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Abstract In the present paper the Differential Quadra-
ture Method, DQM, and the domain decomposition
are used to carry out the free transverse vibration anal-
ysis of non-uniform multi-span rotating Timoshenko
beams with perfect and not perfect boundary condi-
tions. The cross section could vary in a continuous
or discontinuous fashion along the beam length. The
material of the beam could be different in each beam
span. The influence of elastically clamped boundary
conditions at hub end are studied and discussed. The
effect of an arbitrary hub radius is considered. The
governing differential equations of motion for rotat-
ing Timoshenko beams come from the derivation of
Hamilton’s principle. The first six natural frequencies
of vibration are obtained for many particular situa-
tions and for some of them the mode shapes are also
available. The examples of applications of the method
indicated its effectiveness. The results for particular
cases are in excellent agreement with published results
and results obtained by means of the finite element
method.
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1 Introduction

The dynamic behavior of rotating beams is of practical
interest since it is widely used in many engineering ap-
plications. Rotating beams can be used to model steam
and gas turbine blades, spinning space craft, helicopter
rotor blades, gear teeth and the like.

The most simplified model, based on one dimen-
sional Euler-Bernoulli theory, can be used for low nat-
ural frequencies of long slender beams, [1–7]. Hodges
and Rutkowosky [1], used a variable order finite ele-
ment method. Naguleswaran [2] described the lateral
vibration of uniform beams with clamped, pinned and
free boundary conditions, and expressed the general
solution of the mode shape equation as the superpo-
sition of four linearly independent power series solu-
tion functions. In 2000 Banerjee [3] developed for the
first time a dynamic stiffness matrix to study the free
vibration characteristics of uniform and tapered rotat-
ing beams. Banerjee, Su and Jackson [4] presented
a large range of examples of rotating beams, solved
by the stiffness matrix method according to the Euler
Bernoulli theory. They considered beams with linearly
varying taper in depth and/or width of the cross sec-
tion along the length that allows constructing different
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cross sections which cover a large number of practi-
cal situations. Wang and Wereley [5] proposed a spec-
tral finite element method to develop a low-degree-of-
freedom model for dynamic analysis of rotating ta-
pered Euler Bernoulli beams. Özdemir and Kaya [6]
studied the out-of-plane free vibration analysis of a
double tapered Euler–Bernoulli beam, mounted on the
periphery of a rotating rigid hub, they used the differ-
ential transform method (DTM) to solve the governing
differential equation of motion. Gunda and Ganguli
[7] developed a new rotating beam finite element that
satisfies the governing static homogeneous differential
equations of Euler Bernoulli rotating beams. They suc-
cessfully applied these elements to determined natu-
ral frequencies of uniform and tapered rotating beams
with clamped and hinged boundary conditions.

As it is known Timoshenko theory of beams ex-
tended in the range of applicability the Euler Bernoulli
theory, by taking into account effects of rotational in-
ertia and transverse shear deformation. This extension
leads to insignificant differences with the prediction of
the Euler-Bernoulli model in the case of slender beams
and low modes of vibration, but it can lead to impor-
tant corrections in the case of short beams and when
higher natural frequencies are determined.

Banerjee [8] in an outstanding work presented an
important paper in which the corresponding govern-
ing differential equations of motion for rotating Timo-
shenko beams undergoing free natural vibrations were
derived using Hamilton’s principle and include the ef-
fect of an arbitrary hub radius. The relevance of a ve-
locity dependent term was made clear and a free vi-
bration analysis was carried out using the dynamics
stiffness matrix, with the Frobenius method.

Özdemir and Kaya [9] used the differential trans-
form method for free vibration analysis of a rotat-
ing tapered Timoshenko beam. Kumar and Ganguli
[10] looked for rotating beams whose eigenpairs (fre-
quency and mode shape) are the same as that of uni-
form not rotating beams for a particular mode. Ganesh
and Ganguli [11] proposed a new physics based ba-
sis function for vibrating analysis of high speed rotat-
ing beams using the finite element method. The ba-
sis function gave rise to shape functions which depend
on position of the element in the beam, material, geo-
metric properties and rotational speed. Attarnejad and
Shahba [12] introduced the concept of Basic Displace-
ment Functions (BDFs) to study free vibrations of ro-
tating tapered beams from a mechanical point of view

and showed that exact shape functions could be de-
rived in terms of BDFs. Allahverdizadeh et al. [13] an-
alyzed the vibration properties of a rotating Function-
ally Graded Electro-Rheological beam using Hamil-
ton’s principle and finite element method.

The Differential Quadrature Method, DQM, has
been successfully used to analyze vibration of beams.
Laura and Gutiérrez [14] proposed in 1993, the anal-
ysis of vibrating Timoshenko beams using the DQM;
and in 1996 Bert and Malik [15] presented a review
of the DQM in computational mechanics. Karami and
Malekzadeh [16] used the DQM for beam analysis and
Karami, Malekzadeh and Shahpari [17] present the
DQM as an alternative discrete approach for solving
directly the governing equations for vibration of shear
deformable non uniform beams. Liu and Wu [18] pro-
posed a vibration analysis of Bernoulli beams using
the differential quadrature rule and domain decom-
position. More recently Felix et al. [19], and Bam-
bill et al. [20, 21] used the differential quadrature
method and the domain decomposition for determin-
ing natural frequencies and mode shapes of uniform
and tapered rotating Timoshenko beams. Zong and
Zhang [22], presented the latest important develop-
ments of Differential Quadrature methods in recent
years.

The present paper deals with the transverse vibra-
tions of cantilever rotating Timoshenko beams with
many additional complexities. The equations of mo-
tion [8] are applied to multi-span beams with a vari-
ation of the mass per unit length. The beam model
could have step jumps in its cross section or in the ma-
terial properties, a tapered variation of the cross sec-
tion, an elastic connection to the hub and an arbitrary
hub radius. The natural frequencies and mode shapes
for many numerical examples are obtained using the
DQM and in some cases also with the finite element
method. The authors present in this paper a continu-
ation of their previous published work [19–21]; and
analyze the effect of a non perfect clamped condition
at the hub end on the frequencies and mode shapes of
rotating beams. The effects of the radius of the hub
and the slenderness ratio of the beam are analyzed
too.

2 Theoretical considerations

The configuration of the structural beam system is il-
lustrated in Fig. 1. The multi span beam of length L
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Fig. 1 Timoshenko rotating beam

Fig. 2 Subdomain k of the Timoshenko rotating beam

is attached radially to the outside of a rotating hub
with radius R1, that rotates at constant speed η. The
beam cross section is assumed to have doubly symme-
try. The origin of the Cartesian coordinate system is
at the hub end of the beam, the x-axis coincides with
the centroidal axis of the beam. The y-axis is parallel
to the axis of rotation and the z-axis lies in the plane
of rotation. A principal axis of the beam cross section
is parallel to y-axis. The hub is considered infinitely
rigid in the x-direction.

The mass m(x) per unit length varies with the x

coordinate. The edge attached to the hub is supposed
elastically clamped. It may rotate around the z-axis
and translate in the y-direction, while the elastic sup-
port reacts with a restoring moment proportional to the
rotation angle and a restoring force proportional to the
transversal displacement.

The beam domain is discretized into p subdomains
depending on the geometric and/or material disconti-
nuities. Figure 2 shows subdomain k.

The displacements w and rotation ψ in the x–y

plane due to bending and shear deformation are taken

into account and the Coriolis effects are not consid-
ered. The boundary conditions at outer ends and the
compatibility relations of internal forces and displace-
ments between adjacent subdomains are included. The
governing equations of motion were derived using
Hamilton’s principle [8].

Figure 2 shows the subdomain k of length Lk of the
rotating beam.

