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Facultad de Ciencias Astronómicas y Geof́ısicas, Universidad Nacional de La Plata.
Instituto de Astrof́ısica de La Plata (CCT La Plata - CONICET, UNLP).

Paseo del Bosque S/N, La Plata 1900, Argentina.
mmestre@fcaglp.unlp.edu.ar

Turchetti, Giorgio
Department of Physics, University of Bologna.

INFN-Bologna.
Via Irnerio 46, Bologna, 40126, Italy

turchett@bo.infn.it

We compare the divergence of orbits and the reversibility error for discrete time dynamical
systems. These two quantities are used to explore the behavior of the global error induced by
round off in the computation of orbits. The similarity of results found for any system we have
analysed suggests the use of the reversibility error, whose computation is straightforward since
it does not require the knowledge of the exact orbit, as a dynamical indicator.
The statistics of fluctuations induced by round off for an ensemble of initial conditions has been
compared with the results obtained in the case of random perturbations. Significant differences
are observed in the case of regular orbits due to the correlations of round off error, whereas the
results obtained for the chaotic case are nearly the same.
Both the reversibility error and the orbit divergence computed for the same number of iter-
ations on the whole phase space provide an insight on the local dynamical properties with a
detail comparable with other dynamical indicators based on variational methods such as the
finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor
of nearby orbits and the smaller alignment index. For 2D symplectic maps the differentiation
between regular and chaotic regions is well full-filled. For 4D symplectic maps the structure of
the resonance web as well as the nearby weakly chaotic regions are accurately described.
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1. Introduction

The discrete time dynamical systems are widely used because they present a rich structure (regular, chaotic,
intermittent and other types of orbits) in one or two dimensions and because the numerical evaluation of
the orbits is straightforward. A large number of dynamical tools known as indicators of stability allow
us to improve our understanding of dynamical systems: Lyapunov Characteristic Exponents (LCEs) are
known from a long time [Wolf et al., 1985], [Rosenstein et al., 1993], [Skokos, 2010] as well as Return
Times Statistics [Kac, 1934], [Gao, 1999], [Hu et al., 2004] , [Buric et al., 2005]. In the recent past many
other indicators have been introduced not only to address the same problem of quantifying the degree
of chaoticity of an orbit but also to perform the task fast. The Smaller Alignment Index (SALI), widely
described in Skokos et al. [2002] and Skokos et al. [2004], allows to discriminate regular from chaotic orbits.
Similarly, the Generalized Alignment Index (GALI), introduced in [Skokos et al., 2007], is a family of highly
efficient algorithms. Besides, the Mean Exponential Growth factor of Nearby Orbits (MEGNO) discussed
in Cincotta et al. [2003] and Goździewski et al. [2001] is a quantity that gives a fast identification of the
chaoticity of the orbit while its average slope estimates the maximum LCE (mLCE), see Maffione et al.
[2011] for a test of the MEGNO. Fidelity and correlation decay are also tools that can be successfully used
to characterise stability properties as explained in Vaienti et al. [2007] and Turchetti et al. [2010b] as well
as Frequency Map Analysis [Laskar, 1999], [Robutel & Laskar, 2001].
As it is already known, in any numerical computation of a given trajectory, there is a round off error, and
it would be interesting to study its relation with the chaoticity of the orbit and if possible determine its
effect with the help of some dynamical indicator.
The error between an exact and a numerical orbit is due to the finite precision used to represent real
numbers and to the arithmetics with round off. This is unavoidable because the length of the binary
strings representing real numbers must not change after arithmetic operations. The shadowing lemma is
often invoked to state the existence of a true orbit close to a numerical orbit for chaotic systems [Katok &
Hasselblatt, 1997], [Hammel et al., 1987], [Chow & Palmer, 1992], [Chow & Palmer, 1991]. However it does
not provide information on error growth for a given numerical orbit and the case of regular numerical orbits
is not covered by such a lemma. The global error between the exact and the numerical orbit is unknown
because the first one is not computable. Nevertheless an estimate can be provided by replacing the exact
orbit with another one having very high accuracy. If the map is invertible the reversibility error can be
computed without any reference to the exact orbit. Both errors have a similar behavior, namely an average
linear growth for regular orbits and an average exponential growth for chaotic orbits and consequently can
be used as dynamical indicators. Due to the correlation between the single step errors, there is a substantial
difference with respect to the case in which the exact system is perturbed with random uncorrelated noise.
This difference has been analysed in Turchetti et al. [2010b] by using the fidelity which measures the
deviation of the orbits of a given map and its perturbation by integrating over all the initial conditions
with the appropriate measure. In the case of regular orbits with random perturbations the decay of fidelity
is exponential whereas with round off errors the decay follows a power law. In the case of chaotic orbits the
asymptotic limit is approached super-exponentially for both situations (random uncorrelated perturbations
and round off). The symplectic maps of physical interest are generally provided by the composition of a
linear map with another one whose generating function is the identity plus a function of position or
momentum only. In this case the inversion is immediately obtained in analytic form. As most of the
symplectic maps used in the literature are of this kind, the condition of invertibility of the map is not too
restrictive. In addition, the reversibility error can also be applied to time-reversible systems of differential
equations.
Here we present an analysis of the reversibility error and its comparison with the divergence of orbits due
to round off and other dynamical indicators of stability such as SALI, MEGNO and a finite time numerical
estimation of the mLCE. Moreover we talk about the similarities and differences between an irreversibility
due to the single precision round off and one due to the application of uncorrelated random noise in an
orbit iterated with double precision. For two dimensional area preserving maps the reversibility error for
a fixed number of iterations detects the various regions of phase space with different stability properties
quite effectively as well as other dynamical indicators. Besides, the reversibility error allows to study the



