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• Patterns of DLA grown on nonuniform substrates are studied.
• Incipient percolation clusters of k-mers are used as nonuniform substrates.
• At the pc , the DLA are asymmetrical and the branches are relatively few.
• The fractal dimension of the aggregates increases as p increases.
• This behavior is discussed in the framework of existing theoretical approaches.
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a b s t r a c t

In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform
substrates are investigated by means of Monte Carlo simulations. We consider a
nonuniform substrate as the largest percolation cluster of dropped particles with different
structures and forms that occupy more than a single site on the lattice. The aggregates
are grown on such clusters, in the range the concentration, p, from the percolation
threshold, pc up to the jamming coverage, pj. At the percolation threshold, the aggregates
are asymmetrical and the branches are relatively few. However, for larger values of p, the
patterns change gradually to a pure DLA. Tiny qualitative differences in this behavior are
observed for different k sizes. Correspondingly, the fractal dimension of the aggregates
increases as p raises in the same range pc ≤ p ≤ pj. This behavior is analyzed and discussed
in the framework of the existing theoretical approaches.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fractal growth and aggregation phenomena have attracted considerable interest in the surface science community
not only because of its importance for experimentalists but also by the basic theoretical background behind it [1–11]. In
particular, it is interesting to notice that the structure of the aggregates strongly depends on the dynamics of the growth
process as well as the topology of the substrate where they are grown [12]. In fact, great efforts have been made to develop
theories and experiments capable of predicting the connection between cluster geometry and aggregation processes. Thus,
exact analytical calculation describing the growth process has been developed only for simple cases. However, analytical
expressions cannot be derived in more realistic cases and Monte Carlo simulations have proven to be an adequate and
powerful tool to study the problem.

T.A. Witten Jr. and L.M. Sander [1] have built up one of the most studied models of surface grown: the diffusion-
limited aggregation (DLA). The interest in this model is based on the essential role that the phenomenon plays in many
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experimental situations, such as electrodeposition, fluid–fluid displacement (viscous fingering), dielectric breakdown,
chemical dissolution, just to name a few. As a consequence, an increasing interest has also been devoted to enhance our
understanding of the theoretical basis of growing processes [1,5–10,13,14].

Most of the contributions dealing with DLA consider the fractal aggregate growing over a homogeneous surface. In
contrast, considerable less attention has been paid to the study of the influence of heterogeneous substrates on the
formation of DLA clusters [12,15]. It has been an old idea to consider the heterogeneous surface where DLA are grown
to be the percolation cluster [16–18]. This line of thinking has been motivated by the fact that percolation clusters are good
models for random porous media and DLAs have been connected to miscible displacement of one fluid by another in such
media [19]. In fact, the growth of DLA on percolation clusters has been studied by numerical simulations in several seminal
contributions [19–21]. In addition, theoretical predictions based on mean fields has also been established. In both cases,
the percolating species forming the percolation cluster is allowed to occupy only a single site of the lattice. Recently, the
influence of surface heterogeneities on the formation of DLA has been studied as aggregates are formed on, (a) one of the
simplest disordered surfaces, the patchwise heterogeneous surface [22,23] and (b) Leath percolation substrates [24].

On the other hand, the pure site and the pure bond percolation of polyatomic species have been studied by using Monte
Carlo simulations [25–27]. In both cases, the dependency of the percolation thresholdwith the size of the element deposited
was discussed. In Ref. [26], it was established that the percolation threshold exhibits an exponentially decreasing behavior
when it is plotted as a function of the size of the percolating species. However, very recently, Tarasevich et al. [27] have
shown a nonmonotonic behavior of the percolation threshold with the size of linear polyatomic species. Nevertheless, the
problem belongs to the random percolation universality class regardless the size of the percolating object.

The main aim of the present paper is to study the growing process of diffusion-limited aggregation on substrates formed
by percolation clusters of particleswhich occupymore than one single site. These resultswill be helpful in understanding the
formation of clusters on nonuniform substrates in thin-film-growth processes, such as vapor deposition, molecular-beam
epitaxy, and so on.

