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Abstract. We report experimental and numerical results on the buildup of the energy spectrum in wave
turbulence of a vibrating thin elastic plate. Three steps are observed: first a short linear stage, then the
turbulent spectrum is constructed by the propagation of a front in wave number space and finally a long
time saturation due to the action of dissipation. The propagation of a front at the second step is compatible
with scaling predictions from the Weak Turbulence Theory.

1 Introduction

Wave turbulence is a generic state involving a large num-
ber of non linearly interacting waves. The typical example
is that of the spectrum of sea surface waves which involves
a wide interval of wavelengths and thus of frequencies. In
the limit of vanishing wave amplitudes and infinite system
size, a statistical theory can be developed that predicts
the evolution of the wave spectrum: the Weak Turbulence
Theory (WTT) [1–3]. For small amplitudes, the nonlinear
transfer of energy among waves is very slow as compared
to the wave frequency. Thanks to this scale separation,
a multi scale analysis can be developed that leads to the
so-called “kinetic equation”. This equation describes the
slow temporal evolution of the wave spectrum. Formally,
energy is transferred through the “collision” of at least 3
resonant waves. A major advance was made by Zakharov
by exhibiting stationary solutions of the wave spectrum in
the out of equilibrium case, i.e. in presence of forcing and
dissipation. In the ideal case of forcing localized at large
scale and dissipation operating at small scales, the solu-
tions show that a range of wavelengths can exist in which
energy cascades conservatively in wavenumber space. This
energy cascade is similar to that of fluid turbulence [4].
In the latter case no statistical theory supports the fa-
mous k−5/3 Kolmogorov spectrum. For wave turbulence,
the stationary wave spectra can be calculated from the
theory and are called Kolmogorov-Zakharov (KZ) spectra.

The predictions for the stationary KZ spectrum have
been calculated for many physical systems such as magne-
tized plasmas (solar winds or tokamaks), sea surface (grav-
ity and capillary waves), light in nonlinear media, Kelvin
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waves on superfluid quantum vortices. . . (see [1–3] for re-
views). By contrast, laboratory observations are scarce
and concern mostly water waves [5,6] but also inertial
waves [7] or light [8]. Recently an experimental break-
through occurred concerning the case of flexural waves
in a thin elastic plate [9–17]. In this system, it is possi-
ble to implement a space and time resolved measurement
of the wave field that allows us to probe the theory in
depth [11]. The WTT has been applied to this case by
Düring et al. [18]. The equation of motion of a thin elastic
plate are the Föppl-von Kármán equations:

∂ttζ = − Eh2

12ρ(1 − σ2)
Δ2ζ +

1
ρ
{ζ, χ} (1)

Δ2χ = − E

2ρ
{ζ, ζ} , (2)

where the physical properties of the material are de-
scribed by the following coefficients: Young’s modulus E,
Poisson’s ratio σ, the density ρ. The brackets {·, ·} denote
the bilinear differential operator

{ζ, χ} = ∂xxζ∂yyχ + ∂yyζ∂xxχ − 2∂xyζ∂xyχ. (3)

The linear part of the wave equation provides the disper-
sion relation for vanishingly small wave amplitudes that
are only due to flexion: ω = ck2 with c =

√
Eh2

12ρ(1−σ2) . The
non linearity is due to in plane stretching of the plate at
large deformation.
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The WTT formalism has been applied to these equa-
tions and leads to the following kinetic equation [18]:

dnk

dt
=

∫ ∑
s1s2s3

nk1nk2nk3nk

(
1
nk

+
s1

nk1

+
s2

nk2

+
s3

nk3

)

× δ(ωk + s1ωk1 + s2ωk2 + s3ωk3)
× δ(k + s1k1 + s2k2 + s3k3)
× 12π|Jk,k1,k2,k3 |2d2k1d

2k2d
2k3, (4)

where nk(t) is the wave action at wave vector k (such that
ωknk is the wave energy spectrum). J is an interaction
kernel which expression can be found in [18]. Stationary
spectra cancel the collision integral on the right-hand side
of the kinetic equation. Previous work have shown that
the wave spectra observed in real vibrating plates differs
from the theoretical prediction of the KZ spectrum:

nKZ(k) ∝ ln1/3 (k∗/k)
k2

, (5)

with k = ||k|| and k∗ is a cutoff wavenumber. A care-
ful analysis of the experimental wave motion was possible
due to the space and time resolved measurement [11–16].
It showed that the observed wave turbulence was truly
weakly non linear turbulence but that the discrepancy
with the theory was due to the dissipation. Indeed in
real plates dissipation is not ideally localized at high wave
numbers as assumed in the theory but it is rather dis-
tributed at all scales [13,17]. Thus the theory has to be
adapted to take into account the existence of such realistic
dissipation. Wave turbulence can still develop if dissipa-
tion is so small that a double timescale separation exists
between the fast linear oscillations, intermediate non lin-
ear time scales and very slow dissipation timescales [16].

