
RESEARCH PAPER

Evaluation of changes induced in rice metabolome by Cd and Cu
exposure using LC-MS with XCMS and MCR-ALS data
analysis strategies

Meritxell Navarro-Reig1 & Joaquim Jaumot1 & Alejandro García-Reiriz1,2 &

Romà Tauler1

Received: 30 July 2015 /Revised: 7 September 2015 /Accepted: 10 September 2015
# Springer-Verlag Berlin Heidelberg 2015

Abstract The comprehensive analysis of untargeted metabo-
lomics data acquired using LC-MS is still a major challenge.
Different data analysis tools have been developed in recent
years such as XCMS (various forms (X) of chromatography
mass spectrometry) and multivariate curve resolution alternat-
ing least squares (MCR-ALS)-based strategies. In this work,
metabolites extracted from rice tissues cultivated in an envi-
ronmental test chamber were subjected to untargeted full-scan
LC-MS analysis, and the obtained data sets were analyzed
using XCMS and MCR-ALS. These approaches were com-
pared in the investigation of the effects of copper and cadmi-
um exposure on rice tissue (roots and aerial parts) samples.
Both methods give, as a result of their application, the whole
set of resolved elution and spectra profiles of the extracted
metabolites in control and metal-treated samples, as well as
the values of their corresponding chromatographic peak areas.
The effects caused by the two considered metals on rice sam-
ples were assessed by further chemometric analysis and sta-
tistical evaluation of these peak area values. Results showed
that there was a statistically significant interaction between the
considered factors (type of metal of treatment and tissue).

Also, the discrimination of the samples according to both fac-
tors was possible. A tentative identification of the most dis-
criminant metabolites (biomarkers) was assessed. It is finally
concluded that both XCMS- and MCR-ALS-based strategies
provided similar results in all the considered cases despite the
completely different approaches used by these two methods in
the chromatographic peak resolution and detection strategies.
Finally, advantages and disadvantages of using these two
methods are discussed.
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Introduction

Metabolomics can be defined as the exhaustive profiling study
of all metabolites contained in an organism. It is known that
external perturbations imposed on organisms can produce
changes in their metabolome. These perturbations can be en-
vironmental changes; physical, abiotic, or nutritional stresses;
mutation; and transgenic events [1–3]. Therefore, metabolo-
mics is a powerful approach to study molecular mechanisms
andmetabolic pathways implicated in the response to different
perturbations and in the organism defense strategies against
them. Over the last decade, data processing has been a chal-
lenge in untargeted metabolomics due to the extreme com-
plexity of the experimental data sets, especially in the case
of combining a MS detector with chromatographic tech-
niques such as LC or GC. As a consequence, software
programs for automated processing of data have been
introduced, such as MetAlign [4], MZmine [5], or
XCMS [6], among others.

In the last years, XCMS has become a favorite method
among the metabolomic community for feature detection,
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and it has been used for a broad range of applications. In brief,
XCMS is a tool dedicated to chromatographic feature detec-
tion which includes automatic processing of huge size full-
scan LC-MS data and estimates candidate metabolites by
using peak detection and retention time correction algorithms
and methods. For each proposed candidate, XCMS gives p
value (statistical test comparing the integrated peak areas of
this candidate in control versus treated samples) and fold
change (defined as the ratio of the integrated peak areas of
the treated samples versus the control samples) [7, 8].

MCR-ALS is also a popular chemometric method used for
the resolution of pure contributions in unresolved mixtures
[9]. MCR-ALS is used in a wide variety of applications as,
for instance, the resolution of overlapped chromatographic
peaks in environmental samples.MCR-ALS has been recently
proposed as an alternative approach to detect potential bio-
markers in untargeted metabolomics studies [10]. MCR-
ALS decomposes the experimental LC-MS data matrix into
their factor contributions which can be assigned to the chro-
matographic elution profiles and to the mass spectra of each
resolved component. The main difference between these two
approaches lies in peak detection and resolution. While
XCMS identifies each feature characterized by its retention
time and a unique m/z value, MCR-ALS resolves mathemat-
ical components characterized by their elution profiles and
mass spectra (with more than one possible MS feature
assigned to the same elution profile) [6, 10]. With the aim of
comparing these two approaches, in the present work, the
samemetabolomic data set was processed bymeans of XCMS
and by MCR-ALS, and further evaluated by using other che-
mometric methods for exploration and discrimination pur-
poses. The proposed untargeted metabolomic approach has
been used to assess the effects of cadmium and copper treat-
ment on Japanese rice.

Plants are complex organisms exposed to a set of abiotic
and biotic stresses [11]. One of these abiotic stresses is the
pollution by toxic metals present in the environment. These
metals can be found as constituents of the Earth’s crust and
geological processes, but human activities, such as mining,
agriculture, and a wide range of industrial activities, can dras-
tically alter their geochemical cycles and distribution on earth
surface [12, 13]. These anthropogenic activities caused that
the level of some of these toxic metals in the environment
increased notably in recent years. Although the discovery of
adverse health effects resulting from toxic metals has caused
the decrease of emissions in most of the developed countries
during the last century, there are still some metals like cadmi-
um, whose emissions increased during the twentieth century,
due to its large industrial use and reduced recycling [14].
Among toxic metals, cadmium and copper have been listed
on the priority list of hazardous materials by the Comprehen-
sive Environmental Response, Compensation, and Liability
Act (CERCLA) in 2013 [13]. These two pollutants are readily

absorbed by roots and rapidly translocate to the aerial parts of
plants [15]. Since diet is the primary source of exposure to
these metals for the general population, intensive research has
been performed on the accumulation of these pollutants in
edible plants [13]. In this work, Japanese rice (Oryza sativa
japonica Nipponbare) has been used as a target organism be-
cause it is one of the model organisms frequently used in plant
metabolomics and is also an edible plant [1, 3, 13].