In detail, the paper is organized as follows. In Section 2 the description of the substrate used for growing the DLA will be
presented. The numerical procedure to produce a pattern of DLA is introduced in Section 3, along with the definitions of the
critical exponents. The results of the numerical analysis are shown in Section 4, where the connections between the fractal
dimension of the DLA and the critical parameters of the substrate are discussed in terms of well known relationships [28].
Conclusions are drawn in Section 5.

2. The nonuniform substrates

Let us consider a periodic square lattice of linear size L on which k-mers (a k-mer is an object composed of k identical
particles each one occupying one site of the lattice) are deposited at random. For different k-mers, onemust take care that the
ratio L/k remains constant in order to prevent spurious finite size effects. The procedure is as follows. A k-tuple of nearest
neighbor sites is randomly selected; if it is vacant, the k-mer is then adsorbed on those sites. Otherwise, the attempt is
rejected. In any case, the procedure is iterated untilN k-mers are irreversibly adsorbed and the desired concentration (given
by p = (kN)/L2) is reached. Notice that due to the already randomly adsorbed particles blocking the area, the limiting
concentration or jamming coverage, pj is less than that corresponding to the close packing (pj < 1). In other words, pj is
defined as the maximum value of the concentration where there are no gaps available for deposition of particles of size k.
The jamming coverage depends on k and exponentially converges to an asymptotic value as k → ∞ [29,30].

The central idea of the percolation theory is based in finding the minimum concentration p for which a cluster (a group
of occupied sites in such a way that each site has at least one occupied nearest neighbor site) extends from one side to
the opposite one of the system. This particular value of the concentration rate is named critical concentration or percolation
threshold and determines a phase transition in the system. In the random percolation model, a single site is occupied with
probability p. For a precise value of pc , the percolation threshold of sites, at least one spanning cluster connects the borders
of the system (indeed, there exists a finite probability of finding n (> 1) spanning clusters [31–34]). In that case, a second
order phase transition appears at pc which is characterized by well defined critical exponents.

In Ref. [27], has been reported how the percolation threshold (linear k-mers) depends on k. For small values of k, the curve
rapidly decreases for values of k less than 16 while this behavior changes for larger values. This nonmonotonic behavior of
the percolation threshold as a function of the segment size can be associated to the following function:

pc(k) = a0/kα0 + b log10 k + c (1)

being a0 = 0.36 ± 0.02, α0 = 0.81 ± 0.12, b = 0.08 ± 0.01c = 0.33 ± 0.02.
As it was mentioned, the largest cluster in the range pc ≤ p ≤ pj is isolated and used as a substrate for the growing

process. Then, it is important to know that the main features of such a substrate are reflected in the behavior of critical
exponents. For this purpose, the fractal dimensions dcf and dcw defined below are studied.

The fractal dimension, dcf , of the largest cluster in the lattice can be defined as [35]:

s ∝ ρ
dcf (2)

where s represents the number of elements belonging to the studied cluster deposited in a circle of radio ρ.
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Fig. 1. The behavior of the fractal dimension, dcf of the largest cluster at concentration p (pc ≤ p ≤ pj) is shown for different values of k, as indicated.
Vertical dashed lines denote the values of pc(k) and pj(k).

Fig. 1 shows the behavior of the fractal dimension of the largest cluster at concentration p (pc ≤ p ≤ pj) for different
values of k as it is indicated. As it can be seen all the curves start from the point (pc , 1.896) regardless the value of k. Upon
increasing the concentration, dcf monotonically goes to 2.

Let us now suppose the motion of a particle (‘‘an ant’’) which performs a Pólya randomwalk (unbiased, nearest neighbor
random walk) on the sites of the selected cluster (‘‘the labyrinth’’) at concentration p (pc ≤ p ≤ pj). The root mean square
displacement R of the random walk is related to time t through [35]

R ∼ tν (3)

where ν is a constant which depends only on the dimensionality d of the system. Here, it is important to emphasize that
in Euclidean space ν = 1/2 at all dimensions. A fractal dimension dcw is defined for the random walk by dcw = 1/ν. For
two-dimensional homogeneous surfaces dcw = 2, which is called ‘‘normal diffusion’’. However, on fractal structures R grows
slower with time and dcw is usually larger than 2. If we consider as ‘‘the labyrinth’’ the incipient cluster, i.e. at concentration
pc , then dcw ≈ 2.73(1). This value is almost the same for the different k considered here (four different cases are shown in
Fig. 2). As p → pj, the normal diffusion is recovered and dcw monotonically decreases downwards to the limit dcw ≈ 2.

