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ABSTRACT: The bulk carrier mobility in graphene was
shown to be enhanced in graphene—boron nitride hetero-
structures. However, nanopatterning graphene can add extra
damage and drastically degrade the intrinsic properties by edge
disorder. Here we show that graphene embedded into a
heterostructure with hexagonal boron nitride (hBN) on both
sides is protected during a nanopatterning step. In this way, we
can prepare graphene-based antidot lattices where the high
mobility is preserved. We report magnetotransport experi-
ments in those antidot lattices with lattice periods down to 50
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nm. We observe pronounced commensurability features stemming from ballistic orbits around one or several antidots. Due to the
short lattice period in our samples, we can also explore the boundary between the classical and the quantum transport regime, as
the Fermi wavelength of the electrons approaches the smallest length scale of the artificial potential.
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G raphene samples can have a very high carrier mobility if
influences from the substrate and the environment are
minimized. Placing graphene on hexagonal boron nitride
(hBN)"* was shown to improve the carrier mobility,” allowing
the observation of ballistic transport” or the fractional
quantum Hall effect in bulk graphene.’ Recently, a dry stacking
technique was introduced, which allows complete encapsulation
of graphene into layers of hBN and excludes any contamination
from process chemicals such as electron beam resist.”
Nanopatterning graphene can add extra damage and drastically
reduce sample mobility by edge disorder.” " Preparing etched
graphene nanostructures on top of an hBN substrate instead of
SiO, is no remedy, as transport characteristics are still
dominated by edge roughness.” While chemically prepared
graphene nanostructures = ' are a potential route for certain
applications, the high flexibility of a top-down patterning
approach is extremely desirable.

Here we show that etching fully encapsulated graphene on
the nanoscale is more gentle and the high mobility can be
preserved. To this end, we prepared antidot lattices™ in
graphene, where we observe magnetotransport features
stemming from ballistic transport. We performed experiments
on graphene antidot lattices'®'” etched into hBN/graphene/
hBN heterostructures with lattice periods going down to a = 50
nm. Due to the short lattice period in our samples, we can also
explore the boundary between the classical and the quantum
transport regime.

Antidot lattices show a beautiful realization of classical
transport in mesoscopic systems. Furthermore, graphene
antidot lattices can help circumventing the problem of the
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missing band gap in transistor applications'®'” and were even
predicted to serve as the technological basis for spin qubits.”* In
contrast to previous work on graphene on SiC,"” we can
determine and control the carrier density n, on samples with
different lattice periods. Thus, we can ensure unambiguously
that magnetotransport on our samples shows commensurability
features stemming from ballistic orbits around one or several
antidots. This allows us to prove that the high carrier mobility is
preserved in the nanopatterning step even though the zero field
resistance is dominated by scattering on the artificial nano-
pattern, giving an apparent reduction of the mobility. The small
feature size of our samples also allows us to approach the region
where the classical picture of cyclotron orbits no longer applies.
This classical to quantum crossover is governed by the ratio
between the Fermi wavelength Az of the carriers and the
dimensions of the nanopattern.

To obtain embedded graphene samples, hBN/graphene/
hBN stacks were prepared using the dry stacking technique,
patterned into Hall bar shape, and contacted using Cr/Au.” In
hBN/graphene/hBN samples prepared by this method, we
routinely obtained carrier mobilities in excess of £ = 100 000
cm?/(V s), showing all integer quantum Hall states starting
from a few Tesla. In one sample without antidots and a
mobility of u = 300 000 cm?/(V s), we also observed the
fractional quantum Hall effect at T = 1.4 K. This shows that our
fabrication procedure is mature and consistently yields high
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sample qualities. The samples presented in this study did not
show any signs of a moiré superlattice.”*” Afterward, an
antidot lattice was patterned. (For more details, see the
Supporting Information.**)

Figure 1 shows an optical micrograph of a finished sample
and a scanning electron micrograph of a sample after
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Figure 1. (a) Optical micrograph of a finished graphene Hall bar
etched out of an hBN/graphene/hBN heterostructure and contacted
with Cr/Au leads. Scale bar length S ym. (b) False-color scanning
electron micrograph of a sample with lattice period a = 100 nm. Here,
the heterostructure is shaded in green, the Cr/Au contacts yellow, and
the Si/SiO, substrate violet. Scale bar length S00 nm. (c) Sketch of the
antidot lattice in an hBN/graphene/hBN heterostructure. The antidot
lattice period a ranges from S0 to 250 nm, and the antidot diameter d
is about 25—30 nm. (d) The most prominent cyclotron orbits fitting
into the lattice, giving rise to magnetoresistance peaks.

measuring. A sketch of the antidot lattice, etched into the
stack is also shown. The antidot lattice period a was varied
between 50 and 250 nm. The antidot diameter d was
lithographically defined to be about 40 nm, but due to the
conical etching profile, the actual diameter in the graphene
plane is smaller. Using SEM inspection, we estimate it to be
about 25—30 nm.