The centrifugal force dF̄k , generated at a differen-
tial beam element located at Rk + xk is:

dF̄k = η̄2(R̄k + x̄k)ρkdVk; dVk = Akdxk; (1)

with Ak = Ak(xk) the area of the cross section and ρk

the mass density of the beam segment k at xk .
Then the internal tensile axial force N̄k(x̄k) due to

the rotational speed in the section of the beam at (Rk +
xk), is:

N̄k =
(∫ Lk

x̄k

dF̄k

)
+ Fk+1;

N̄k(x̄k) = η̄2
(

R̄k

∫
Lk

x̄k

ρkAk(x̄k) dx̄k

+
∫

Lk

x̄k

ρkAk(x̄k)x̄k dx̄k

)
+ Fk+1,

(2)

with Fk+1 the outboard force at the end of the segment
k, due to the adjacent segments from segment k + 1 to
the end segment p.

Assuming harmonic oscillation so that

w̄k(x̄k, t) = W̄k(x̄k)e
iωt ; (3a)

ψ̄k(x̄k, t) = Ψ̄k(x̄k)e
iωt ; (3b)

where ω is the circular frequency of oscillation in ra-
dians per second, and W̄k and Ψ̄k are the maximum
amplitudes of the displacements w̄k and ψ̄k .

The internal forces, shear force and bending mo-
ment at an instant t , in the section of the beam at
(Rk + xk) from the axis of rotation are:

Q̄∗
k(x̄k, t) = Q̄k(x̄k)e

iωt ; (4a)

M̄∗
k (x̄k, t) = M̄k(x̄k)e

iωt (4b)

with

Q̄k(x̄k) = (
N̄k(x̄k) + κkGkAk(x̄k)

)dW̄k(x̄k)

dx̄k

− κkGkAk(x̄k)Ψ̄k(x̄k); (5)

M̄k(x̄k) = EkIk(x̄k)
dΨ̄k(x̄k)

dx̄k

(6)
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Q̄k(x̄k) and M̄k(x̄k) are the maximum amplitudes of
the shear force and the bending moment; with κk the
shear factor; Gk = Ek/2(1 + νk) the shear modulus,
and νk the Poisson’s ratio, and Ik = Ik(x̄k) the second
moment of area of the beam cross section and Ek the
Young’s modulus.

The governing differential equations of motion of
a segment k of the rotating beam can be expressed as
[8]:

−dQ̄k(x̄k)

dx̄k

= ρkAk(x̄k)ω
2W̄k(x̄k); (7)

−Q̄k(x̄k) + N̄k(x̄k)
dW̄k(x̄k)

dx̄k

− dM̄k(x̄k)

dx̄k

− ρkIk(x̄k)η̄
2Ψ̄k(x̄k) = ρkIk(x̄k)ω

2Ψ̄k(x̄k) (8)

The term ρkIk(x̄k)η̄
2Ψ̄k(x̄k) was introduced by Baner-

jee [8] and allows obtaining more realistic results, es-
pecially when the rotation speed is high.

Replacing Eqs. (5) and (6) into Eqs. (7) and (8), the
equations of motion written in terms of the displace-
ments and the centrifugal force are obtained:

− dN̄k(x̄k)

dx̄k

dW̄k(x̄k)

dx̄k

− N̄k(x̄k)
d2W̄k(x̄k)

dx̄2
k

− κkGkAk(x̄k)

(
d2W̄k(x̄k)

dx̄2
k

− dΨ̄k(x̄k)

dx̄

)

− κkGk

dAk(x̄k)

dx̄k

(
dW̄k(x̄k)

dx̄k

− Ψ̄k(x̄k)

)

= ρkAk(x̄k)ω
2W̄k(x̄k) (9)

− κkGkAk(x̄k)

(
dW̄k(x̄k)

dx̄k

− Ψ̄k(x̄k)

)

− EkIk(x̄k)
d2Ψ̄k(x̄k)

dx̄2
k

− Ek

dIk(x̄k)

dx̄k

dΨ̄k(x̄k)

dx̄k

− ρkIk(x̄k)η̄
2Ψ̄k(x̄k)

= ρkIk(x̄k)ω
2Ψ̄k(x̄k) (10)

The compatibility conditions of internal forces and
displacements between two adjacent beam segments
k and k + 1 are:

W̄k(Lk) − W̄k+1(0) = 0 (11)

Ψ̄k(Lk) − Ψ̄k+1(0) = 0 (12)

Q̄k(Lk) − Q̄k+1(0) = 0 (13)

Mk(Lk) − Mk+1(0) = 0 (14)

The boundary conditions at outer ends are:
(a) at x1 = 0 in subdomain k = 1;

Q̄1(0) − KW1W̄1(0) = 0 (15)

M̄1(0) − KΨ 1Ψ̄1(0) = 0 (16)

(b) at xp = Lp in subdomain k = p;

Q̄p(Lp) = 0 (17)

M̄p(Lp) = 0 (18)

where K̄ is used for the spring stiffness. For the elastic
restrain against translation the subscript is W and for
rotational spring the subscript is Ψ . Introducing a non-
dimensional coordinate variable in each subdomain k:

x = x̄k

Lk

(19)

and taking dimensionless parameters as follows:
For lengths, distances and displacements:

lk = Lk

L
; Rk = Rk

L
;

Wk(x) = W̄k(x̄k)

Lk

; Ψk(x) = Ψ̄k(x̄k).

(20)

The spring constants parameters K , are referred
to the physical and geometrical characteristics of the
beam:

KWi = KWi
L

E1A1(0)
;

KΨi
= KΨi

L

E1I1(0)
, with i = 1 and i = p.

(21)

The internal forces parameters are defined as:

Nk(x) = N̄k(x̄k)

EkAk(0)
; Nk+1 = Fk+1

EkAk(0)
;

Qk(x) = Q̄k(x̄k)

EkAk(0)
; Mk(x) = Lk

EkIk(0)
M̄k(x̄k).

The axial force expression (2) becomes

Nk(x) = η2 l2
k

s2
1

(
Rkvk(1) + φk(1) − Rkvk(x) − φk(x)

)

+ Nk+1; (22)

where sk = L

√
Ak(0)
Ik(0)

is the slenderness ratio, in partic-
ular s1 is the slenderness ratio of the beam referred to
the cross section closest to the hub: subdomain k = 1
at x = 0, and vk and φk are:
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vk(x) =
∫ x

0 ρkAk(x)dx

lkρkAk(0)
;

φk(x) =
∫ x

0 ρkAk(x)xdx

l2
kρkAk(0)

The natural frequency and the rotational speed in their
dimensionless form are expressed:

Ω =
√

ρ1A1(0)

E1I1(0)
L2ω; (23)

η2 = ρ1A1(0)

E1I1(0)
L4η̄2. (24)

In the dimensionless form the governing differen-
tial equations (9) and (10) become:

η2ak(x)(Rk + x)
dWk(x)

dx
− s2

1

l2
k

Nk(x)
d2Wk(x)

dx2

− κk

2(1 + νk)

s2
1

l2
k

ak(x)

(
d2Wk(x)

dx2
− dΨk(x)

dx

)

− κk

2(1 + νk)

s2
1

l2
k

dak(x)

dx

(
dWk(x)

dx
− Ψk(x)

)

= Ω2ak(x)Wk(x); (25)

− s2
1

κk

2(1 + ν)
s2
k ak(x)

(
dWk(x)

dx
− Ψk(x)

)

− s2
1

l2
k

bk(x)
d2Ψk(x)

dx2

− s2
1

l2
k

dbk(x)

dx

dΨk(x)

dx
− η2bk(x)Ψk(x)

= Ω2bk(x)Ψk(x); (26)

where ak(x) = ρkAk(x)/ρkAk(0), and bk(x) =
EkIk(x)/EkIk(0).