The determination of dcf and dcw is important for estimating the fractal dimension of a diffusion-limited aggregated growth
on the above described clusters. In fact, K. Honda, H. Toyoki and M. Matsushita (HTM) [28] have discussed the influence of
nonuniform space on DLA growth based on mean field theory. HTM have presented a relationship connecting the fractal
dimension df of DLA with dcf and dcw of the cluster where the aggregate is grown on. This equation, namely

df =
(dcf )

2
+ dcw − 1

dcf + dcw − 1
(4)

has been verified to be correct only for some special cases, e.g. growth controlled bypure diffusion andballisticmotion in uni-
form spaces [2,12,28]. For dw = 2 Eq. (4) reduces to the fractal dimension of purely diffusion-limited aggregated in themean
field approximation dMF

f = 5/3 [1] and for dw = 1 (ballistic aggregation) the above expression yields dMF
f = d = 2 [36–38].

It becomes an additional motivation for the present paper to show the validity of Eq. (4) when the substrates are the perco-
lation clusters discussed in the present section (which obviously are nonuniform substrates).

3. Generation of diffusion-limited aggregates

The DLA algorithm is rather simple and has been discussed in detail in the literature [1,17,39–42]. Growth begins with a
seed particle in the center of the percolation cluster described above. Then, individual particles execute an unbiased random
walk in such a cluster and either reach a site adjacent to the existing aggregated and stop or reach a distance far enough
from the seed that the probability of a return to the aggregated is assumed to be negligible and is discarded.

Two parameters enter into the algorithm, the radius Ri at which new particles begin their randomwalk and the distance
Ro atwhich they are discarded. The former becomes irrelevant as long asRi is large enough in order to prevent the influence of
the topography on the initial conditions of launching. Ri is several times greater than themaximumextent of the aggregated.
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Fig. 2. The fractal dimension, dcw of the largest cluster at concentration p (pc ≤ p ≤ pj) is shown for different values of k, as indicated. Vertical dashed
lines denote the limiting values: pc(k) and pj(k).

The ratio between Ro and Ri is usually a fixed number and in our simulations we have varied this quantity between 2
and 10.

Each particle launched from the circle of radius Ri performs jumps to nearest neighbor empty sites of the cluster using a
random walk procedure.

The quantities reported in the present contribution have been calculated for up to 5× 104-particles aggregated. In order
to obtain accurate values of the desired quantities, averaging up to 25 different aggregates generated in the same conditions
have been used.

The fractal structures are grownup to amaximumsize in steps of 50 particles and the positions of the aggregated particles
are recorded. At the end of such a step, the center of mass of the aggregate rcm, given by

rcm(N) =


1
N

N
i=1

ri


, (5)

is determined and its radius of gyration ξ(N) is calculated as

ξ 2(N) =


1
N

N
i=1

[ri − rcm(N)]2


, (6)

where the angular brackets denote an average over the ensemble of different aggregates. It has been shown that the ‘‘mass’’
N of a fractal structure is related to its radius of gyration, ξ , through

N ∼ ξ df , (7)

where df is the fractal dimension of the DLA.

4. Results and discussions

Based on the model introduced in Sections 2 and 3, Fig. 3 shows four different patterns of DLA grown on the largest
clusters formed by the deposition of tetramers with concentration (a) p = pc(k = 4) = 0.54; (b) p = 0.62; (c) p = 0.75
and (d) p = pj(k = 4) = 0.83 on the lattice. In the limiting case, p = pc(k), the DLA’s are nonuniform and asymmetrical as
compared with those grown on homogeneous substrates. In fact, they have only few branches and the structure of the DLA
‘‘follows’’ the cluster where they are grown on. In other words, the number of sites forbidden for diffusion (those sites of the
square lattice which do not belong to the largest cluster) is close to the critical value and prevent particles from diffusion
and the branches from growing. These result in the asymmetry and nonuniformity of DLA clusters that hold for values of p
close to p = pc(k).

