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Summary/Abstract 

Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions 

between a short linear region in one protein and a globular domain in another. SLiMs usually occur in 

structurally disordered regions and mediate low affinity interactions. Most SLiMs are 3-15 amino 

acids in length and have 2-5 defined positions, making them highly likely to occur by chance and 

extremely difficult to identify. Nevertheless, our knowledge of SLiMs and capacity to predict them 

from protein sequence data using computational methods has advanced dramatically over the past 

decade. By considering the biological, structural and evolutionary context of SLiM occurrences, it is 

possible to differentiate functional instances from chance matches in many cases and to identify new 

regions of proteins that have the features consistent with a SLiM-mediated interaction. Their 

simplicity also makes SLiMs evolutionarily labile and prone to independent origins on different 

sequence backgrounds through convergent evolution, which can be exploited for predicting novel 

SLiMs in proteins that share a function or interaction partner.  

In this review, we explore our current knowledge of SLiMs and how it can be applied to the task of 

predicting them computationally from protein sequences. Rather than focusing on specific SLiM 

prediction tools, we provide an overview of the methods available and concentrate on principles that 

should continue to be paramount even in the light of future developments. We consider the relative 

merits of using regular expressions or profiles for SLiM discovery and discuss the main 

considerations for both predicting new instances of known SLiMs, and de novo prediction of novel 

SLiMs. In particular, we highlight the importance of correctly modelling evolutionary relationships 

and the probability of false positive predictions. 
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1 Introduction 

Short Linear Motifs (SLiMs) are a set of protein sequence features with specific attributes that the 

name suggests (1): 

1. Short. SLiMs are typically 3-15 amino acids in length, often with fewer than six (and as few as 

two) residues that are key to the function. 

2. Linear. SLiMs are found in linear stretches of protein, typically in intrinsically disordered regions 

(IDR), and their (unbound) three-dimensional structure is not considered crucial for their activity. 

3. Motif. SLiMs contain specific residues that are important for function and, as such, are amenable to 

sequence analysis tools and representations. 

The functional relevance of short linear peptides has been recognised for decades (e.g. (2, 3)) but it 

was only in the early 21st century that SLiMs were recognised as a discrete class of element worthy of 

study in its own right (4, 5). SLiMs are now recognised to be one of the key components in the cell’s 

repertoire of protein-protein interactions (PPI), mediating a specific type (6) that we will refer to here 

as a domain-motif interaction (DMI). Although it is hard to make a good estimate, it has been 

suggested that something in the order of 15-40% of the PPI in a cell may be DMI (7) – a number 

which is likely to be enriched in signalling networks (8). In the ten years that the Eukaryotic Linear 

Motif (ELM) database has been collecting and curating SLiMs, the number of distinct classes has 

increased from approx. 80 in 2003 (5) to approx. 200 in 2013 (9) and is set to continue to rise. The 

latest release of Minimotif Miner (MnM) includes 880 consensus SLiMs (10), although this number is 

somewhat inflated by the way that length variability and redundancy is handled in the database. This 

suggests that even though progress in the field has led to the accumulation of much data on SLiMs, 

there is still much room for discovery of new instances of known and novel motifs.  
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SLiMs are involved in an incredibly diverse range of biological processes, including cell signalling, 

post-translational modification, subcellular localisation, gene expression, membrane binding, protein 

folding and cell adhesion (1, 8, 9, 11-14). SLiMs usually bind with low affinity (8), making them 

ideal components to establish quick or transient responses. However, many motifs (of the same or 

different type) can co-occur, acting synergistically to give higher binding affinities (6, 8). SLiMs also 

play an important role in disease; not only are they involved in core biological processes that can 

affect health if they go wrong but the evolutionary plasticity of SLiMs makes them ideal targets for 

exploitation by viruses via convergent evolution (15, 16). 

Methods for SLiM prediction are under constant refinement and development and so this review is 

neither intended as an explicit “how to” guide to SLiM discovery nor an exhaustive list of methods 

and tools. Instead, we will give an overview of the considerations that need to be made during such 

analyses, with examples from the literature, and some thoughts on future developments. This review 

will highlight a selection of tools that illustrate key aspects of computational SLiM discovery. A 

particular focus will be given to the tools of the SLiMSuite package, which is specifically geared to 

the analysis of SLiMs, including some tools that have not previously been published (Table 1). 

Additional SLiM prediction tools can be found in reviews by Diella et al. (8) and Davey et al. (11). 

1.1 SLiM Terminology 

The terminology related to SLiM analyses can be confusing because it uses a number of different 

terms from both biology and computing, some of which have developed their own SLiM-specific 

meanings. The main terms used in this chapter are therefore listed in the glossary (Table 2; see also 

(8)). We have made every effort to be consistent within the chapter but readers should be aware that 

some of the terms used can have alternative meanings in related disciplines. The term “motif” is 

particularly widespread and has a number of discipline-specific meanings. Within this review, “motif” 

refers to a short sequence motif unless otherwise specified. 
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1.2 SLiM Notation 

A standard notation has been suggested to denote SLiMs in the written literature; see (4). This is not 

universally applied and variation in notation can be found among publications, even when they 

describe the same motif (11). Instead, there are two main classes of motif representation that are 

commonly used for computational analysis of SLiMs: regular expressions and sequence profiles, 

referred to in later sections simply as “regex” and “profile”, respectively. The former are simple 

human- and machine-readable qualitative representations of which amino acids are tolerated at which 

positions in the SLiM. The latter, which for the purposes of this review includes position (specific) 

scoring/weight matrices (PSSM/PSWM/PWM) and hidden Markov models (HMM), expand on the 

simplicity of regular expressions by adding a quantitative dimension.  

1.2.1 Regex Representations of SLiMs 

The main elements of regular expressions are provided in Table 3. Evidence for SLiMs and the 

contribution of individual residues to their function comes from a variety of sources but is essentially 

either positive (specific residues are critical for function) or negative (presence of specific residues 

ablates function). At the two extremes, presence of a single specific amino acid side chain can be 

necessary for function or sufficient to block binding. Where a SLiM forms a helical structure upon 

binding, for example, the presence of a proline may disrupt this. In between these extremes, a number 

of different amino acids may be tolerated at a given position and still give rise to a functional SLiM 

instance. Such positions are referred to as “degenerate” or “ambiguous” and will consist of sets of 

amino acids with certain common properties, such as positive charge. Fully degenerate positions that 

can tolerate any amino acid are referred to as “wildcards” and typically represented with the symbols 

‘.’ or ‘X’. Sometimes these can also be referred to as “gaps” in a motif, which can be confusing to the 

unwary and have nothing to do with gaps (insertion/deletion events) in sequence alignments. When 

regular expressions are derived from sequence alignments, indels in the latter are generally 

represented by flexible-length wildcards (Table 3).  
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Regular expressions are purely qualitative, which makes them easy to model and amenable to fairly 

simple but effective statistics (17). Another advantage of regular expressions is that they already form 

part of numerous programming and scripting languages and can therefore be used for simple 

computational SLiM discovery with minimal overheads. It should be noted that the PROSITE (18) 

and MnM (10) SLiM repositories have their own variants of regex notation (Table 3), which may 

need converting to standard regex patterns prior to analysis with other tools or servers. SLiMSuite 

tools can make this conversion if required. Some tools have expanded the standard regex patterns, as 

discussed below.  

1.2.2 Profile Representations of SLiMs 

Most profile-based methods represent SLiM-like sequence signatures as matrices that are derived 

from input data containing a set of sequences assumed to carry the motif of choice. These can be user-

specified after careful inspection of interesting data or extracted from larger datasets using 

computational methods. Profiles are typically derived from a frequency table of 20xN fields (with N 

being the length of the motif), which is computed from the site-specific amino acid counts and 

normalised by the number of input sequences and inherent biases in amino acid composition. The 

latter is usually taken from an empirical background distribution or collected from randomised 

sequences. Building a profile from a restricted set of known sequences can omit valid occurrences of 

amino acids at positions where they were not observed. To avoid this it is customary to use 

‘pseudocount’ observations, which are added into the frequency table even though they were not 

actually observed. Since the contribution of pseudocounts is small and continues to diminish as more 

observed data is added, they will have little relevance to the final profile but are crucial 

mathematically to avoid the issues of null values in log-odds profile representations. The resulting 

profile should be an over-represented sequence signature as observed in the data, from which a 

putative motif could be extracted (19). Such a profile can be considered as a special, limited case of 

the profile hidden Markov model (pHMM) (20, 21). The added versatility of pHMM comes from their 

capacity to not only assign different frequencies to residues but also to allow for insertions and 

deletions of variable length between sites.  
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On face value, a profile is superior to a regular expression in many ways because the frequency data 

allows quantitative scoring of a motif instance. Whereas a regular expression might have [ILV] for a 

position, a profile could encode the information that 90% of instances have an isoleucine (I) and only 

a minority have leucine (L) or valine (V) and weight observations accordingly. The drawback is the 

requirement for sufficient data to make the profile accurate. SLiM instances are generally few in 

number and so there is a big danger of over-fitting the profile model, especially given that there are 20 

possible states for each position in the motif. Rather than modelling the true constraints of the motif, 

profiles could simply be representing any early bias in discoveries. For this reason, profiles tend to be 

popular for DNA motifs (where the number of instances is often high and there are few possible states 

per position) but are of much more limited use for SLiMs and other alignment-free protein motifs. 

Exceptions are post-translational modifications (PTM), such as phosphorylation, which often have 

many occurrences and recognition motifs based on large screenings of peptide libraries (well-

exploited in methods such as Scansite (22)). Where sufficient data exists, profiles can be very 

powerful because of their ability to quantitatively assess deviations for core SLiM consensus 

definitions. This can help when identifying previously unseen variants of known motifs and could 

prove essential to effectively mine large data in the search for novel SLiM instances.  

1.2.3 Limitations with Current Motif Definition Schema 

The common SLiM formats do have some limitations in the nature of information that they can 

encode. There is currently no good way to represent interdependencies between sites, for example, 

where the constraints on one position are determined by the amino acid at another. For profiles, 

context-sensitive HMM (23) may help to model non-contiguous relationships but are yet to be widely 

applied in bioinformatics. For regex motifs, some effort has been made in this direction with the 3of5 

webserver (24), which recognises “n of m” stretches where n residues in a window of length m are of 

a given type. This was extended further by PRESTO (Table 1) and its successor in the SLiMSuite 

package, SLiMProb (formerly SLiMSearch 1.x (25)), to allow more complex either/or stretches in the 

form “<r:n:m:b>”, where r and b can be any single or ambiguous regex elements (Table 3) of which n 

residues in a window of m positions must match r and the remainder must match b. If b is a wildcard 
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then a simpler “<r:n:m>” notation can be used, which corresponds to the original “n of m” pattern 

element. This notation allows very efficient encoding of complex regex patterns, although these are 

actually exploded by SLiMProb into different sub-variants for searching. For more complex 

scenarios, multiple versions of a motif are defined, such as the Class I and Class II SH3 domain 

motifs in ELM, [RKY]xxPxxP and PxxPx[KR], respectively (9). Current SLiM definitions also do not 

encode the secondary/tertiary structural constraints (26), even if some of the SLiM databases do store 

and utilise such information for specific motif entries, as described in later sections.  

1.3 SLiM Evolution 

There are two key principles underlying the evolution of SLiMs in protein sequences: conservation of 

individual SLiM occurrences (divergent evolution) and independent evolution of SLiM occurrences in 

unrelated proteins (convergent evolution)(1). The functional constraints of SLiMs mean that they are 

subject to purifying selection and will generally show a higher level of conservation than the 

surrounding residues in disordered regions (27). The evolutionary plasticity of SLiMs is generally 

higher than residues that are both functionally and structurally constrained, with single point 

mutations often sufficient to destroy a motif occurrence or even create a functional SLiM from 

previously inactive protein sequence. Such plasticity may be harnessed by positive selection to rapidly 

rewire PPI networks, particularly considering that the low affinity nature of SLiM-mediated DMI 

probably confer an extra tolerance of SLiM gains and losses in the network (12). 

There is no one-size-fits-all solution to SLiM discovery and one must carefully consider the nature of 

the data before selecting the evolutionary models that should be applied. Where occurrences are likely 

to be functionally relevant and there is reason to suspect that this function would be found in 

ancestors, e.g. it encodes a function seen across all mammals/vertebrates, it makes sense to look for 

signals of evolutionary conservation on a background of divergence. If, on the other hand, a SLiM 

occurrence is speculated to be new (in evolutionary terms) or even non-physiological (obtained from 

experiments such as peptide library screens or yeast two-hybrid data) then evolutionary conservation 

will be misleading at best and counter-productive at worst. The nature and distribution of the SLiM 

occurrences must be considered before invoking a model of convergent evolution. Phage display is 
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essentially convergent evolution in the laboratory, whilst random peptides libraries have the sequence 

independence of convergence even if there has been no evolution per se. If, on the other hand, all 

known occurrences of a SLiM come from the same protein family then conserved function is the most 

parsimonious explanation and it makes little sense to model convergence. The exception, of course, is 

where additional evidence points to multiple independent origins of SLiM function.  