May 31, 2011 12:30 Salonicco˙Minor˙review3

3

structure of the resonance web of a four dimensional symplectic map.

2. Round off error methods

In a computational device a real number x can be represented by a floating-point number x∗, that according
to Goldberg [1991] and working with base 2, can be written as

x∗ = ±d0.d1 · · · dp−1 × 2e = ±
p−1
∑

k=0

dk2
e−k (1)

where d0.d1 · · · dp−1 is called the significand and has p binary digits dk, whose value is 0 or 1, and where
the exponent is an integer that satisfies emin ≤ e ≤ emax. The IEEE 754 standard states that for single
precision p = 24, emin = −126 and emax = 127 while for double precision p = 53, emin = −1022 and
emax = 1023.

Consequently, a floating point number x∗ differs from the real number it represents and the relative
error rp, defined by x∗ = x(1 + rp), satisfies |rp| ≤ ǫ ≡ 2−p, as analysed by Goldberg [1991] and Knuth
[1973]. Therefore, according to IEEE 754 we have that ǫ = 2−24 and ǫ = 2−53 for single and double precision
which roughly corresponds to 7 and 16 decimal digits, respectively. The arithmetic operations such as sums
or multiplications imply a round off, which propagates the error affecting each number. Round off algebraic
procedures are hardware dependent as detailed in Knuth [1973]. Unlike the case of stochastic perturbations,
the error strongly depends on x. Suppose we are given a map M(x) then the error with respect to the
numerical map M∗(x) after the first step is defined by:

δ1 ≡ ǫξ1 = x∗1 − x1 ≡ M∗(x)−M(x). (2)

Analogously, we define the local error produced in the nth step by δn ≡ ǫξn = M∗(x
∗

n−1) −M(x∗n−1)
where ξn = ξn(x

∗

n−1).
The global error

Gn = Mn
∗
(x)−Mn(x) (3)

accumulates all the local errors and explicit expressions can be written at first order in ǫ. In the example
of a regular map we take the translation on the torus T1 defined as:

M(x) = x+ ω mod 1, (4)

so M∗(x) = x∗ + ω∗ mod 1 and the global error, which includes also the error to the mod 1 operation,
becomes:

Gn = ǫ

n
∑

k=1

ξk = ǫ(nξ̄ + wn), (5)

where ǫξ̄ is a time average defined as the limit of Gn/n for n → ∞ and wn is a bounded fluctuation.
For the chaotic Bernoulli map

M(x) = qx mod 1, (6)

we have that M∗(x) = qx∗ mod 1 and that the single step and global error satisfy, respectively, |δ1| ≤ Cǫq
and |Gn| ≤ Cǫqn.