The compatibility conditions at adjacent subdo-
mains k and k + 1 expressed in terms of the dimen-
sionless variables and parameters are:

lkWk(1) − lk+1Wk+1(0) = 0 (27)

Ψk(1) − Ψk+1(0) = 0 (28)

αkQk(1) − αk+1Qk+1(0) = 0; (29)

βk

lk
Mk(1) − βk+1

lk+1
Mk+1(0) = 0; (30)

where αk = ρkAk(0)/ρ1A1(0), and βk = EkIk(0)/

E1I1(0).
And the boundary conditions at outer ends are:

(a) in subdomain k = 1, at x = 0:

Q1(0) − KW1l1W1(0) = 0; (31)

M1(0) − KΨ 1l1Ψ1(0) = 0; (32)

(b) in subdomain k = p, at x = 1:

Qp(1) = 0; (33)

Mp(1) = 0. (34)

3 The differential quadrature method

In order to obtain the DQM analog equations to the
governing equations of the rotating beam and its con-
tinuity and boundary conditions [19, 21], the beam
subdomains are discretized in a grid of n points us-
ing the Chebyshev–Gauss–Lobato expression [22]; in
each subdomain k:

xi = 1 − cos[(i − 1)π/(n − 1)]
2

, i = 1,2, . . . , n;
(35)

where xi is the coordinate of node i. The q order
derivatives of the displacements W and ψ , at a node
i of the grid, based on the quadrature rules [15], are
expressed:

d(q)Wk

dxq

∣∣∣∣
xi

=
n∑

j=1

C
(q)
ij Wkj ; (36a)

d(q)Ψk

dxq

∣∣∣∣
xi

=
n∑

j=1

C
(q)
ij Ψkj (36b)

where Wkj and Ψkj are the displacements at node j

of subdomain k, and the C
(q)
ij are the weighting coeffi-

cients obtained using Lagrange interpolating functions
[15, 17]:

Π(xi) =
n∏

j=1j �=1

(xi − xj ) (37)

C
(1)
ij = Π(xi)

(xi − xj )Π(xj )
, q = 1;

C
(q)
ij = C

(q−1)
ii C

(1)
ij − C

(q−1)
ij

xi − xj

, q > 1;
(38)

with i, j = 1,2, . . . , n, for i �= j , and

C
(1)
ii = −

n∑
j=1j �=i

C
(1)
ij , q = 1;

C
(q)
ii = −

n∑
j=1 with j �=i

C
(q)
ij , q > 1;

(39)

i, j = 1,2, . . . , n, for i = j .
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Using the quadrature rules, (36a), (36b), the differ-
ential quadrature analogs of the governing equations
(25) and (26) of a node i are:

(
η2ak(xi)(Rk + xi) − κk

2(1 + νk)

s2
1

l2
k

dak(xi)

dx

)

×
n∑

j=1

(
C

(1)
ij

)
Wkj

−
(

s2
1

l2
k

Nk(xi) + κk

2(1 + νk)

s2
1

l2
k

ak(xi)

)

×
n∑

j=1

(
C

(2)
ij

)
Wkj + κk

2(1 + νk)

s2
1

l2
k

ak(xi)

×
n∑

j=1

C
(1)
ij Ψkj + κk

2(1 + νk)

s2
1

l2
k

dak(xi)

dx
Ψki

= Ω2ak(xi)Wki (40)

− s2
1s2

k κk

2(1 + νk)
ak(xi)

n∑
j=1

C
(1)
ij Wkj

− s2
1

l2
k

bk(xi)

n∑
j=1

C
(2)
ij Ψkj

+
(

s2
1s2

k κk

2(1 + νk)
ak(xi) − η2bk(xi)

)
Ψki

− s2
1

l2
k

dbk(xi)

dx

n∑
j=1

C
(1)
ij Ψkj

= Ω2bk(xi)Ψki (41)

The continuity equations (27) to (30) become:

lkWkn − lk+1W(k+1)1 = 0; (42)

Ψkn − Ψ(k+1)1 = 0; (43)

αk

((
Nk(1) + κk

2(1 + νk)
ak(1)

)

×
n∑

j=1

C
(1)
nj Wkj − κk

2(1 + νk)
ak(1)Ψkn

)

− αk+1

((
Nk+1(0) + κk

2(1 + νk)
ak+1(0)

)

×
n∑

j=1

C
(1)
1j W(k+1)j − κk

2(1 + νk)
ak+1(0)Ψk1

)
= 0;

(44)

βk

lk
bk(1)

n∑
j=1

C
(1)
nj Ψkj

− βk+1

lk+1
bk+1(0)

n∑
j=1

C
(1)
1j Ψ(k+1)j = 0; (45)

and the boundary conditions (31)–(34):(
N1(0) + κk

2(1 + νk)
a1(0)

) n∑
j=1

C
(1)
1j W1j

− κk

2(1 + νk)
a1(0)Ψ11 − l1KW1W11 = 0; (46)

KΨ 1Ψ11 − b1(0)

l1

n∑
j=1

C
(1)
1j Ψ1j = 0; (47)

(
Np(1) + κk

2(1 + νk)
ap(1)

) n∑
j=1

C
(1)
nj Wpj

− κk

2(1 + νk)
ap(1)Ψpn = 0; (48)

bp(1)

lp

n∑
j=1

C
(1)
nj Ψpj = 0. (49)

The set of analog equations derived of the governing
equations, the compatibility conditions between sub-
domains and the outer boundary conditions, is the lin-
ear system of equation that allows to determine the
natural frequencies and the mode shapes of the rotat-
ing Timoshenko beam.

4 Numerical results

The convergence and accuracy of the present approach
have been shown in previous papers, for uniform
beams [20] and for non uniform Timoshenko beams
with elliptical cross section [21]. In the present paper
the rate of convergence and accuracy is demonstrated
in Tables 1, 2 and 3.

The differential quadrature method is now been
used to obtain the natural frequencies and mode shapes
for rotating beams, which cross section varies in a
continuous or discontinuous fashion along the beam
length. The presence and dimension of the hub could
be considered by varying the hub radius as a rela-
tion of the total length of the beam, and the boundary
elastic conditions are varied to produce different situ-
ations.

Table 1 shows the convergence analysis for both
methods.
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Table 1 Convergence analysis: two span C-F beam, κ = 0.849673; ν = 0.30; R1 = 0; s1 = 30; l1 = 2/3; α1 = 1; a1(x) = 1+4x−2x2;
l2 = 1/3; α2 = 3; a2(x) = 1 − 0.9667x2