1.4 SLiMs and Protein Structure 

The majority of SLiMs occur in intrinsically disordered regions (IDR) of proteins, at least in their 

unbound state (1). The reduced structural constraints of IDR result in reduced evolutionary constraints 

and mean that they are generally free to evolve at a faster rate at the sequence level (28), even if they 

generally conserve their ordered/disordered protein segments (29). This, in turn, contributes to the 

previously mentioned evolutionary plasticity of SLiMs, in addition to conferring a degree of structural 

flexibility on SLiMs that includes potential disorder-to-order transitions linked to protein binding 

(30). Indeed, certain SLiMs are known to undergo conformational rearrangements of this type (8, 31), 

although this is unlikely to be the case for all SLiMs. Following molecular dynamics simulation, Cino 

et al. have recently proposed that SLiMs tend to adopt conformations typical of their bound state even 

in the free state (32). Under this model, ‘pre-equilibrium’ structured SLiM conformations are 

stabilised later by the interaction, as opposed to an ‘induced fit’ model where binding itself triggers 

the conformational change. Either way, whilst flanking regions of SLiMs tend to match the 

composition of IDR (30), the key positions in SLiMs themselves are enriched for hydrophobic and 

aromatic amino acids more typical of structured regions (1). Indeed, many SLiMs can be thought of as 

regions of disorder with a propensity towards order (30). This flanking disorder may itself be under 

positive selection to confer protection against peptide aggregation around SLiMs (33). How much of 

the enrichment of SLiMs in IDR versus globular regions is due to structural constraints for SLiM-

mediated binding, and how much is simply due to the increased evolutionary plasticity of IDR 

increasing the chance of SLiMs evolving convergently, is yet to be established. 

SLiMs include PTM sites, some of which occur on the (structured) surface of globular domains. 

There are also extracellular SLiMs, which occur in proteins with less intrinsic disorder than 
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intracellular proteins (1). As a result, approx. 15% of all known SLiM instances are actually on 

globular domains. These regions can present extra challenges for SLiM discovery, as they will also 

contain a number of structural motifs that are constrained in three-dimensional space. Whilst not 

necessarily linear, many structural motifs will include linear stretches that could be erroneously 

identified by SLiM predictors. Methods for predicting structural motifs directly do exist (e.g. 

SiteBinder (34)) but these will not be considered in this review. 

1.4.1 Protein Isoforms and SLiMs 

SLiMs are undoubtedly responsible for some of the functional diversity imparted on protein 

sequences via alternative splicing/promoter use (35-37). Alternative translation initiation sites can 

also give rise to different protein products (38, 39) and are likely to similarly alter the SLiM 

complement of proteins, particularly in terms of N-terminal subcellular targeting motifs. To date, 

however, most resources for both PPI and SLiM prediction deal predominantly with “canonical” 

protein sequences and thus protein isoforms will not be further considered in this review. All of the 

approaches described can potentially be applied to protein isoforms and this flexibility represents one 

of the benefits of tools that permit analysis of bespoke protein sequences rather than relying on, for 

example, Uniprot (40) data. It should also be noted that methods such as SLiMFinder (41) that correct 

for evolutionary relationships within input sequences should also be able to deal with multiple 

isoforms for each protein, although this has not been formally tested. Note also that GOPHER (42), 

which is supplied with SLiMSuite, can be used to generate alignments of orthologous splice variants 

from appropriate source data, such as Ensembl proteomes (43). 

1.4.2 SLiMs, MoREs and MoRFs 

SLiMs are not the only binding features present in IDR. Regions within IDR that mediate PPI via a 

disorder-to-order transition upon binding have also been labelled Molecular Recognition Elements 

(MoREs) (44)(if reasonably short and helical) or Molecular Recognition Features (MoRFs)(45, 46). 

There is not a clear delineation between the concepts of SLiMs and MoREs/MoRFs. Some classes of 

SLiMs probably represent a subset of MoRFs that are short and have specific residues involved in the 
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interaction. Other SLiMs are too short to count as MoRFs (defined as 10-70aa in length) and/or do not 

undergo the stipulated structural transition. SLiMs and MoRFs are therefore best considered as 

complementary and overlapping sets of molecular features. IDR-mediated PPI may include either, 

both or indeed neither element (6). 

1.5 Definition and Databases of Known SLiMs 

This review is predominantly concerned with the task of predicting SLiMs from one or more protein 

sequences. Before examining the primary methods for doing so, it is useful to briefly consider where 

our current SLiM definitions come from as well as the key databases for storing them. SLiMs are 

notoriously difficult to define and one must always entertain the notion that definitions found in SLiM 

databases are incomplete and/or biased by the nature of their discovery. Most known SLiMs were 

experimentally discovered, although precisely defining the motif often involves bioinformatics, such 

as a sequence alignment, and manual decisions regarding what comprises the important and/or 

conserved residues. Often, motifs are simplified to a "canonical" core but also have "non-canonical" 

instances that deviate from the main definition. This can create some confusion for SLiM rediscovery 

as it is not always clear what definition(s) of a motif to use. SLiMs are affected by their immediate 

context, with flanking residues that do not seem to increase affinity directly but are crucial to the 

specificity of binding (47). It is therefore highly likely that the flanking sequence could add binding 

constraints that would render certain residues superfluous. SLiM predictions do not normally tolerate 

mismatches because the SLiMs themselves already have very low information content and a high 

probability of occurring by chance. In situations where non-canonical occurrences are common search 

tools that incorporate mismatches (e.g. PRESTO) might be required. 

When considering the experimental evidence for SLiMs, the nature of the protein-peptide interaction 

and whether it provides biophysical or biological support is important. In other words, is the 

experiment providing evidence of what could bind or what does bind? High-throughput experiments, 

including screening peptide libraries and similar technologies such as phage display can potentially 

define binding motifs without any known PPI. This approach can have advantages, in that it can 

potentially define motifs for “singleton” interactions (e.g. those with only a single occurrence in 
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nature) and can also generate the high numbers of sequence variants required for building profiles, as 

exemplified for PDZ and SH3 domains (48) and for PTM by Scansite (22). The high number of 

variants is also good for identifying amino acids that are not tolerated in particular positions, which 

otherwise tends to require careful mutation studies. It should be remembered, however, that such 

SLiMs are not always physiological: peptide-based techniques will be biased towards sequences that 

have the strongest affinity, whilst SLiMs in nature often have a lower affinity than possible in order to 

maintain the correct signalling dynamics (1, 8, 15). This lack of physiological relevance is not 

necessarily an issue and permits the exploitation of data that might otherwise be ignored. For 

example, Liu et al. have found evidence from yeast two-hybrid experiments that out-of-frame 

constructs, which code for short peptides without homology to known proteins and are typically 

discarded as false positives, may contain novel SLiMs that can be identified computationally (49). 

There are now a number of public repositories that are largely or wholly dedicated to collating and 

curating SLiMs from the literature. These are an excellent source of known motifs and motif 

instances, which can be used either to interrogate a protein of interest or to assess a potentially new 

SLiM discovery. An overview of the four main SLiM databases is given below. In addition, a number 

of targeted motif databases exist for specific classes of SLiM, particularly PTM (50, 51). 

1.5.1 PROSITE 

PROSITE was one of the earliest collections of linear motif definitions for both SLiMs and longer 

globular domains (18) although it has largely been superseded by ELM (9) and MnM (10) as a 

repository for SLiMs. PROSITE motif notation is similar to standard regular expression notation but 

has some important differences (Table 3). Its regex domain definitions provide a potential source for 

identifying putative SLiMs that are actually structural motifs or parts of larger regions of homology. 

For domain searches themselves, it is more usual to use the sequence profiles in PROSITE (52, 53) or 

HMMs (e.g. SMART (54) and Pfam (55)).  
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1.5.2 ELM 

The Eukaryotic Linear Motif (ELM) database is now over 10 years old (9) and the number of 

annotated ELMs (as of Jan 2014) has increased to nearly 200 classes and over 2400 instances in six 

categories (as denoted by their prefix): 

• CLV: Proteolytic cleavage. Sites of post-translational enzymatic cleavage. 

• DOC: Docking. These recruit a modifying enzyme but are not targeted by the active site. 

• DEG: Degron. Part of the proteosomal degradation pathway, directing protein 

polyubiquitination. 

• LIG: General ligand binding. Mediating PPI is the primary/sole known function. 

• MOD: Post-translational modification sites, e.g. phosphorylation. (Note that proteolytic 

cleavage has its own CLV classes.) 

• TRG: Sub-cellular targeting. Recognised by machinery that directs the parent protein to 

appropriate cellular localization.  

Note that the DOC and DEG categories are recent additions and many studies will have these motifs 

classed as LIG under the previous classification. The remaining LIG category can best be thought of 

as SLiMs for which the main, or possibly only, known function is to mediate a PPI. Arguably, all 

ELMs are protein ligands but it can be useful to consider distinct subsets in case they have different 

biases in attributes and behaviour. Indeed, a recent review using the older four-category classification 

highlighted some differences between ligands, modifications and targeting sites (1). Future releases 

may extend this classification further. 

In addition to the database, ELM hosts a motif search server that includes built-in filters based on 

evolutionary conservation (56) and structural considerations (57), which are explored in more detail in 

later sections. Other resources at ELM include the iELM server for exploring SLiM interactions (58), 

the Phospho.ELM database of experimentally verified phosphorylation sites (59), the switches.ELM 

“compendium of conditional regulatory interaction interfaces” (13, 60) and a curated set of eukaryotic 

SLiMs that are the target of molecular mimicry by viral proteins (15). The ELM conservation scorer 
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is also available at the site to run on user-supplied proteins or alignments. Although MnM has more 

instances than ELM (even with the 43,000 Phospho.ELM sites), the quality of the curation and 

availability of the data make ELM the leading SLiM repository. 

1.5.3 Minimotif Miner (MnM) 

Minimotif Miner (MnM) probably has the largest collection of known SLiMs from the literature, with 

over 295,000 instances and 880 consensus sequences in MnM 3.0, of which the vast majority are 

PTM (10). Some of these are redundant, and so the real number is likely to be somewhat smaller. 

Figure 3 of the MnM 3.0 paper, for example, lists both Rx[KR]R and Rx[RK]R as furin proteolysis 

motifs. MnM is enriched in mammalian motifs but not restricted to eukaryotes by design, with some 

entries found in bacteria. As with ELM, these are available for searching against an input sequence 

using an online search tool (see next section). Unfortunately, unlike ELM, MnM have not made their 

SLiM collection available to download and interrogate outside of their webserver, which limits the 

utility of the service.  

1.5.4 Scansite 

Many SLiMs are recognition sites for reading, writing or erasing PTMs. Phosphorylation is 

particularly widespread in signalling systems (61). Scansite is a leading database for phosphopeptide 

motifs and the premier profile-based SLiM database and search tool (22). Scansite3 is its latest 

version and has profile models for 70 mammalian and 54 yeast protein kinases and phosphopeptide 

binding domains (e.g. 14-3-3, SH2, SH3, PDZ). The majority of the data in Scansite were generated 

using “oriented peptide libraries”, which fix a central (possibly phosphorylated) serine, threonine or 

tyrosine residue, and generate random libraries of flanking sequences that are incubated with the 

domain of interest (62). Subsequent Edman sequencing of phosphorylated/bound peptides generates 

the amino acid frequency distribution at each position, which is then converted into a sequence 

recognition profile. These data are excellent at identifying the optimal (e.g. highest affinity) binding 

profile for a given phosphopeptide domain. It should be noted, however, that biologically relevant 
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SLiM occurrences are not necessarily optimised for maximum binding affinity (1, 8, 15) and may 

therefore show a profile different from those generated by a peptide library screen. 

1.6 Databases of Predicted SLiMs 

There are currently no databases collecting and/or annotating predicted SLiMs but several large-scale 

SLiM predictions have their data available as supplementary data and/or online (Table 4Error! 

Reference source not found.). Interpreting SLiM predictions is largely a matter of placing them in 

context. Results from an interactome-wide de novo SLiM prediction in humans (63), for example, 

have been made available as a series of linked webpages called SLiMdb. This enables predictions to 

be grouped and studied by SLiM, hub (i.e. proposed PPI partner), parent protein, and GO 

classification (64). Entries link out to data in external resources including Ensembl (43), Uniprot (40), 

GO, OMIM (65), HPRD (66) and Genecards (67). Further context can be provided by searching the 

motifs against the human proteome using SLiMSearch2 (68). Predicted SLiMs have also been 

compared to each other and/or to databases of known motifs using CompariMotif (69), which is 

available both as a webserver and a standalone program. This enables clusters of similar motifs to be 

identified and explored. In future, it is planned to extend SLiMdb to improve data querying and 

include data from other SLiM prediction studies. Another example of a resource in which motif 

predictions have been made available for interactive exploration is the MeMotif database of 

consensus linear motifs from alpha-helical transmembrane protein structures (70).  

1.7 DNA and Protein Motif Search Tools 

Most motif prediction tools developed for DNA or protein sequence motifs can be adapted to the 

other biopolymer by simply changing the alphabet. There are important differences between DNA and 

protein sequences, however, and these should not be ignored or overlooked. DNA is simple in 

comparison, with only four possible base states (ignoring methylation) and DNA sequences analysed 

tend to be relatively long, from hundreds to millions of bases. This enables a much more accurate 

modelling of the background sequence space, even at the di- or tri-nucleotide level; if protein-coding 

regions are present in the DNA, amino acid and codon usage bias might result in tri-nucleotide 
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sequence biases. DNA motifs also tend to have much higher support in search datasets. In contrast, 

protein sequences are much shorter (the average unmasked human protein being approx. 500aa in 

length) and there are twenty amino acids (excluding PTM), which means that di-amino acid 

frequencies can rarely be accurately estimated. Protein motifs also tend to have fewer occurrences. As 

a result, sophisticated methods that can work well for DNA motif prediction are usually either 

inappropriate or impractical for protein motif applications. For this reason, this review will 

concentrate on tools that have been explicitly designed and/or benchmarked for de novo SLiM 

discovery. Exceptions include algorithms designed to identify motifs from individual proteins based 

on alignments of orthologues, for which it is possible to assemble quite large datasets, and the 

Scansite peptide library approach described above (22, 62). 