Although the stationary case seems to be consistent
with the theory of elastic plates, at least in the phe-
nomenology, the transient buildup of the spectra has al-
most never been investigated experimentally. The few re-
sults concern non linear optics [8] or water waves [19].
Predictions have been made that the buildup of the wave
spectrum should follow a self similar evolution in which
a front propagates in spectral space from large to small
scales [20]. A first numerical result has been reported by
Ducceschi et al. for non dissipative finite plates that con-
firms that such a front propagates [21]. We propose to
investigate this transient evolution experimentally and nu-
merically in realistic plates. We report first experimental
results of the buildup of the wave spectrum when starting
the forcing in a real plate (Sect. 1). Then we complement
these observations by numerical simulations (Sect. 2) used
to check the robustness of the experimental observations
in a idealized setup.

2 Experiments

2.1 Description of the experimental setup

The experimental setup is close to that of [12]. A stainless
steel plate hangs vertically under its own weight (Fig. 1).

2 m

1 m

70 cm

96 cm

measurement
region

beam

shaker 
anchoring point

rigid
bar

y

x

Fig. 1. Schematics of the experiment. A 2×1 m2 stainless steel
plate is hung vertically on a beam. Vibration is generated by
an electromagnetic shaker anchored on a rigid bar fixed on the
bottom edge of the plate. The deformation of the plate is mea-
sured in the center region by a Fourier transform profilometry
technique.

Its dimensions are: 2× 1 m2 and 0.5 mm thick. The plate
used in the previous references was 0.4 mm thick (with
the same size). This change alters slightly the dispersion
relation of the waves but does not change significantly the
observed turbulence. The plate is clamped at the top along
its short edge. A more important change concerns the con-
nection between the plate and the electromagnetic shaker:
here the shaker is attached at the very bottom of the plate
and the edge of the plate is rigidified by an aluminum L
bar: thus the shaker imposes a uniform normal velocity
over the entire edge. It induces a vertically propagating
plane wave at 30 Hz (same excitation frequency as in the
previously reported experiments) that corresponds to a
wavenumber k/2π = 2.6 m−1. This change of the forc-
ing geometry was implemented in order to have mostly
unidirectional forcing scheme. It makes the initial stage of
the transient regime easier to understand as will be shown
below.

The deformation of the plate is measured both in space
and time using a Fourier transform profilometry technique
as described in [22,23]. The deformation is measured over
a surface 70 × 96 cm2. The principle of the measurement
is the following: a gray scale pattern is projected on the
plate (painted mate white) by a videoprojector. This pat-
tern is then visualized by a high speed camera. When the
surface is deformed, the pattern recorded by the camera is
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deformed as well. The chosen specific pattern is a grayscale
sine modulation. The deformation of the plate can be cal-
culated to induce a phase modulation of the pattern that
can be related through geometrical optics to the shape of
the plate. The distorded pattern is demodulated by means
of a Hilbert transform to recover the phase which is then
inverted to get the deformation of the plate. This demodu-
lation takes advantage of FFT-based algorithms and hence
can be used to process hundred of thousand of images in
a reasonable timespan.

The sequence of data acquisition is the following: the
camera recording is triggered at t = −0.1 s. Then the
shaker is started at its chosen magnitude of vibration at
t = 0 s. The total recording time is 1 s at 8000 frames/s.
Then the excitation is stopped and the motion damps nat-
urally during the transfer time of the acquired images to
the workstation (about 5 min). The previous sequence
is then repeated 100 times in order to obtain indepen-
dent realizations of the process. Indeed the process being
non stationary in time, only averages over realizations are
meaningful.