The metabolomic study presented in this work considers
two categorical factors related to the metal exposure: rice tis-
sue sample analyzed (root or aerial part) and metal of treat-
ment (Cd or Cu). Metabolomic datasets commonly use statis-
tical experimental designs, where different dose groups, mul-
tiple time points, diverse sample groups, or various subjects
are simultaneously investigated [16, 17]. For this reason, com-
prehensive data analysis methods able to deal with this type of
complex designs are required. In this work, statistical evalua-
tion of the different investigated effects has been performed
using different multivariate data analysis methods such as
ANOVA-simultaneous component analysis (ASCA), princi-
pal component analysis (PCA), and partial least-squares dis-
criminant analysis (PLS-DA).

Experimental

Reagents

Cadmium chloride hydrate (≥98.0 %), copper(II) sulfate
pentahydrate (≥98.0 %), and ammonium acetate (≥98.0 %)
were from Sigma-Aldrich (Steinheim, Germany). HPLC-
grade water, acetonitrile (≥99.8 %), and methanol (≥99.8 %)
were supplied by Merck (Darmstadt, Germany). Chloroform
was obtained fromCarlo Erba (Peypin, France). Piperazine-N,
N′-bis(2-ethanesulfonic acid) (PIPES) (≥99.0 %) was used as
internal standard (Sigma-Aldrich, Steinheim, Germany).

Solutions containing 10, 50, and 100 μM of cadmium (Cd)
and copper (Cu) were prepared weekly by diluting a 1000 μM
stock solution of these metals. Stock solutions were prepared
weekly by dissolution of the appropriate amounts of cadmium
chloride hydrate and copper(II) sulfate salts. All the solutions
were stored at 6 °C until their use.

Water used for plant watering, for preparing cadmium and
copper solutions, and during the extraction procedure was
purified using an Elix 3 coupled to a Milli-Q system
(Millipore, Belford, MA, USA), and filtered through a
0.22-μm nylon filter integrated into the Milli-Q system.

Plant growth, stress treatment, and metabolite extraction

Oryza sativa japonica Nipponbare seeds, obtained from the
Center for Research in Agricultural Genomics (CRAG) at
Autonomous University of Barcelona, were incubated for
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2 days at 30 °C in a wet environment. After this period, seeds
were planted in 3.0×3.0 cm individual pots and grown on an
Environmental Test Chamber MLR-352H (Panasonic®) for
22 days under white fluorescent light. Temperature, relative
humidity, and light long-day conditions at the chamber were
set as described in the Electronic supplementary material
(ESM) Table S1. During the first 10 days of growth, rice
plants were watered with Milli-Q water three times a week.
Since then, plant treated samples were subjected to irrigation
water containing different concentrations of Cd and Cu,
whereas the plant control samples were watered with milli-Q
water until harvest. Metal concentrations used for stressing
rice plants were 10, 50, and 1000 μM, and for every concen-
tration, two trays containing 18 pots were used. The lower
concentration was set to 10 μM, in agreement with the lowest
reported metal concentration producing noticeable changes in
plants [13, 18, 19], and the higher concentration was set to
1000 μM because it is the highest metal concentration induc-
ing changes in plants without causing their death [13, 18, 19].
In order to avoid differences in the growth of individual plants,
the position of the trays inside the chamber was changed daily
following a random design, and the volume of irrigation water
was controlled and set at 200 mL per tray. After harvest, roots
and aerial part were separated and, immediately, metabolism
was quenched by freezing at liquid nitrogen temperature.
Samples were stored at −80 °C until extraction.

Before extraction, aerial parts and roots were ground under
liquid nitrogen to a fine powder and lyophilized overnight
until dryness. Metabolite extraction was carried out by dis-
persing 40 mg of the dried tissue in 1 mL of MeOH in a
2.0-mL Eppendorf tube. Then, the mixture was vortexed for
1 min and sonicated for 10 min; this step was repeated twice.
After centrifuging for 20min at 14,100×g, a 750-μL aliquot of
the supernatant was transferred to a 1.5-mL Eppendorf tube.
Then, 500 μL of chloroform and 400 μL of water were added.
After that, the mixture was vortexed for 1 min, incubat-
ed for 15 min at −4 °C, and centrifuged for 20 min at
14,100×g. Finally, a 750-μL aliquot of aqueous fraction
was transferred to a 1.5-mL Eppendorf tube, evaporated
to dryness under nitrogen gas, and reconstituted with
450 μL of acetonitrile/water (1:1v/v). For internal stan-
dard quantification, 50 μL of 50 mg/L solution of the
internal standard (PIPES) was added to the extract. For
each tray, two replicates were done. All of the extracts
were stored at −80 °C until analyzed and were filtered
through 0.2-μm nylon filters before injection (Pall Life
Sciences, Port Washington, NY, USA).