In order to compute the global error we need the knowledge of the exact map, which is usually
precluded. A practical way to overcome this difficulty is to replace the exact map with a map computed
with an accuracy 2−P where P ≫ p. For instance, as p = 24 corresponds to single precision one might
choose P = 53 corresponding to double precision. If p = 53 then one might choose P = 100 and so forth.
There are available libraries which allow to compute with any fixed number of bits or significant decimal
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digits. The computation of the reference orbit is expensive if high precision is used, but there is no other
way to evaluate the global error. As a consequence the “exact” orbit is achievable for a definite number
of iterations which depends on P and the nature of the map. Taking into account what we have just
mentioned, in the forthcoming numerical experiments, we will use the divergence of orbits, defined by:

∆n = Mn
S (x)−Mn

D(x), (7)

where MS and MS stand for single and double precision iterations respectively.
If the map is invertible there is another option to overcome the difficulty of not possessing the true

map. We define the reversibility error as

Rn = M−n
∗

◦Mn
∗
(x)− x (8)

which is non zero since the numerical inverse M−1
∗

of the map is not exactly the inverse of M∗ namely
M−1

∗
◦M∗(x) 6= x. Obviously the reversibility error is much easier to compute than the divergence of orbits

(if we know explicitly the inverse map) and the information it provides is basically the same as the latter.
Both quantities give an average linear growth for a regular map together with an exponential growth for a
chaotic map having positive Lyapounov exponents and strong mixing properties. When computing Rn we
will set M∗ = MS in order to compare with ∆n.

3. Variational methods

In the forthcoming sections we will compare the performance of the indicators presented above with three
well known and widely accepted dynamical indicators that are based on the behavior of the solution of the
variational equations of the system. These are the finite time mLCE, the cumulative moving time average
of MEGNO, and SALI.

Let us briefly state them for discrete time dynamical systems of the form:

xn+1 = f(xn), (9)

where xn is the state vector at time n and f is a vector valued function.
The concomitant discrete time variational equations, also called tangent map dynamics, associated to

a given orbit {xn}n∈N are the following:

vn+1 = Df(xn) · vn, (10)

where Df(x) is the Jacobian matrix of the function f and vn is a deviation vector at time n.
Skokos [2010] makes a historical review of the definition of the LCEs and its connection with the

divergence of nearby orbits. He also states the theorems that guarantee the existence of the spectrum of
LCEs and, in particular, the current definition of the mLCE in terms of the solution of the variational
equations:

mLCE ≡ lim
n→∞

1

n
ln

||vn||
||v0||

, (11)

with ||.|| some norm. For a chaotic orbit the mLCE is positive and this implies an exponential divergence
of nearby orbits. On the other hand, for regular orbits mLCE is zero.

In order to have a numerically computable quantity we define the finite time mLCE at time n as

mLCE(n) ≡ 1

n
ln

||vn||
||v0||

=
1

n

n
∑

k=1

ln
||vk||
||vk−1||

, (12)

so that equation Eq. (11) can be reformulated as

mLCE = lim
n→∞

mLCE(n). (13)
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Cincotta et al. [2003] defines a biparametric family of MEGNO indicators:

Ym,j(n) = (m+ 1)nj

n
∑

k=1

km ln
||vk||

||vk−1||
, (14)

where m and j are integer numbers. They made experiments with Y2,0, Y3,1 and Y1,−1 and concluded that
the last one allows both a fast classification between chaotic and regular orbits, and a clear identification
of stable and unstable periodic orbits. Due to this fact, we will use Y ≡ Y1,−1 throughout the rest of this
article. In order to reduce the fast oscillations that the time evolution of the MEGNO presents, in [Cincotta
et al., 2003] they use a time average of this quantity, namely:

Ȳ (n) =
1

n

n
∑

k=1

Y (k). (15)

Theoretically, the asymptotic evolution of Ȳ (n) for any dynamical regime can be put into a single
expression:

Ȳ (n) ≈ mLCE

2
n+ c, (16)

where c ≈ 0 and 2 for chaotic and regular motion, respectively.
We also compare our results with the SALI, introduced by Skokos [2001], that measures the degree

in which a pair of initially linearly independent deviation vectors tend to become aligned. The underlying
principle is that, for a chaotic orbit, a deviation vector under the tangent map dynamics changes in order
to become aligned with the instantaneous most unstable direction. In other words, for almost every pair
of initial deviation vectors (v0, u0), the more chaotic the orbit the faster that the angle between them will
reduce to zero. In the case of regular orbits, the behavior depends strongly on the dimensionality of the
map: in maps with dimension ≥ 4 the deviation vectors generally remain unaligned so the SALI tends to
a positive non-zero value, while in 2D maps the two deviation vectors tend to align with a time rate that
follows a power law. See [Skokos et al., 2004] and [Skokos et al., 2007] for numerical tests of the SALI and
its generalisation, the GALI family. Denoting the Euclidean norm with ||.|| the SALI is defined as:

SALI(n) = min

{∥

∥

∥

∥

vn

‖vn‖
+

un

‖un‖

∥

∥

∥

∥

,

∥

∥

∥

∥

vn

‖vn‖
− un

‖un‖

∥

∥

∥

∥

}

(17)

To control the exponential increase of the norm of the vectors and avoid overflow problem, Skokos
et al. [2004] have normalised them, at every time step, keeping their norm equal to 1. Defined like this
SALI(n) ∈ [0,

√
2] and SALI = 0 if and only if the two normalised vectors have the same direction, being

equal or opposite.

4. Error behavior on simple maps

From the linear and exponential bounds on the errors it follows that the numerical orbit remains close
to the exact one for a number of iterations proportional to 1/ǫ in the regular case and to ln(1/ǫ) in the
chaotic one.

We consider two types of models where the error grows linearly and exponentially respectively. The
first one is the translation on the torus T1 defined by Eq. (4).

This is equivalent to the rotations on the unit circle defined by the map

Rx =

(

cos(2πω) − sin(2πω)
sin(2πω) cos(2πω)

)(

cos(2πx)
sin(2πx)

)

. (18)

The correspondence between the sequences xn = M(xn−1) and xn = Rxn−1 is evident after writing
xn = (cos(2πxn), sin(2πxn)). In spite of the rigorous mathematical equivalence between the translations
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on the torus and the rotations on the unit circle, there is not such similitude in the numerical evaluation
of these maps, as will be explained in the following paragraph.

For map (4) the divergence of orbits and the reversibility error have a linear growth, basically due
to the the fact that ω∗ 6= ω, as shown theoretically for the global error in Eq. (5). However there are
architectures and/or compilers in which the reversibility error may be zero for this simple map that only
requires the computation of sums and modulus operations. Without knowing the precise implementation of
these peculiar operations it is impossible to establish a priori with which compiler and in which architecture
we may obtain this result. We believe this anomaly is due to the peculiar arithmetic operations involved
and that it does not occur for a generic map. To support this claim we have checked that the reversibility
error never vanishes for the map (18) which involves multiplications and the evaluation of trigonometric
functions.
In Figure 1-left we compare the divergence and reversibility error for the torus translation with ω =

√
2−1

and x0 = 0.7. We can see that both errors approximately satisfy the same expression: in log-log scale it is
close to a straight line with unitary slope. This implies that both quantities are linear functions of time.
We have checked that the behavior is similar for almost every initial condition and frequency but in some
cases the fluctuations around the average linear growth have a larger amplitude. Figure 1-right shows that
for the map (18) there is an analogous behavior. However, in this case the straight line that corresponds
to orbit divergence is a bit shifted upwards with respect to the one of reversibility error. This is telling us
that the orbit divergence’s linear growth has a bigger slope.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06  1e+07

|∆
n|

 , 
 |R

n|
 

n

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06  1e+07

|∆
n|

 , 
 |R

n|

n

Fig. 1. Comparison between divergence (red) and reversibility (green) for both torus translations (left) and rotations (right),
using a frequency ω =

√
2− 1 and initial condition x0 = 0.7. In all four cases the average slope in log-log scale is nearly one.