At a given wavevector k, two waves can propagate
with negative and positive frequencies (resp.), i.e. prop-
agating in the direction of the vector k or the opposite
direction, respectively. Thus when computing the Fourier
transform ζH(k, t), we obtain the amplitude of the super-
position of two counter-propagating waves. We separate
these two waves by using the Hilbert transform in time of
the deformation of plate ζ(x, y, t) [12]. We can obtain in
this way an analytic signal ζH(x, y, t) which spectrum at
positive frequencies (ω > 0) is zero. In this way the Fourier
transform in space ζH(k, t) at a given wave vector k cor-
responds to the amplitude of the wave propagating in the
direction of k and not to the superposition of two counter-
propagating waves. We can then study the isotropy of the
wave field in more details. In the following we omit the H
superscript for simplicity as we use only ζH(k, t) or the
equivalent for the normal velocity v = ∂ζ

∂t .

2.2 Buildup of the experimental spectrum

2.2.1 Sequence of the spectrum buildup

Figures 2 and 3 display the general evolution of the spec-
tral content of the deformation of the plate.

At early times (t < 250 ms) the deformation is mostly
due to an upward propagating wave corresponding to
the forcing frequency. This is very clearly seen in the
top left part of Figure 2 were a peak is observed for
ky/2π ≈ 2.6 m−1 and kx/2π ≈ 0 m−1. Thanks to the
Hilbert decomposition the upward propagating wave is
clearly separated from the downward propagating one.

At later times a continuous spectrum develops progres-
sively in a quite isotropic way with a propagating front in
wave number until it reaches a stationary shape (bottom-
right of Fig. 2). In the stationary regime, energy is dis-
tributed along all directions. A peak is still observed at
the forcing wave number due to the fact that the forcing
operates at constant frequency and amplitude and thus a
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Fig. 2. Temporal evolution of the power spectrum of the nor-
mal velocity of the plate. The contours are spaced logarithmi-
cally between 10−7 (black) and 10−2 m4/s2 (red). The forcing
starts at t = 0 ms. At most times, the maximum of the spec-
trum corresponds to the wave number k/2π = 2.6 m−1 of the
forcing wave at 30 Hz. t = 400 ms (bottom-right) corresponds
to the stationary regime.

temporally coherent component remains at this frequency.
The spectrum is not truly isotropic at large wave numbers.
Indeed the energy spectral support is slightly wider in the
x direction than in the y direction. This is probably due
to the distinct boundary conditions in these directions:
the left and right boundary are free and thus the reflec-
tion coefficient of the waves is very close to one. The top
boundary is clamped and the bottom one is clamped and
connected to the electromagnetic shaker. These boundary
conditions are most likely more dissipative because of en-
ergy leak to the support, notably to the connection to the
shaker. Thus the dissipation of waves during the reflection
is probably larger for waves reaching the top and bottom.
This must induce the observed slight anisotropy that is
also observed in Figure 3.

In order to get more insight into the development of
the wave spectrum we divide the spectrum in quadrants
and perform an angular averaging in each quadrant. In
this way the total Fourier spectrum E(k, t) = |〈v(k, t)〉|2
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Fig. 3. Time evolution of the energy at various wave numbers for the 4 quadrants of propagation (blue: positive x direction,
red: positive y direction, black: negative x directions and green: negative y direction). (a) Selection of 4 wave numbers as
indicated on each subfigure. (b) Same selection but the spectrum has been normalized by the average value of the stationary
limit. k/2π = 2.6 m−1 corresponds to the forced wave number.

is decomposed into 4 components corresponding to
polar angles in the intervals [−π/4, π/4], [π/4, 3π/4],
[3π/4, 5π/4], [−3π/4,−π/4] and thus to directions glob-
ally oriented to the right (positive x direction), to the top
(positive y direction), to the left (negative x directions)
and to the bottom (negative y direction), respectively.

Figure 3 shows the evolution of the energy of the four
quadrants for a few wave numbers (k/2π = 2.6 m−1

corresponds to the wave number at the frequency of exci-

tation). As observed on the previous figure, the first stage
of the observed motion is the propagation to the top of
the plate of a planar wave directly excited by the shaker.
A sharp rise of the energy of the upward motion starts at
t ≈ 50 ms (red curve at k/2π = 2.6 m−1 in Fig. 3). This
slight delay after starting the forcing is due to the time re-
quired for the forcing wave to propagate from the bottom
of the plate to the field of view of the camera. The energy
of the upward forcing wave overshoots strongly the long
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time limit and then slowly decays to the limit. A subse-
quent sharp rise of the reflected downward wave starts at
time t ≈ 120 ms and peaks at t ≈ 200 ms (green curve at
k/2π = 2.6 m−1). The delay between the top and down
components corresponds to the propagation over about
1.7 m at the group velocity at 30 Hz (about 24 m.s−1)
which corresponds to the propagation up to the top of the
plate, bouncing and propagation downwards to the field
of view of the camera. The forcing induces a noticeable
anisotropy for the wavenumber k/2π = 2.6: upward prop-
agating waves have the largest amplitude. Note that pla-
nar waves in an infinite plate cancel the non linear term
of the Föppl-von Karman equations and thus a planar
sine wave is a solution of the motion at all amplitudes.
This is most likely the case until the forcing wave hits the
top boundary. The upward wave, the downward reflected
wave as well as the waves scattered by the boundary can
then interact nonlinearly to initiate the energy cascade to
smaller scales.