HPLC-MS analysis

Chromatographic separation was performed on an Acquity
UHPLC system (Waters, Milford USA), equipped with a qua-
ternary pump, an autosampler, and a column oven. An HILIC

TSK gel Amide-80 column (250×2.0 mm2 i.d., 5 μm) with a
2.0 mm×1 cm i.d. guard column of the same material provid-
ed by Tosoh Bioscience (Tokyo, Japan) was used for analyt-
ical separation of metabolites. Elution gradient was performed
using solvent A (acetonitrile) and solvent B (ammonium ace-
tate 3 mM at pH 5.5, adjusted with acetic acid) as follows: 0–
3 min, isocratic gradient at 5 % B; 3–27 min, linear gradient
from 5 to 70 % B; 27–30 min, isocratic gradient at 70 % B;
30–32min back to the initial conditions at 5 % B; and from 32
to 40 min, at 5 % B. The mobile phase flow rate was 0.15 mL/
min and the injection volume was 5 μL.

The mass spectrometer was an LCT Premier XE-time-of-
flight (TOF) analyzer (Waters, Milford USA) equipped with
an electrospray (ESI) as ionization source in negative and
positive modes. Nitrogen (purity >99.98 %) was used as cone
and desolvation gas at flow rates of 50 and 600 L/h, respec-
tively. Desolvation temperature was set to 350 °C, and
electrospray voltages were set to 3.0 kV (positive mode) and
to 2.2 kV (negative mode). The mass acquisition range was
90–1000m/z.

Data analysis

Waters raw chromatographic data files (.raw format) were
converted to the standard CDF format by the Databridge func-
tion of MassLynx™ v 4.1 software (Waters, USA).

These data files were then imported into the MATLAB
environment (release 2014b; The Mathworks Inc., Natick,
MA, USA) by using the MATLAB Bioinformatics Toolbox
(version 4.3.1) and in-house built routines. Finally, every LC-
MS-analyzed rice sample gave a data matrix containing the
acquired retention times on the rows and the detected m/z
values on the columns. In order to facilitate calculations, the
total number of columns (i.e., m/z values) was reduced by
using a binning approach (grouping mass values into a num-
ber of bins within a particular m/z range, in this case
0.05 amu). Every analyzed sample gave a data matrix with
1020 rows (retention time from 0 to 40 min) and 18,200 col-
umns (from 90 to 1000 amu at 0.05 resolution). In the case of
XCMS, raw chromatographic data files in CDF format were
directly imported into MetaboNexus bioinformatics platform
[20] without applying the binning approach.

Peak areas analysis

Two different methodologies were used and compared for the
calculation of chromatographic peak areas: XCMS andMCR-
ALS. In order to ascertain the effect of the treatment with the
two metals, chromatographic peak areas obtained using any of
these two methods were analyzed using PCA, PLS-DA, and
ASCA. Before applying these chemometric methods, peak
areas were autoscaled (mean-centered and scaled by their
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standard deviation) to give equal weight (scale) to each one of
the detected features.

XCMS XCMS approach allows an automatic processing of
data for feature detection and calculation of chromatographic
peak areas [6]. A typical XCMS analysis starts with the appli-
cation of the centWave data processing algorithm which basi-
cally consists of two main steps. First, dominant mass spectra
features are identified in this domain by using the so-called
regions of interest (ROIs). In these identified ROIs, the pres-
ence of a chromatographic peak is denoted by a signal which at
a particularm/z value has intensity over a particular preselected
threshold value. The second step is the identification and
modeling of chromatographic peaks by means of a wavelet
transformation and a Gaussian shape curve fitting approach.
Then, non-relevant features are dismissed by considering only
those that are present in more than a certain percentage of all
the samples (commonly 50 %). Finally, chromatographic
peaks of the same component in different samples are aligned
by means, for instance, of the obiwarp algorithm [21]. For
more detailed information about the XCMS algorithm
see the work of Smith [6] and Tautenhahn [22].

In this work, MetaboNexus bioinformatics platform [20]
has been used to import and pre-process raw chromatographic
data files in CDF format. MetaboNexus pre-processing plat-
form relies on the XCMS package in R language environment
and it provides a dashboard of controls to handle pre-
processing in an intuitive manner with available pre-sets for
different instruments. In this work, the settings were manually
adjusted starting with the pre-sets corresponding to an HPLC/
Q-TOF analyzer. The optimization of these parameters in our
particular case was not straightforward. For this reason, the full
analysis was repeated using different combinations of the pa-
rameters with variations from the default settings, and the re-
sults were compared to decide which the best parameters were.
Finally, the centWave algorithm was employed as a feature
detection method using 30 ppm as the maximal tolerated m/z
deviation in consecutive scans, and allowing chromatographic
peak widths ranging from 10 to 60 s. The number of peaks
across samples of intensity higher than 1000 was fixed to 5,
and the signal-to-noise threshold was set to 10. Peak integra-
tion was carried out using a Mexican hat approach considering
a minimum difference inm/z for peaks with overlapping reten-
tion time of −0.0025. Regarding chromatographic peak align-
ment, the obiwarp algorithm [21] was selected for retention
time correction. Grouping parameters were set to 5 s for the
bandwidth of Gaussian smoothing kernel to apply to the peak
density chromatogram whereas the width of overlapping m/z
slices to use for creating peak density chromatograms and
grouping peaks across samples was set to 0.025 amu. Finally,
the minimum percentage of samples at where the same peaks
need to be present in at least one sample class was set to 70 %.

The final output is a data table that contains the selected
features (identified by their exact m/z values) in the rows, and
the area of these features for each sample in the columns.
Finally, sample areas were normalized by using the area of
the PIPES internal standard.

Multivariate curve resolution by alternating least squares
MCR-ALS is a chemometric method used for the reso-
lution of pure contributions in unresolved mixtures [9].
MCR-ALS can be used to resolve a wide variety of
datasets from different research fields, like hyphenated
and multidimensional chromatographic systems, -omics
data, process analysis, spectroscopic images, environ-
mental data tables, etc., as it has been already described
in the literature [23–25].