Method n Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

η = 0

DQM 21 4.61575 38.9934 97.0540 152.849 206.827 210.234

31 4.61574 38.9931 97.0534 152.848 206.827 210.234

41 4.61573 38.9930 97.0532 152.848 206.827 210.235

51 4.61573 38.9930 97.0532 152.848 206.827 210.235

η = 10

21 10.9409 46.1049 106.420 164.422 207.532 224.087

31 10.9409 46.1046 106.420 164.421 207.533 224.086

41 10.9409 46.1045 106.420 164.421 207.534 224.086

51 10.9409 46.1045 106.420 164.421 207.534 224.086

η = 15

21 15.5212 53.2890 116.220 176.388 208.200 238.987

31 15.5212 53.2887 116.219 176.387 208.201 238.986

41 15.5212 53.2885 116.219 176.387 208.202 238.986

51 15.5212 53.2885 116.219 176.387 208.202 238.986

nf Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

η = 0

FEM 300 4.61638 38.9941 97.0539 152.850 206.834 210.238

750 4.61584 38.9932 97.0533 152.848 206.828 210.236

1500 4.61576 38.9930 97.0532 152.848 206.828 210.235

2000 4.61574 38.9930 97.0532 152.848 206.827 210.235

3000 4.61574 38.9930 97.0532 152.848 206.827 210.235

η = 10

300 11.0576 46.2437 106.476 164.464 207.743 224.114

750 11.0573 46.2431 106.476 164.464 207.738 224.112

1500 11.0573 46.2430 106.476 164.464 207.737 224.112

2000 11.0572 46.2430 106.476 164.464 207.737 224.112

3000 11.0572 46.2430 106.476 164.464 207.737 224.112

η = 15

300 15.7014 53.5774 116.340 176.497 208.647 239.049

750 15.7011 53.5771 116.340 176.497 208.642 239.048

1500 15.7011 53.5770 116.340 176.497 208.642 239.048

2000 15.7011 53.5770 116.340 176.497 208.642 239.048

3000 15.7011 53.5770 116.340 176.497 208.642 239.048
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Table 2 The first six natural frequency coefficients of a one span tapered cantilever beam, ν = 0.30; s1 = 12.5; l1 = 1; p = 1;
κ = 0.849673; c01 = 1; c11 = −0.5; c21 = 0

η

0 3 5 10

DQM [9] DQM [9] DQM [9] DQM [9]

Ω1 3.64994 3.64996 4.88651 4.88654 6.47109 6.47110 10.9904 10.9905

Ω2 15.0214 15.0218 16.4595 16.4599 18.7431 18.7434 26.9278 26.9280

Ω3 32.7827 32.7840 34.4551 34.4564 37.2214 37.2226 47.8819 47.8827

Ω4 53.3364 53.3391 55.3529 55.3555 58.7257 58.7281 71.9831 71.9847

Ω5 75.4912 75.4955 77.8760 77.8802 81.8796 81.8834 97.6420 97.6447

Ω6 98.1835 98.1897 100.913 100.919 105.459 105.464 119.884 119.891

The variations of the mass per unit length m(x),
as the beam is discretized in p subdomains, for each
subdomain or segment k of the beam, is expressed
as:

mk(x) = ρkAk(x) (50)

The bending rigidity for the beam is:

EkIk(x) =
∫

mk(x)

Eky
2 dmk (51)

where y2 is the square of the distance to the neutral
bending axis of the cross section of the beam.

The beam cross section could vary at each subdo-
main in a quadratic fashion: the area is expressed as:

Ak(x) = Ak(0)ak(x);
ak(x) = c0k + c1kx + c2kx

2 (52)

and the second moment of area:

Ik(x) = Ik(0)bk(x);
bk(x) = ak(x)3 = (

c0k + c1kx + c2kx
2)3 (53)

where c0k , c1k and c2k are constants.
The shear factor is evaluated for rectangular sec-

tions by the expression [23]:

κ = 10
(1 + ν)

12 + 11ν
; (54)

with ν = 0.30.
A convergence analysis is performed to select the

number n of grid points in the DQM. The natural fre-
quencies coefficients of a two span beam with unequal
length subdomains are determined for the analysis.
When the end of the beam tends to a small surface
more grid points are necessary to achieve convergence.
On account of this, A2(1)/A1(0) = 0.1 is adopted.

The finite element method, FEM, was used to ob-
tain independent results of the natural frequencies co-
efficients of a cantilever Timoshenko rotating beam
(C-F: clamped-free boundary conditions).

As it can be seen in Table 1, for the Differential
Quadrature Method, n = 41 proved to be enough to
capture accurately the dynamic behavior of the rotat-
ing beam.

On the other hand, the finite element model em-
ployed in the analysis, [24], has nf beam elements
of two nodes in the longitudinal direction. This beam
model also takes into account the shear deformation
(Timoshenko beam’s theory), the rotational inertia and
the increase in bending stiffness induced by the cen-
trifugal force.

The FEM convergence analysis shows that taking
nf > 2000 in the formulation will not produce any im-
provement in the results.

The velocity dependent term, ρIk(x̄k)η̄
2Ψ̄k(x̄k), of

Eq. (10) is not included in the finite element for-
mulation. Probably for that reason there are slight
differences between the two sets of numerical re-
sults (DQM and FEM). As the rotational speed in-
creases, the largest difference between the results of
both methods, occur for the first frequency coefficient
Ω1: 1.05 % for η = 10 and 1.15 % for η = 15. For the
second frequency coefficient Ω2 the differences are re-
duced to 0.30 % for η = 10 and 0.54 % for η = 15, for
the higher non-dimensional frequencies they are less
than 0.10 %. The agreement is complete for the static
case.

In Table 2 the first six non-dimensional frequencies
obtained by DQM are compared with Özdemir and
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Table 3 The first six natural frequency coefficients of a one span cantilever beam, C-F, with constant width and linearly varying
thickness, when A1(1) approaches to zero. ν = 0.30; l1 = 1; p = 1; κ = 0.849673; η = 12

A1(1)/A1(0) Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

s1 = 1000

0.1 14.1227 30.7096 51.8090 79.5978 115.049 158.588 DQM

14.1227 30.7096 51.8091 79.5978 115.049 158.588 FEM

0.01 14.4801 30.5480 49.0233 71.2795 98.0960 129.981 DQM

14.4801 30.5482 49.0233 71.2795 98.0961 129.981 FEM

0.001 14.5280 30.6633 49.1654 71.2382 97.4444 128.102 DQM

14.5281 30.6632 49.1655 71.2381 97.4443 128.102 FEM

0.0001 14.5331 30.6777 49.1973 71.2919 97.5203 128.190 DQM

14.5331 30.6778 49.1972 71.2920 97.5200 128.189 FEM

0.00001 14.5336 30.6792 49.2007 71.2980 97.5303 128.204 DQM

14.5335 30.6793 49.2006 71.2983 97.5300 128.204 FEM

0.000001 14.5336 30.6794 49.2010 71.2987 97.5311 128.206 DQM

14.5336 30.6794 49.2010 71.2987 97.5312 128.206 FEM

s1 = 30

0.1 13.9725 30.2037 50.2317 75.4683 105.957 141.181 DQM

13.9833 30.2170 50.2486 75.4876 105.977 141.201 FEM

0.01 14.3213 30.0728 47.8006 68.5611 92.7265 120.347 DQM

14.3327 30.0845 47.8137 68.5755 92.7415 120.362 FEM

0.001 14.3677 30.1813 47.9357 68.5546 92.2721 119.056 DQM

14.3793 30.1930 47.9487 68.5686 92.2867 119.070 FEM

0.0001 14.3725 30.1950 47.9645 68.6024 92.3383 119.133 DQM

14.3841 30.2067 47.9776 68.6164 92.3527 119.148 FEM

0.00001 14.3730 30.1964 47.9676 68.6078 92.3467 119.145 DQM

14.3846 30.2081 47.9806 68.6219 92.3612 119.160 FEM

0.000001 14.3731 30.1965 47.9679 68.6084 92.3476 119.146 DQM

14.3847 30.2082 47.9809 68.6224 92.3620 119.161 FEM

Kaya [9], the agreement between the results is very
good (the biggest differences are less than 0.007 %).