1.8 SLiM Discovery Benchmarking 

A challenging and sometimes overlooked aspect of both the development and appropriate application 

of SLiM discovery tools is robust benchmarking. New methods require adequate benchmarking data 

to ascertain their utility and whether they offer an improvement over existing methods. The latter 

comparison can be particularly hard if the most similar methods have themselves been inadequately 

benchmarked. The latest releases of SLiMSuite include SLiMBench (unpublished), a tool for 

generating SLiM discovery benchmarking datasets and assessing performance. SLiMBench and some 

model benchmark datasets will be made available at the SLiMSuite website. In the meantime, here are 

some considerations for the benchmarking of SLiM discovery tools: 

§ Scale. Whilst they can be useful exemplars for specific method features, individual observations 

do not constitute benchmarking and are easily subject to performance bias, whether deliberate or 

accidental. Regrettably, a number of the less specialised tools are benchmarked quite well on 

DNA data but neglect protein applications with a limited number of poorly conceived test 

datasets. The restricted number of known SLiMs does present a problem and previous methods 

have been somewhat limited in terms of benchmarking on real data (see, for example, DILIMOT 

(71) and SLiMFinder (41)) but, at the very least, the ELM database should be used (9). Simulated 

data is also useful for getting the numbers up, subject to the considerations below. 
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§ Bias. Benchmarking data should ideally be unbiased but, at the very least it, its biases must be 

clear. It is OK to include a benchmark that is biased towards the particular model being tested but 

this will only tell you whether the algorithm is working computationally, not whether it is useful 

biologically. Benchmarks should also include data that does not make the same assumptions as 

the new model being tested. Particular attention should be paid to dataset size and signal:noise 

ratios in the data as methods generally perform better when these are both large, which is not 

always realistic. 

§ Realism. Regardless of benchmarking performance on simulated data, there is always the 

possibility - indeed, likelihood - that real data will have additional biases. Checking performance 

against real data is therefore crucial. It is often hard to get the same numbers as with simulations 

and the assessments are often less robust as a result but this cannot really be helped. (Re-

benchmarking later is always an option.) The important thing is that benchmarking is not solely 

on simulated data. 

§ Accuracy versus efficiency. Although computational efficiency is important, accuracy of 

methods is more important. Whilst a slow method can often be overcome by careful parameter 

selection and/or finding a faster/bigger computer, rapid results of unknown accuracy are of 

limited use.  

§ False Positive Rates. Often, methods are only benchmarked in terms of recovery of true positive 

motifs. A frequent approach is to rank predictions and then demonstrate that the known motif is 

returned among the top ranked motifs and/or most of the top-ranked motifs are true positives. The 

problem with this is that all such test datasets have motifs to be found. In real biological 

scenarios, it is often not known whether (a) there is a real motif in the data to be found and/or (b) 

if so, whether there is actually enough signal for said motif to occur more than by chance. For de 

novo discovery, it is imperative that methods are also benchmarked on datasets that have no 

real/planted motifs and thus all predictions are false positives. Simulated data is particularly 

useful for modelling these. To carry appropriate SLiM predictions forward to laboratory 

validation, an estimate of the likelihood that a given returned motif is a false positive is essential.  
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§ Application-focused. Predictive bioinformatics tools frequently make use of Receiver Operating 

Characteristic (ROC) curves, particularly for classification problems such as predicting known 

motifs. ROC curves, which plot true positive rates (TPR, the proportion of positives that are 

correctly predicted) against false positive rates (FPR, the proportion of negatives that are wrongly 

predicted) for different thresholds, can be useful exploratory tools but they leave a lot to be 

desired when it comes to biological benchmarking. Usually, one is operating in a specific part of 

the ROC space - typically, either minimising FPR or maximising TPR. Tools may excel in one 

area but do poorly in another and this is not captured adequately by “Area Under the (ROC) 

Curve” (AUC) statistics. When selecting a SLiM discovery tool, it is best to choose one and/or 

select parameter settings that perform appropriately for the desired application. SLiMFinder, for 

example, is extremely stringent, making it ideal where false positives are to be avoided (41). 

Where false predictions are not an issue, however, the SLiMChance (Edwards et al. 2007, Davey 

et al. 2010) significance threshold of SLiMFinder can be relaxed to increase sensitivity. 

§ Comparative. Whenever possible, new methods should be compared to existing methods where 

they are available (Table 5).  

True positives can be identified by comparing predicted SLiMs to databases of known motifs, either 

manually or using CompariMotif (69). Although motif comparisons are scored and ranked by 

CompariMotif, we are not currently aware of a statistical framework for these comparisons nor is 

there a well-modelled threshold for assigning a match between two motifs. In order to consider a 

SLiM to be a true positive, SLiMBench uses CompariMotif criteria that matches must: (1) have 2+ 

positions match; (2) have a normalised information content of at least 1.5 (approx. equivalent to 1 

fixed position and one mildly degenerate position, see (69)); (3) match at least half of the smallest 

motif. Although strict application of these criteria will misclassify some motif matches, agreement 

with our manual classification was good (data not shown) and it has the advantage of being consistent 

and unsupervised, which is clearly beneficial for comparative benchmarking. For the moment, 

however, motif matches are largely a matter of individual discretion; caution and discretion should be 
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employed when interpreting claims of “true positive” motif predictions, especially in the absence of 

data being made available.  

2 Computational Prediction of Known SLiMs 

Computational techniques for profile and regex searches are well established and thus finding pre-

defined patterns in sequences is a computationally trivial exercise. Due to their short length, SLiMs 

are very likely to be found in proteins of typical sizes; the difficult job is distinguishing genuine 

functional instances of a SLiM from random background occurrences. Choosing the right search tool 

for known SLiMs is therefore largely governed by what is known about the motifs in question.  

Many of the repositories of known motifs also include tools for searching those motifs against a given 

protein, including the Eukaryotic Linear Motif (ELM) resource (9), Minimotif Miner (MnM) (10) and 

Scansite (22). There also exist a number of bespoke tools for searching user-defined motifs against 

protein datasets (Table 1, Table 5) and no doubt more will be added in the future. ELM and MnM 

have all-or-nothing matches based on their regular expressions, which are then rated and/or filtered 

according to contextual information to help the user discriminate true positives from false positives. 

SLiMProb (25) and SLiMSearch2 (68) allow similar searches for sets of proteins and whole 

proteomes, respectively, using user-defined regular expressions. Both also provide contextual 

scoring/ranking options and output that permits users to visually explore predicted instances. 

Scansite (22) harnesses the power of probabilistic profile models of known cell signalling interaction 

motifs to predict new instances in user-defined sequences or various public protein databases. The 

Scansite3 server can also make SLiM predictions with user-specified matrices of binding affinities per 

site, enabling users to easily search with their own profiles. Additional flexibility in motif definition is 

introduced by allowing the specification of an approximate consensus sequence of the motif, which is 

then used to automatically construct a matrix with similar characteristics. Scansite3 also features an 

option for searching user-defined peptides or regular expressions against a selection of protein 

databases. MEME Suite (72) offers a set of scanning tools to allow searching sequence databases with 
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the profile motifs, such as those identified de novo by other tools in the suite. Ungapped motifs found 

by MEME can be used as input for FIMO (73) to find all motif occurrences in a public protein 

database, ranked by significance according to their Benjamini-Hochberg corrected p-values. 

GLAM2SCAN offers the same functionality for input gapped alignments provided by GLAM2 (74). 

A slightly different approach is taken by MAST (75) as it considers the full set of input motifs as a 

whole. It first determines the best scores for all matches between pairs of motifs and proteins in the 

database and then combines these into overall scores between the complete set of motifs and each 

protein. The E- values calculated by MAST are used to filter out random hits (with a user-defined 

threshold) and rank the remaining significant proteins. Since MAST results provide a single score for 

each protein in the database, and information from multiple motifs can be provided as input, the 

program could be useful to retrieve proteins where different motifs co-occur. 

PROSITE patterns can be searched online using Scanprosite (76). Scanprosite allows proteins to be 

scanned for PROSITE patterns, or the user can define patterns to be searched against public sequence 

databases or user-defined protein datasets. Because it does not have any of the filtering tools advised 

for SLiM discovery (discussed below), Scanprosite is not recommended for SLiM prediction. Users 

should also note that the Scanprosite default is to “exclude motifs with a high probability of 

occurrence from the scan”, which includes many of the SLiMs in the database. SLiMProb can 

perform local searches using PROSITE patterns in place of standard regex notation. Likewise, 

CompariMotif (69) can be used to compare regex motifs with PROSITE patterns. 

In general, there are two assessments of SLiM predictions that a user wants to perform: assessing 

individual predicted occurrences, or assessing enrichment of a dataset for predicted occurrences. 

These are explored in more detail below. 

2.1 Assessing and Ranking Individual SLiM Occurrences 

SLiM discovery methods are notorious for over-prediction. To combat this, there are a number of 

possible considerations that can be very useful for filtering and/or ranking SLiM occurrences. 

Nevertheless, users should always be mindful that bioinformatics predictions almost invariably need 
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additional validation to be sure of function, even where an estimated confidence in the predictions is 

returned. False positives can occur purely by chance or they might have a different function from that 

being sought. Variations of dibasic [KR][KR] motifs, for example, form the core of five different 

cleavage motifs in ELMs as well as several targeting motifs (9). These latter false positives are 

particularly hard to identify because they are probably under very similar structural and evolutionary 

constraints to the motif of interest. 

There are essentially three strategies that can be applied to predicted SLiM occurrences. Firstly, 

contextual data can be simply provided to users, allowing them to weigh different lines of supporting 

evidence using specialist knowledge and human judgement. Secondly, features can be 

scored/weighted to produce a final metric for each occurrence, by which they can be ranked. Lastly, 

scores and/or context features can be used to reject certain occurrences outright. Where 

sequence/structure context is used, filters are often applied to the input data prior to the motif search, 

which is more efficient. These are clearly not mutually exclusive approaches and tools will often filter 

the weakest predictions before ranking and/or reporting context for the remainder. Filtering itself is 

not an all-or-nothing affair and should be set to an appropriate level for downstream analysis and the 

relative tolerance of false positives versus false negatives. Scansite (22), MnM (10) and SLiMSearch2 

(68), for example, have different stringency settings depending on how strictly the user wants to filter 

occurrences. 

2.1.1 Sequence Space Considerations 

The number of motif predictions returned by any algorithm will rely heavily on the sequence space 

searched, with longer/more proteins likely to return more hits to the motif regex/profile by chance. On 

the other hand, real instances will be missed if the sequences containing them are missing or excluded 

from the search dataset. Indeed, the selection of protein sequences is just as important as the choice of 

the search algorithm for most applications. This also applies to analyses of individual proteins. SLiMs 

have been implicated in functional differences associated with splice variation (35-37) and so limiting 

analysis to canonical sequences could miss potential occurrences. Similarly, SNPs could create or 

destroy SLiM instances and should be considered where relevant. 
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When trying to identify and/or rate predicted novel instances of known motifs in a limited number of 

specific proteins of interest, it is usually safer to err on the side of caution when masking sequence 

data and/or filtering instances. Because such predictions are tempered by circumstantial data that is 

not inherently part of the SLiM definition, it is generally a good idea to maximise the sequence space. 

When searching larger datasets, it is more normal to apply more stringent filters and restrict the 

number of returned results to a manageable number. If this can be achieved by masking the input data 

prior to analysis then efficiency can also be improved, which is particularly useful if additional data 

(sequence alignments, etc.) are created or analysed for each instance. When looking for enrichment of 

SLiMs within a dataset, protein sequence selection and sequence space masking are even more 

important as they will affect any statistical assessment of abundance. 

2.1.2 Protein Structure 

The majority of SLiMs are found in disordered regions of proteins, at least in the unbound form (1). 

Therefore, it frequently makes sense to screen out globular regions prior to motif prediction (41, 63, 

71, 77); although some true positive instances are likely to be erroneously discarded, the hope is that a 

much higher proportion of false positives will be removed and thus the resulting predictions will be 

enriched for real SLiMs. Typically, a disorder prediction program (reviewed in (78, 79)) is used to 

identify and screen out predicted globular regions (e.g. (41, 63)). IUPred (80) is particularly popular 

for disorder prediction in SLiM discovery because it combines reasonable accuracy with being freely 

available for academic use. No disorder predictor is completely accurate, so it is generally 

recommended to err on the side of over-prediction when masking based on disorder. Whereas the 

default IUPred disorder cutoff is a score of ≥0.5, for example, cutoffs of ≥0.2 (41, 63) or ≥0.3 (81) are 

typically used due to the observation that 80-90% of known ELM occurrences would be retained by 

such thresholds (1) (80). We have previously found that the default IUPred disorder cutoff of ≥0.5 

correctly classified approx. 95% of ordered residues in the DisProt database (82) but only approx. 

50% of disordered residues (i.e. it is conservative), whereas a cutoff of ≥0.2 correctly classified 

approx. 95% of disordered residues but only approx. 50% of ordered residues (i.e. is very relaxed) 
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(data not shown). It should be noted that this analysis was performed on a very limited dataset, 

although similar figures are given for IUPred defaults on CASP data (78). No systematic analysis of 

the optimum disorder prediction for SLiM discovery has yet been executed although our own testing 

of IUPred has indicated that a conservative cut-off of 0.2 gives the best trade-off between specificity 

and sensitivity for predicting occurrences of known ELMs (data not shown) 

An alternative strategy is to mask out domains identified by a domain database, such as Pfam (55). 

Whilst this can be effective and was employed by Neduva et al. in their landmark SLiM discovery 

paper (71), it must be done with caution. Not all domains in Pfam are completely globular and a small 

but significant proportion are completely disordered (83-85), an observation that is supported by the 

suggestion that 40% of the domain folds in the consensus domain dictionary (CDD) (86) are unstable, 

rather disordered and should not be considered traditional domains (87). Thus, carefree masking of 

domains could result in removal of some genuine SLiM-containing regions. As the notion of 

disordered protein domains as biologically functional and important regions continues to gain 

widespread acceptance, it is possible that more such domains could end up in domain databases. 