In this work, MCR-ALS has been used to resolve the elu-
tion and mass spectra profiles of the metabolites obtained in
the full-scan untargeted LC-MS analysis of the rice sample
extracts before and after metal treatment. MCR-ALS de-
composes every individual experimental dataset arranged
in a data matrix according to the following bilinear
model:

D ¼ CST þ E ð1Þ

Where D (size IxJ) represents the experimental LC-MS
data matrix (from a single rice sample) in which the rows
are the MS spectra at all retention times (i=1,…I), and the
columns are the chromatograms at all m/z channels (j=1,…
J). According to Eq. 1, Dmatrix is decomposed into the prod-
uct of two factor matrices, C and ST, that corresponds respec-
tively to the matrix of the resolved elution profiles, C (size
IxN), and to the matrix of their corresponding mass spectra, ST

(size NxJ). N represents the total number of resolved compo-
nents considering during MCR-ALS analysis. E matrix (size
IxJ) contains the residuals not explained by the model using
the N considered components.

This data analysis strategy can be easily extended to
the simultaneous analysis of several samples. For instance,
in the case of this work, a total number of 128 samples
have been simultaneously considered: 16 aerial part rice
control samples, 24 aerial part rice samples treated with
Cd at different concentrations (10, 50, and 1000 μM), 24
aerial part rice samples treated with Cu at different con-
centrations (10, 50, and 1000 μM), 16 root control rice
samples, 24 root rice samples treated with Cd at different
concentrations (10, 50, and 1000 μM), and 24 root rice
samples treated with Cu at different concentrations (10,
50, and 1000 μM). All these samples were arranged in
a single column-wise augmented data matrix (Daug), con-
taining the 128 individual data matrices (Dx where x=1,…
128), one for each rice sample, settled one on the top of

M. Navarro-Reig et al.



the other. This long column-wise augmented matrix (Daug)
is also decomposed using a bilinear model such as:

Daug ¼

D1

D2

D3

⋮
D128

2
66664

3
77775
¼

C1

C2

C3

⋮
C128

2
66664

3
77775
ST þ

E1

E2

E3

⋮
E128

2
66664

3
77775

¼ CaugS
T þ Eaug ð2Þ

Before applying MCR-ALS, every individual data matrix
from every sample (Dx) was normalized dividing by the chro-
matographic peak area of the internal standard (PIPES) in the
considered sample. In order to accelerate and reduce memory
requirements ofMCR-ALS calculations, every chromatogram
of each sample was divided into six separate chromatographic
time windows. In this way, a final number of six column-wise
augmented data matrices, each one corresponding to one of
the six chromatographic time windows, were independently
analyzed by MCR-ALS.

MCR-ALS solves Eq. 1 (D, single data matrix case) or
Eq. 2 (Daug, augmented data matrix case) starting with an
initial guess of the number of components needed to explain
sufficiently well the considered matrix by its singular value
decomposition (SVD) [26]. This number should be large
enough to include most of the metabolites extracted from the
rice samples giving a significant MS chromatographic signal
and, also, to consider possible background and solvent signal
contributions. Next, an initial estimate of eitherC or ST factor
matrices should be provided. For instance, this estimate can be
obtained from the purestMS signals in the data set gathered by
a variable detection method such as SIMPLISMA [27]. Then,
the estimation of C or ST factor matrices is performed by
means of an alternating least squares optimization under
preselected constraints. In the case of this work, the applied
constraints were only non-negativity (elution and spectra pro-
files) and spectral normalization (equal height) [28]. Resolved
mass spectra in STare enforced to be the same for the common
constituents in the different analyzed samples, whereas elution
profiles resolved inCaugmatrix are allowed to be different for
each one of the samples (Cx (x=1,…128)), as shown in Eq. 2.
It is important to point out here that in the MCR-ALS ap-
proach, there is no need to correct for the unavoidable changes
in the elution profiles of the same metabolite in different sam-
ples and chromatographic runs, for instance in their retention
times (peak shifting) and in their profile shapes, differently to
what occurs with XCMS (see above). This is a clear ad-
vantage of MCR-LS compared to XCMS, as it will be
discussed later because it fits better with the natural behav-
ior of LC-MS data. It is also important to emphasize that in
this case of LC-MS data, MCR-ALS results will be not
affected by uncertainties due to rotational ambiguities since
MS spectral resolution is very high and also due to the

large number of simultaneously analyzed individual rice
sample data matrices (up to 128), which gives very robust
results. Finally, from MCR-ALS results, a data table that
contains the resolved components in the rows and the peak
area of these components for each sample in the columns is
obtained.

Discrimination and evaluation of metal effects on rice
samples by chemometric analysis of metabolite concentration
(peak areas) changes

Once metabolite relative concentration changes were estimat-
ed by XCMS and MCR-ALS, various methods were used to
evaluate them and to discriminate samples according to metal
treatment. PCA [29], PLS-DA [30], and ASCA [31] were
used for this purpose and are briefly described in the ESM.

In this work, PCA has been used to explore the behavior of
tissue (aerial part or root) samples when they were treated
either with Cd or Cu metals. PLS-DA has been used to dis-
criminate between root and aerial parts of rice samples, and
between samples treated either by Cd or Cu (Venetian blind
cross-validation was used to assess the results of the PLS-DA
model). Finally, ASCA analysis (performed on a well-
balanced experimental design) allowed the interpretation of
the sources of the experimental variance: the tissue sample
(root or aerial part) and the metal of treatment (Cd or Cu).
Possible interactions between these two factors have been also
evaluated. In order to assess the statistical significance of the
considered factors, a permutation test can be done. In this
work, the number of permutations for each model was set to
10,000.