A particular situation is presented in Table 3. As
Banerjee has mentioned in [4], the present theory will
cause numerical ill-conditioning when the beam end
converge to a null cross section, therefore it can not be
used when Ap(1)/A1(0) = 0. The free vibration anal-
ysis of such a theoretical ended beam can be approxi-
mated taking Ap(1)/A1(0) → 0. The first frequency
parameters increase as the area decreases; the other
frequency parameters in general decrease. The DQM

will need more than n = 41 points to extreme this con-
dition, but the exact values will never be achieved be-
cause the theory does not take into account the con-
dition of null area. The DQM results are obtained
with n = 91 for Ap(1)/A1(0) = 0.000001 and n = 71
for the other relations. The FEM results are obtained
with nf = 3000. Both methods provide the same ac-
curate results for the slenderness ratio equal to 1000
and for the slenderness ratio equal to 30 again slight
differences appeared. There is a difference of 0.08 %
between the fundamental dimensionless frequencies,
a difference of 0.04 % between the second dimension-
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Table 4 The effect of the taper ratio and rotational speed on natural frequencies (lineal variation) one span C-F beam l1 = 1; s1 → ∞;
ν = 0.30

A1(1)/A1(0) 9/10 7/10 1/2 3/10 1/10

η = 0

Ω1
3.55869 3.66674 3.82378 4.08170 4.63070 DQM

3.55870 3.66675 3.82379 4.08171 4.63073 [4]

3.8238 [5]

Ω2
21.3380 19.8806 18.3172 16.6252 14.9308 DQM

21.3381 19.8806 18.3173 16.6252 14.9308 [4]

18.3173 [5]

Ω3
58.9796 53.3219 47.2646 40.5875 32.8331 DQM

58.9799 53.3222 47.2649 40.5879 32.8331 [4]

47.2648 [5]

Ω4 115.186 103.266 90.4496 76.1818 58.9168 DQM

Ω5 190.143 169.858 147.999 123.542 93.3877 DQM

Ω6 283.835 253.092 219.919 182.695 136.321 DQM

η = 5

Ω1
6.49114 6.59525 6.74340 6.97847 7.44359 DQM

6.49115 6.59525 6.74340 6.97848 7.44359 [4]

6.74340 [5]

Ω2
24.7804 23.3905 21.9052 20.3085 18.7412 DQM

24.7805 23.3906 21.9053 20.3086 18.7412 [4]

21.9053 [5]

Ω3
62.5009 56.9108 50.9336 44.3802 36.8565 DQM

62.5113 56.9112 50.9338 44.3805 36.8667 [4]

50.9338 [5]

Ω4 118.861 106.971 94.2055 80.0341 63.0139 DQM

Ω5 193.908 173.637 151.812 127.431 97.5080 DQM

Ω6 287.663 256.923 223.771 186.609 140.452 DQM

η = 10

Ω1
11.2456 11.3524 11.5016 11.7315 12.1591 DQM

11.2455 11.3523 11.5015 11.7314 12.1592 [4]

11.5015 [5]

Ω2
32.9968 31.6444 30.1826 28.5839 26.9695 DQM

32.9968 31.6443 30.1827 28.5839 26.9695 [4]

30.1827 [5]

Ω3
71.9830 66.4500 60.5637 54.1457 46.8737 DQM

71.9834 66.4503 60.5639 54.1459 46.8737 [4]

60.5639 [5]

Ω4 129.184 117.319 104.611 90.5723 73.9216 DQM

Ω5 204.739 184.467 162.676 138.416 108.913 DQM

Ω6 298.817 268.059 234.924 197.874 152.158 DQM
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Table 5 Comparison of the non-dimensional natural frequencies of one span C-F uniform Timoshenko and Euler-Bernoulli beams.
Rotational speed, η = 0 and 12; l1 = 1; ν = 0.304; κ = 0.849673

Beam theory s1 �1 �2 �3 �4 �5 �6

η = 0

Timoshenko
beam

30 3.479832 20.58883 53.33816 95.27369 143.1193 194.5319 DQM

3.479832 20.58883 53.33816 95.27371 143.1193 194.5320 FEM

60 3.506843 21.64309 59.19399 112.3402 178.7768 255.9961 DQM

3.506842 21.64309 59.19399 112.3402 178.7768 255.9961 FEM

1000 3.51598 22.0330 61.6875 120.867 199.767 298.354 DQM

3.51598 22.0330 61.6875 120.867 199.767 298.354 FEM

2000 3.51599 22.0341 61.6948 120.893 199.836 298.505 DQM

4000 3.51599 22.0344 61.6966 120.900 199.854 298.543 DQM

5000 3.51599 22.0344 61.6968 120.901 199.856 298.547 DQM

3.51603 22.0344 61.6968 120.901 199.856 298.547 FEM

Euler
Bernoulli
beam

3.5160 22.0345 61.6972 – – – [1]

3.5160 22.0345 61.6972 120.902 199.860 – [5]

3.5160 22.0345 61.6972 120.902 199.862 – [7]

η = 12

Timoshenko
beam

30 12.9954 36.0022 71.7739 116.917 167.841 222.333 DQM

13.0165 36.0683 71.8362 116.970 167.886 222.371 FEM

60 13.1216 37.1526 77.1916 132.412 200.436 279.040 DQM

13.1271 37.1703 77.2102 132.430 200.453 279.055 FEM

1000 13.1700 37.6014 79.6050 140.501 220.447 319.708 DQM

13.1700 37.6015 79.6051 140.501 220.447 319.708 FEM

2000 13.1700 37.6027 79.6121 140.526 220.514 319.855 DQM

4000 13.1701 37.6030 79.6139 140.532 220.531 319.892 DQM

5000 13.1702 37.6031 79.6141 140.533 220.533 319.896 DQM

13.1703 37.6031 79.6141 140.533 220.533 319.896 FEM

Euler
Bernoulli
beam

13.1702 37.6031 79.6145 – – – [1]

13.1702 37.6031 79.6146 140.534 220.536 – [5]

13.1702 37.6032 79.6146 140.533 220.539 – [7]

less frequencies and smaller differences for the dimen-
sionless higher frequencies (0.012 % or less for the
sixth frequency coefficients).

The first six dimensionless natural frequencies for
rotating beams of one span are obtained and compared
with results from other authors (Table 4). The beam
has cantilever boundary conditions and the cross sec-
tion has constant width and linearly varying thickness,
Eq. (52):

c01 = 1; c11 = −0.1,−0.3,−0.5,−0.7,−0.9;
c21 = 0

The other dimensionless parameters are: l1 = 1;
s1 → ∞; κ = 0.849673; ν = 0.30.

The same example has been studied by Banerjee
[4], for the first three natural frequency coefficients.
Wang et al. [5] presented only the case of c11 = −0.5.
In the table it is possible to observe the effect of the ta-
per ratio and rotational speed on the natural frequency
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Table 6 The effect of the slenderness s1and the taper ratio on natural frequencies, rotational speed η = 12. Comparison with FEM
(lineal variation) one span C-F beam (l1 = 1) C-F