At k/2π = 5.2 m−1 the energy of the modes propagat-
ing upwards remains slightly dominant. This is potentially
a residual of the forcing anisotropy that would subsist in
the first steps of the energy cascade. Another technical
explanation could be related to the finite resolution in
Fourier space that causes the peak at k/2π = 2.6 m−1

to be spread over neighboring wave vectors. The peak
is significantly larger than the background and thus it
influences slightly the upward wave numbers at k/2π =
5.2 m−1. For larger wave numbers the energy is the same
between left and right or top and bottom propagating
waves. The previously mentioned slight anisotropy be-
tween vertical or horizontal wave vectors is recovered in
this figure at the highest wavenumbers.

Figure 3b shows that once normalized by their long
time limit, the energy at a given wave number (but the
forcing one) increases at the same time whatever the di-
rection of propagation. In terms of time scales, the system
seems isotropic. The rise of the energy at the larger wave
numbers occurs only after the rise of the downward prop-
agating forcing wave. At the highest wave numbers, the
delay of the energy rise seems to increase with the wave
number in a way that is consistent with the picture of a
energy front propagating in wave number space.

2.2.2 Deterministic part vs. stochastic part of the spectrum

The forcing of the waves is a pure sine at a given frequency
(30 Hz) which is fully coherent in time. Due to this de-
terministic and repeatable forcing scheme, the early steps
of the propagation can be reproduced from one realiza-
tion to another as well as the early nonlinear phase. After
some time, the non linear process becomes chaotic and the
inherent sensitivity to initial conditions leads to the devel-
opment of a chaotic (or stochastic) stage that is distinct
from one realization to another due to slight differences in
the initial conditions. Furthermore, as observed above a
part of the wave spectrum at all times is due to coherent
radiation of waves by the shaker. We would then like to
separate the coherent and repeatable part of the spectrum

from the stochastic one as the latter part is the only one
that may actually be described by the Weak Turbulence
Theory.

A way to distinguish the initial deterministic part of
the motion from the subsequent stochastic one is the fol-
lowing. We compute the average 〈v(k, t)〉. Non zero values
of this average are possible only for the initial repeatable
part of the development and for the part of the spectrum
that remains coherent at the forcing frequency. The spec-
trum of the waves is then split into a deterministic (or
repeatable) part

Edet(k, t) = |〈v(k, t)〉|2 (6)

and a stochastic part

Esto(k, t) = 〈|v(k, t)|2〉 − |〈v(k, t)〉|2. (7)

This decomposition is somewhat reminiscent of the
Reynolds decomposition of the velocity field in fluid tur-
bulence into an average part and a fluctuating one.

Figure 4 shows the two parts of the spectrum. The
deterministic part is seen to be significant at the lowest
wavenumbers close to the forcing wavenumber (k/2π ∼
2.6 m−1). Furthermore the deterministic part is seen to
increase strongly at the initial stage (i.e. when less than
250 ms elapsed since the shaker has been triggered) and
then vanish except for the upward propagating wave that
remains about 50% of the total spectrum at this wave
vector. The latter component displays some fluctuations
that may be due either to a insufficient convergence of
the statistics or to a dynamical interplay of the low fre-
quency modes around k/2π ∼ 2.6 m−1 that may interact
non linearly and show a non constant dynamics. A weaker
coherent part is also seen at k/2π ∼ 5.2 m−1 possibly due
to the resolution issue mentioned above.

The stochastic part of the spectrum starts to rise si-
multaneously for all directions. The duration of the rise
is also similar for all directions except at the forcing
wavenumber at which the stochastic dynamics is most
likely affected by the deterministic one. The time at which
the rise starts is increasing with the wavenumber.