Chemometric software

PCA, PLS-DA, and ASCA were performed by using PLS
Toolbox 7.8 (Eigenvector Research Inc., Wenatche, WA,
USA) working under MATLAB (The Mathworks, Natick,
MA, USA). MCR-ALS was carried out using MCR-ALS
toolbox freely available at www.mcrals.info. XCMS was
performed using MetaboNexus interactive data analysis
platform [20].

Results and discussion

Two categorical factors (tissue sample and metal of treatment)
were considered. First, the statistical significance of these two
factors was evaluated by means of ASCA analysis of LC-MS
peak areas from MCR-ALS resolved components and from
XCMS detected features. In addition, the possibility of differ-
entiating samples according to the experimental factors was
studied using an exploratory analysis of LC-MS peak areas
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using PCA and PLS-DA. Table 1 shows a summary of the
data matrices considered in this work.

Assessment of the effects of experimental factors

As is described below, in all the cases studied here, XCMS
and MCR-ALS data analysis gave comparable results. Fur-
thermore, results confirmed that the treatment with cadmium
and copper had a significant effect on all treated samples.
XCMS was applied to the entire full-scan chromatograms,
and the output was a table containing 1627 features. Not all
of these detected features could be considered an independent
metabolite since some of them could be adducts or isotopic
masses coming from the same metabolite, and others could be
assigned to electric signals or other noise contributions. This
table was used to build Dxcms_areas matrix (see Table 1). This
number of XCMS features detected could be reduced by using
additional applications such as, for instance, CAMERA [32].
This software facilitates compound annotation and identifica-
tion by considering adducts and isotopic peaks which reduce
the final number of features detected by XCMS. However, in
this work, this was not used since this selection was performed
by chemometric analysis (see below). MetaboNexus allowed
a fast analysis of the data set. The entire full-scan chromato-
grams were resolved in approximately 10 min. However, the
bottleneck of XCMS approach was the selection of the opti-
mal pre-processing parameters that required testing several
combinations of the feature detection and peak alignment pa-
rameters, which increase the total time of analysis
considerably.

MCR-ALS was used to analyze the six column-wise aug-
mented data matrices described in the methods section. Fig-
ure 1 shows a TIC chromatogram of an aerial part sample with
the selected chromatographic regions highlighted. Between
25 and 30 MCR-ALS components were resolved for each
column-wise augmented data matrix with a minimum ex-
plained variance of 98 % (an example of an SVD used to

select the number of components considered in the resolution
of each window is shown in ESM Fig. S1). This selection
considered a sufficiently large number of components to in-
clude all significant metabolite contributions and other inter-
fering MS signal contributions (instrumental background, sol-
vent, etc.) that could appear among the resolved components.
A total number of 165 MCR-ALS components (resolved
peaks) were needed to explain sufficiently the data variance.
In this case, 29 from the 165 resolved components were asso-
ciated with noisy signals, like background and solvent contri-
butions, and hence, they were ignored in subsequent analyses.
Finally, 136 components were used to build the Dmcr_areas

matrix (see Table 1).
Figure 2 shows the final results for one of these 136 com-

ponents resolved in the simultaneous analysis of 32 aerial part
rice samples, 24 treated with copper at three concentrations
(10, 50, and 1000 μM), and 8 control samples (not treated
with copper). This example shows a component resolved in
the second chromatographic region, from 5.1 to 7.1 min. A
total of 30 components were resolved in this particular inter-
val. Elution profile of this resolved component in the different
aerial part samples is depicted in Fig. 2a, where a clear de-
crease is observed in the height and area of the resolved chro-
matographic peaks in this profile between control and Cu-
treated samples. However, no clear distinction is observed
between the heights or areas of these peaks for the different
levels of metal, probably reflecting that at the lowest concen-
tration of the metal tested in this study, the profile of this
particular metabolite is already significantly affected, without
any further change of it at higher Cu concentration. Figure 2b
shows the corresponding resolved mass spectrum for this
component. A high intense mass signal was found at m/z
515.10 with two lower intensity signals (see inset) at m/z
516.10 and 517.10, which are isotopic contributions. Some
other small signals at different m/z values are present also in
this spectrum (see other insets). They may be possible adducts
of the main component, or also they can be very minor

Table 1 Design of experimental data matrices

Matrix Sizea Description Uses

Dmcr_areas

Dxcms_area

128×136
128×1627

Full data set Evaluation of the effect of tissue sample, of metal of treatment and
of their interaction by ASCA

Cdmcr_areas

Cdxcms_areas

64×136
64×1627

Roots and aerial part samples treated with Cd Evaluation of the effect of tissue sample by PCA and PLS-DA

Cumcr_areas

Cuxcms_areas

64×136
64×1627

Roots and aerial part samples treated with Cu

Lmcr_areas

Lxcms_areas

48×136
48×1627

Aerial part samples treated with Cd or Cu Evaluation of the effect of metal of treatment by PCA and PLS-DA

Rmcr_areas

Rxcms_areas

48×136
48×1627

Roots samples treated with Cd or Cu

Subscripts indicate the kind of data: -mcr_areas is the data matrix containing areas of the MCR-ALS resolved components; -xcms_areas is the data
matrix containing peak areas obtained by XCMS
a Size: number of samples×136 MCR-ALS resolved components or 1627 XCMS detected features
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strongly coeluted metabolites, not resolved by MCR-ALS in
an independent component due to their very low variance
contribution during the ALS optimization. The resolution time
for MCR-ALS was about 15 min for each chromatographic
window. Although the full MCR-ALS approach workflow
(mass spectral binning, selection of chromatographic time
windows, resolution and selection of relevant components)
required a larger amount of time. However, most of these steps
did not require user participation, and so, automation and

parallel computation could reduce the total time of analysis
significantly.