A1(1)/A1(0) η = 12

1 9/10 7/10 1/2 3/10 1/10

s1 = 1000

Ω1 13.1700 13.2135 13.3212 13.4710 13.7006 14.1227 DQM

13.1700 13.2136 13.3212 13.4710 13.7006 14.1227 FEM

Ω2 37.6014 36.9529 35.5827 34.0868 32.4269 30.7096 DQM

37.6015 36.9530 35.5827 34.0868 32.4269 30.7096 FEM

Ω3 79.6050 76.9394 71.4067 65.5194 59.0976 51.8090 DQM

79.6051 76.9395 71.4068 65.5194 59.0976 51.8091 FEM

Ω4 140.501 134.797 122.923 110.211 96.1819 79.5978 DQM

140.501 134.797 122.923 110.211 96.1820 79.5978 FEM

Ω5 220.447 210.726 190.451 168.662 144.428 115.049 DQM

220.447 210.726 190.451 168.662 144.428 115.049 FEM

Ω6 319.708 304.985 274.244 241.131 204.131 158.588 DQM

319.708 304.985 274.244 241.131 204.131 158.588 FEM

s1 = 60

Ω1 13.1216 13.1668 13.2773 13.4296 13.6610 14.0832 DQM

13.1271 13.1718 13.2814 13.4330 13.6640 14.0860 FEM

Ω2 37.1526 36.5520 35.2677 33.8448 32.2452 30.5752 DQM

37.1704 36.5677 35.2796 33.8532 32.2508 30.5789 FEM

Ω3 77.1916 74.8245 69.8297 64.4019 58.3618 51.3804 DQM

77.2102 74.8415 69.8436 64.4127 58.3695 51.3851 FEM

Ω4 132.412 127.729 117.709 106.599 93.9170 78.4358 DQM

132.430 127.745 117.723 106.610 93.9257 78.4415 FEM

Ω5 200.436 193.197 177.487 159.707 138.900 112.379 DQM

200.453 193.212 177.501 159.719 138.909 112.385 FEM

Ω6 270.040 269.214 247.595 222.634 192.730 153.228 DQM

279.055 269.229 247.608 222.645 192.739 153.235 FEM

s1 = 30

Ω1 12.9954 13.0439 13.1605 13.3178 13.5523 13.9725 DQM

13.0165 13.0631 13.1763 13.3309 13.5636 13.9833 FEM

Ω2 36.0022 35.5173 34.4432 33.2013 31.7532 30.2037 DQM

36.0683 35.5756 34.4872 33.2326 31.7741 30.2170 FEM

Ω3 71.7739 69.9870 66.0836 61.6432 56.4722 50.2317 DQM

71.8362 70.0445 66.1311 61.6805 56.4991 50.2486 FEM

Ω4 116.917 113.796 106.805 98.5621 88.5360 75.4683 DQM

116.970 113.845 106.849 98.5987 88.5646 75.4876 FEM

Ω5 167.841 163.593 153.856 141.978 126.918 105.957 DQM

167.886 163.636 153.895 142.012 126.946 105.977 FEM

Ω6 222.333 217.223 205.238 190.162 170.339 141.181 DQM

222.371 217.259 205.272 190.192 170.365 141.201 FEM
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Table 7 The effect of KW1 on the frequency parameters, with Kψ1 → ∞, for a two span-beam (R1 = 0). s1 = 30

KW1 η = 0

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

→ 0 → 0 8.93564 65.7124 123.119 180.171 207.223

0.01 1.87457 9.53329 65.8560 123.188 180.218 207.223

0.1 3.85522 14.1815 67.1295 123.807 180.642 207.224

0.5 4.44063 24.0769 72.2341 126.491 182.502 207.230

0.7 4.48946 26.5651 74.3997 127.771 183.410 207.233

1 4.52672 29.0866 77.1836 129.589 184.734 207.238

10 4.60667 37.6660 93.6046 147.284 201.985 207.429

100 4.61479 38.8569 96.6995 152.265 206.708 209.528

1000 4.61561 38.9793 97.0177 152.790 206.818 210.162

→ ∞ 4.61573 38.9930 97.0532 152.848 206.827 210.235

η = 5

→ 0 → 0 13.0595 68.4219 126.300 183.788 207.361

0.01 1.94350 13.4438 68.5538 126.364 183.833 207.361

0.1 4.80183 16.6999 69.7238 126.947 184.235 207.363

0.2 5.59355 19.6316 70.9824 127.589 184.680 207.364

0.5 6.25246 25.3810 74.4475 129.472 186.001 207.370

1 6.51123 30.3160 79.1289 132.398 188.123 207.380

10 6.76174 39.4485 95.8249 150.026 204.940 207.883

1000 6.79030 40.9169 99.5283 155.892 207.133 213.717

100000 6.79058 40.9321 99.5666 155.954 207.136 213.802

→ ∞ 6.79061 40.9323 99.5671 155.954 207.136 213.803

η = 10

→ 0 → 0 20.7259 75.4894 134.874 193.437 207.932

0.01 1.98196 20.9376 75.5963 134.929 193.476 207.932

0.1 5.62552 22.7904 76.5456 135.426 193.822 207.940

0.2 7.16489 24.6754 77.5716 135.975 194.205 207.949

0.5 8.94043 29.1078 80.4425 137.584 195.339 207.978

0.7 9.42517 31.2557 82.1726 138.620 196.079 207.999

1 9.83179 33.6790 84.4938 140.109 197.160 208.035

10 10.8196 44.1486 101.804 157.462 207.218 214.925

1000 10.9397 46.0839 106.371 164.345 207.532 223.980

100000 10.9409 46.1042 106.419 164.420 207.534 224.085

→ ∞ 10.9409 46.1045 106.420 164.421 207.534 224.086

η = 15

→ 0 → 0 28.9185 85.0476 146.951 203.803 212.183

0.01 1.99452 29.0502 85.1303 146.996 203.821 212.198

0.1 5.96190 30.2120 85.8667 147.401 203.979 212.339

0.2 7.95220 31.4407 86.6670 147.847 204.147 212.501

0.5 10.8111 34.6542 88.9439 149.159 204.610 213.019

0.7 11.7680 36.4138 90.3524 150.009 204.886 213.387

0.9 12.4074 37.9132 91.6717 150.837 205.135 213.773

1 12.6532 38.5790 92.2983 151.241 205.251 213.971

2 13.9272 43.1595 97.4656 154.928 206.128 216.073

10 15.1751 50.5430 110.177 167.955 207.684 227.863

10000 15.5209 53.2855 116.213 176.378 208.202 238.972

→ ∞ 15.5212 53.2885 116.219 176.387 208.202 238.986
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Fig. 3 (a) The effect of the hub ratio R1 on the first natural frequency coefficients of a two span C-F beam with rotational speeds
η = 0,5,10,15. (- - - s1 = 30; — s1 = 1000.) (b) Mode shape for R1 = 0.5; η = 15; s1 = 1000. (c) Mode shape for R1 = 0.5; η = 15;
s1 = 30

Fig. 4 (a) The effect of the hub ratio R1 on the second natural frequency coefficients of a two span C-F beam with rotational speeds
η = 0,5,10,15. (- - - s1 = 30; — s1 = 1000.) (b) Mode shape for R1 = 0.5; η = 15; s1 = 1000. (c) Mode shape for R1 = 0.5; η = 15;
s1 = 30

coefficients. The DQM coefficients are obtained with
n = 51 grid points. The agreement between the three
sets of results is excellent and proves the computation
efficiency of the differential quadrature method.

Table 6 shows a comparison of the non-dimensional
natural frequencies of one span C-F beam, for differ-
ent slenderness ratios and rotating speed η = 12. In
particular, the present results for large slenderness ra-
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Fig. 5 (a) The effect of the hub ratio R1 on the third natural frequency coefficients of a two span C-F beam with rotational speeds
η = 0,5,10,15. (- - - s1 = 30; — s1 = 1000.) (b) Mode shape for R1 = 0.5; η = 15; s1 = 1000. (c) Mode shape for R1 = 0.5; η = 15;
s1 = 30

Fig. 6 Imperfect boundary condition at the hub of a two-span rotating beam

tios compare accurately with the Euler-Bernoulli re-
sults [1, 5, 7].

And again, small differences between DQM and
FEM results appeared for lower slenderness ratios, for
s1 = 30: 0.16 % for Ω1; 0.18 % for Ω2; 0.09 % for
Ω3; and for s1 = 60: 0.04 % for Ω1; 0.05 % for Ω2;
0.02 % for Ω3.

In Table 6, the first six frequency coefficients are
presented for three slenderness ratios, when the ta-
pered beam rotates with η = 12.

The DQM and FEM results are in excellent agree-
ment for the slenderness ratio equal to 1000, and again
very small differences occur between both methods
when the slenderness ratio is reduced. The largest dif-
ference between the values of both methods, is 0.18 %,
and corresponds to the second non-dimensional fre-
quency of the uniform beam with s1 = 30.