Combining domain prediction with disorder prediction and/or cross-referencing to a database of 

disorder domain sequences (e.g. (83)) should help to avoid such errors. ELM, for example, uses a 

structural filter that combines solvent accessibility and secondary structure (57) to complement 

disorder predictions by GlobPlot (88) and IUPred (80) and domain predictions from SMART (54) and 

Pfam (55). 

Structural information about PPI is scarce but since it offers direct evidence, it is a valuable resource 

for SLiM prediction. The 3did database (89) has 462 DMI of known 3D structure (as of January 2014) 

and rules derived from such data have the potential for predicting new instances and even entirely 

new classes of DMI (90). Although biological relevance can’t be established from structure alone it is 

particularly useful to define the interaction interface with high confidence. An early example of this is 

iSPOT (91), which uses structural data to estimate the propensity of an input sequence to bind PDZ, 

SH3 or WW domains. It stores frequency tables of residue-residue contact pairs calculated from PDB 

structures of peptide-domain complexes and uses these to score the interaction with each fragment of 
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a defined length in the input sequence. More ambitious is PepSite (92), which models preferred 

peptide-binding environments for protein surfaces to assess whether a given peptide could bind a 

given globular domain. This, in principle, could be used to help assess whether a novel instance of a 

SLiM is able to bind the appropriate domain. 

2.1.3 SLiM Conservation 

Evolutionary conservation is good for ruling out motif instances that are unlikely to have functional 

importance; however, there is a major complication to using evolutionary conservation as a 

discriminator for SLiM discovery. The plasticity of SLiMs and their propensity to occur in IDR 

means that they are frequently not conserved to the same evolutionary depth as globular domains (1, 

12). Even when the SLiM is conserved, the low conservation of surrounding disordered residues can 

generate alignment errors (93). High variability in evolutionary dynamics between different SLiMs 

and IDR further limits the use of absolute measures of sequence conservation, which are heavily 

dependent on sequence quality and availability as well as the background evolutionary rate (i.e. 

functional constraint) of the parent protein. As a result, conservation metrics trained on discovering 

globular domains tend to overlook SLiMs; SLiM discovery requires its own conservation metrics.  

MnM uses conservation score based on BLAST pairwise alignment scores of HomoloGene clusters 

(94) and introduced the idea of adjusting conservation scores of predicted SLiM occurrences based on 

the overall conservation of the full-length proteins (95). Dinkel and Sticht extended this idea, using 

weighted percentage identities that were normalised to the global percentage identity of the parent 

proteins (96). These adjusted scores were then calculated across increasing numbers of homologues 

(sorted by relatedness) and the final distribution of scores used to rank predictions. Chica et al. took a 

different approach and normalised conservation scores by weighting conserved occurrences according 

to evolutionary distance and then normalising to the overall tree weighting for each parent protein to 

allow comparisons between proteins and alignments (56). 

These methods still suffer from different proteins (and protein regions) having different distributions 

of homologues available and/or different functional constraints across the full-length protein, 
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independent of SLiM constraints. The solution, introduced by Davey et al. (27), is to measure the 

conservation of SLiMs relative to a surrounding window of (disordered) residues. This “Relative 

Local Conservation” (RLC) approach successfully adjusts for both homologue number/distance and 

alignment quality; if alignment of the SLiM-containing region is poor compared to the protein as a 

whole, this should not affect the score. Likewise, RLC effectively normalises homologue numbers 

and evolutionary distances. Because individual alignment column scores are used for the RLC 

normalisation, methods that weight conservation according to evolutionary distance can also be 

incorporated into the method (27). Furthermore, it is possible to use the distribution of RLC scores to 

assign a statistical probability to observing a given cluster of high RLC scores at a motif instance, 

which can be used for ranking predicted occurrences (68) and even directly predicting de novo SLiMs 

(97). 

Notwithstanding the fact that alignment errors will disrupt conservation patterns, the possibility 

remains that genuinely functional SLiM instances have evolved recently and therefore show little 

conservation. Likewise, apparent conservation of a given SLiM instance may be a chance occurrence 

or the consequence of evolutionary constraint on a similar/nearby sequence pattern wholly 

independently of the SLiM of interest; SLiMs often co-occur (13, 60) and flanking residues can also 

show correlated evolutionary patterns (98). Despite these limitations, evolutionary conservation can 

be a powerful tool when harnessed correctly. ELM (9) incorporates a conservation filter based on the 

tree-weighting method of Chica et al. (56), whilst SLiMSearch2 (68) uses RLC (27) to help rank and 

filter results. SLiMProb (25) can mask input data using a number of conservation schemes including 

RLC.  

2.1.4 Use of Other Contextual Information 

Where there is sufficient annotation, additional contextual information can be used to rank or filter 

results. This is exemplified by MnM 3.0 (10), which employs a number of filters that compare 

predictions to the known target of the motif using a tightly controlled semantic syntax framework 

(14). This allows biological data such as Gene Ontology (GO) and protein/genetic interactions to be 

combined with homology and structural data to screen out false positives. At the highest stringency, 
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the authors report 39% retention of validated instances with zero false positives returned. Whether 

this holds true for all SLiMs is yet to be seen but it demonstrates the importance of contextual 

information when ranking or scoring motif predictions. 

PPI networks are an obvious source of contextual information to help support or reject SLiM 

predictions. For motifs with known binding partners/domains, these data can be used directly to assess 

occurrences. iELM (58) predicts new instances of known motifs by mapping instances together with 

known binding domains onto PPI networks, which can be supplied by the user. There are also tools 

for interactively exploring SLiMs in the context of PPI networks: SLiMScape (99) is a Cytoscape 

plug-in that can directly run SLiMSearch predictions of known motifs (68) or SLiMFinder de novo 

SLiM prediction (100). For novel motifs, enrichment in such datasets can be indicative of function. 

This is explored in the next section. 

Features of known SLiMs can also be used to build predictors of novel instances using machine 

learning algorithms. The AutoMotif Service (AMS) (101), for example, trains artificial neural 

network pattern classifiers for the automatic prediction of PTM sites. Annotated (positive) instances 

are taken from UniProt and Phospho.ELM, while negative training data is randomly chosen from 

fragments of sequences with no known PTMs. The disadvantage of machine learning approaches is 

their tendency to be a “black box”, making human understanding and assessment of individual 

predictions quite difficult. 

2.2 Assessing SLiM Occurrences at the Dataset Level 

Assessing SLiM occurrences at the dataset level is largely performed for one of two reasons: 

exploring dataset function through known motifs, or exploring possible motif function through motif 

distributions. The latter is frequently used to add weight to the de novo SLiM predictions discussed in 

Section 3. In practical terms, the main difference is how many different protein datasets and SLiMs 

are considered: either a single dataset of interest is searched with one or more SLiMs, or a single 

SLiM is assessed in multiple datasets that subsequently need to be sorted and ranked (and controlled 

for multiple testing). The latter exercise is usually the remit of specific tools, such as SLiMSearch2 
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(68), which will identify GO categories and IntAct PPI partners (102) enriched for a specific SLiM 

from whole proteome occurrence data. For the purpose of this review, we will focus on the general 

case of assessing a single SLiM in a single dataset. Where multiple SLiMs and/or datasets are used, 

an additional multiple testing corrections will be required. 

2.2.1 Over-Representation Statistics 

The most common analysis is to assess a motif for over-representation in a particular dataset. The 

most frequently used statistical approaches for such assessment are the cumulative binomial 

distribution and the cumulative hypergeometric distribution. In each case, we are interested in the 

probability of observing k or more successes (motif occurrences) given n trials (positions/sequences in 

which a motif could occur), each with a probability of success p. The main difference between the 

two approaches is that the binomial distribution calculates a probability based on n trials with 

replacement, which means that each motif occurrence is deemed to be independent and drawn from 

an infinite population. This is the norm for SLiM prediction tools. The hypergeometric distribution, in 

contrast, models n trials without replacement given a finite population N. This would be more 

appropriate for situations in which the total number of motif occurrences in a full dataset was known 

and enrichment was being assessed for a sub-sample of that dataset, e.g. a single PPI dataset or GO 

term in a whole proteome. Where N is much larger than n, the binomial is a good approximation and 

more efficient to calculate.  

There are essentially two levels at which motif occurrence probabilities can be considered. At the 

sequence level, k is the total number of observed occurrences, n is the number of discrete positions at 

which a SLiM could occur and p is the probability that a motif occurs at any given position. At the 

dataset level, k is the number of different proteins containing the SLiM, n is the total number of 

proteins and p is the probability of the SLiM occurring in each protein. In each case, k is normally 

quite obvious but n and p can vary in the way that they are calculated. 

The biggest challenge is correctly modelling the background frequency distribution from which to 

derive the probability of occurrence per site/protein, p. Due to differences in amino acid composition, 
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one has to consider whether to base expectations on protein-specific or dataset-specific amino acid 

frequencies. If residues have been masked based on evolutionary or structural information as 

previously described, there can be big differences between the masked and unmasked data. 

Alternatively, frequencies might be derived from a different “background” dataset, such as a complete 

proteome. At one extreme, if sequence biases are not correctly handled then returned motifs will 

simply represent this bias. SLiMs, for example, tend to occur in disordered regions (1) and so it is 

common to mask out globular domains and/or predicted ordered regions (41, 63, 71). Disordered 

sequences are known to have a different amino acid composition to globular domains (1, 80) and thus 

if full-length protein sequences are used for the background expectation, there will be a tendency to 

over-predict motifs because all disordered amino acids are enriched. At the other extreme, if one 

masks the sequences perfectly so that only motif sequences are unmasked, the observed amino acid 

frequencies will be biased because of the motif occurrences, which might make the motifs themselves 

appear uninteresting. This is especially true for low complexity motifs, which predominantly feature 

the same amino acid(s) in multiple positions. In general, the sequence space is considerably larger 

than the motif instances and so the assumption is that the motif does not bias the background.  

Once the probability of a given motif occurring at any given position can be calculated from a 

background frequency, the number of such positions must be taken into consideration. For sequence 

data, the probability of motif occurrences is clearly related to the size of the sequence space being 

searched, which in turn determines n. It is here that conservation and disorder masking make a big 

difference by reducing the number of sites at which a motif can occur by chance. To a first 

approximation, n is equivalent to the number of unmasked amino acids in the protein. 

For datasets of multiple proteins, the probability of occurrence in each protein can be calculated as 

just described. Alternatively, amino acid frequencies can be bypassed by empirically estimating per-

protein probabilities based on occurrences in a background dataset. This approach must be used with 

caution; there may be biases in protein composition in addition to any amino acid composition bias. 

The main problem is the presence of homology, which makes motifs more likely to have extreme 

distributions than would be expected if all proteins were unrelated, making p hard to estimate. 
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Problems with homology also apply to the dataset of interest, for which the statistical model assumes 

that the n proteins are independent. Evolutionary relationships between proteins can heavily skew 

statistics by breaking this assumption of independence, regardless of how p is calculated. To counter 

this, SLiMProb uses the SLiMChance probability model of SLiMFinder (41), which in turn uses the 

“Unrelated Protein Clusters” (UPC) correction for evolutionary relationships introduced by SLiMDisc 

(77). Under this model, BLAST (103) is used to identify homologous proteins, which are then 

clustered such that no protein in an UPC has detectable homology with a protein in another UPC. 

Dataset size (n), motif support (k) and the probability of SLiM occurrence (p) are then calculated 

using the UPC rather than individual proteins. The importance of this correction cannot be overstated: 

statistical models that ignore sequence homology cannot be trusted unless the input has similarly been 

purged of homology. SLiMProb also calculates enrichment for proteins without evolutionary filtering 

(i.e. assuming evolutionary independence) and for the overall number of occurrences across all 

sequences (i.e. k is all occurrences, n is the entire sequence space and p is the probability per site), 

which enables the effect of the correction to be examined.  

2.2.2 Under-Representation Statistics 

Although it is less common, it can also be interesting to assess whether a SLiM is under-represented 

in a given dataset. The statistics for this are essentially the same, except that the main concern is the 

probability of seeing k or fewer occurrences given n and p. It has been observed that false positive 

occurrences of some motifs are under-represented in certain datasets (104). Combining over-

representation and under-representation statistics could therefore prove an interesting way to explore 

the evolutionary and, by proxy, functional dynamics of a SLiM within a proteome. In particular, one 

would expect an over-representation of conserved instances where the SLiM is functionally important 

but an under-representation of non-conserved instances where they might disrupt signalling and are 

therefore subject to negative selection. This has clear implications for using over-representation in de 

novo SLiM prediction and is discussed in more detail below.  
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3 Computational de novo SLiM Prediction 

Many of the considerations for predicting instances of known motifs also apply to the task of 

predicting SLiMs de novo. Understanding critical features of known SLiMs has allowed the 

establishment of a set of rules helpful to find new motifs. The task is clearly more complex when the 

nature of the motif is not known. It is not simply a question of where functional instances of the SLiM 

might occur; selecting the right tool for the job depends on the data available, the nature of the motif 

(length, conservation, induced structure (if any), whether specific amino acid side chains/PTM will be 

involved, etc.) and the level of confidence that a SLiM is present in the data at all. Where the latter is 

unknown, estimation of the significance of results is essential. This section will explore these issues 

and how to make the best use of the available data. Recommendations will be made where possible 

(see also Table 5) but it should be noted that de novo SLiM discovery is still a developing field and 

there may not (yet) be an obvious “best” approach in all situations. 