Chromatographic information provided by XCMS and
MCR-ALS strategies was rather similar. As mentioned before,
XCMS algorithm detects features in all the cases that at a
particularm/z value the signal is higher than a given threshold.
Some of these features can be assigned to artifacts (instrumen-
tal noise, background and solvent contributions) and in other
cases a single metabolite can give multiple features due to the

Fig. 1 Example of a TIC
chromatogram of an aerial part
sample with the selected
important chromatographic
regions highlighted

Fig. 2 Example of a resolvedMCR component: aerial part rice samples treated with copper. aResolved elution profiles, b resolved mass spectra. Insets:
zoom in different m/z regions. Dashed lines separate each individual sample
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detection of isotopic peaks or adducts. These two facts re-
duced the total number of independent features related to me-
tabolites. The opposite case was found when considering the
MCR-ALS resolved components. In this case, the final num-
ber of resolved components and, subsequently, the size of the
Dmcr_areas matrix were significantly lower than the size of the
Dxcms_areas matrix. This fact is caused because MCR-ALS
resolves the components according to their elution profiles
and their corresponding mass spectra. Every MCR-ALS re-
solved component will be associated with an elution profile
and a mass spectrum which, however, may include various
features at different m/z values. In this case, these features
could be easily assigned to isotopic peaks of the nominal m/
z values or different adducts of the same metabolite. There-
fore, a single MCR-ALS resolved component provides infor-
mation on several features related to the same metabolite
grouped together. A more difficult situation could be found
when two metabolites present a very strongly overlapped elu-
tion profile. If the number of components resolved by MCR-
ALS resolution is too low, these two metabolites could appear
as being resolved in the same component and, therefore, the
resolved MS spectrum will have the features of the two com-
pounds. Then, the interpretation of the resolved mass spec-
trum can be more difficult. Nevertheless, this information is
still provided by MCR-ALS despite the smaller dimension of
the Dmcr_areas matrix compared to Dxcms_areas. It is possible
that some information retrieved by the XCMS approach can
be left in the residuals of the MCR-ALS model and lost for
further analysis. This could be the case of rather small signals
that contributes to a small quantity of the total variance of the
data. Nevertheless, it is important to perform a deep study on
those samples to differentiate if these little signals were due to
the samples (and their treatment) or the previously described
artifacts (background, solvent contributions).

Finally, when the use of the two approaches is compared, it
may be argued that the XCMS workflow, as implemented in
MetaboNexus, is more straightforward and that the final re-
sults can be reached faster. However, as stated above, the
selection of the optimal pre-processing parameters in XCMS
is a very critical aspect of the obtained results, and they should
be properly optimized in order to have meaningful results. On
the contrary, theMCR-ALS approach ismore robust, although
not so easy to use for the non-experienced user and, in prin-
ciple, more time consuming. This robustness is demonstrated
by the fact that satisfactory results can also be obtained when
dealing with lower resolution data. For instance, MCR-ALS
has successfully overcome inherent difficulties of GC-MS and
CE-MS data analysis, such as multiple MS signals for the
same metabolite due to derivatization in GC-MS and large
migration time shifts between samples in CE-MS [33, 34].

As a result, Dmcr_areas andDxcms_areas peak area data matri-
ces were studied using an ASCA two-factor model with inter-
action considering the two factors, the sample tissue (root or

aerial part) and the metal of treatment (Cd or Cu). Balanced
experimental design considered 32 samples for each combina-
tion of the factors: root-Cd, root-Cu, aerial-Cd, and aerial-Cu.
Results showed that both factors had a statistically significant
effect (p=0.0001). Interaction between the kind of metal and
the tissue analyzed was significant (p<0.050) in both cases
(XCMS and MCR-ALS data). These results would indicate
that the effects of each one of these two factors (type of metal
and rice tissue) were dependent on the levels of the other.

Discrimination of rice samples due to metal treatment

Once peak areas were obtained with both XCMS and MCR-
ALS, discrimination of samples according to the effects pro-
duced by the two metals (Cu and Cd) was investigated. With
this aim, PCA and PLS-DA were applied to LC-MS peak
areas of the different features or components obtained with
both methodologies, XCMS and MCR-ALS, respectively. In
both cases, results were analogous.

Tissue sample effect

Samples treated with Cd and samples treated with Cu were
first studied separately (matrices Cdmcr_areas, Cumcr_areas,
Cdxcms_areas, Cuxcms_areas described in Table 1). For both
treatments, root samples were discriminated from aerial part
samples by both PCA and PLS-DA. On the other hand, sam-
ples were also distinguished according to the metal treatment
(Cd or Cu) when ASCA scores plot was considered (32 sam-
ples for each factor). Table 2 summarizes the figures of merit
of the PLS-DA models.

As example of these results, Fig. 3a shows the scores plot
for Cu treatment when PLS-DA was applied to MCR-ALS
resolved peak areas, where root samples were discriminated
from aerial part of rice samples by LV1, explaining 36% of X-
data variance. Figure 3b depicts the same results for Cd treat-
ment, where root samples were discriminated from aerial part
samples by LV1, explaining 45 % of X-data variance. As a
conclusion, for both metal treatments, roots were clearly dis-
tinguished from aerial parts of rice samples with a Mathew’s
correlation coefficient (MCC) equal to 1.0, either for XCMS
and for MCR-ALS results (analogous XCMS scores plots
were obtained and shown in the ESM).

