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Abstract – When a regular classical system is perturbed, nonlinear resonances appear as pre-
scribed by the KAM and Poincarè-Birkhoff theorems. Manifestations of this classical phenomena
to the morphologies of quantum wave functions are studied in this letter. We reveal a system-
atic formation of a universal structure of localized wave functions in systems with mixed classical
dynamics. Unperturbed states that live around invariant tori are mixed when they collide in an
avoided crossing if their quantum numbers differ in a multiple of the order of the classical reso-
nance. At the avoided crossing eigenstates are localized in the island chain or in the vicinity of the
unstable periodic orbit corresponding to the resonance. The difference of the quantum numbers
determines the excitation of the localized states which is revealed using the zeros of the Husimi
distribution.

Copyright c© EPLA, 2014

Introduction. – Hamiltonian classical systems have a
variety of dynamical behaviors [1]. On one side there are
integrable systems with conserved quantities as degrees
of freedom resulting in constrained dynamics around in-
variant tori. On the other extreme, chaotic systems are
characterized by properties of mixing and ergodicity. The
phase space is dynamically filled and only constrained by
the conservation of the energy. The quantum mechanics
of these dynamical systems has been intensively studied in
the last forty years and the correspondence between clas-
sical and quantum mechanics has been established with
solid grounds [2,3].

It is unusual that a generic system belongs to those ex-
treme cases as it would display mixed dynamics where
chaos coexists with regions of regular motion. The dy-
namics of mixed systems are more subtle mainly be-
cause regular and chaotic regions are connected by fractal
boundaries. A standard way to understand this complex
dynamics is perturbing an integrable system. Its response
to weak perturbations has been completely understood in
terms of the celebrated Kolmogorov-Arnold-Moser (KAM)
and the Poincarè-Birkhoff (PB) theorems [4,5]. The KAM
theorem states that depending on the rationality of the
frequencies of the motion, some of the invariant tori are
deformed and survive while others are destroyed. The con-
sequence of the fate of rational tori is the survival of an
equal even number of stable (elliptic) and unstable (hy-
perbolic) periodic orbits (PB theorem). In the vicinity of

a stable orbit, a chain of islands of regularity surrounded
by a chaotic sea is developed [1]. These classical struc-
tures, usually called nonlinear resonances, have important
influences in various phenomena from chemical systems,
solid-state physics to nano optics [6–8].

Almost ubiquitous, the quantum mechanics of nearly
regular and mixed systems is much less known than the
integrable or chaotic cases. The relation between classi-
cal dynamics and avoided crossings (ACs) observed in the
spectra of quantum systems has been a subject of several
studies in the past. In chaotic systems, several aspects of
ACs are well known [9,10]. In mixed systems, using a semi-
classical approach, nonlinear resonances were shown to be
responsible for energy levels approach each other closely,
exhibiting avoided crossings, instead of crossings as hap-
pen in integrable systems [11–13]. More recently, Brodier,
Schlagheck, and Ullmo [14], have developed a semiclas-
sical theory of resonance assisted tunneling showing the
coupling interaction term between states localized in in-
variant tori. Interestingly enough, a selection rule emerges
because the interaction only occurs between states with
quantum numbers that differ in a multiple of the order of
the resonance. So, it is expected that the appearance of
a nonlinear resonance is revealed in the quantum spectra
with series of ACs of states localized in tori with quan-
tum numbers that fulfill the selection rule. In fact, this
has been shown in ref. [15] when the multiple is equal
to one.
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Fig. 1: (Colour on-line) (a) and (b) Husimi distribution of the states at the center of an AC obtained from the intersection of
quasistates 9 and 15 for a Hilbert space with N = 160. The zeros of the distribution are indicated by × and ©. In (c) the zeros
of the Husimi distributions (a) and (b) are plotted with the classical phase space at k = 0.1822. (d) Region of the spectra where
the AC takes place. The states before and after the AC are labeled A, B, C, D and are also plotted with the corresponding
zeros.