2.2.3 Summary

The overall picture of the development of the spectrum
is thus the following. In the initial stage, the forcing in-
duces a deterministic linear wave propagating upwards.
In a second step, the non linear transfers starts once the
forcing wave hits the top boundary. A stochastic almost
isotropic energy cascade is then initiated. The energy is
transferred progressively to smaller and smaller scale. The
rise of energy at the smallest scales is thus delayed com-
pared to largest scales due to the time required for the
nonlinear cascade to proceed. Once the stationary regime
is attained a partially coherent upward propagating wave
remains at the forcing frequency. There is almost no de-
terministic wave at the same frequency that propagates
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Fig. 4. Time evolution of the energy at various wave numbers for the 4 quadrants of propagation (blue: positive x direction,
red: positive y direction, black: negative x directions and green: negative y direction). The spectrum has been shared in a
deterministic part which is repeatable over realizations (left column) and a stochastic part (right column) (see text). The
spectra have been normalized by the long time limit of the full spectrum.

downwards. This suggests that the nonlinear energy ex-
changes with other waves destroy progressively the coher-
ence of the forcing wave while it propagates across the
plate. The coherence is most likely lost in a time compa-
rable to the time needed to propagate along the plate.

2.3 A self similar non stationary solution?

Following Falkovich and Shafarenko [20], one looks for a
front-like self-similar solution under the form: n(k, t) =
t−qf(k/tp). The scaling properties of the collision integral
and the hypothesis that the stationary solution should be
of constant flux leads to the solution

n(k, t) =
1
t
f

(
k√
t

)
, (8)

where f is an unknown function (see Ducceschi et al. [21]).
Thus one expects that a front will propagate at a cutoff
wavenumber kc(t) ∝

√
t.

This has indeed been observed by Ducceschi et al. in
a numerical simulation [21]. By using a finite difference
numerical scheme, they simulate a finite plate with real-
istic boundary conditions but without dissipation. They
observe that the buildup of the turbulent spectrum oc-
curs through a propagating front which cutoff frequency
evolves as ωc ∝ t which, thanks to the dispersion rela-
tion ω ∝ k2 translates into a cutoff wavenumber kc ∝ √

t.
As no dissipation is present in their simulation, the ob-
served spectrum does not saturate to a stationary form.
Humbert [24] studied a simplified phenomenological model
of the kinetic equation and observed the same behavior.
Here we check to what extent this prediction is fulfilled in
a real plate.

By discarding logarithmic corrections which are elu-
sive in real systems, one expects the stationary solution
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Fig. 5. Propagation of the energy front in the wavenumber
space. (a) Evolution of the spectrum (averaged over directions)
normalized by its final value E(k, t)/E(k,+∞) for a few se-
lected values of k equally spaced in the interval [3.6, 20] × 2π.
Black dashed line: 50% level defining the time t50(k) (sym-
bols in (b)) required for the spectrum E(k, t) (averaged over
all wavevector directions) to reach half of its final energy. Red
line in (b): linear fit of t50 vs. k2. (c) E(k, t)/E(k, +∞). Black
line in (c): fit of t50 as computed in (b).

to be nKZ(k, t) ∝ 1
k2 . One can rewrite the self-similar

solution (8) into

n(k, t) =
1
k2

g

(
k√
t

)
, (9)

where the function g(ξ) is zero for ξ → ∞ and goes to 1
as ξ → 0.

In our experiments, we do not observe the
Kolmogorov-Zakharov spectrum because of dissipation
effects [13,17]. Instead of using equation (9) we normalise
the spectrum E(k, t) (summed over the directions of k)
by its stationary asymptotic value. This normalized quan-
tity E(k, t)/E(k,∞) evolves between 0 (initially) and 1
(at large times) so that it plays a role similar to the func-
tion g in equation (9). Figures 5a and 5c show the nor-
malized spectrum. It is quite clear that energy propagates
from small to large k with a front. To extract the position
of the front, we compute at each value of k the time t50(k)
at which the spectrum reaches 50% of its final value. This
time is shown in Figures 5b and 5c. t50(k) is seen to evolve
quadratically with k as predicted by the self-similar solu-
tion. The general expression of the self-similar solution (8)
is due to the scaling properties of the interaction term
Jk,k1,k2,k3 and of the 4-wave interaction. Thus our obser-
vations support the kinetic equation approach (4) for the
vibrating plate. It is also consistent with our previous ob-
servations of the stationary regime [16] which show that
the wave turbulence regime observed in our plate is weakly
nonlinear at moderate forcing.