Type of metal effect

In order to evaluate more specifically the effect of metal treat-
ment, root and aerial parts of rice samples were evaluated sepa-
rately (matrices Lmcr_areas, Rmcr_areas, Lxcms_areas, Rxcms_areas

described in Table 1). For both tissues, samples treated with Cd
were separated from samples treated with Cu by both PCA and
PLS-DA. Samples treated with different metals were also dis-
criminated when ASCA scores plots were considered.
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As an example, Fig. 4a gives the scores plot for aerial parts
of rice samples when PLS-DAwas applied to resolved MCR-
ALS peak areas, where samples treated with Cd were discrim-
inated from samples treated with Cu by LV1, explaining 32 %
of X-data variance. The scores plot for root samples is shown
in Fig. 4b, where samples treated with Cd were distinguished
from samples treated with Cu by LV1, explaining 44 % of X-
data variance. For both tissues, samples exposed to Cd were
clearly separated from samples exposed to Cu with a
Mathew’s correlation coefficient (MCC) equal to 1.0
(analogous XCMS results and scores plots were obtained,
see ESM). Quality parameters of the obtained PLS-DA results
are reported in Table 2. It can be seen that MCC values are
close to one in all cases, although slightly better R2 were
obtained for XCMS data.

Identification of possible metabolite biomarkers
of the effects of metals (Cu and Cd) on rice tissues

This study is concluded by the identification of some of the
most relevant m/z values associated with the peak areas ob-
tained using both strategies (XCMS andMCR-ALS). Variable
importance on projection (VIP) scores (see ESM for the

mathematical definition) were used to detect the most impor-
tant features in each case.

Metabolomic interpretation of the changes caused by the
different factors requires the identification of those variables
(metabolites) having a VIP score higher than the average
(greater than 1 rule), using for instance high-resolution MS
combined with tandemMS. In this study and for brevity, only
the six metabolites with the highest VIP scores for each PLS-
DA model were considered. In order to select these six me-
tabolites, the m/z values associated with the peak areas with
the highest VIP scores were used. For instance, Fig. 5 gives
the PLS-DAVIP scores plot for Cd-treated samples from peak
areas obtained by MCR-ALS and XCMS (Cdmcr_areas and
Cdxcms_areasmatrices described in Table 1), showing the most
relevant features (MCR-ALS resolved peaks or XCMS
features, respectively) for discriminating between roots and
aerial part rice samples. Results confirmed again that most
of the m/z values obtained from XCMS peak areas were the
same than those retrieved from the MCR-ALS resolved
components.

The same procedure was also applied to the samples treated
with Cu (Cumcr_areas and Cuxcms_areas matrices) and it was
also applied to the matrices containing only root samples or

Table 2 Figures of merit of the PLS-DA models

Matrix Number of latent variables X-variance explained Y-variance explained R2 CV MCC

Cdmcr_areas 2 50.23 81.19 0.54 1.000

Cumcr_areas 2 51.70 94.61 0.86 1.000

Cdxcms_areas 2 37.23 94.76 0.85 1.000

Cuxcms_areas 2 50.22 96.82 0.95 1.000

Lmcr_areas 2 41.57 91.59 0.66 1.000

Rmcr_areas 2 49.67 77.61 0.59 1.000

Lxcms_areas 2 40.47 96.77 0.94 1.000

Rxcms_areas 2 49.19 91.60 0.82 1.000

Fig. 3 PLS-DA results for tissue sample factor andMCR-ALS data. Red diamonds ( ) are aerial part samples and green squares ( ) are root samples. a
Scores plot for Cu treatment. b Scores plot for Cd treatment
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only aerial part samples (Lmcr_areas, Rmcr_areas, Lxcms_areas,
and Rxcms_areas matrices). Most of the relevant m/z values
obtained using XCMS approach were almost the same than
those obtained by MCR-ALS. In some cases, MCR-ALS re-
solved components gave more than one mass signal, for in-
stance, peak number 100 in Fig. 5a with 337.09 and 199.80m/
z values. As mentioned before, these additional mass signals
usually correspond to isotopic peaks and/or adducts of the
same metabolite, but it could also correspond to two metabo-
lites with extremely highly overlapped elution profiles (em-
bedded peaks) which had been resolved in the same MCR-
ALS component.

At this point, some characteristics of each method regard-
ing metabolite identification can be discussed. MCR-ALS has
the advantage of resolving the mass spectrum corresponding
to every elution profile simultaneously. In this mass spectra,

several features can be detected such as isotopic peaks, ad-
ducts eluted at the same retention time, and some solvent/
background contributions. It is also possible that these differ-
ent features can come from various metabolites eluting at the
same retention times. This can be considered a drawback of
the MCR-ALS since it makes their identification more labori-
ous and time consuming. However, we think that these steps
can be handled reasonably well, and new tools to do this in a
more general and accurate way need to be developed. In the
case of XCMS, the excessive number of detected features can
be reduced by using appropriate complementary software
(such as the previously mentioned CAMERA). However, in
our experience, the detection of metabolites with similar be-
havior is not so straightforward such as in MCR-ALS where
different metabolites in the same resolved component can be
easily identified by their different MS signals.