It is important to remember that de novo SLiM discovery will rarely return the SLiM precisely as it 

would be defined by in-depth study. This is because the number of instances in nature is frequently 

insufficient to have fully explored sequence space through evolutionary time. With the exception of 

very specific motifs, such as the integrin-binding RGD motif, it would be impossible to return the 

complete motif definition given the sequence data available (Table 6). Even then, it is possible that 

additional subtle features of the SLiM are yet to be discovered. Because SLiM discovery tools are 

mining the strongest signals, they will generally return a simpler version of the motifs and/or include 

some extraneous flanking residues. One should remember this when analysing the results of any 

SLiM prediction: the real SLiM (if there is one!) is likely to be a somewhat refined version of the 

pattern returned by the program. It is also important to remember that not all occurrences in the input 

data are necessarily going to be functional. Depending on the planned follow up, it might be necessary 

to rank and/or filter those occurrences using the same techniques as previously discussed for 

predicting known motifs. Likewise, the data used for SLiM prediction might not include all of the 

functional instances; it can be useful to perform a large-scale analysis of the distribution of the 
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predicted SLiM, both to identify additional instances and provide insight into whether the motif is 

genuinely associated with the dataset from which it was predicted. 

Tools for de novo motif prediction from sequence data can be broadly classified depending on their 

goal: 

1. Alignment-based algorithms aim to best describe a single motif based on an alignment of 

motif occurrences. 

2. Alignment-free methods aim to interrogate multiple sequences to identify a new common 

feature. 

Alignment-based methods clearly need to use additional information when compared to alignment-

free methods in order to constrain the motif search. Such methods are more restricted in terms of 

potential applications but can use approaches that are unsuitable for less constrained alignment-free 

data.  

3.1 Alignment-Based (divergent evolution) Methods 

Building on the success of protein domain prediction/definition, some de novo SLiM methods attempt 

to identify SLiMs on the basis of signals of evolutionary conservation among homologous protein 

regions, i.e. purifying selection acting at functionally important sites during divergent evolution. The 

challenge is that globular domains dominate this signal and so SLiM-specific models of evolution 

must be applied. Recently, methods have harnessed the power of the “Relative Local Conservation” 

(RLC) method discussed in Section 2 (27). SLiMPrints uses a statistical model of clustered RLC-

conserved residues to identify evolutionary signatures of SLiM occurrences and return them as regex 

patterns of fixed and wildcard positions (97). A similar approach has also been taken using 

phylogenetic hidden Markov models (phylo-HMM) to search for locally conserved sequences in 

unstructured regions (105). The nature of profile-based methods make them particularly suitable to 

capture the evolutionary constraints of homologous sequences; another example is MFSPSSMpred 

(106), which incorporates local conservation scores from multiple sequence alignments into a 

support-vector machine model of MoRF sequence features to predict novel SLiMs/MoRFs. These 
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methods have the advantage of being able to identify singletons (i.e. motifs with a single known 

instance) but additional data and/or experiments will be required to predict the function of any SLiMs 

that are discovered. 

Alignments can be based on function rather than homology. Motif-x, for example, is an alignment-

based method that is actually modelling convergent evolution by aligning otherwise unrelated 

sequences around key residues such as phosphorylation sites recognised from mass spectrometry data 

(107). Fixed position motifs are constructed from a window either side of the aligned residue. 

SLiMMaker will similarly generate a consensus regex SLiM (with ambiguity) from a set of aligned 

peptide sequences, whether they are homologous or not (Table 6). 

3.2 Alignment-Free (convergent evolution) Methods 

One of the most common and successful approaches for de novo SLiM prediction is the interrogation 

of multiple different proteins for shared sequence patterns. Unlike most alignment-based approaches 

above, these methods are modelling convergent evolution, i.e. the independent origin of shared motifs 

on unrelated protein backgrounds. There are a number of potential sources for such protein sequences 

(11) but the most common are PPI data (108) and functional classifications such as GO. In each case, 

methods are generally seeking either (a) the most abundant patterns in the data, or (b) the most 

enriched patterns versus a background expectation. The latter are generally more effective due to 

inherent biases in amino acid frequencies but they are reliant on good background models to calculate 

the expected motif abundance by chance. 

One of the earliest dedicated de novo SLiM discovery tools was Pratt (109, 110), which updated and 

extended an earlier approach by Neuwald & Green (111). Although Pratt is an alignment-free method, 

it was originally designed with divergent sequence motifs in mind, such as PROSITE family 

descriptors (18), which is reflected in the parameters. Pratt is still useful for returning a ranked list of 

motifs that include amino acid and wildcard-length degeneracy. It is designed to find patterns that 

occur in the majority of sequences and does so efficiently. The algorithm can be very slow when 

searching for patterns present in only a few sequences, particularly when the motifs are small. Output 
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is highly dependent on parameter settings and it does not return a statistical significance for predicted 

SLiMs. Furthermore, because it was designed with sets of homologous proteins in mind, there is no 

evolutionary filter to model convergent evolution. As a consequence, although still available at EBI, 

Pratt is not recommended for general de novo SLiM discovery. A better alternative is SLiMFinder 

(41)(below), which returns Pratt-like flexible patterns but is optimised for convergent evolution and 

also provides an estimate of statistical significance for predictions. 

Another notable early tool is TEIRESIAS (112), a general text pattern finding tool that has been 

widely applied to the problem of de novo SLiM discovery and served as the inspiration or basis for 

several tools that followed. TEIRESIAS can return “degenerate” motifs with site-specific variability 

through equivalence sets of residues, i.e. sets of amino acids that can co-occur in ambiguous 

positions. Any user-defined equivalence sets may be used but it is most common to group amino acids 

that share physicochemical properties. Given a set of protein sequences, a scanning phase takes place 

to collect all putative motifs of given length, proportion of defined sites and support in the dataset. 

These are then combined recursively into longer patterns with enough support, keeping the efficiency 

of the algorithm by discarding patterns that are less specific versions of others, while accounting for 

ambiguity by treating all residues in the same set as equals. Homologous sequences in the input 

dataset can inflate support for certain motifs, which can also result in very long run times and 

massively increase the number of patterns returned. Nevertheless, it is still sometimes used for 

baseline performance comparisons in methods benchmarking. 

3.2.1 Methods Correcting for Evolutionary Relationships 

One weakness of the early methods is their failure to consider evolutionary relationships in the data. 

This is important, otherwise large regions of homology will be returned as motifs in a potentially 

misleading fashion. The first method to correct for this was DILIMOT (71, 113), which filtered 

homologous regions and kept a single representative for analysis. Whilst this kept the underlying 

TEIRESIAS pattern discovery step efficient, it has the slight disadvantage of removing sequence 

variants that might better reflect the core SLiM. Another concern is that weakly homologous regions 

flanking those removed by the filter might remain in the data and bias results. Nevertheless, 
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DILIMOT was a major advance in de novo SLiM discovery and its application to human, fly, 

nematode and yeast PPI data was a landmark paper in the field. 

SLiMDisc (Short Linear Motif Discovery) (42, 77) was developed around the same time as DILIMOT 

but took a different approach to correcting for evolutionary relationships. Instead of filtering 

homologous sequences, motifs were given a heuristic score that was based on their homology-

corrected support and information content (i.e. length and degeneracy). Three different correction 

methods were tested. The best performance was achieved by scaling motif support using a “Minimum 

Spanning Tree” (MST), which would produce a corrected support from 1 to N, where N is the number 

of proteins in which the motif is found. If all N proteins were identical, MST would scale support to 

equal 1. If all N were unrelated, support would be N. Like DILIMOT, SLiMDisc used TEIRESIAS for 

underlying pattern discovery and was essentially an add-on for filtering and ranking TEIRESIAS 

output. The original SLiMDisc scoring was subsequently modified in the webserver implementation 

using “SLiM Pickings”, which weighted the original SLiMDisc score according to the ratio of 

observed versus expected support, corrected for evolutionary relationships and amino acid frequencies 

of the input data. Later releases of the webserver have seen TEIRESIAS pattern finding replaced by 

the SLiMBuild algorithm of SLiMFinder (41, 100). 

There are two main drawbacks of the SLiMDisc/DILIMOT approach. Firstly, scores are not directly 

comparable between datasets. Secondly, whilst the methods are very good at returning real motifs 

among the top-ranked patterns in the output, there is no way of assessing how likely it is that a given 

data had any genuinely over-represented motifs. SLiMFinder (Short Linear Motif Finder) (41, 100) 

overcomes these two problems by carefully controlling the motif space during motif construction 

using its own SLiMBuild algorithm in place of TEIRESIAS. This motif space is then used by the 

SLiMChance algorithm to robustly, if somewhat stringently, estimate the significance of over-

represented motifs. SLiMChance uses the binomial distribution as described for SLiMProb in Section 

2 with an additional multiple testing correction for motif space. This again uses the cumulative 

binomial distribution, where k is 1 (a single successful motif), n is the total number of motifs in the 

motif space, and p is the individual motif’s over-representation probability. These solutions enabled 
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large-scale analysis of tens of thousands of human protein datasets (63). SLiMFinder also introduced 

the capability to return motifs with flexible-length runs of wildcard positions, which are important for 

some motifs. 

It should be noted that correcting for evolutionary relationships is not always possible. Sometimes, 

numerous over-represented motifs will be returned from the same (sub)set of input proteins even if 

there is no BLAST-detectable homology; BLAST can sometimes miss homology in short and/or low 

complexity proteins. For this reason, it is always advisable to manually visualise the context of 

significant motifs. This is easier with tools like SLiMFinder that output such alignments for 

visualisation as part of the results. In extreme cases, sequences may have diverged to the point that 

conserved SLiMs are the only detectable homology. This will be impossible to distinguish from 

convergent evolution but should not affect the performance of SLiM discovery tools. There can also 

be problems with very large datasets. The “Unrelated Protein Cluster” (UPC) method employed by 

SLiMFinder works by clustering proteins via BLAST homology connections such that no proteins in 

one UPC will have detectable homology with any proteins in a different UPC. This does not 

necessarily mean that all the proteins in a cluster will share sequence homology: if protein A is 

homologous to B and B is homologous to C in a different region/domain, A and C will be grouped in 

the same UPC despite having no direct homology. For large datasets of multi-domain proteins, such 

as mammalian proteomes, this can result in a substantial proportion of the data (in the order of half 

the proteome) clumping together into a single giant UPC (data not shown).  

3.2.2 Profile-Based Methods 

Another popular set of programs for motif discovery is the MEME Suite of motif-based sequence 

analysis tools (72). MEME (114) was developed originally as a method for novel motif discovery in 

DNA sequences. Genomic sequences are still its main focus but it can be used for finding signals in 

any biological sequence and has been applied to SLiM discovery. MEME uses ungapped PSSMs to 

represent motifs as extracted from an unaligned set of input sequences. It assumes that each sequence 

in the starting dataset contains an instance of the motif and employs the expectation-maximisation 

algorithm (115, 116) to find motif patterns with high likelihood. Haslam and Shields (81) have found 
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that MEME cannot perform as well as SLiMFinder, which is based on regular expressions, unless 

evolutionary weighting and local conservation filtering are applied. In that case both approaches are 

shown to be complementary, with some motifs being only returned by one of them, suggesting that 

their joint application can lead to an extended coverage of the results. It should be noted, however, 

that MEME does not return a significance estimate akin to SLiMChance and therefore this analysis 

was based on the ranks of positive predictions. Other tools in the MEME Suite extend the reach of the 

main algorithm by allowing searches, comparisons and functional predictions for DNA and/or protein 

motifs. Notably, motif discovery is improved with GLAM2 (74) by incorporating gaps of flexible 

length in the definition of motifs. Given a set of sequences believed to share one or more motifs it will 

perform a gapped alignment of them to find, score and rank all conserved patterns. Like MEME, 

GLAM2 is optimised for DNA motif discovery.  

NestedMICA (117, 118) uses different probabilistic models to represent motif-carrying and non-motif 

fragments in the input sequences, identified through a nested sampling strategy. The motifs are 

represented by a set of profiles extracted from the provided data and a pre-defined, non-homogeneous 

model of “uninteresting” background information serves as reference. These are all combined in an 

HMM model that is updated in each iterative step of nested sampling after discarding a certain 

fraction of sequence space and until the likelihood of the resulting motif profile is maximized. The 

output of NestedMICA is a profile for each motif, displayed as a sequence logo. An assessment of its 

performance against MEME over a purposely built benchmark dataset showed that NestedMICA can 

retrieve more true positive hits while reducing the false negatives at the same time (118). However, 

although the information content values in each column of the logo give a hint on variability and 

conservation, the program does not provide any significance measure of motif support. 

3.2.3 (l, d) Motif Searches 

One common motif formulation for general de novo motif discovery is the “(l, d)-motif 

search” (LDMS) (also known as a “planted motif search” or “(l, d) challenge problem”). LDMS 

algorithms search for all motifs of total length l (including wildcards) with up to d mismatches (i.e. 0-

d wildcards). There are many LDMS algorithms and programs; recent examples include qPMS7 (119, 
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120). LDMS algorithms are generally developed and tested for DNA motif discovery, but are rarely 

benchmarked or optimised for protein searches, which have very different constraints and criteria. 

Developments frequently concentrate on computational performance (i.e. speed) but often overlook 

important biological considerations, such as evolutionary relationships that can bias results, low 

support in the input data, or the possibility that there may be no real motifs in the data to find, which 

results in a lack of statistical significance. For these reasons, LDMS tools are not generally 

recommended for de novo SLiM discovery. 

This is not to say that no LDMS algorithms are useful, but it is inadvisable to apply an algorithm to 

protein motif prediction if it has only been benchmarked on DNA data. Without this estimation of 

statistical significance, applying an LDMS algorithm to a dataset that may not contain a motif (of the 

“(l, d)” nature being sought) is almost guaranteed to generate false positive predictions. In principle, 

LDMS motif space could be modelled for a statistical assessment of motif support, although it is often 

over-constrained by the need to fix the l and d parameters prior to searching. Another feature of 

LMDS algorithms that can be problematic is that they do not generally return a motif in the way 

defined in Section 1. Instead, the output is a consensus sequence and a list of variants with 

mismatches. Because these mismatches can occur in different positions in each motif instance, it can 

be difficult to generate a regular expression that captures the variability, although they could 

conceivably be coupled to an alignment-based algorithm to construct a sequence profile. If the natural 

incorporation of mismatches from the consensus “motif” could be correctly incorporated into a robust 

statistical framework like SLiMChance (17, 41), LDMS algorithms could yet prove useful for de novo 

SLiM discovery in real biological data. 