3 Numerical simulations

The experiments presented above show some evidence that
the transient phase is consistent with the WTT. Neverthe-
less there are a few difficulties in the experiment such as
the locality of the forcing or the slight anisotropy of the
spectrum or the fact that dissipation is weak but operating
at all scales as reported in [13,17]. Another issue is that
the measurement is made only on a fraction of the plate.
We would like to complement the experiments by numer-
ical simulations with similar amplitudes of forcing but in
idealized conditions in order to test the robustness of our
experimental observations. Our goal is not to perform a
systematic study of the influence of dissipation on the de-
velopment of the spectrum which is of great interest but
beyond the scope of the present article. We focus on the
case of a weak dissipation (comparable to experiments)
that enables a non linear cascade to proceed.

3.1 Numerical setup

We perform numerical simulations of a plate with similar
physical properties than those of the real plate. For de-
tails on the numerical code see Miquel et al. [13,25]. The
motion is simulated using a pseudo-spectral code with pe-
riodic boundary conditions. The physical properties of the
simulated plate are that of a 2× 2 m2 steel plate, 0.4 mm
thick. The resolution is 1922 grid points. Our goal is not
to simulate accurately the real plate but rather to sim-
ulate the fundamental features that enable a qualitative
comparison with the experiment. In that respect periodic
boundary conditions are not realistic but they are much
simpler to handle than the real boundary conditions and
they allow us to use an efficient pseudo-spectral scheme.

Excitation is achieved by applying a force isotropically
on the modes of wavenumber close to k/2π = 2.5 m−1.
The force applied to each mode is oscillating at the lin-
ear frequency of the considered mode so that to induce a
secular growth of the amplitude in the linear stage. The
phases of the forces of the excited modes are chosen ran-
domly for each realization but kept constant in time for
each single realization. This forcing scheme is similar to
the experimental one in the fact that the forced modes are
forced deterministically at a given constant frequency. A
significant difference is that the forcing is homogeneous in
space in the simulation whereas the force is applied locally
in the experiment.

A linear dissipation is introduced in the simulated wave
equation in which the dissipation rate is either (i) the dis-
sipation rate measured experimentally [14] (for a direct
comparison with experiments) or (ii) a ‘localized’ dissi-
pation, for which the dissipation rate is vanishing in the
interval k ∈ [6, 157] m−1 ensuring a conservative cascade
in this interval. Previous investigations have shown that
such a ‘localized’ dissipation (ii) allows us to observe a
stationary spectrum in full agreement with the theoreti-
cal predictions of the Weak Turbulence Theory [13,18]. In-
deed such dissipation is close to the canonical conditions
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Table 1. Parameters of the simulations. ‘exp’ dissipation
means that the dissipation rate is the same as the experimental
one, ‘localized’ dissipation means that an interval of wavenum-
bers exists with no dissipation (see text for details). For each
run, the statistics have been averaged over a few hundred in-
dependent realizations of the forcing. zrms and vrms are the
root mean square values of the deformation and the velocity in
the stationary regime. In the experiment zrms = 4.2 mm and
vrms = 0.42 m/s (very large scale deformation and motion in
the experiment have been filtered out as they are not present
in the simulation). Note that values of the velocity are very
similar for run A, run B and the experiment.

Run Dissipation zrms vrms #

(mm) (m/s) Realizations

A exp. 2.2 0.5 300

B localized 1.5 0.43 588

Exp. 4.2 0.42 100

assumed in the theory. Thus the prediction of a propagat-
ing conservative front should be verified when the front is
in the conservative interval of wave numbers. When using
the experimental dissipation (i), the computed turbulence
is very close to the observed one (in the stationary regime)
despite the very different boundary conditions [13]. These
previous observations show that the boundary conditions
do not have a major impact.

Two configurations have been studied (see Tab. 1) with
both cases of dissipation. The forcing amplitudes have
been chosen so that the root mean square velocity in
simulations is similar to experimental values. The forc-
ing scheme, the boundary conditions and the dissipation
are distinct in each case so that a perfect match is not
possible but the values of zrms and vrms are very close
which is sufficient for a qualitative comparison with the
experiment.

In each case the forcing is started at t = 0 with a plate
which is perfectly flat. Then the code runs for 1 s of phys-
ical time. The numerical experiment is repeated several
hundred times in order to ensure a good convergence of
the statistics (see Tab. 1).