In this letter we go one step forward and show such a
systematic for ACs between states with quantum numbers
that differ in a multiple greater than one. We compute the
series of ACs corresponding to a resonance of a paradig-
matic system of quantum chaos studies and show that the
states in the center of AC have a surpassing structure:
one is an excited state localized in the island chain and the
other in the associated periodic orbit. This shows that a
classical nonlinear resonance imprints clear signatures in
the wave function morphologies. The eigenstates at the
AC are carefully analyzed using the Husimi distribution
in phase space and its zeros [16]. The excitations of the
localized structure are related to the number of zeros in
each island or in the vicinity of the unstable periodic orbit
(PO) associated to the resonance.

The systematic of ACs generated by a nonlinear reso-
nance is a fertile field to test the building block of the semi-
classical theory of resonance assisted tunneling, that is, the
interaction coupling term between states localized in in-
variant tori [14]. For these reasons, we have studied the be-
havior of the series of ACs varying the value of the Planck
constant �. We clearly show an unexpected result that the
semiclassical expression for the interaction coupling term
works better in the deep quantum regime; seeing signs of
an improvement of this theory seems necessary.

The model. – We study the Harper map in the unit
square as a model system,

pn+1 = pn + k sin(2πqn) (mod 1),

qn+1 = qn − k sin(2πpn+1) (mod 1), (1)

where k is a parameter that measures the strength of the
perturbation. This map can be understood as the stro-
boscopic version of the flow corresponding to the (kicked)
Hamiltonian

H(p, q, t) = −
k

2π
cos(2πp)−

k

2π
cos(2πq)

∑
n

δ(t−n). (2)

The Harper map comprises all the essential ingredients
of mixed dynamics and is extremely simple from a numeri-
cal point of view. For very small k, the dynamics described
by the map is essentially regular, that is, the phase space
is covered by invariant tori. As k gets bigger, nonlinear
resonances (islands) start to appear following the KAM
and PB theorems. The system presents a mixed dynamics
with regions of regularity around the origin and the cor-
ners coexisting with chaos as shown in fig. 1(c) and 2(e)
and (f). For k > 0.63 there are no remaining visible regu-
lar islands due to chaotic dynamics covering all the phase
space.

The quantum mechanics of the Harper map is described
by the unitary time-evolution operator [17,18]

Ûk = exp[iNk cos(2πq̂)] exp[iNk cos(2πp̂)], (3)

with N = (2π�)−1, that is, a Hilbert space of N dimen-
sions for a fixed value of �. This is due to the quanti-
zation on the torus which implies that the wave function
should be periodic in both position and momentum repre-
sentations. The semiclassical limit is reached as N takes
increasing values.

60006-p2
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Fig. 2: (Colour on-line) Husimi distribution of the eigenstates
at the center of an AC obtained with the intersection of qua-
sistates 15 and 27 ((a) and (c)) and 26 and 44 ((b) and (d)).
The zeros of the distribution are also plotted with × and ©.
In (e) and (f) the zeros of the Husimi distributions ((a), (c)
and (b), (d)) are plotted with the corresponding part of the
classical phase space at k = 0.1809 and k = 0.1978.

For a fixed value of N , the spectrum of eigenphases
φi(k) and eigenfunctions |ψi(k)〉 of the evolution operator
of the quantum map are obtaining by diagonalization of
eq. (3). The characteristics of |ψi(k)〉 are analyzed using
the Husimi distribution [19]. The Husimi representation
of an eigenstate of a quantum map is a quasiprobablity
distribution in phase space that has exactly N zeros in
the unite square [16].

Eigenphases φi(k) change linearly for very small
strength of the perturbation k and the Husimi distribu-
tion of the eigenstates |ψi(k)〉 is localized in the vicinity
of invariant tori [16,18]. Eigenstates with negative slope
are centered in (q, p) = (1/2, 1/2) and in (q, p) = (0, 0)
for positive slope. A bigger absolute value of the slope
implies that the state is nearer to the periodic point
(q, p) = (1/2, 1/2) or (q, p) = (0, 0). The states with max-
imum absolute value of the slope resemble a Gaussian dis-
tribution centered in the mentioned periodic points and
correspond to label 1 (negative slope) and N (positive
slope). Excited states have n zeros inside the region of
maximum probability, being n + 1 their label for negative
slope and (N − (n + 1) for positive slope.

