane z = 0) crossing the junction from inside to outside.
Notice that the junction does not lie exactly in the x = 0
plane, but it is slightly shifted. This is an effect of the
imbalance combined with the nonlinear interaction.

When the vortex ring is created within the barrier (pro-
cess (i) above) it has to expand outwards to produce the
phase slip. In analogy to what happens in homogeneous
space (see for instance Refs. [20,21]), in this process the
ring would increase its energy. In order to keep the total
energy constant, a second ring with opposite circulation,
an anti-vortex in the z = 0 plane (seen in the rightmost
panel of fig. 4 and the right panel of fig. 2), comes in from
the system’s surface and annihilates the inner vortex. The
annihilation takes place in the low density region outside
the junction.

Topological excitations and flow inversion. —
The link between local flow inversion and topological
excitations can be understood within a TMA [1]. This
model assumes that the condensate wave-function can be
written as a superposition of the left (®(r)) and right
(Pg(r)) real mode functions, localized in the correspond-
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Fig. 4: Left: Time evolution of the population imbalance (top) and velocity at the junction (bottom) for Zy = 0.34. Solid
lines (dots) are numerical GPE results, and dashed lines TMA. The quantity apow = 566.50um/s is the unit of velocity, with
aho = \/N/mw the harmonic oscillator length. Right: Phase snapshots at the z = 0 plane around the first imbalance minimum.
The times from left to right correspond to ¢ = 16.6 ms, 17.2 ms, and 17.6 ms.
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Fig. 3: Sketch of the two possible processes characterizing the
vortex ring dynamics. The circular lines represent the vortex
rings appearing at the junction region, and the arrows indi-
cate the direction of their movement in processes (i) and (ii)
described in the text.

Process ii)

ing wells, namely

U(r,t) = /Np()e?tOd L (r) + /Np(t)e?2 O dp(r),

(4)
with N;, ¢; the number of particles and phase in each
of the wells, ¢ = L, R. For a symmetric double well, the
main features of the BJJ are described by the Hamiltonian
H(Z,A¢) = AZ* — /1 — Z% cos A¢ [22], where the im-
balance and the phase difference are defined, respectively,
as Z = (N — Ng)/N and A¢ = ¢r — ¢r,. The parame-
ter A is proportional to the ratio between interactions and
linear coupling, and it is the only parameter in this model.
Depending on the initial conditions the Hamiltonian pre-
dicts different possible trajectories in the Z — A¢ phase
space, which can be closed (like plasma oscillations and
m-modes) or open (like MQST). The transition between
these takes place at a critical value of the initial imbalance
(for A¢p = 0) Z., which corresponds to the separatrix line
between the closed and open orbits.

In the TMA, the local velocity of the superfluid across

the junction can be written as

h N
V(I‘,t) = %EV 1-22 SIH(A¢) [(I)LV‘I)R - ‘I)RV(I)L] s
()
where n(r,t) = |U(r,t)|?, with U(r,t) given by eq. (4).
This velocity is related to the total macroscopic current

J:/j-dSocvl—Zzsin(Aqﬁ), (6)

where we have used the hydrodynamic relation j(r,t) =
n(r,t)v(r,t). Equation (6) shows that the junction is char-
acterized by a sinusoidal current-phase relationship in all
of its dynamical regimes.

To characterize what happens inside the junction during
flow inversion and to compare with GPE results, we can
calculate the mean velocity at the junction, eq. (2). To
obtain a very good quantitative agreement with the GPE
simulations, we fit the value of A according to [10] (see
Appendix). The time evolution predicted by the TMA is
shown as dashed lines in figs. 1, 2 and 4 together with
the evolution of the imbalance, and compared with the
numerical GPE results. In particular, notice that in the
MQST regime the TMA predicts, as in the GPE analysis,
a sudden change in the sign of the local velocity. However,
in the TMA the sharp decrease is not caused by a vortex
ring but by a (dark) soliton-like structure occurring when
the relative bulk phase reaches A¢ = 7, since the modes
®; and Py are static and do not evolve in time.

The linear increase in the local velocity with a sudden
switch of sign at A¢ = 7 requires a precise interplay be-
tween the dynamics of the current and the density. In
particular, while both decrease when approaching the crit-
ical point, the density decreases at a faster speed so as to
provide a linear increase of the local superfluid velocity
vs = J/n. This process continues up to the point where
the density vanishes and the phase slip takes place. It is
somehow surprising that such a delicate interplay can be
captured by the two-mode approximation, where the spa-
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tial wave-functions have a frozen profile and the dynamics
is expressed only in terms of collective variables.