Upon increasing the probability p, the number of forbidden sites becomes less, the branch number rises and the
aggregates change to relative uniform and symmetrical ones. For larger values of p (p close to pj(k)) the DLA looks similar
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Fig. 3. Snapshots of patterns of DLA grown on percolation substrates obtained after deposition of tetramers at concentration (a) p = pc = 0.54;
(b) p = 0.62; (c) p = 0.75 and (d) p = 0.83. Black, and gray points correspond to particles belonging to the DLA and the percolating cluster, respectively.

Fig. 4. Patterns of DLA grown on percolation substrates at critical coverage p = pc for clusters built with (a) k = 1; (b) k = 2; (c) k = 3 and (d) k = 4.
Symbols are as in Fig. 3.

to one grown on a homogeneous lattice (in the special case when monomers are deposit on the lattice, the pattern is just as
that of pure DLA).

The main difference between the DLA patterns grown on clusters formed with different k-mers is presented for
concentration close to pc(k). In Fig. 4 four different aggregates are shown for (a) k = 1; (b) k = 2; (c) k = 3 and (d) k = 4
at the respective values of pc . Since the simple observation of these snapshots (and of others not shown here) it becomes
clear that only tiny differences can be found. In particular, (a) the patterns are more compact and uniform, (b) the branch
number rises and its structure is more sparse and (c) the symmetry of the DLA is more similar to the pure DLA as k increases.
At such a range of concentration, two competitive effects are observed in the structure of the substrate as k increases:
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b

Fig. 5. The average number of nearest neighbor sites belonging to (a) the cluster, Ac
nn , and (b) the aggregate, Ann , per site as a function of p for different

values of k, as indicated.

(i) the percolation threshold (which in turn implies the number of available sites for diffusion) decreases [25,26] and (ii) the
average number of nearest neighbor sites belonging to the cluster per site, Ac

nn, increases. In Fig. 5a, Ac
nn is presented as a

function of p for different values of k. It is clear that only for p ≈ pc , Ac
nn varies with k. At larger values of p, Ac

nn tends to the
same linear behavior regardless the size k. The behavior of Ac

nn mainly influences the structure of the DLA as it is shown by
measuring the mean number of nearest neighbor sites belonging to the aggregate per site, Ann, see Fig. 5b. The largest the
k-mer size, the higher values of Ann.

We focus now on the fractal dimension of the DLA, df , as a function of p for different k sizes. It is found that, in the range
pc(k) ≤ p ≤ pj(k), df increases monotonically towards a saturation value which depends on the size k. In Fig. 6, some
examples are presented as full symbols. Such a behavior can be explained as follows. As it is well known in the limiting
case, when p = 1 the fractal dimension is df = 1.72 (k = 1) [43]. For different k, and p close to pj(k), the absent sites
in the lattice are very few and the DLA is quite similar to the one grown on a uniform substrate. However, if k increases,
pj reaches a saturation value which in turn implies that the number of absent sites in the lattice will remains constant. As
a consequence of this fact df (k) at pj decreases until a saturation value is reached. This is shown as squares in Fig. 7 being
df (∞) ≈ 1.662(3). Upon decreasing the probability p, the forbidden sites in the substrate increase. It in turn means the
reduction of the branch number of the DLA and the decreasing of the fractal dimension, df . At pc , the number of absent sites
is maximum and df reaches a minimum value. Significantly, the fractal dimension of DLA at pc remains almost constant
regardless the value of k being a clear indication of the importance of the fractal dimension of the substrate (which is always
the same dcf ≈ 1.896 for the different values of k), see the circles in Fig. 7. In addition, the dashed area in Fig. 7 denotes the
possible range of df for DLA grown on percolation clusters of particles of size k.