Method. – The influence of a nonlinear resonance
r:s to quantum maps is uncovered using the following

numerical procedure. We consider a series of eigenstates
|φi(k)〉 with i = 1, . . . , imax (imax < N/2) for a very
small perturbation k = k0 and we associate for each
state i a perturbed one with k = k0 + δk, if the over-
lap 〈φi(k0)|φj(k0 + δk)〉 is the maximum of all j. Then,
this procedure is repeated for perturbations k = k0 + nδk
with n = 2, . . . , nmax an integer. Thus, we have associ-
ated a series of perturbed states and eigenphases with the
unperturbed one. From now on, we refer the quasistate i
to the series of perturbed states associated to |φi(k0)〉 and
the quantum number to the label i of the quasistate.

If we join lines through the eigenphases of each quasis-
tate, we can establish where two of the quasistates have
a crossing. In the vicinity of that intersection we find an
AC of eigenstates that has the localized properties of the
states at k = k0. If the dimension N of the Hilbert space
is small enough, the previous procedure can be done by
visual inspection of the spectra as a function of the pertur-
bation k. The value of δk is crucial for the success of the
procedure: if it is small and for an n, k = k = k0+nδk falls
close to an AC, the quasistate loses the localization prop-
erties related to the unperturbed state and the method
fails. On the contrary, if δk is very large the method also
fails because the phase of the quasistate has an erratic de-
velopment and hence it is not possible to find its crossing
with other quasistates.

Once we have computed the quasistates for a series of
unperturbed eigenstates |φi(k0)〉, we obtain the position
of the corresponding ACs looking at the intersection of
the eigenphases i with j. If we are considering a nonlinear
resonance r:s with r the number of islands, we compute
the series of ACs for quasistates with quantum numbers i
and j such that

Δn = |i − j| = lr (4)

with l an integer.
In ref. [15] the series of AC for two different nonlinear

resonances of the Harper map was found for l = 1 using
visual inspection of the spectra. This was feasible due to
the small value of the dimension of the Hilbert space N .
In the following, we show that using the described method
it is possible to find the series of ACs for greater l and N .

Results. – The Harper map is a mixed system that has
an usual regular to chaotic transition. As the perturba-
tion strength k grows, nonlinear resonances get bigger as
the surrounding chaotic layers and eventually disappear
covered by the chaotic sea. The resonances 6:1 reach the
largest size (see fig. 1(c), fig. 2(e), (f) and also refs. [14,15]).
Other resonances as 8:1, 10:1 and 14:1 take up an appre-
ciable region of phase space.

Our main goal is to disentangle the influence of
nonlinear resonances on the egenfunctions of a mixed sys-
tem. We focus on the resonance 6:1 of the Harper map.
Using the method described below, we have found the ACs
associated to the intersections of the eigenphases of qua-
sistates with a quantum number that differs in a multiple

60006-p3
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of 6, the order of the resonance 6:1, that is, for Δn = 6l,
with l = 1, 2 and 3. The calculations are done for three
sizes of the Hilbert space N = 80, 160 and 300. As an
example, in figs. 1 and 2 we show the morphologies of the
eigenstates in these ACs.

In fig. 1(a) and (b) the behavior of the wave functions at
the center of an AC obtained from quasistates with quan-
tum numbers that differ in 6 is exhibited. In fig. 1(d) we
show the region of the spectra where the AC takes place.
The eigenphases of the states that have the AC are plot-
ted with red lines. The eigenfunctions before (A and B)
and after (C and D) the AC are plotted at the bottom
of fig. 1. As usual, the states exchange their distributions
upon AC ((A) ↔ (D) and (B) ↔ (C)). But surprisingly
enough, the distributions at the center of AC are highly
localized. One state has the maximum of the probabil-
ity of the Husimi distribution in the vicinity of the island
chain and has 6 zeros near the corresponding unstable PO
(see fig. 1(a)). The other state (fig. 1(b)), is localized in
the vicinity of the unstable PO and has one zero in the
center of each island. This is better displayed in fig. 1(c)
where part of the classical phase space and the zeros of
the states of fig. 1(a) and (b) are shown. The zeros of the
states (a) are plotted with × and with © for (b).