3.2 Buildup of the numerical spectrum

3.2.1 Growth of the energy

The initial stage of the energy growth is somewhat dis-
tinct from that observed in the experiments due to the
difference in the forcing scheme. In the simulations, the
modes with k/2π ≈ 2.5 m−1 are forced resonantly at their
linear eigenfrequency. Thus the initial stage is a fast linear
secular growth of the amplitude of the forced modes. Ac-
cordingly the energy grows initially quadratically with t
(Fig. 6). This growth is homogeneous in space so there is
no initial propagation stage as is observed in the exper-
iment making the initial transient stage easier to inter-
pret. The first stage of the growth lasts until large enough
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Fig. 6. Time evolution of the total energy for dataset A. Thick
solid line: average over 300 realizations. Thin lines: 5 distinct
realizations. Insert: zoom at short times.
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Fig. 7. Time evolution of the spectrum E(k, t) for run A. The
bottom most line corresponds to t = 4 ms and the subsequent
lines are separated by a time interval δt = 10 ms.

amplitudes are reached so that the non linear terms be-
come effective and initiate the energy cascade to small
scales. The energy grows then almost linearly in time as
expected for a constant input of energy. Because of the
presence of dissipation, the spectrum finally saturates to
a stationary value and the energy reaches a statistically
stationary value: the average is constant but for individ-
ual realizations the energy fluctuates around the average
value (Fig. 6).

3.2.2 Development of the spectrum

Figure 7 shows the time evolution of the angle integrated
velocity spectrum E(k, t) for run A. As expected from
the evolution of the energy, the initial stage is simply a
growth of the energy at k/2π ≈ 2.5 m−1. Then the tur-
bulent state develops and energy propagates to high wave
numbers. This behavior is very similar to that of the ex-
periment (except for the initial propagation stage which
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Fig. 8. Time evolution of the spectrum E(k, t)/E(k,∞) for
various given values of k for run A. The uppermost curve corre-
sponds to k/2π = 2.5 m−1 which is the wavenumber of the en-
ergy input. Subsequent lines are separated by δk/2π = 5 m−1

with k increasing from left to right.

is not present in the simulations). In the simulations the
process is isotropic due to isotropic forcing. We expect
the weak turbulence description to be valid only in the
second part of the development of the spectrum, typically
for t > 0.01 s for the run A displayed in Figures 6 and 7.

The time evolution of the normalized spectrum
E(k, t)/E(k,∞) for a few values of k is shown in Fig-
ure 8. The evolution of the energy of the modes that are
directly excited by the forcing (left curve) is strongly dif-
ferent from what occurs at larger k. The energy of the
forced modes grows rapidly due to the secular growth. It
then overshoots the stationary value and displays a much
slower decay to the limit value. This behavior is very simi-
lar to what is observed experimentally at the forced mode.

The energy increase is delayed at larger k compared
to smaller values of k in agreement with the idea of a
front propagating in k-space. The much slower increase
of the energy as compared to the secular growth of the
forced mode is fully compatible with the phenomenology
of weak turbulence. Indeed, the weakly non linear transfers
are expected to occur on much slower time scales than
the linear ones which is definitely what is observed here.
This figure is actually very similar to Figure 5a for the
experiment but the dynamics of the initial stage is simpler
due to the isotropic forcing scheme.

3.3 Self similar non stationary solution?

We would like to check if the simulation is compatible with
the propagation of a self similar front as predicted by the
theory. Equation (9) for the action spectrum translates for
the angle integrated velocity spectrum as:

E(k, t) = kg

(
k√
t

)
. (10)

time (s)
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Fig. 9. Time evolution of kc for the numerical simulations.
Red: experimental dissipation (run A). Black: localized dissi-
pation (run B). Dashed lines are eye guides for a linear growth.

Similarly to Ducceschi et al. [21] we would like to define a
cutoff wave number as

kc(t) =
∫

kg(k/
√

t)dk∫
g(k/

√
t)dk

, (11)

which can be written as

kc(t) =
∫

E(k, t)dk∫
E(k, t)/kdk

. (12)

Unfortunately this expression cannot be used with the ex-
perimental data because the very large peak at the forcing
scale affects strongly the integrals in equation (12) and
gives irrelevant values for kc. The evolution of kc(t)2 for
the numerical simulation is shown in Figure 9. After a
short transient (due to the initial linear dynamics), kc(t)2
increases almost linearly in both cases before saturating
at a stationary value. For run B, we recover the result of
Ducceschi et al. [21] until the front reaches the dissipative
interval of wavenumber. For run A, we observe a linear
evolution at intermediate times (0.01 � t � 0.1 s) which
is both similar to that of run B and to the experimental
observations.