In order to show the reliability of the data, we analyzed the dependence of the obtained fractal dimension on the lattice
size focusing on convergence. It appeared that for a given k the DLA(p = pj) fractal dimension does not vary much with
increasing L, see Fig. 8. However, the error bars decrease with L, while the difference between the fractal dimensions of
different aggregates grown on percolation clusters generated with percolating species of size k is much larger than the
appropriate error. Thus, it is safe to take the values of df from the simulations with L > 600 as the asymptotic ‘‘exact’’ ones.

As it is mentioned in Section 2, the HTM relation has been proved in some special cases. In particular, DLA is grown on
a uniform space. It is of interest to ask whether HTM is still valid for the DLA cluster growing on substrates with fractional
dimension. In Fig. 6 data from Eq. (4) are plotted as full lines. From the comparisonwith simulation data it can be drawn that
the HTM relation gives qualitatively reasonable results and a good tendency for df (k). However, it is clear that a quantitative
difference exits between numerical findings and Eq. (4) which can be estimated on average in 1.9%.
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Fig. 6. The fractal dimension df of the DLA (full symbols) for concentration of p in the range pc ≤ p ≤ pj is shown for different values of k, as indicated.
Vertical dashed lines denote the limiting values: pc(k) and pj(k). Solid lines denote the HTM relation, Eq. (4) while open symbols represent the values of
Eq. (8). The error in each measurement is smaller than size of the symbols.

Fig. 7. The fractal dimension at pj (squares) and at pc (circles) as a function of k. The dashed area denotes the possible range of df for DLA grown on
percolation clusters of particles of size k.
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Fig. 8. Convergence analysis of the DLA(p = pj) fractal dimension versus the lattice size L.

In order to establish a correlation between the substrate and the DLA grown on it, we plot df as a function of dcf , see Fig. 9.
Clearly, the points are very well correlated by a linear function. This tendency shows that the fractal dimension of the DLA
can be expressed as

df = A + Bdcf (8)
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Fig. 9. The fractal dimension of the aggregates df as a function of the fractal dimension of the substrate dcf for different values of k, as indicated. The solid
line represents the best fitting of the points while the dashed one is the line df = 5dcf /6.

where the fitting parameters are A = −2.56(2) and B = 2.125(5). By using the purely empirical Eq. (8) we have obtained
the open symbols in Fig. 6 which differ from the numerical results by 0.55% on average. These results support the idea that
the fractal dimension of the DLA depends directly on the fractal dimension of the substrate regardless the topological details
introduced by the different k-mer size in the percolation cluster.

The dashed line in Fig. 9 represents the curve 5dcf /6. From the figurewe can see that df

dcf


is different from the universal

quantity df

dcf


≈ 5dcf /6, as suggested byMeakin [43,44]. A similar behavior has been reported for DLA grown on Sierpinski

carpets [45,46]. Then, we can conclude that the fractal dimensionality of the DLA aggregates on the percolation cluster
presented in Section 2 actually depends on more details of the lattices that are usually acknowledged, supporting the idea
that the universal quantity 5dcf /6 is an extrapolated hypothesis in a strict sense.

5. Conclusions

In the present paper, the diffusion-limited aggregates grown on percolation clusters formed by deposition of k-mers,
for any forms, have been studied. In fact, we have considered the substrate for growing the DLA as the largest percolation
cluster obtained for concentration between pc(k) ≤ p ≤ pj(k). It is observed that, for p = pc(k), the DLA’s are nonuniform
and asymmetrical as compared with those grown on homogeneous substrates. For increasing values of p, the number of
forbidden sites become less, the branch number rises and the aggregates change to relative uniform and symmetrical ones.
For values of p close to pj(k) the DLA looks quite similar to one grown on a homogeneous lattice. Substrates formed with
different values of k produce only tiny phenomenological differences in the DLA.

The morphology and the fractal dimension of the DLA are greatly affected by the structure and fractal dimension of the
substrate where they are grown on. It is also shown that the HTM relation reproduces qualitatively the fractional dimension
of the systems. This an important achievement of HTM mainly considering that it was derived from a mean field approach.
However, a linear relationship between the fractal dimension of DLA and the corresponding one of the cluster gives a better
quantitative agreement for the problem discussed here.
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