When the AC is between states with quantum numbers
that differ in a multiple (greater than one) of the number
of islands in the chain, the morphologies of the eigenstates
are more impressive. As an example of this phenomenon,
in fig. 2 we show the Husimi distributions at the center of
AC between states with quantum numbers that differ in
12 (fig. 2(a), (c) and (e)) and 18 (fig. 2(b), (d) and (f)).
As can be seen in fig. 1, one of the states is localized in
the island chain, but in fig. 2(a) there is one zero inside
each island and two zeros for fig. 2(b). This fact points
out that these states are excited states of the island chain.
The other states, fig. 2(c) and (d), are localized in the
corresponding unstable PO and the zeros are accumulated
inside the islands. This fact resemble the behavior of scar
functions builded for chaotic system [20,21]. To see the lo-
cation of the zeros in more detail, in fig. 2(e) and (f) we
plot a part of the classical phase space and the zeros of
the Husimi distributions of panels (a), (c) and (b), (d).
We have seen that when Δn = 24 the structure of the
wave functions at the AC has the same systematic with
one more zero in each island of the chain. In summary,
in the center of an AC with Δn = 6l, one of the states is
localized in the vicinity of the island chain and has l − 1
zeros in each island, whereas the other state has the maxi-
mum probability around the unstable PO of the resonance
and has l zeros in each island. It is important to note that
in figs. 1 and 2 only the zeros of the Husimi distribution
that are inside or over the regions of maximum probabil-
ity are plotted. The other zeros that lie outside these re-
gions and have an exponentially small probability are not
displayed.

The semiclassical theory of resonance assisted tunneling
predicts a coupling strength between quasimodes located

on opposite sides of a nonlinear resonance and therefore
an eigenphase difference Δφ for the ACs considered before.
This theory was recently developed and applied in several
situations [14,22–24]. The starting point is the classical
secular perturbation theory which allows to construct an
effective time-independent Hamiltonian that describes the
local dynamics near a r:s resonance of the map,

Hr:s ≃ H0(Ir:s) +

∞∑
l=1

Vr,l(Ir:s) cos(lrθ + φl) (5)

with H0(Ir:s) an integrable approximation of the Hamilto-
nian of the map [14]. This effective Hamiltonian entails a
selection rule that an eigenstate of the unperturbed Hamil-
tonian of a quantum number n can be coupled to another
state of a quantum number n + lr (l an integer) with a
strength proportional to Vr,l:

Vr,le
iϕl =

1

iπrsτ

∫ 2π

0

exp(−irlθ) δIr:s(θ)dθ, (6)

δIr:s(θ) being given by

δIr:s(θ) = I(−1)(Ir:s, θ) − Ir:s, (7)

where I(−1)(Ir:s, θ) is the action variable obtained by ap-
plying the inverse Poincaré map to (I, θ). The interaction
coupling strength (eq. (6)) is numerically computed fol-
lowing the next steps. First, the resonant periodic torus
is found, and its action Ir:s calculated. Then, a large
number of points (qi, pi) and its corresponding angle vari-
able θi belonging to the resonant tours are computed. We
applied a back-propagation for these points with the ex-
act inverse map. The associated perturbed action of each
point I(−1)(Ir:s, θi) is computed by numerical propagation
in a complete cycle. Using these quantities the coupling
interaction Vr,l is calculated with eq. (6). Finally, the
semiclassical approximation of the eigenphases differences
Δφ produced by a resonance r:s for AC, that comes from
the intersection of quasistates eigenphases with Δn = lr,
results in

Δφ ≈ |Vr,l|/2�. (8)

We have computed the semiclassical approximation
of the eigenphase difference for the resonance 6:1 with
l = 1, 2 and 3 as a function of the strength k. The inte-
gral was done using the 7-point Newton-Cotes formula and
with an integrable approximation of the Harper Hamilto-
nian (eq. (2)) up to the 5th order that was obtained using
the Baker-Campbell-Hausdorff formula in eq. (3) and the
semiclassical relation between the quantum commutator
and the Poisson brackets [25]. In fig. 3, the semiclassical
approximation of the eigenphase difference Δφ is plotted
with lines (l = 1, solid; l = 2, dashed; and l = 3, dotted).
The eigenphases differences Δφ for the ACs between states
with Δn = 6l, with l = 1, 2 and 3 are plotted with sym-
bols. These eigenphases differences were obtained from
the quantum spectra using the method presented before