Figures 3, 4 and 5 illustrate the effect of the hub ra-
tio on the first three non-dimensional natural frequen-
cies for beams with two different slenderness parame-
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Table 8 The effect of KW1 on the frequency parameters, with Kψ1 → ∞, for a two span-beam (R1 = 1). s1 = 30

KW1 η = 5

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

→ 0 → 0 17.4173 72.4680 131.215 189.347 207.702

0.01 1.97207 17.6789 72.5831 131.274 189.388 207.702

0.1 5.38429 19.9604 73.6055 131.799 189.754 207.706

0.2 6.65538 22.2153 74.7087 132.377 190.160 207.709

0.5 7.94985 27.2031 77.7797 134.075 191.363 207.721

1 8.53256 31.9923 82.0522 136.733 193.300 207.742

10 9.13631 42.0465 99.1750 154.191 207.005 211.098

1000 9.20733 43.8020 103.411 160.696 207.456 219.501

100000 9.20805 43.8203 103.456 160.766 207.458 219.598

→ ∞ 9.20808 43.8206 103.456 160.767 207.458 219.599

η = 10

→ 0 → 0 30.0788 87.3268 150.081 205.054 215.020

0.01 1.99616 30.1969 87.4021 150.122 205.065 215.039

0.1 6.00805 31.2426 88.0729 150.493 205.169 215.212

0.2 8.06662 32.3598 88.8036 150.902 205.279 215.408

0.5 11.1213 35.3507 90.8946 152.107 205.585 216.011

0.7 12.1785 37.0354 92.1992 152.889 205.769 216.425

1 13.1749 39.1557 94.0186 154.027 206.018 217.059

10 16.1068 51.8230 112.065 170.375 208.098 230.897

1000 16.5133 54.9027 118.670 179.300 208.755 242.614

100000 16.5174 54.9363 118.744 179.404 208.762 242.763

→ ∞ 16.5175 54.9364 118.744 179.404 208.763 242.763

η = 15

→ 0 → 0 42.6956 104.674 173.036 206.936 241.879

0.01 2.00212 42.7642 104.724 173.064 206.940 241.898

0.1 6.18341 43.3755 105.178 173.320 206.972 242.071

0.2 8.52372 44.0403 105.675 173.603 207.008 242.263

0.5 12.5354 45.9281 107.123 174.438 207.114 242.836

0.7 14.1836 47.0894 108.050 174.983 207.185 243.214

1 15.9336 48.6820 109.383 175.781 207.291 243.775

2 19.0033 52.8423 113.312 178.266 207.638 245.584

10 22.9029 63.0544 127.452 189.411 209.903 255.750

10000 24.1572 68.3437 137.793 198.352 214.849 269.779

→ ∞ 24.1585 68.3499 137.805 198.360 214.858 269.799

Author's personal copy



Meccanica

Table 9 The effect of Kψ1on the frequency parameters, with KW1 → ∞, for a two span-beam clamped at the rotational axis (R1 = 0).
s1 = 30

Kψ1 η = 0

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

→ 0 → 0 34.7237 92.9283 150.097 204.926 209.454

0.01 0.117491 34.7261 92.9302 150.099 204.927 209.454

0.1 0.370465 34.7469 92.9481 150.110 204.937 209.456

1 1.13908 34.9450 93.1186 150.220 205.026 209.475

10 2.89619 36.2343 94.2758 150.972 205.615 209.627

100 4.29728 38.3354 96.3512 152.364 206.556 210.040

1000 4.58068 38.9167 96.9704 152.791 206.797 210.210

10000 4.61219 38.9852 97.0447 152.842 206.824 210.232

100000 4.61538 38.9922 97.0523 152.848 206.827 210.235

→ ∞ 4.61538 38.9922 97.0523 152.848 206.827 210.235

η = 5

→ 0 4.88918 37.1414 95.7624 153.411 205.899 212.481

0.01 4.89058 37.1434 95.7642 153.412 205.900 212.482

0.1 4.90307 37.1615 95.7806 153.423 205.906 212.487

1 5.01932 37.3332 95.9370 153.524 205.965 212.531

10 5.69025 38.4610 97.0000 154.221 206.349 212.855

100 6.55893 40.3357 98.9158 155.508 206.955 213.541

1000 6.76454 40.8629 99.4901 155.901 207.115 213.771

100000 6.79035 40.9316 99.5663 155.954 207.135 213.803

1000000 6.79058 40.9322 99.5670 155.954 207.136 213.803

→ ∞ 6.79061 40.9323 99.5671 155.954 207.136 213.803

η = 10

→ 0 9.77617 43.2486 103.316 162.372 206.649 222.707

0.01 9.77686 43.2501 103.317 162.373 206.650 222.707

0.1 9.78302 43.2630 103.330 162.381 206.654 222.713

1 9.84123 43.3863 103.456 162.464 206.692 222.768

10 10.2090 44.2097 104.315 163.028 206.947 223.143

100 10.7724 45.6349 105.881 164.063 207.389 223.841

1000 10.9216 46.0494 106.356 164.378 207.517 224.057

10000 10.9390 46.0989 106.413 164.417 207.532 224.083

1000000 10.9409 46.1044 106.420 164.421 207.534 224.086

→ ∞ 10.9409 46.1045 106.420 164.421 207.534 224.086

η = 15

→ 0 14.6601 51.2369 113.812 174.936 207.287 237.961

0.01 14.6605 51.2379 113.813 174.937 207.288 237.962

0.1 14.6646 51.2468 113.823 174.943 207.292 237.966

1 14.7033 51.3316 113.920 175.002 207.329 238.009

10 14.9577 51.9061 114.579 175.405 207.583 238.298

100 15.3842 52.9376 115.796 176.136 208.044 238.812

1000 15.5052 53.2470 116.169 176.358 208.183 238.965

10000 15.5196 53.2843 116.214 176.384 208.200 238.984

1000000 15.5211 53.2881 116.219 176.387 208.202 238.986

→ ∞ 15.5212 53.2885 116.219 176.387 208.202 238.986
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Table 10 The effect of Kψ1 on the frequency parameters, with KW1 → ∞, for a two span-beam clamped at the rotational axis
(R1 = 1)

Kψ1 η = 5

Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

→ 0 7.91942 40.6795 100.140 158.551 206.524 218.178

0.01 7.92022 40.6811 100.142 158.553 206.524 218.179

0.1 7.92740 40.6956 100.156 158.562 206.529 218.184

1 7.99498 40.8334 100.291 158.651 206.571 218.239

10 8.41366 41.7484 101.211 159.259 206.846 218.617

100 9.02939 43.3114 102.883 160.378 207.310 219.341

1000 9.18765 43.7610 103.388 160.721 207.441 219.568

100000 9.20787 43.8200 103.455 160.766 207.458 219.599

1000000 9.20805 43.8205 103.456 160.767 207.458 219.599

→ ∞ 9.20808 43.8206 103.456 160.767 207.458 219.599

η = 10

→ 0 15.7993 53.1414 116.598 178.162 207.840 241.880

0.01 15.7996 53.1422 116.599 178.163 207.841 241.881

0.1 15.8029 53.1499 116.608 178.168 207.844 241.885

1 15.8342 53.2231 116.693 178.219 207.882 241.922

10 16.0425 53.7213 117.280 178.565 208.137 242.173

100 16.4001 54.6256 118.365 179.190 208.602 242.615

1000 16.5037 54.8996 118.699 179.379 208.743 242.745

10000 15.5196 53.2843 116.214 176.384 208.200 238.984

1000000 16.5174 54.9363 118.744 179.404 208.762 242.763

→ ∞ 16.5175 54.9364 118.744 179.404 208.763 242.763

η = 15

→ 0 23.6573 67.2624 136.395 198.245 213.408 269.728

0.01 23.6576 67.2629 136.396 198.245 213.409 269.728

0.1 23.6597 67.2673 136.402 198.245 213.415 269.728

1 23.6799 67.3099 136.457 198.250 213.474 269.732

10 23.8177 67.6034 136.839 198.284 213.877 269.753

100 24.0707 68.1546 137.553 198.341 214.608 269.788

1000 24.1481 68.3265 137.775 198.358 214.829 269.797

10000 24.1575 68.3474 137.802 198.360 214.855 269.799

100000 24.1584 68.3496 137.805 198.360 214.858 269.799

→ ∞ 24.1585 68.3499 137.805 198.360 214.858 269.799
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Fig. 7 Three span rotating Timoshenko beam with one step jump