The fluctuations wn have variance < w2
n > computed respect to an ensemble of initial conditions x0

which first grows linearly, but rapidly saturates to a constant value with small oscillations ( see Figure 7
in [Turchetti et al., 2010b] ). In this respect it is quite different with respect to a random perturbation ǫξn
where ξn are independent variables, since in this case we have wn = ξ1 + . . .+ ξn and the variance is given
by < w2

n >= n < ξ2 > for any value of n. This different behavior is reflected in the decay of fidelity [Vaienti
et al., 2007] which follows a power law for round off errors and an exponential law for random perturbations
[Turchetti et al., 2010a] , [Turchetti et al., 2010b]. This shows that the round off errors decorrelate very
slowly unlike the random errors which are uncorrelated.

For chaotic maps, characterised by an exponential increase in the distance between two nearby orbits,
the reversibility error due to round off has the same growth. Bounded two dimensional chaotic maps, like
the cat map, exhibit this behaviour during a short time before reaching saturation.

5. The case of the standard map

As an example of generic 2D map we have chosen the standard map in a torus:



May 31, 2011 12:30 Salonicco˙Minor˙review3

7

yn+1 = yn + λ sin(xn) mod 2π; xn+1 = xn + yn+1 mod 2π. (19)

For very low values of λ the divergence of orbits has an average growth linear with n as for the
translations on the torus and they depend weakly on the initial condition. As λ is increased a power law
nα with α > 1 is observed and the dependence on the initial conditions becomes appreciable. Reversibility
error also shows this behavior for λ << 1.

For λ approaching one we have coexistence of regular and chaotic regions so that the domain is splitted
into several islands of stable orbits and a chaotic sea. In figures 2, 3, 4, 5 and 6 we show, respectively,
the value of the reversibility error (8), the orbit divergence (7), the finite time mLCE (12), the time average
of the MEGNO (15) and the SALI (17) obtained iterating eq. (19).

The standard map with λ = 0.971635 has been iterated n = 103 times to compute all the dynamical
indicators. Even if n < 103 might be used to describe the chaotic region, the chosen value n = 103 allows
to highlight differences within regular regions where the growth is very slow.

The pictures in the left side show the value of the dynamical indicators in a chromatic scale for a grid of
500×500 initial conditions in the two dimensional torus whereas the right pictures show the corresponding
graph for a fixed value of the action variable (y = 0.3) corresponding to the horizontal line in the left
figures. Except for mLCE we have used the natural logarithm of the absolute value for all the dynamical
indicators.

Figure 2 and Figure 3 were obtained by taking into account the error only in the action variable.
It is evident that both the reversibility error and the orbits divergence (with respect to the exact one)
discriminate regular from chaotic orbits. Minor differences exist within the islands of stability: the orbit
divergence approaches the minimum value close to the centre, whereas the minimum of the reversibility
error occurs on a line crossing the islands possibly due to a mechanism similar to the one reported by
Barrio et al. [2009] which analysed spurious errors for variational methods.

The plots obtained for mLCE and the MEGNO (figures 4 and 5 respectively) show no structure within
the resonance islands whereas variations and fluctuations appear in the chaotic regions as for the previous
indicators.

Figure 6 shows the logarithm of the SALI value. Due to the fact that this indicator converges to zero
extremely fast for chaotic orbits, we have used a cut off value at SALI = 10−16. The presence of this cut-off
erases any structure within the strongly chaotic region.

To summarise, all the indicators discriminate regular and chaotic regions but their sensitivity in these
regions is different .

Another aspect to consider when comparing the efficiency of chaos indicators is the computational
cost. Each variational method needs to iterate both the map and the tangent map forward for n steps. The
tangent map is the computationally most expensive since it needs the evaluation of the Jacobian matrix
at every step. When computing SALI, two deviations vectors must be simultaneously computed. We also
use two deviation vectors in evaluating MEGNO, selecting at every step the one that stretches more, in
order to reduce the probability of having a vector almost orthogonal to the most unstable direction. In the
case of the computation of the mLCE we have used the orthogonalization algorithm developed by Benettin
et al. [1980]. On the other hand, we notice that the reversibility error method requires only the iteration
of the map whereas the orbit divergence method requires the iteration of the single and double precision
(or double and higher precision) map. As a consequence, the computationally most economic method is
the one based on the reversibility error which does not require any algorithm except the evaluation of the
map itself. Typically, the relevant information can be extracted from a computation in single precision.
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Fig. 2. ln(R103) displaying the dynamical structure of the phase space of the Standard Map (left) and for torus section
y = 0.3 (right).
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Fig. 3. ln(∆103) displaying the dynamical structure of the phase space of the Standard Map (left) and for torus section
y = 0.3 (right).
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Fig. 4. mLCE(103), displaying the dynamical structure of the phase space of the Standard Map (left) and for torus section
y = 0.3 (right).
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Fig. 5. ln(Ȳ (103)), displaying the dynamical structure of the phase space of the Standard Map (left) and for torus section
y = 0.3 (right).
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Fig. 6. ln(SALI(103)) displaying the dynamical structure of the phase space of the Standard Map (left) and for torus section
y = 0.3 (right).