60006-p4
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Fig. 3: (Colour on-line) Eigenphase difference Δφ (scaled
with �) as a function of the perturbation strength k for ACs
associated with the nonlinear resonance 6:1 of the Harper
map. Symbols corresponds to ACs obtained from the quantum
spectra. (a) Δn = 6 with × for N = 80, � for N = 160 and
� for N = 300. (b) Δn = 12 with ♦ for N = 80, △ for N = 160
and � for N = 300. (c) Δn = 18 with △ for N = 80, © for
N = 160 and � for N = 300. The semiclassical prediction of
the eigenphase difference eq. (8) is plotted with lines: (a) l = 1
(solid line), (b) l = 2 (dashed line) and (c) l = 3 (dotted line).

for three values of the number of states of the Hilbert space
N = 80, 160 and 300.

In fig. 3 we can see that, contrary to the expecta-
tions, the semiclassical approximation works very nice for
all l only in the case of N = 80, the minimum value
of the considered number of states of the Hilbert space.
This fact indicates that the semiclassical expression of
Δφ (eq. (8)) works in the deep quantum regime and
separates from quantum results as N increases. The dis-
crepancies for large N become a strong evidence that the
semiclassical theory of the interaction coupling needs an
improvement [14]. We mention that in ref. [23] the action
dependence to the interaction coupling strength (eq. (6))
was introduced. We have computed the semiclassical pre-
diction including this correction but the agreement with
the quantum eigenphase difference is clearly worse in all
the cases that we have studied. We also note that a simi-
lar behavior to the size of the Hilbert space was observed
in the tunneling-induced level splittings of a very simple
one-dimensional model computed with the semiclassical
theory of resonance assisted tunneling [24]. In fig. 4 we
show an unexpected scaling of the Δφ for l = 2 and l = 3.
The eigenphase difference scales with �

3 for l = 2 and
with �

5 for l = 3. This could indicate the existence of an
effective � that depends on l and could be a clue for the

k

∆φ
5

h
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-28
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10
-8

 0.16  0.19  0.22  0.25

− ∆φ
3

h

−

Fig. 4: (Colour on-line) Scaled eigenphase difference Δφ as a
function of the perturbation strength k for ACs with Δn = 12
and Δn = 18. The scaling factor is �

3 for Δn = 12 and �
5 for

Δn = 18. Symbols are the same as in fig. 3.

improvement of the semiclassical theory of the interaction
coupling strength (eq. (6)).

Final remarks. – In this letter we have shown that a
classical nonlinear resonance imprints a systematic influ-
ence on the quantum eigenvalues and eigenfunctions of a
mixed system. We have found a universal structure em-
bedded in the spectra: states localized in tori interact in
AC if the quantum numbers differ in a multiple of the
order of the resonance. These series of AC are observed
when a parameter of the system is varied producing a de-
velopment of the resonance characterized by a chain of
islands. Surprisingly, eigenstates in the middle of the AC
have a particular morphology. One state is localized in the
vicinity of the unstable PO associated to the resonance.
The other state is localized on the island chain. The dif-
ference of the quantum numbers of the unperturbed states
that are localized in tori and interact in the AC determines
the distribution of the zeros of the Husimi function of the
states. These findings, that are not predicted by the semi-
classical theory of resonance assisted tunneling, could be of
importance in the design of optical microcavities [26–28].
In those devices it is desirable to obtain a specific direc-
tional light emission that could be accomplished tuning a
system parameter to reach an AC where the states have a
desirable localization.

We have compared the eigenphases gaps of the AC with
a semiclassical prediction based on the theory of resonance
assisted tunneling [14]. We have shown that the semiclas-
sical prediction deviates from the quantum results as we
reach the semiclassical limit. This unexpected result indi-
cates that an improvement of this theory is needed.
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