In Figure 2, we show data for a sample with a lattice period of
a = 200 nm. From the gate response of the conductivity at a
magnetic field B = 0, shown in Figure 2a, we calculate an
apparent field effect mobility of y = 35000 cm?/(V s). At a
carrier density ng = 2.3X 10'> cm™ this corresponds to an
apparent mean free path of about I, = (72/ e)(7ng)*u = 620
nm. We estimate the intrinsic mean free path to be about 1400
nm.>»** Magnetotransport traces of this device (see Figure 2b)
show pronounced peaks at field values where the cyclotron
diameter 2R = (#1/eB)(nng)"/? is commensurate to the square
antidot lattice. The peak belonging to 2R = g, the fundamental
antidot peak, is most prominent. Additional peaks appearing at
lower fields correspond to orbits encircling 2 and 4 antidots'®
(see Figure 1d), confirming a mean free path which spans
several lattice periods. While in a simple picture only the
unperturbed orbits encircling the antidots are responsible for
the magnetotransport features, a more detailed analysis based
on the Kubo formula shows that velocity correlations in the
chaotic trajectories, which occupy the largest Eart of the phase
space, result in the magnetoresistance peaks.”””® Most of the
orbits therefore hit the antidot edges several times within a
mean free path. Hence, the visibility of the antidot peaks not
only proves a high bulk mobility but also shows that scattering
at the edges does not cut off the trajectories, and we can
conclude that the high carrier mobility also survives after
nanopatterning.
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At higher fields, the cyclotron diameter 2R is reduced below
the neck width a—d in between the antidots. We can observe
Shubnikov—de Haas oscillations, eventually resulting in a well-
defined quantum Hall effect. At B = 14 T we clearly observe the
v = 1 plateau, which again shows the high sample quality
(Figure 2c). We evaluated the carrier density dependence of the
magnetoresistance peaks corresponding to orbits around 1, 2,
and 4 antidots (Figure 2d) and found that the peaks were
always well-described by a square root dependence of the
cyclotron diameter on the carrier density down to ng = 3.2 X
10" cm™. Quantitatively, we confirmed the formula for the
cyclotron diameter for graphene given above, which contains
spin and valley degeneracy.

Figure 3a shows the magnetoresistance of a sample with a =
100 nm at ng = 2.8 X 10'* cm™. The apparent Hall mobility at
this density is about y = 8000 cm?®/(V s). Again, scattering at
the antidot potential limits the apparent mobility,”* but the
intrinsic mobility is higher as we clearly observe magneto-
resistance peaks for n = 1, 2, 4 antidots, and a fourth peak at
lower fields is weakly visible. Also, the v = 1 quantum Hall state
is visible in this sample, again indicating a higher intrinsic
mobility.”” Ishizaka and Ando studied how the visibility of the
higher order antidot peaks depends on the mobility.”® From
their data, we estimate that the intrinsic mean free path must be
at least 400 nm, well in excess of the apparent mean free path of
160 nm.”?

The good visibility of the n = 2 peak confirms the small
aspect ratio d/a < 0.3,”° in agreement with our SEM analysis
and also with the onset of the well-defined Shubnikov—de Haas
oscillations in our magnetotransport data. All these approaches
give an antidot diameter of d = 25—30 nm.

In experiments in GaAs based antidot lattices, it was found
that, due to depletion at the antidot boundaries, the potential
can be very soft and small lattice periods are hard to realize. In
our case the data compares well to hard-wall potential lattices in
GaAs, which could be realized in GaAs only at much larger
lattice periods.”” We also compared data for similar carrier
densities in the electron and hole regime in Figure 3b and
found the graphs to be virtually identical. This proves that there
is no edge doping at the antidot boundaries, which would have
led to different potential shapes in the electron and hole regime
due to Fermi level pinning at the edges.

Now let us discuss the transition between the quantum and
the classical transport regime. In GaAs-based heterostructures,
the smallest lattice period realized so far was a = 80 nm and
required critical tuning of the etch depth.” In contrast, due to
the lack of a depletion region in graphene the fabrication of
samples with a very small lattice period is less critical, and the
carrier density is widely tunable. Also, due to valley degeneracy,
the Fermi wavelength in graphene, A = 2(7r/ng)"/* is a factor of
2'? larger than in GaAs based 2DEGs at the same carrier
density. Thus, we can explore the transition from the
semiclassical to the quantum regime,”" where a description in
terms of classical orbits is no longer justified. In the samples
with 4 < 100 nm we are able to study this transition. Figure 4a
shows the disappearance of the main antidot peak in a sample
with a = 75 nm as the carrier density is lowered, making Ay
longer. We find that this peak is only visible at densities above
ng = 4.3 X 10" cm™?, corresponding to Az = 54 nm. Also, in two
samples with a = 100 nm, we observe that the main antidot
peak becomes visible for densities larger than ng = 2.2 x 10"
cm ™2, which corresponds to A = 75 nm. In a sample with a =
50 nm, we observed a weak antidot peak only at ng = 2.5 10"
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Figure 2. (a) Gate dependence of the sheet conductivity of a sample with a = 200 nm. The linear fit gives an apparent mobility of y = 35 000 cm?/
(V's). (b) Magnetoresistance and Hall resistance. The arrows correspond to the expected magnetic field positions of the orbits sketched in Figure 1d.