Fig. 4 PLS-DA results for metal of treatment factor and MCR-ALS data. Red diamonds ( ) are Cd samples and green squares ( ) are Cu samples. a
Scores plot for aerial part samples. b Scores plot for root samples

Fig. 5 PLS-DAVIP scores for samples treated with Cd. a Results for
peak areas obtained with MCR-ALS. b Results for peak areas obtained
with XCMS. Numbers indicate the m/z values associated with the peak

areas with a higher VIP score. Red numbers indicate those that are equal
for MCR-ALS and XCMS
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Despite the main goal of this work was not the detailed
biological interpretation of the observed metabolite changes,
the tentative identification of some metabolites was attempted
to confirm the reliability of the compared methodologies. In
order to do this, m/z values of resolved peaks were compared
with m/z values obtained from public databases such as
MassBank [35], Metlin [36], and HMDB [37]. Since MS
spectra of the components resolved by MCR-ALS were ob-
tained from binned data, their accuracy is low (0.05 amu) and
they cannot be used for a good identification of the metabo-
lites. Therefore, once one particular component has been also
identified by their precise elution profile, the retention time of
its peak maximum in a given sample can be easily estimated
and its accurate mass spectrum recovered from the original
raw data file using MassLynx™ v 4.1 software. On the con-
trary, when XCMS was used, no binning approach was nec-
essary. Therefore, the m/z accurate value of the feature detect-
ed was directly used for biomarker identification. Results of
these tentative identifications are shown in Table 3.

From the results shown in Table 3, a preliminary biochem-
ical interpretation can be attempted. For example, most of the
metabolites shown in Table 3 are glycosides, such as 4-
methylumbelliferyl glucoside, or other metabolites related to
their biosynthesis, such as 6″′-O-sinapoylsaponarin or stearyl
citrate [38]. Glycosides are very abundant in plants, and they
have been reported to be altered by metal exposure in
Arabidopsis thaliana [1, 39]. Glycosides have been also re-
ported to form strong metal complexes, which would explain
why their concentration changes so much by metal treatment
[40, 41].

Conclusions

Both XCMS and MCR-ALS appeared to be powerful method-
ologies for metabolomic studies. These two approaches gave
very similar results for all the experimental metabolomics sys-
tems investigated in the present work. XCMS resolved the entire
full-scan chromatogram very fast, allowing a direct calculation of
chromatographic peak areas for every m/z value giving a statis-
tically significant MS signal, resulting in a huge number of fea-
tures. In contrast, MCR-ALS led to a lower number of features
since isotopic peaks and metabolites with very similar chromato-
graphic profiles may be described in the same resolved elution
profile with a MS spectrum including more than one m/z value.
A comparison between the two approaches showed that XCMS
wasmore straightforward for non-experienced users and required
a smaller amount of processing time. However, MCR-ALS was
more robust since it allowed working with more complex data
(due to large time shifts, background contributions, and lower
mass resolution) and did not require the optimization of param-
eters for each LC-MS instrument.

Chemometric evaluation of the peak areas for the candidate
metabolites obtained by XCMS and MCR-ALS approaches
allowed the statistical assessment of the effects caused by the
metal exposure. ASCA statistical evaluation showed that there
was a significant interaction between analyzed tissue sample
and the type of metal of treatment. Further exploration by
PCA and PLS-DA showed that metal exposure allowed the
discrimination of rice samples considering both studied fac-
tors (type of metal and type of tissue). The identification of
principal molecular biomarkers related to metal treatment

Table 3 Tentative identification of molecular markers using relevant m/z values considering the VIP scores

Highest mass ion Retention time
(min)

Proposed metabolite Adduct Adduct
mass

Error m/z
(ppm)

Factor

199.0392 26.87 Camalexin M−H 199.0408 8.2 Part of the plant
325.2400 6.33 Avocadyne 4-acetate M−H 325.2384 4.8

337.0895a 6.33 4-Methylumbelliferyl glucoside M−H 337.0929 10.1

563.1365a 20.21 Apigenin 7-O-[beta-D-apiosyl-(1→2)-
beta-D-glucoside]

M−H 563.1406 7.2

799.1999a 20.42 6″′-O-Sinapoylsaponarin M−H 799.2091 11.5

593.2798 16.75 7,8-Dihydrovomifoliol 9-[rhamnosyl-
(1→6)-glucoside]

M+Hac-H 593.2815 2.7

279.0528a 27.52 7-Hydroxy-2-methyl-4-oxo-4H-1-benzopyran-
5-carboxylic acid

M+Hac-H 279.0510 6.4 Metal of Treatment

329.0898a 6.1 1-O-Vanilloyl-beta-D-glucose M−H 329.0878 6.1

330.09a 19.25 Koenimbine M+K-2H 330.0902 5.6

331.0554 19.51 S-7-Methylthioheptylhydroximoyl-L-cysteine M+K-2H 331.0558 1.2

481.2549 6.17 Stearyl citrate M+K-2H 481.2573 4.9

446.1357a 28.6 (R)-2-Hydroxy-7,8-dimethoxy-2H-1,4-
benzoxazin-3(4H)-one 2-glucoside

M+Hac-H 446.1304 11.8

aMetabolites relevant also in the ASCA analysis
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appears to be an important issue in plant biology studies to
assess their metabolic changes. A preliminary evaluation of
what metabolites were affected by metal exposure highlighted
that glycoside family of compounds were much affected. Fur-
ther work is pursued to perform a more exhaustive identifica-
tion of metabolites by using other MS technologies, such as
higher resolution MS instruments and MS/MS approaches.
The combination of these advanced MS technologies with
chemometric procedures will facilitate a more complete iden-
tification of molecular markers related to rice exposure to
metals and the improvement of knowledge about metabolic
changes.
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