3.2.4 Co-Occurrence Methodologies 

Correlated Motif Mining (CMM) methods suppose that motifs, being short and flexible, may be 

directly involved in interactions between larger domains. D-MOTIF and D-STAR (121) are the exact 

and the approximate versions of an algorithm built on the LDMS model to find instances of two 

motifs that are correlated in the same interaction in a PPI network. Leung et al raised adequacy and 

scalability issues in D-MOTIF and D-STAR and proposed an alternative model to find motif pairs 
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based on fast clustering heuristics that they implemented as MotifCluster (122). Another CMM 

method, SLIDER (123), incorporates structural data and maps correlated LDMS occurrences onto PPI 

interfaces. In addition to the underlying LDMS drawbacks, the main issue with CMM that there are 

no clear examples of SLiM-SLiM PPI and it is highly likely that either or both motifs returned are 

actually structural/family signature motifs of domain-based interactions. Another weakness of this 

method is that it cannot identify motifs that all interact with the same single partner. In addition, 

whole interactome data is required for the prediction, which limits application. 

FIRE-pro (124) is another CMM method that uses mutual information (MI) to discover motifs whose 

presence/absence correlates with a biological feature of the proteins in question. FIRE-pro first builds 

gapped k-mers (fixed position motifs with k defined positions separated by runs of 0-3 wildcard “gap” 

positions) and calculates their mutual information with the biological classification of the proteins in 

the dataset. Motifs that tend to be present in proteins that are positive for the biological feature of 

interest (e.g. GO category or PPI partner) and absent in negative proteins have a high MI score. This 

is then compared to randomised feature classification and only those motifs with higher MI than 

10,000 randomisations are retained. More informative descriptions of the significant motifs are 

ultimately informed by subjecting those to a greedy search of variants that increases their degeneracy. 

FIRE-pro does not use protein disorder information and might therefore return structural motifs; a 

possible future improvement would be to couple FIRE-pro with disorder and RLC masking. Although 

FIRE-pro does filter evolutionary relationships, the BLAST E-value used is extremely stringent (1e-

50) and therefore it is highly likely that homology will be influencing some of the MI associations. 

One also needs to be very careful of complex PPI relationships and PPI-GO correlations that could 

give rise to false associations, particularly in multi-domain proteins. With those caveats in mind, the 

high efficiency of FIRE-pro makes it suitable to analysing proteome-scale data to discover, re-

discover and make an initial functional prediction of SLiMs. 

3.3 Sequence Property/Feature Methods 

Not all de novo SLiM discovery tools make predictions based on sequence specificity. Whilst not the 

focus of this review, it is useful to briefly highlight a few of these other methods. Frequently, these 
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approaches will complement a sequence-based approach and can provide useful corroborating 

evidence regarding the nature/importance of a given site. Alternatively, they might be useful to pre-

process data for sequence-based predictions and or rank/filter results as explored in Section 2. 

ANCHOR (125, 126), α-MoRF-PredII (44, 127), MoRFPred (128) and MFSPSSMpred (106) use 

signs of propensity for structure within an IDR to predict potential SLiM- or MoRF-containing 

regions. SLiMPred (129) takes a more flexible machine learning approach and uses annotated ELM 

instances and structural, biophysical, and biochemical attributes predicted from the primary sequence 

to build a bidirectional recurrent neural network that generates a per-residue probability of being part 

of a SLiM. Output can then be scanned for clusters of SLiM-like residues. Although these methods do 

not generate motifs as such, they have the advantage of being able to identify interaction sites that 

lack the sequence specificity of SLiMs and/or where additional data (e.g. homologues, structures or 

PPI) are unavailable. Where homologues are available, alignment-based tools can then be used to 

generate a motif consensus or profile for the identified region.  

Efforts have also been made to predict novel SLiMs directly from structural data in the Protein Data 

Bank (PDB) repository (130). D-MIST (131) is a profile-based method that uses structure-derived 

binding profiles to interrogate sequence databases for novel PPI. It first extracts motifs known to bind 

the same domain from structural complexes where the latter is present. The motifs are then used to 

seed a Gibbs sampling search of similar sequences from empirical binary interactions, from which 

PSSMs can be constructed and used to find other proteins with a similar interface. Similarly, 

SLiMDIet (132) has been developed to identify SLiMs in the binding interface of solved structures of 

PPI complexes in PDB. Pfam domain binding interfaces are clustered by structural similarity and the 

residues belonging to the domain face and the partner face in each cluster are then aligned. Based on 

the contacts of the interaction, SLiMs are extracted as flexible, gapped PSSMs, and their statistical 

significance assessed through PPI data. Stein and Aloy (90) took a more focused approach and 

specifically modelled the features of known SLiMs from solved DMI structures in PDB (89), 

identifying a signature stretched and elongated structure that was characteristic of DMI peptides. 

Using machine learning and contextual filters, they then predicted novel DMI from PDB PPI, deriving 
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consensus patterns using SLiMFinder (41) where possible. As with SLiMDIet, significance of 

predicted motifs was assessed using over-representation in PPI data. These methods show a lot of 

promise and are likely to become increasingly useful as the number of solved DMI continues to 

increase.  

3.4 Statistics for de novo SLiM Discovery 

When it comes to motif prediction (and benchmarking of SLiM discovery algorithms) an indication of 

significance through testing on data without a genuine signal is crucial. This is because one of the 

primary challenges for de novo SLiM discovery is determining whether there is a motif to be found at 

all. There are good discussions of motif statistics for both regex (17) and profile (19) approaches 

elsewhere. Instead, this review will concentrate on some of the biological and practical considerations 

that are likely to be pertinent, whatever the specific statistical model employed. 

3.4.1 Sequence Space Considerations 

The considerations for sequence space when searching for de novo motifs are much the same as 

previously discussed for making dataset-level over-representation assessments for known SLiMs. The 

main difference is that the additional multiple testing corrections for motif space in de novo searches 

dramatically reduce significance levels and thus any loss of signal by erroneously removing real 

instances (either by masking them out or excluding the parent sequence from the dataset) can have 

much stronger consequences than for the prediction of known motifs. As a result, whereas known 

motif prediction has a tendency to err towards stringent filtering, de novo prediction generally needs 

to maximise the available signal, even if that comes at the cost of increased noise. For a discussion of 

some approaches in dataset construction that can influence the signal:noise ratio, see (11). 

3.4.1.1 Conserved Versus Non-Conserved Motif Occurrences 

Motif enrichment is potentially confounded by two opposing trends occurring in the dataset: 

enrichment for functional motifs (63, 71) and depletion of non-functional motifs (104). SLiM-

mediated PPI are frequently cooperative and/or competitive (8, 133) and therefore having competing 
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sites of interaction in the wrong place at the wrong time could upset the delicate balance of signalling. 

Random occurrences of a SLiM in proteins that (could) interact with a given SLiM-binding domain 

are probably under negative selection (104). These conflicting signals could obviously hamper SLiM 

prediction as the true random background would be smaller than that modelled. In reality, the number 

of motifs expected to occur by chance is usually quite small and therefore the loss of these from the 

actual signal is hopefully not too detrimental. The fact that SLiM prediction by over-representation 

works for many known examples (41, 63) supports this notion. Nonetheless, the observation that 

current SLiM prediction methods seem to be on the cusp of successful SLiM discovery in many cases 

implies that slight increases in signal or decreases in noise could be the difference between a SLiM 

being significantly over-represented or not. Correct modelling of negative selection could potentially 

push some of these datasets into the detectable signal:noise range. 

3.4.2 Motif Space Considerations 

The main difference between searching for known SLiMs and de novo discovery is the large multiple-

testing correction that needs to be done when the SLiM is unknown. In essence, any possible motif 

that could have been constructed by the de novo method could be over-represented in the data. One of 

the major advances of SLiMFinder (41) was the SLiMBuild algorithm that tightly controlled the 

building of the motif space and thus enabled an exact calculation of the number of possible motifs. 

TEIRESIAS (112), which underpinned earlier algorithms such as DILIMOT (71, 113) and SLiMDisc 

(42, 77), does not control the motif space in the same way, which makes it hard to estimate how many 

different motifs are actually being tested. There is clearly a trade-off in the selection of SLiMBuild 

parameters, such as the maximum number of wildcards between defined positions (set to 2 by 

default): increasing the number of motifs increases the chance of the correct motif being within that 

motif space but also increases the size of the significance correction that is required. It should be 

noted that there might be ways of improving performance by altering the motif-building rules. Many 

motifs predicted by Neduva et al. (71, 113), for example, have three consecutive wildcards and would 

thus be missed by SLiMFinder defaults. It could be that by restricting the total number of wildcards 

akin to LDMS algorithms, rather than constraining the wildcards between pairs of defined positions, a 
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more appropriate motif space could be constructed. Other approaches could reduce the motif space to 

focus on specific motif types. SLiMFinder, for example, includes an “alpha helix” mode that 

considers the helix periodicity and only searches for motifs in positions i, i+3/4, i+7, although this is 

yet to be benchmarked. 

3.4.2.1 Motif Independence and Clouding 

The statistics for SLiMs with different numbers of defined positions are generally kept separate as 

clearly they are not independent. PxxP, for example, is a sub-motif of PxxPx[KR] and their 

frequencies will clearly be related. Unfortunately, when such overlapping motifs are returned, it is 

currently impossible to tell whether the shorter is enriched because of enrichment of the larger or vice 

versa. Early attempts with SLiMFinder to incorporate the frequency of shorter versions of the 

returned pattern to assess significance were not very successful (data not shown) but it is a potential 

improvement to the statistical model that could be considered in future. Instead, SLiMFinder groups 

overlapping motifs (based on occurrences in proteins, not pattern definitions) into “clouds”, allowing 

the user to rapidly identify different variants of the same general motif prediction (41). Similarities 

between different SLiMs can also be identified a posteriori using CompariMotif (69). Aligned 

occurrences of SLiMFinder clouds could be subsequently passed through an alignment-based tool, 

such as SLiMMaker or MEME, to give a more complete definition of the cloud. 

A particular challenge to the statistical assumption of motif independence is the treatment of 

ambiguity. Ambiguous motifs are clearly not independent from the variants used to build them, thus 

increasing the motif space by all possible ambiguous motifs would unfairly and dramatically inflate 

the multiple testing correction. The current implementation of SLiMChance therefore ignores 

ambiguity when calculating and correcting for the size of the SLiMBuild motif space. For a complete 

motif space and limited equivalencies, this does not seem to affect the model too badly. The affects 

have not been well modelled, however. If too many equivalence sets are used it could result in 

inflation of significance for ambiguous motifs. In general, while ambiguous motifs are often more 

informative than pure fixed position motifs, confidence that they represent reliable predictions can be 

substantially increased if there is also a pure fixed position motif returned in the same cloud. 
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3.4.2.2 Altered Alphabets and Specified Amino Acids 

One way to reduce the size of the motif space being searched is to reduce the alphabet. This can be 

achieved by combining certain amino acids with similar properties. The utility of this approach is not 

clear, however. There is an obvious trade-off between reducing the motif space and increasing the 

probability of given patterns occurring by chance by increasing the corresponding frequency of the 

new characters. This is seen in the difference between protein and DNA motifs: the latter need to be 

longer and/or more abundant to achieve significance. A second problem with this idea is that the 

biological justification is not clear. Whilst one could imagine combining lysine and arginine as 

positively charged amino acids, for example, they are not equally used by known motifs (1). 

A more powerful way (in principle) to reduce motif space is to mask out certain amino acids that are 

unlikely to be of interest. Alanine and glycine, for example, are generally considered to be quite 

boring. Because this reduces the sequence search space as well as the motif space, it gets around the 

problem of motifs becoming more likely to occur by chance. That said, it should be noted that all 

twenty amino acids are found in the defined positions of at least one known motif, so such filtering 

should be applied with caution. SLiMFinder includes an option to mask out specific amino acids but 

this has not been benchmarked. 

An alternative that is less extreme, and often easier to justify biologically, is to focus on motifs that 

contain a specific amino acid, such as a tyrosine if tyrosine phosphorylation is known to be important. 

This does not reduce the motif space as dramatically but can ease interpretation. An obvious 

application for such reductions would be the prediction of PTM sites. Indeed, in this instance it is 

possible to expand the alphabet by encoding modified residues with a 21st letter (e.g. Z) and then 

(optionally) specifying that motifs should have this letter. Although this is an option in SLiMFinder, 

we are not aware of any published work exploring or using this feature. A possible exception is the 

successful discovery of terminal motifs by SLiMFinder, which adds N-terminus (^) and C-terminus 

($) characters to each protein before expanding the protein alphabet to include them (41, 63).  
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3.4.2.3 Controlling Motif Space with Defined Queries 

The other way to reduce the motif space is to build it on a specific sequence (or set of sequences) 

rather than looking at all possible motifs. This is the basis of QSLiMFinder (“Query SLiMFinder”, 

Table 2), in which the motif space is built on a specific “query” protein sequence. Query motifs are 

then assessed for enrichment in another set of proteins that, for example, share a common PPI partner 

using the basic approach of SLiMFinder. Clearly the query sequence(s) used for building the motif 

space cannot be included in the search space itself as this would artificially inflate the support for 

those motifs in the data and thus there is a trade-off between reducing the motif space multiple testing 

and loss of signal in the data. QSLiMFinder can substantially improve search sensitivity over 

SLiMFinder where the query protein/region is quite small, e.g. a short binding region has been 

identified (data not shown). One caveat is that ambiguity cannot be usefully included in the statistical 

model: in order to be valuable, motif variants outside of the query must be included but these inflate 

the motif search space by an unknown amount. One solution is to return ambiguous motifs but only 

pay heed to those that also have a significant fixed-position pattern returned in the same cloud. 