The fine structure in R, is not noise, but phase-coherent oscillations
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that disappear at higher temperatures. (c) Gate dependence of R, and R,,

at B = 14 T, showing a clear v = 1 quantum Hall plateau. This feature is only observed in high-mobility graphene devices. (d) The magnetic field
positions of the three antidot peaks scale with the square root of the carrier density, confirming the classical nature of those peaks.
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Figure 3. (a) Magnetoresistance and Hall resistance data taken on a sample with a = 100 nm. The three well-defined antidot peaks correspond to
orbits around 1, 2, and 4 antidots. (b) R,, taken at similar electron and hole density. Here, T = 80 K to show the classical features more clearly. There
is virtually no difference between those graphs, proving that the potential profile is the same for electrons and holes.

ecm™?(4¢ = 22 nm). To be in the classical limit of a quantum
system, the Fermi wavelength must satisfy a condition Az/27 <
13> where I is a typical dimension of the system. In our case, the
neck width a—d of the constriction between the antidots is the
shortest length scale in the problem, and we find that when Ag
~ a—d the classical regime sets in and the antidot peak becomes

visible.
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The fact that the antidot peaks disappear at low densities
cannot be attributed to a relative increase of disorder such as
deviation of the position and diameter of the antidots in our
system, since we see well-defined features without any deviation
at higher densities. The suppression of the commensurability
peaks can be either due to a limited mean free path or the
breakdown of the classical picture. In Figure 2d (lattice period a
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Figure 4. (a) R,, data of a sample with a = 75 nm taken at very low densities, at the transition into the regime of classical transport. The densities ng
are given in units of 10" cm™2, shown next to the corresponding graphs. The expected position of the main antidot peak is marked with a triangle for
each density. A higher order antidot peak is also visible at lower magnetic fields. As the carrier density is lowered, the antidot peaks disappear. Inset:
Sketch of the Fermi wavelength corresponding to the ng = 4.3 X 10" cm™. (b) Weak localization (WL) peak in the sample with a = 100 nm, taken
at ng = 1.3 X 10" cm™2 The antidot peak is not visible at this low density, the big peaks at B = + 1.4 T are a Shubnikov—de Haas oscillation. (c)
Phase coherence length taken from the weak localization fits of a sample with a = 100 nm at various low densities and T = 1.4 K. The phase
coherence length exceeds the lattice period, showing that the etched boundaries do not lead to severe phase-breaking.

=200 nm), all the antidot peaks disappear at roughly the same
magnetic field, B~ 0.5 T (where B exceeds some constant),
but different carrier density. This behavior is clearly governed
by a limited mean free path. In contrast, in the sample of Figure
4a (a = 100 nm), we find that the classical features at both B ~
1 T and B = 2.5 T disappear at the same carrier densities,
making a Ag-driven scenario more realistic.

Finally, at low densities, we can observe a weak localization
(WL) feature at low temperatures: a peak in the magneto-
resistance at B = 0 (see Figure 4b). Using a standard analysis
for WL in graphene™ that we employed in earlier work on
graphene antidot lattices on SiO,,'® we extracted the phase
coherence length L. For the sample with a = 100 nm (same as
in Figure 3a), we found it to be between 120 and 300 nm (see
Figure 4c). It clearly exceeds the lattice period, unlike in
graphene antidot samples on SiO, where L, was significantly
below a.'® We therefore again conclude that nanopatterning of
embedded graphene leads to greatly reduced scattering at the
sample edges.

In summary, we prepared antidot lattices in stacks of hBN/
graphene/hBN and observed well-developed commensurability
features in samples with lattice periods from a = 50 nm to a =
250 nm. This shows that the etching procedure preserves the
high sample quality. In the short-period graphene samples, we
could observe the disappearance of classical features when the
Fermi wavelength Ap exceeds a—d, marking a classical to
quantum transition. Our experiments therefore pave the way
for well-controlled graphene based nanodevices. For example,
in triangular antidot lattices®* in graphene, Hofstadter
butterflies and magnetic band gap closing were predicted,”
which are now experimentally within reach.
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Fabrication details, determination of the intrinsic mean
free path, antidot diameter, additional data, and the
validity of the classical picture (PDF)
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