In Figure 10, we show the increase of energy for run
A for a collection of wave numbers in the inertial range.
When time is rescaled by k2, a fair collapse of the curves
is observed at the initial stage of the growth (for small
values of t/k2). At larger times the final growth to the
saturation does not rescale correctly. This shows a dis-
tinct dependency of the spectrum on the wavenumber.
The initial growth is compatible with the prediction of the
conservative cascade but the latest steps are influenced by
dissipation and thus obey a different scaling (if any).

4 Discussion and conclusion

The weak turbulence theory is characterized by time scale
separation. Indeed for weak non linearity the non linear
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Fig. 10. Time evolution of the spectrum for the numerical
simulations of run A as a function of the rescaled time t/k2. In
the insert the same curves are displayed as a function of time t.
The color code is the same for both figures. The various curves
correspond to wave numbers separated by δk/2π = 1.5 m−1 the
smallest value of k is k = 14π m−1. The evolution is plotted
for t > 15 ms for times at which the energy cascades proceeds.

time scale TNL is much larger than the linear period
T of the waves. In real systems, dissipation exists but
if it remains weak then the dissipation time scale Td

is much larger than TNL. In this way, non linear en-
ergy exchange among waves can develop at intermediate
time scales before dissipation begins to operate. Thus for
T � TNL � Td a regime of wave turbulence can develop.
This time scale separation has been checked experimen-
tally in the stationary regime by performing a wavelet
decomposition [16].

In the transient regime, one does not expect that dissi-
pation plays any major role until t ∼ Td. Due to the scale
separation TNL � Td, a non stationary non linear regime
has ample time to develop for t < Td which should be sim-
ilar to the conservative case. Thus for times t < Td one
expect to observe the conservative self similar solution.
At later times t � Td, dissipation begins to operate and
thus the propagation of the front should slow down and
stop. The spectrum will slowly evolve to the stationary
spectrum which depends on the dissipation in real plates.

For the real plate and for run A, the dissipation is
active over the entire range of wavenumber but it is in-
deed weak. With the experimental dissipation rate im-
plemented in the simulation (measured in [14]), the time
scales associated with dissipation are of the order of 0.1 s
or larger. The experimentally measured non linear time
scales are about one decade smaller than the dissipation
time scales [16]. It means that a conservative non linear
transient stage can indeed develop and will be faster than
the dissipation that will have a significant impact on the
vibration only after a time of order 0.1 s. We then expect
that the initial stage of the front propagation (for times
less than 0.1 s) should not be affected by the dissipation
and should be consistent with the prediction of the WTT.
This is indeed the case as the linear growth of k2

c is linear

for times up to 0.1 s (Fig. 9). A qualitatively similar be-
havior is observed for run B. In this run, we implement a
‘localized’ dissipation which is effective only at the high-
est wave numbers of the simulation. Thus the predicted
self similar evolution of the spectrum is expected until the
front in the transient spectrum reaches the wavenumber
k/2π = 25 m−1. Above this wavenumber the dissipation
becomes very large. Then the propagation of the front is
affected by dissipation and the spectrum evolves toward
the stationary solution as observed for t > 0.15 s.

In conclusion, our experiments and numerical simula-
tions show that the build up of turbulence follows a 3 steps
sequence.

1. First a very fast linear growth of the forced modes is
observed due either to propagation of the forced wave
from the shaker in the experiment or to secular growth
of the forced modes in the simulation. This step is of
course strongly dependent on the forcing scheme.

2. The second step corresponds to the start of the non
linear energy cascade. The buildup of the turbulent
spectrum occurs through the propagation of an al-
most isotropic front in the wave number space which
is compatible with the self similar prediction based on
the similarity properties of the kinetic equation (which
has been predicted for the non dissipative case). This
step seems more universal as soon as the time scale
separation TNL � Td is verified.

3. The last step corresponds to the long time saturation
of the spectrum. At times comparable to the dissipa-
tion time scale, dissipation comes into play and grad-
ually stops the propagation of the front. The shape of
the spectrum ultimately evolves slowly into its statis-
tically stationary state.

The observed propagation of the front in the intermediate
non linear stage is consistent with the scaling properties
predicted by the Weak Turbulence Theory. Thus our ob-
servations support the general theoretical framework of
weak turbulence leading to the kinetic equation for the
time evolution of the wave spectrum. Such experimental
support is extremely rare in the literature. In this respect
the case of the vibrating plate is a precious model for
weakly non linear wave turbulence in real systems and is
a strong support to the relevance of the WTT for other
real systems.
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