Discussion and Conclusions. — We have studied
the relation between phase slips and topological excita-
tions in a BJJ undergoing Josephson oscillations. In our
3D configuration, the dynamical regimes of the junction
can be related to different dynamics of vortex rings. We
expect that the nature of the topological excitations de-
pends on the effective dimensionality of the system, be-
ing a soliton in 1D and a couple vortex-antivortex in 2D.
This zoology exists because, depending on the dimension-
ality, it can be energetically favorable to create a phase
slip with an instantaneous cut between the two bulks
through a dark soliton rather than with a shrinking ring
vortex. The net effect, in all cases, is the 27 phase slip.
In MQST regime of the junction, the speed of the vor-
tex crossing the barrier is quite higher than the collective
population/phase dynamics and can be considered instan-
taneous in the tunneling time scale. Therefore, as far as
the collective variable dynamics is concerned, the details
of the topological excitations are not important and the
TMA can provide a good approximate description of the
system also in higher dimensions.

Compared to superfluid helium, the advantage of study-
ing the phase slippage mechanism in BECs is that their mi-
croscopic dynamics is quantitatively well described by the
time-dependent Gross-Pitaevskii equation. This dynami-
cal analysis has allowed us to clarify that the phase slip-
page is the net effect of the annihilation of a (ring)vortex
and an anti(ring)vortex or of a shrinking ring-vortex, and
not a single topological excitation crossing the barrier re-
gion as previously suggested in the literature. Moreover,
a BEC junction might allow the experimental observation
of such topological excitations in the Josephson regime.
Vortices have been observed in the laboratory using time-
of-flight expansion [23] or detecting dislocations in the in-
terference fringes [24]. Recently simultaneous imaging in
three directions of space has allowed the resolution of more
complex structures such as vortex solitons [25]. The appli-
cation of these techniques to see the vortex rings our the-
ory predicts might be challenging, since they appear in the
low-density region of the junction. Therefore it might help
not to work deep in the tunneling regime. On the other
hand, adding a second component that coherently couples
to the condensate at the junction might allow the trans-
fer of angular momentum, in which case vortices might be
visible in a clearer way in the second component.

The precise instability mechanism at the origin of the
vortex rings deserves further studies. However, from our
simulations we can rule out soliton decay as well as coun-
terflow effects (since the flow is unidirectional when the
vortex rings are created).

To conclude, we notice that our results can also clarify
the role of topological excitations in the experimental ob-
servation of MQST in polariton systems [7]. Although we
have focused our analysis at the onset of the self-trapping

regime, it will be interesting to investigate the phase slip
dynamics of the “ac” regime as well as of the m-oscillations.
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Appendix: Correction to the two-mode model.
— In the self-trapping regime, the frequency of the two-
mode approximation does not agree perfectly well with
full simulations of the Gross-Pitaevskii equation since the
densities in the left and right wells are different from bal-
anced wavefunctions used to calculate the parameter A
[26]. Possible ways to obtain a good quantitative agree-
ment are to make use of an effective interaction parameter
as in [10] or to explicitly consider the dependence of the
local chemical potential on the number of particles in each
well [27].

Here we follow [10], where the effect of the imbalance is
taken into account in the two-mode model by renormal-
izing the interaction parameter U. To find the correction
for a finite imbalance Z we first calculate the quantity (see
[10] for details):

1

% = 7f ar (n(No))? /drn(No) n(No + AN) (7)
where n(Ny) = |®(No)|? and n(Ny + AN) = |®(Ny +
AN)|? are, respectively, the densities of the ground state
of the double well with Ny = 1150 and Ny + AN particles.
Notice that both ®(Ng) and ®(No+AN) are normalized to
unity. In this approximation, the new, effective interaction
parameter Ue sy = (1—a)U can be found using the « value
obtained from the linear fit

Ur AN

T 11—« Ny (8)
For our system, using U, leads a renormalized two-mode
model parameter A = 36.5. Including this correction into
the TMA (solid lines in fig. 5) we find time evolutions of
the imbalance, the phase difference and the velocity which
agree very well with the GPE results (thick lines and dots).
For comparison, the original TMA without the correction
is shown (dashed lines).
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Fig. 5: Comparison of two-mode model results (imbalance,
phase difference and velocity at the junction) with GPE. The
initial condition is Zy = 0.34, for the same double-well config-
uration as in the main text. The quantity arow = 566.50um/s
is the unit of velocity, with an, = \/h/mw the harmonic oscil-
lator length.
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