3.5 Low Complexity Motifs 

Low complexity motifs are motifs that are dominated by a small number of amino acids. Examples 

include proline-rich motifs, serine-rich motifs, RG and RS repeats, and patches of positive or negative 

charge. Low complexity regions have a tendency to return a lot of similar motifs, especially if 

variable-length wildcards are used. Masking low complexity sequences can avoid this but at the risk 

of missing genuine low complexity motifs. As some low-complexity motifs are certainly functional, 

this trade-off is largely going to be determined by the scale of the analysis being performed. Large-

scale analyses will probably want to mask low complexity regions more stringently, as the probability 

of throwing together some proteins that share low complexity regions by chance will be high. Focused 

small-scale studies, on the other hand, should be more cautious. When such motifs are returned, the 

question must be asked: does the low complexity motif simply reflect a sequence bias, or does any 

such sequence bias reflect a high frequency of functional low complexity motifs in the dataset? As 
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with most bioinformatics predictions, SLiM discovery tools cannot themselves answer this and 

additional evidence must be considered. 

Large-scale application of DILIMOT to PPI data showed a marked tendency to recover proline- and 

serine-rich motifs (63, 71). This could reflect a genuine bias towards these residues in SLiMs or might 

be a reflection of their occurrence in low complexity proline- and serine-rich regions of proteins, 

which are conserved (at the level of amino acid enrichment) between species. A large-scale analysis 

of human interactome data using SLiMFinder did not find the same degree of bias (63). As this 

analysis masked out very low complexity regions and used motif conservation (as opposed to 

rediscovery), the implication is that the enrichment in the Neduva et al. study is largely due to low 

complexity regions. Of course, such low complexity regions are presumably functional and are 

genuinely enriched in the data: the question is whether they are enriched because they mediate the PPI 

of interest, or whether they are a different recurring feature of proteins that some methods are 

particularly sensitive to finding. 

3.6 Predicting SLiMs from Short Peptide Data 

The importance of correcting for evolutionary relationships has been stressed in the preceding 

sections. Sometimes, such correction is neither appropriate nor necessary because the input data does 

not have evolutionary relationships to worry about. Examples of this are phage display and peptide 

libraries, which sample a large sequence space and select for short peptide regions that can bind a 

desired partner. These techniques can be very useful for SLiM discovery as they can substantially 

increase the number of motif occurrences. Indeed, they can potentially be used to identify motifs in 

singleton interactions where enrichment in true PPI is not possible. The proportion of input sequences 

assumed to contain the motif is also high, which makes profile methods such as those in the MEME 

Suite (72) popular for such applications. SLiMFinder can be used to predict significantly enriched 

regex motifs from peptide data (see example 3 in the original paper (41)) but the background amino 

acid frequencies will need to be corrected to represent the pre-selection peptide sequences. The 

evolutionary filtering and sequence masking should also be switched off but redundancy in the 

peptides should be removed prior to analysis, unless it represents true independent enrichment.  
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Domain binding and phosphorylation targets obtained with these methods can also serve as input for 

specialised SLiM discovery tools. MOTIPS (134) converts the given data into a sequence profile 

(after a normalisation step to ensure consistent scoring among evidence from different sources), which 

is used in turn for whole-proteome scans that produce a list of potential domain targets. The score for 

each putative motif is combined with feature assessments based on residue-specific, pre-computed 

values of conservation, solvent accessibility and disorder bias and then compared with a validated 

sequence set. The final output of MOTIPS is a ranked list of motif hits according to the likelihood of 

interacting with the domain of interest. In this fashion, the ability to independently recover the domain 

used for the original experiment can be used to assess the success or failure in motif prediction. 

3.7 Challenges to Interpretation of de novo SLiM Predictions 

Edwards et al. (2012) (63) provides a fairly detailed discussion of the challenges in interpreting de 

novo SLiM predictions. Fundamentally, there are two connected questions:  

1. is the motif genuinely enriched? (i.e. is the statistical model good?)  

2. is the enrichment for the reasons postulated when the dataset was constructed? 

Both questions are arguably impossible to answer by bioinformatics alone, although robust 

benchmarking and data exploration can get a good handle on the former. Assuming that the SLiM 

prediction program functions as intended, the question then becomes whether the assumptions of the 

statistical model are valid or whether violations of that model could generate false positive 

enrichment. Again, the big consideration here is one of underlying protein sequence bias versus motif-

specific sequence bias. Trying different ways of masking the data and/or generating the background 

model can help get a handle on this. It is also important to check thoroughly for evolutionary 

relationships between sequences that may have escaped detection. 

The second question is usually more important but harder to get a handle on: given that a set of target 

sequences S were selected for a reason (e.g. common PPI partner or subcellular location), and the 

analysis show they are enriched for motif M, what is the causal relationship between M and S? 

Essentially three explanations are feasible: 
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1. M is (at least in part) responsible for S. This is usually the desired outcome, and therefore the 

default explanation, but it should be concluded with caution without additional supporting 

data and/or follow-up experiments because the alternative explanations are also possible. 

2. M is correlated with S but not causal. Non-independence of biological data makes it 

challenging to differentiate causation from correlation. Suppose, for example, all proteins in S 

bind a protein A. The interactome of A is likely to be enriched for proteins targeted to a 

specific subcellular component C and/or share interactions with another protein B. Does motif 

M interact with protein A or protein B or target proteins to C? 

3. M and S are unrelated. M is an enriched feature of the parent sequence dataset (e.g. the whole 

proteome) and its enrichment in S is purely chance. 

There is currently no good way to distinguish between these explanations from an analysis of a single 

protein dataset but hints can be achieved by additional analyses. For example, specifically looking for 

enrichment in other PPI or GO datasets could give hints regarding non-causal correlations, whilst 

analysing randomly assembled datasets of real proteins from the same source can give insights into 

nonspecific enrichment. (See (11) and (63) for further discussion of these issues.) Correlating 

occurrences of predicted SLiMs with different biological features in a similar vein to FIRE-pro (124) 

might prove to be very helpful in this endeavour. 

Flanking regions of SLiMs have been shown to be important for both function and specificity of 

binding (47, 98). It is therefore not surprising that patterns returned from de novo SLiM prediction of 

known motifs (i.e. true positive benchmarks) frequently include flanking residues beyond the database 

definition. There could be several reasons for this. Chance enrichment of particular flanking residues 

could result in the longer SLiM being significantly enriched due to enrichment of the shorter versions. 

Alternatively, the flanking residues could belong to a second co-occurring motif as part of a ‘switch’ 

in which two neighbouring or overlapping SLiMs mediate mutually exclusive binding (13, 60), 

possibly by the steric hindrance introduced by the bound globular domain (8). Finally, of course, there 

remains the possibility that literature/database definition of the SLiM is incomplete, and that the 

enriched flanking position is actually part of the SLiM or a sub-class thereof. 
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4 Concluding Remarks 

Computational SLiM prediction is a blossoming field with new methods being developed on a regular 

basis. Whilst welcome, this can be confusing for the uninitiated, who may struggle to choose from the 

various tools available. There is no universal best solution to all SLiM prediction problems and so the 

nature of the input data as well as any potential follow up must be taken into consideration. Is the task 

motif instance prediction, or de novo discovery? Is the target of the search a single protein of interest, 

an alignment, a small dataset of multiple proteins, or a whole proteome/interactome? Are motifs likely 

to be shared by family members and thus have arisen by divergent evolution across homologues, or 

are they independent convergently evolved instances in unrelated proteins? Modelling the latter is the 

most common approach for de novo prediction but it is crucial to correct for evolutionary 

relationships in the data or else the former will be identified without realising it. Despite the advances 

made by DILIMOT (71, 113), SLiMDisc (77) and SLiMFinder (41) in this area, a surprising number 

of de novo discovery tools are still published that overlook this fundamental discovery bias. 

Performance benchmarking is often overlooked but this is vital if one is to understand the strengths, 

weaknesses and biases of the predictions produced. We have developed SLiMBench and made it part 

of the SLiMSuite package, which we hope will make this exercise easier in future. Not only can this 

enable direct comparisons of method performance, it can also help optimise parameter settings for 

SLiM discovery. The importance of an estimate of statistical significance for de novo predictions 

cannot be overstated. Is there really a motif to be found in the data? If there may not be, what is the 

False Positive Rate of the method being applied and what implications does this have given the scale 

of the analysis and planned experimental follow up? This is particularly crucial for large-scale 

analyses. Statistical significance is not only important for estimated False Discovery Rates; it is the 

only metric that is comparable between datasets with different sequence numbers, lengths, and/or 

composition. 

Computational SLiM discovery has made a lot of progress over the last decade in successfully 

identifying over-represented motifs. Nevertheless, Davey et al. point out that “Computational 
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approaches, which should lead and focus experimental discovery, are in many ways lagging behind 

the advances of the experimentalists… [and] have yet to reveal the expected multitude of novel motif 

classes and instances.” (1) Methods that differentiate between causal and coincidental enrichment are 

the key to the future success of bioinformatics approaches to this challenging yet important biological 

problem. 

Tables 

Table 1. The main tools of the SLiMSuite bioinformatics package. 

Tool Ref Description Web1 
CompariMotif (69) A unique motif-motif comparison tool for identifying similar 

SLiMs. Used for clustering results of predictions and identifying 
known motifs. 

Y 

GABLAM (77) BLAST-based protein similarity scoring and clustering. Used for 
(Q)SLiMFinder and SLiMProb adjustments for evolutionary 
relationships.  

N 

GOPHER (42) Automated orthologue prediction and alignment algorithm. Used 
for conservation-based masking ((Q)SLiMFinder/SLiMProb) and 
prediction (SLiMPrints). 

Y 

PRESTO * Forerunner of SLiMSearch (now SLiMProb). A tool for searching 
pre-defined SLiMs against a protein dataset. Does not include 
over-/under-representation statistics but allows mismatches and 
more flexible SLiM definitions. 

N 

QSLiMFinder (41)* Query-based variant of SLiMFinder with increased sensitivity and 
specificity, ideal for SLiM discovery from host-pathogen 
interactions or where at least one interaction is established 
experimentally.  

N 

SLiMBench * A new tool for creating and assessing de novo SLiM prediction 
benchmarking datasets.  

N 

SLiMdb (63) Interactive web pages to explore results of interactome-wide de 
novo SLiM prediction in humans, with links to other SLiMSuite 
tools and online public resources. 

N† 

SLiMDisc (42, 
77) 

One of the first de novo SLiM prediction tools that corrected for 
evolutionary relationships. Based on heuristic ranking of over-
represented motifs in unrelated proteins. 

Y 

SLiMFinder (41, 
100) 

The first de novo SLiM prediction based on a statistical model of 
over-represented motifs in unrelated proteins. Repeatedly 
achieves the greatest specificity in benchmarking. 

Y 

SLiMMaker * A simple tool for converting aligned peptides or SLiM 
occurrences into a regular expression motif. 

Y 

SLiMPred (129) Machine Learning de novo SLiM/MoRF prediction in single 
proteins based on known motif attributes. 

Y† 

SLiMPrints (97) Novel de novo SLiM/MoRF prediction in single proteins from 
statistical clustering of conserved disordered residues. 

Y† 

SLiMProb (25) Unique tool providing biological context (disorder & 
conservation) for searches of pre-defined SLiMs along with 
under- and over-representation statistics, correcting for 

Y 
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evolutionary relationships. Formerly called SLiMSearch 1.x but 
renamed to avoid confusion with SLiMSearch2. 

SLiMSearch2 (68) Advanced biological context (disorder, conservation and protein 
features), and ranking for proteome-wide searches of pre-defined 
motifs. Provides simple enrichment statistics for PPI partners and 
GO terms. 

Y† 

1. Webserver available at http://bioware.ucd.ie/. 

* Not published at time of press. Please see citation details at: http://bioware.soton.ac.uk/. 

†Webserver only. Not part of SLiMSuite download.  

Table 2. Glossary of key terms 

Term Related Terms Description 

Convergent 
evolution 

Molecular mimicry Independent evolutionary origins of the same function or motif on 
different genetic backgrounds. 

Degenerate Ambiguous A SLiM position that can have 2+ different amino acids. 

Divergent 
evolution 

Conservation The accumulation of differences over time following shared 
ancestry. Where such differences are selected against (purifying 
selection) sequence conservation will be seen. 

Domain-Motif 
Interaction 

DMI PPI mediated by a SLiM in one protein and a SLiM-binding 
domain in the other. 

Intrinsically 
Disordered 
Protein/Region 

IDP/IDR A protein/region that lacks a stable three-dimensional structure in 
the unbound state. 

Instance Occurrence A single observation of a SLiM in a single protein. 

(l, d) Motif Search LDMS, (l, d) 
challenge problem, 
planted motif 
search 

Motif search algorithms that search for recurring motifs of total 
length l with up to d mismatches in each occurrence. 

MoRF MoRE Molecular Recognition Feature/Element. Short to medium-length, 
intrinsically disordered protein regions that mediate PPI via 
disorder-to-order transitions. 

Pattern Motif definition The regular expression that defines a motif. 

Post-Translational 
Modification 

PTM A chemical modification of an amino acid that alters its 
properties, such as phosphorylation of serine, threonine or 
tyrosine. 

Profile PSSM, PSWM, 
PWM, HMM. 

An extended representation of a sequence where each position 
accounts for variability between elements of the alphabet. Also 
known as a Position (Specific) Scoring/Weight Matrix 
(PSSM/PSWM/PWM). For the purposes of this review, hidden 
Markov models are also referred to under the “profile” umbrella.  

Protein-Protein 
Interaction 

PPI A physical interaction between two proteins. 