From now on, within this section, we will focus on some ensemble quantities in order to compare the
effect of round off errors with the effect of random perturbations in the standard map. For the standard
map with λ = 10−4 all the orbits are regular and we follow the evolution of an ensemble of 10001 initial
conditions randomly chosen in (x, y) ∈ [1.5, 1.5+10−3]× [π, π+10−3]. For each iteration we compute the
variance of Rn in action (σy

2) and angle (σx
2) variables (see in Figure 7-left) and compare it against the

same quantities of a double precision orbit stochastically perturbed with a uniform uncorrelated noise of
amplitude 10−7 (shown in Figure 7-right). In the latter case we have found that σy

2 and σx
2 grow according

a power law with exponents one and three respectively up to numerical uncertainties.
It is interesting to compare the two pictures in Figure 7 with each other. For n large we see that the

behaviors of variances due to round off and random perturbations are similar. The presence of a transient
for the reversibility case is very likely due to the initial presence of correlation.

In the fully chaotic regime for the standard map λ ≫ 1 the random perturbation produces very similar
results to the round off error as shown in Figure 8 for λ = 10 since in presence of a chaotic dynamics the
round off error correlations are lost.
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Fig. 7. Evolution of the variance of a distribution of reversibility errors in action (red) and angle (green) variables for the
standard map with λ = 10−4. Left: round off error. Right: stochastic uncorrelated perturbations of amplitude 10−7.
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Fig. 8. Evolution of the variance of a distribution of reversibility errors in action (red) and angle (green) variables for the
standard map with λ = 10. There is evident equivalence between round off error (left) and stochastic uncorrelated perturbations
of amplitude 10−7 (right).

The results for the standard map in the small λ regime can be compared to the variances for the skew
map:

yn+1 = yn mod 1; xn+1 = xn + yn+1 mod 1. (20)

to which the standard map in equation (19) reduces for λ = 0. If the skew map is randomly perturbed:

yn+1 = yn + ǫξn mod 1; xn+1 = xn + yn+1 + ǫχn mod 1, (21)

where ξn and χn are random uncorrelated variables the growth of the variances σ2
y and σ2

x follows a linear
and cubic law respectively [Turchetti et al., 2006]. The random perturbation of a standard map with a
small value of λ (shown in Figure 7-right) shows exactly the same growth.

In the case of the round off error the behavior of the skew map with respect to the standard map with
a small value of λ is quite different. Indeed, the round off error affects the skew map just as the translation
on the 1-D Torus: it was observed that the global error grows linearly and the variance saturates at a very
small value with respect to the size of the torus (see Figure 7 in Turchetti et al. [2010a]). For the standard
map, the coupling between action and angle, even for very small λ, causes a growth of the variance of the
fluctuations due to round off as shown in Figure 7-left. As a consequence the effect of round off in a very
weakly perturbed standard map is similar to a random perturbation.
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6. A 4D Map

In this section we show how either the reversibility error or the divergence of orbits can be used to analyze
the resonance structure of four dimensional non integrable maps. As an example we consider a symplectic
nearly integrable map extensively used in the literature (see Guzzo & Lega [2004]). This map is defined as:

θn+1 = θn + In

φn+1 = φn + Jn

In+1 = In − µ
∂V (θn+1, φn+1)

∂θn+1

Jn+1 = Jn − µ
∂V (θn+1, φn+1)