ters s1 = 1000 and s1 = 30. The results correspond to
a clamped-free beam with two spans. The cross sec-
tion vary at each subdomain in a quadratic fashion:
l1 = 2/3, α1 = 1; a1(x) = 1 + 4x − 2x2, l2 = 1/3,
α2 = 3, a2(x) = 1 − 0.967x2. The frequency coeffi-
cients increase with the hub ratio as expected, because
the centrifugal force increases with the distance to the
axis of rotation and therefore also the stiffness of the
beam.

The effect of the slenderness ratio, s1 = 1000 and
s1 = 30, on the frequencies may be of considerable
importance when studying the modes of vibration of
higher frequencies, when a vibrating beam is subdi-
vided by modal cross sections into comparatively short
portions [25]. As it can be seen in Fig. 3, the effect of
the slenderness ratio on the fundamental frequency is
not significant as the first mode of vibration has only
one nodal point.

For higher modes the effect of the cross sectional
dimensions on the frequencies is more important. See
Figs. 4 and 5 for second and third frequencies.

In the next example, Fig. 6, a beam with variable
cross section is considered to study the effect of elas-
tic supports on the frequency coefficients when the
beam rotates. The beam has two spans and its char-
acteristics are: ν = 0.30; κ = 0.849673; s1 = 30; for
k = 1: l1 = 2/3; α1 = 1; c01 = 1; c11 = 4; c21 = −2
and for k = p = 2: l2 = 1/3; α2 = 3; c02 = 1; c12 = 0;
c22 = −0.9667.

Tables 7, 9 and 10 present the situation in which the
boundary condition at the hub is not a perfect clamped
condition. In the y direction, the translational spring
(KW1) allows small displacements and the rotational
spring (Kψ1) controls the rotation of the section clos-
est to the hub.

The effect of the hub ratio is taken into account in
Tables 8 and 10.

Table 7 provides numerical results for the spring
constant KW1, which varies between 0 and ∞, and the
rotational spring constant is kept in Kψ1 → ∞.

The frequency coefficients for each rotational speed
vary according to the boundary situation. The static
situation, when η = 0, appears in the first part of the
table.

It is observed that the fundamental frequency coef-
ficients are the most affected in all cases. The condi-
tion KW1 → ∞ is the condition of infinite stiffness,
which leads to set up a perfectly clamped edge. De-
pending on the speed of rotation, KW1 values between
0 and 0.5 generate important changes in the lower no
dimensional frequencies, for values of KW1 greater
than one, the changes are quite minor and in general
its influence disappears for values equal to 10 or more.
The effect on the higher frequencies is not very signif-
icant.

Table 8 shows similar results considering a hub ra-
tio R1. The results showed the effects of the hub ratio
and an imperfect boundary condition. Naturally, the
hub ratio R1 has no effect on the static situation, when
η = 0, and this case is not repeated in the table.

Tables 9 and 10 show the effect of the rota-
tional spring on the non-dimensional frequencies: for
KW1 → ∞ and values of Kψ1 from zero to infin-
ity. The influence of this boundary condition is much
less noticeable than the previous case. It can be said
that the non-dimensional fundamental frequency is
the most affected. However, as the rotational speed
increases this effect tends to be less perceptible. For
example, with η = 15, when Kψ1 varies from zero
to infinity, the first frequency coefficient varies from
14.6601 to 15.5212 (5.5 %) and the sixth frequency
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Fig. 8 The non-dimensional natural frequencies and mode shapes of a three span Timoshenko beam R1 = 0.5; s1 = 30; KW1 = 0.1;
Kψ1 = 0.01, η = 15

Fig. 9 The non-dimensional natural frequencies and mode shapes of a three span Timoshenko beam R1 = 0.5; s1 = 30; KW1 = 0.1;
Kψ1 = 1000000, η = 15
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Fig. 10 The non-dimensional natural frequencies and mode shapes of a three span Timoshenko beam R1 = 0.5; s1 = 30; KW1 = 1;
Kψ1 = 0.1, η = 15

Fig. 11 The non-dimensional natural frequencies and mode shapes of a three span Timoshenko beam R1 = 0.5; s1 = 30;
KW1 = 1000000; Kψ1 = 0.1, η = 15
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Fig. 12 The non-dimensional natural frequencies and mode shapes of a three span Timoshenko beam R1 = 0.5; s1 = 30;
KW1 = 1000000; Kψ1 = 1000000, η = 15

coefficient varies from 237.961 to 238.986 (0.43 %)
(Table 9).

The last example corresponds to a three span beam
with one step jump (Fig. 7). The beam characteris-
tics are: s1 = 30; ν = 0.30; κ = 0.849673; R1 = 0.5;
l1 = 0.2; α1 = 1; c01 = 1; c11 = c21 = 0; l2 = 0.5;
α2 = 0.6667; c02 = 1; c12 = 2.5; c22 = −1.25; l3 =
0.3; α3 = 1.5; c03 = 1; c13 = 0; c23 = −0.5778. Fig-
ures 8 to 12 show the mode shapes and frequency co-
efficients for different relations of KW1 and Kψ1, at
rotational speed η = 15.

The non-dimensional frequencies and mode shapes
of the beam with KW1 = 0.1; Kψ1 = 0.01 and the
beam with KW1 = 0.1; Kψ1 = 1000000 are very sim-
ilar. There are slight differences in the corresponding
frequency coefficients, less than 2.5 %, and the mode
shapes are almost the same (Figs. 8 and 9).

In general, the effect of the rotational spring on the
dynamic behavior of the rotating beam is small and in
particular when KW1 = 0.1, it is negligible. Greater
rigidity of the translational spring changes the mode
shapes as shown in Figs. 8 to 12.

5 Conclusions

The convergence and accuracy of the present approach
to analyze a rotating tapered multi-span beam have
been validated by a detailed set of numerical exam-
ples, including the limiting case in which the cross
section of the end of the beam tends to zero.

It can be concluded that the effect of the transla-
tional spring stiffness in the dynamic behavior of the
rotating beam is much more pronounced than the ef-
fect of the rotational spring stiffness.

It is also observed that increasing the rotation speed
has a greater influence on the lower frequency co-
efficients. This study shows that the model based
on Timoshenko theory is particularly useful for de-
termining the higher frequencies. In considering the
practical implications of the proposed model, it is
worth remembering that the process of raising the
natural frequencies by removing appropriate mass of
the original structure is generally defined as “dy-
namic stiffening”, which is essentially a special chap-
ter of the theory of optimization. Certainly a quadratic
variation of the height of the cross section can be
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used for modeling, by suitable determination of the
constants of the polynomial, the attempt to optimize
the natural frequencies of transverse vibration of the
beam.

The differential quadrature method can be easily
implemented by many optimization software codes,
such as MATHEMATICA software [26].

Finally, the present analysis shows that an imper-
fection in the clamped condition will affect more the
lower non-dimensional frequencies than the higher
ones.
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