Regular 
expression  

Regex, PROSITE 
pattern 

A common programming notation for string (text) patterns. For 
the purposes of this review, variants on the standard regular 
expression notation are included under the “regex” umbrella. 

Short Linear 
Motif 

SLiM, Linear 
Motif, LM, 

A short (typically <15aa) linear stretch of protein sequence with 
specific residues important for function. Within this review, 
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Minimotif "motif" refers to a SLiM unless otherwise specified. 

Support UP Support The number of different proteins that contain a given SLiM. “UP” 
indicates that this is the number of unrelated proteins. 

Wildcard  A position in a SLiM that can be any amino acid. 

 

 

 

 

Table 3. SLiM regex elements. 

Regex PROSITE MnM SLiMSuite Description 

A -A- A A A single fixed amino acid, A using standard IUPAC letters. 

[ILV] -[ILV]- [ILV] [ILV] Either I, L or V. Can have any number of possible amino 
acids. 

[^P] or 
[^DE] 

-{P}- or  
-{DE}- 

 [^P] or 
[^DE] 

Exclude one or more amino acids. 

. -x- X X or . Wildcard. Any amino acid. 

.{n} -x(n)-  .{n} or X{n} A repeat of n wildcard positions. 

.{m,n} -x(m,n)-  .{m,n} or 
X{m,n} 

A repeat of at least m and at most n wildcard positions. (m 
can be zero.) 

^ < < ^ N-terminus of protein. 

$ > > $ C-terminus of protein. 

(p1|p2)   (p1|p2) Either regex pattern p1 or p2. 

r{n} r(m)  r{n} n repetitions of r, where r is one of the above regex 
elements. 

r{m,n} r(m,n)  r{m,n} At least m and up to n repetitions of r, where r is one of the 
above regex elements. 

   <r:n:m> At least m of a stretch of n residues must match r, where r is 
one of the above regex elements (single amino acid, 
ambiguity or exclusion list). 

   <r:n:m:b> Exactly m of a stretch of n residues must match r and the 
rest must match b, where r and b are each one of the above 
regex elements. 

   (ABC) A, B and C in any order. 
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Table 4. Large-scale de novo SLiM Discovery analyses. 

Method Data Source Species Data 
available?  

Predictions 
available? 

Ref 

FIRE-pro GO, PPI, sub-
cellular 
localization, 
half-life 

Online 
databases and 
curated 
bibliography 

yeast  Y (with 
formatted 
data for 
other 
species) 

Y (124) 

SLiMFinder PPI Online 
databases 

human Y Y (63) 

LMD 
(DILIMOT) 

PPI Yeast two-
hybrid, online 
databases and 
curated 
bibliography 

human, fly, 
nematode, 
yeast 

N 
(retrievable 
from 
original 
authors) 

Y (71) 

D-STAR PPI with SH3 
domains and in 
TGFβ signalling 
pathway 

Online 
databases and 
curated 
bibliography  

yeast N 
(retrievable 
from 
original 
authors) 

Y (partial) (121) 

motif-x Phosphopeptides Immunoaffinity 
and SCX 
Chromatography 

human N 
(retrievable 
from 
original 
authors) 

Y (from 
publication) 

(135) 

motif-x & 
scan-x 

PPI Online 
databases 

human, 
mouse, fly, 
yeast 

N 
(retrievable 
from 
original 
authors) 

Y (136) 

motif-x Phosphopeptides LC/MS-MS Fly, mouse, 
yeast 

Y Y (137-
139) 

MeMotif Transmembrane 
proteins 

Online 
databases 

All N 
(retrievable 
from source) 

Y (70) 
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Table 5. Computational SLiM Discovery methods. 

Tool Description 
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AMS AutoMotif Server. Machine Learning predictions of PTM. (101)  þ þ     þ  þ      þ 
ELM Eukaryotic Linear Motif server. Regex searches of known SLiMs with 

numerous contextual filters. 
(9) þ  þ   þ   þ    þ þ þ  

iELM interactions of Eukaryotic Linear Motif. Predict new instances of known 
ELM motifs from PPI data. 

(58) þ  þ   þ   þ þ    þ þ  

iSPOT infer Sequence Prediction Of Target. Prediction of PDZ, SH3 and WW 
binding sequences from structural data. 

(91) þ  þ    þ   þ þ    þ  

MnM Minimotif Miner. Regex searches of curated literature motifs with 
numerous contextual filters. 

(10) þ  þ   þ   þ    þ  þ þ 

ScanProsite Perform Regex and Profiles searches of PROSITE patterns or user-
defined motifs against user proteins or public databases. 

(76) þ  þ þ  þ þ  þ þ þ    þ  

Scansite Profile-based searches of known phophoSLiMs against user sequences. 
Searches of user-defined regex and profile motifs against public 
databases. 

(22) þ  þ þ  þ þ  þ  þ    þ þ 

3of5 3of5 regex search tool. Simple protein searches with expanded regex 
notation. 

(24) þ   þ  þ    þ       

ANCHOR Identifies regions with propensity for order within IDR. Can map user-
defined regex onto disorder prodiles. 

(125) þ   þ þ þ  þ þ     þ  þ 

FIMO Find Individual Motif Occurrences (MEME Suite). Search MEME 
profiles against user proteins or public databases.  

(73) þ þ  þ   þ   þ þ  þ   þ 

GLAM2SCAN Scanning with Gapped Motifs (MEME Suite). Search GLAM2 profiles 
against user proteins or public databases. 

(74) þ þ  þ   þ   þ þ  þ    

MAST Motif Alignment & Search Tool (MEME Suite). Search with multiple 
profile motifs in combination for proteins with high combined scores. 

(75) þ þ  þ   þ   þ þ  þ   þ 

PRESTO Protein Regular Expression Search Tool (SLiMSuite). Regex search tool 
of user-defined SLiMs against local protein data with expanded regex 
notation and tolerance of mismatches.  

(140)  þ  þ  þ    þ   þ þ þ  
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SLiMProb Short Linear Motif Probability (SLiMSuite). Formerly SLiMSearch 1.x. 
Regex search tool of user-defined SLiMs against local protein data with 
expanded regex notation and numerous contextual masking options. 
Returns significantly over- and under-representation statistics controlling 
for homology. 

(25) þ þ  þ  þ    þ  þ þ þ þ þ 

SLiMSearch2 Short Linear Motif Search (SLiMSuite). Proteome screen of regex with 
contextual filters.  

(68) þ þ  þ  þ     þ  þ þ þ  

SLiMScape Short Linear Motif analysis plugin for Cytoscape (SLiMSuite). Can run 
SLiMProb or SLiMFinder on proteins selected within Cytoscape. 

(99)  þ  þ þ þ    þ  þ þ þ þ þ 

D-MIST Domain–Motif Interactions from Structural Topology. Machine Learning 
predictions of DMI from PDB based on structural context. 

(131)  þ   þ  þ    þ   þ þ  

D-MOTIF LDMS CMM tool. Identifies correlated motifs in PPI data. (121)  þ   þ þ     þ      
D-STAR LDMS CMM tool. Identifies correlated motifs in PPI data. (121)  þ   þ þ     þ      
DILIMOT DIscovery of LInear MOTifs. Formerly LMD. Models convergent 

evolution/over-representation of TEIRESIAS regex motifs with 
evolutionary and structural filters. 

(71, 
113) 

þ    þ þ   þ   þ þ þ   

FIRE-pro Finding Informative Regulatory Elements in proteins. LDMS CMM tool 
using Mutual Information to identify motifs that correlate with biological 
features. 

(124) þ þ   þ þ     þ    þ þ 

GLAM2 Gapped Local Alignment of Motifs (MEME Suite). Profile-based de 
novo prediction of over-represented patterns using Gibbs sampling and 
simulated annealing. 

(74) þ þ   þ  þ   þ       

MEME Multiple Em for Motif Elicitation (MEME Suite). Profile-based de novo 
prediction of over-represented patterns using expectation maximisation. 

(114) þ þ   þ  þ   þ       

MFSPSSMpred Masked, Filtered and Smoothed Position-Specific Scoring Matrix-based 
Predictor. Identifies short regions with propensity for order within IDR 
based on sequence features and evolutionary conservation. 

(106) þ þ   þ   þ þ    þ þ þ  

MoRFpred MoRF predictor. Identifies regions with propensity for order within IDR. (128) þ    þ   þ þ     þ   
motif-x Generates fixed position motif from alignment peptides based on over-

representation versus background amino acid frequencies. 
(107) þ    þ þ    þ þ      

MotifCluster LDMS CMM tool. Identifies correlated motifs in PPI data. (122)  þ   þ þ     þ    þ þ 
MOTIPS MOTIf analysis Pipeline. De novo profile prediction based on over-

representation in short aligned peptides combined with domain-based 
PPI data. 

(134) þ þ   þ  þ   þ þ  þ þ   

NestedMICA Nested Motif Independent Component Analysis. Identification of 
enriched motifs versus background reference proteins. 

(117, 
118) 

 þ   þ  þ   þ       

PepSite Predicts possible DMI from peptides and structural data. (92) þ þ   þ þ   þ      þ þ 
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qPMS7 Over-representation of LDMS patterns without correction for homology. (119, 
120) 

þ þ   þ þ    þ       

Pratt Over-represented regex motif prediction without correction for 
homology. 

(110) þ    þ þ    þ       

QSLiMFinder Query SLiMFinder (SLiMSuite). Query-based de novo regex SLiM 
prediction modelling convergent evolution with correction for homology, 
numerous masking options and statistical support.  

(41) þ þ   þ þ    þ  þ þ þ þ þ 

SLIDER LDMS CMM tool. Identifies correlated motifs in PPI data by mapping 
motifs onto PPI interfaces using structural data. 

(123)  þ   þ þ     þ   þ þ  

SLiMDisc Short Linear Motif Discovery (SLiMSuite). Regex de novo SLiM 
prediction modelling convergent evolution with correction for homology 
and numerous masking options. 

(42, 
77) 

þ þ   þ þ    þ  þ þ þ   

SLiMFinder Short Linear Motif Finder (SLiMSuite). Regex de novo SLiM prediction 
modelling convergent evolution with correction for homology, numerous 
masking options and statistical support. 

(41, 
100) 

þ þ   þ þ    þ  þ þ þ þ þ 

SLiMMaker Short Linear Motif Maker (SLiMSuite). Simple regex consensus 
generator from aligned peptide sequences. 

(140) þ þ   þ þ    þ       

SLiMPred Short Linear Motif Predictor (SLiMSuite). Artificial Neural Network 
predictor of SLiMs from sequence features. 

(129) þ    þ   þ þ    þ þ   

SLiMPrints Short Linear Motif fingerprints (SLiMSuite). Prediction of SLiM 
conservation fingerprints using statistical modelling of RLC. 

(97) þ    þ þ   þ    þ þ  þ 

TEIRESIAS Simple but efficient text pattern search tool. (112)  þ   þ þ    þ       

* Methods accepting multiple proteins can usually be scaled for single proteins or proteomes. 
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Table 6. SLiMMaker consensus motifs from annotated ELM instances for top 20 ELMs ranked by instances in ELM. 

ELM ELM Regex Definition Refined SLiMMaker Regex1 N2 
LIG_WRPW_1 [WFY]RP[WFY].{0,7}$ [WY]RP[WY] 93/95 
LIG_EH_1 .NPF. NPF 88/88 
LIG_AP2alpha_2 DP[FW] DP[FW] 54/54 
LIG_PDZ_Class_1 ...[ST].[ACVILF]$ [ST].[LV]$ 41/48 
MOD_NMyristoyl ^M{0,1}(G)[^EDRKHPFYW]..[STAGCN][^P] ^MG[AGNQS]..[AGS] 38/48 
MOD_SUMO [VILMAFP](K).E [FILV]K.E 43/45 
CLV_C14_Caspase3-7 [DSTE][^P][^DEWHFYC]D[GSAN] [DST].[LPTV]D[AGS] 25/39 
LIG_SUMO_SBM_1 [ILV](.[ILV]|[ILV]|[ILV].)[ILV][STDE]{1,10} [ILV][ILV][DIL][DLS][DST] 27/39 
LIG_CtBP_PxDLS_1 (P[LVIPME][DENS][LM][VASTRG])|(G[LVIPME][DENS][LM][VASTRG]((K)|(.[KR]))) P[ILM][DN]L[RS] 19/32 
LIG_Rb_LxCxE_1 [LI].C.[DE] L.C.[DE] 31/32 
LIG_WW_1 PP.Y PP[AEP]Y 21/28 
MOD_PKA_2 .R.([ST])[^P].. R.S 27/28 
TRG_PEX_1 W...[FY] W..[DEQ][FY] 23/27 
TRG_NLS_MonoExtN_4 (([PKR].{0,1}[^DE])|([PKR]))((K[RK])|(RK))(([^DE][KR])|([KR][^DE]))[^DE] [KPR].[KR].[KR] 18/26 
LIG_PTAP_UEV_1 .P[TS]AP. P[ST]AP[LPQS] 20/25 
MOD_PKA_1 [RK][RK].([ST])[^P].. [KR]R.[ST] 23/25 
DEG_SCF_TIR1_1 .[VLIA][VLI]GWPP[VLI]...R. QIVGWPPVRSYRK 3/24 
LIG_NRBOX [^P]L[^P][^P]LL[^P] L..LL 24/24 
MOD_CMANNOS (W)..W W[GS][EPS]W 12/24 
MOD_LATS_1 H.[KR]..([ST])[^P] H.R..[ST] 21/23 

1. Product of iterative SLiMMaker regex construction from annotated ELM instances with default settings: each variant in an ambiguous position must be 

present in at least 3 sequences; max 5 variants per ambiguous position; during iterations, 75% sequences must match position to be non-wildcard. 

2. The number of annotated ELM instances matching the refined SLiMMaker regex. 
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