∂φn+1

; (22)

where V ≡ 1/(cos(θ)+ cos(φ)+2+ c), with c > 0 and µ is the perturbation parameter. We have taken
a grid of 1146 × 1146 initial conditions with actions (I, J) ∈ [0, 3.6] × [0, 3.6] and a fixed pair of angles,
namely (θ, φ) = (0.5, 0.5) and computed Rn, ∆n, mLCE(n), Ȳ (n) and SALI(n) for n = 103. Associating
these values to each initial condition while using a chromatic scale we have performed figures 9, 10 and
11, where the parameter values c = 2 and µ = 0.6 have been used. As we did in the previous section,
in all except for the mLCE we have used the natural logarithm of the absolute value of the concomitant
indicator and again we have used a cut off value at SALI = 10−16. Figure 9 was done taking into account
the Euclidean error in only the action plane. As it happened for the standard map both reversibility error
and orbit divergence present the same order of magnitude. The resonance web appears in every figure and
its structure is the same. From a qualitative viewpoint no substantial differences are found and one might
conclude that the dynamical information extracted from the reversibility error is the same as for the other
four dynamical indicators we have considered. In the case of mLCE, the highest values are located on the
diagonal I = J even if they are not well visible in the plot. This is anyway coherent with the fact that on
the diagonal we find the highest instability.
The frequency map analysis was not presented for comparison because it is computationally heavier.
The error reaches its highest values in small neighbourhoods of single resonance lines, because it detects
the perturbed separatrices of the pendulum models that one could associate with the resonances, and
in relatively large neighbourhoods of the intersections of resonances, where the dynamics are widely non
integrable, as shown by the computation of the interpolating Hamiltonian. These results are certainly not
exhaustive but show that the behavior of the reversibility error is strictly related to the divergence of orbits
and consequently it is very weak in the integrable regions where it does not have a diffusive character as
for a random error.
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Fig. 9. ln(R103) at left and ln(∆103) at right for map (22) using c = 2 and µ = 0.6.
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Fig. 10. mLCE(103) at left and ln(Ȳ (103)) at right for map (22) using c = 2 and µ = 0.6.
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Fig. 11. SALI(103) for map (22) using c = 2 and µ = 0.6.

7. Conclusions

We have examined the orbit divergence and the reversibility error in order to determine the effect of round
off error for invertible maps. The knowledge of the exact map is not required to compute the reversibility
error and the results obtained are about the same with respect to the case in which we compute the orbit
divergence.

By choosing an ensemble of initial data we have examined the statistics of the fluctuations due to
round off with respect to the time average of the error. There are different behaviours according to the
degree of chaoticity that characterises the ensemble. For chaotic orbits the variances have an exponential
growth similar to the one observed for random perturbations and correspondingly the decay of fidelity is
super-exponential in both cases. For regular or quasi-regular orbits differences are observed between the
effects generated by round off errors and random perturbations. For a quasi-integrable map the random
perturbations produce a growth of variances linear and cubic for actions and angles, respectively. On the
other hand, the round off errors produce an initial transient that possibly lasts the time that the round
off errors of the ensemble orbits need to decorrelate. After this initial transient, the behaviour of variances
affected by round off and noise are similar to each other. Finally, for a regular map such as the translation
of the 1D torus, the round off variance, after a linear growth, saturates before the distribution of errors fills
all the torus, unlike in the randomly perturbed case where the growth is always linear until saturation of
the full torus. The fidelity has a power law decay for round off whereas it decays exponentially for random
perturbations. This is a clear signature of the correlation between the errors due to round off.

To conclude, the reversibility error provides basically the same information as the divergence of orbits
and it is easily accessible from a computational view point. This is due to the facts that it does not require
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the solution of the variational equations and that both the forward and backward orbits can be computed
using single precision. When the initial point is varied and the number of iterations is kept fixed the
reversibility error due to round off provides an insight on the dynamical structure of the map. For the
standard map the reversibility error provides a picture of the dynamical behavior of the map where not
only large scale features but also small scale details can be detected. In the case of a 4D symplectic map
the reversibility error in action space provides a similar picture where the resonance web and the nearby
regions of weakly chaotic motions can be easily highlighted.

Even if no really new information with respect to the standard indicators is provided by the reversibility
error, we point out that this type of analysis takes into account not only the dynamics of the map but
also the unavoidable effect of finite accuracy due to round off. Moreover, by increasing the accuracy of
numerical computations, the time on which the reversibility test is computed can be increased and finer
details on the phase space structure can be detected.
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