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Abstract
We calculate accurate eigenvalues and eigenfunctions of the Schrödinger equation for a
two-dimensional quantum dipole. This model proved useful for the study of elastic effects of a
single edge dislocation. We show that the Rayleigh–Ritz variational method with a basis set of
Slater-type functions is considerably more efficient than the same approach with the basis set
of point-spectrum eigenfunctions of the two-dimensional hydrogen atom used in earlier
calculations.

(Some figures may appear in colour only in the online journal)

1. Introduction

In a recent paper, Dasbiswas et al [1] discussed the bound-state
spectrum for a straight edge dislocation oriented along the z
axis. Within the continuum model, the authors reduced the
problem to the two-dimensional Schrödinger equation for a
quantum dipole. They obtained very accurate eigenvalues and
eigenfunctions by means of a discretization of the x–y space.
Since this real-space diagonalization method (RSDM) is not
so practical for highly excited states, those authors also carried
out a Rayleigh–Ritz (RR) variational calculation with the
basis set of eigenfunctions of the two-dimensional Coulomb
problem [2].

The variational RR eigenvalues are known to approach
the exact ones from above. However, in the present case
the ground-state energy εRR

1 = −0.0970 calculated with
as many as 400 basis functions exhibits a considerable
discrepancy with respect to the same eigenvalue obtained by
RSDM εRSDM

1 = −1.39. Later on, Amore [3] carried out a
more accurate calculation with 3600 hydrogen eigenfunctions
and obtained εRR

1 = −0.128 as well as εRRS
1 = −0.132

by fitting and extrapolating the outcome of a Shanks
transformation. The authors of both papers resorted to a
variational parameter (decaying parameter [1] or the length
scale [3]) that considerably improves the result. The remaining
disagreement between RR and RSDM is probably due to the

3 Author to whom any correspondence should be addressed.

well-known fact that the basis set used in those calculations
is not complete because it does not include the continuous
spectrum [2] (see, for example, [4] and the references therein).
For this reason, the RR calculation proposed by those authors
[1, 3] is expected to have a limited accuracy no matter
how large the dimension of the basis set of discrete states.
It is surprising, however, that the lack of the continuous
wavefunctions appears to be more notable for the ground state.
In addition to it, at first sight it seems that there is better
agreement for the odd states [1].

The purpose of this paper is to carry out an RR calculation
with a nonorthogonal basis set of square-integrable functions
that in principle does not require the continuous spectrum. In
section 2, we describe the RR variational method with such an
improved basis set. In section 3, we compare present results
with those obtained earlier by Dasbiswas et al [1] and Amore
[3]. Finally, in section 4, we summarize the main results and
draw conclusions.

2. The Rayleigh–Ritz variational method

The linearized model for the Ginzburg–Landau theory leads
to the Schrödinger equation

− �
2

2m
∇2ψ + p

cos θ

r
ψ = Eψ, (1)

where r =
√

x2 + y2, 0 � θ = arctan(y/x) < 2π and p is the
strength of the dipole potential [1]. Choosing the units of length
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�
2/(2mp) and energy 2mp2/�

2, we obtain the dimensionless
eigenvalue equation

− ∇2ψ + cos θ

r
ψ = εψ, (2)

where ε = �
2E/(2mp2). Since the potential V (r, θ ) = cos θ/r

is invariant under reflection about the x axis V (r,−θ ) =
V (r, θ ), then the wavefunctions are either even ψ(r,−θ ) =
ψ(r, θ ) or odd ψ(r,−θ ) = −ψ(r, θ ) under such coordinate
transformation.

Dasbiswas et al [1] and Amore [3] resorted to the RR
variational method with the basis set of eigenfunctions of the
planar hydrogen atom:

ψH
n,l(r, θ ) = 1√

π
Rn,l(r) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(lθ ), 1 � l � n
1√
2
, l = 0

sin(lθ ), −n � l � −1,

(3)

where n = 1, 2, . . . and Rn,l(r) is the normalized solution to
the radial equation [2]. However, this basis set is incomplete
if one does not include the eigenfunctions for the continuous
spectrum (see, for example, [4] and references therein).

If, on the other hand, the chosen basis set of square-
integrable functions does not require the continuous spectrum
to be complete, then one expects the accuracy of the
RR variational results to be determined only by the basis
dimension. Here we propose the nonorthogonal set of
functions{
φe

j , j = 1, 2, . . .
} = {e−αr, ri+1 cos j θe−αr, i, j = 0, 1, . . .}

(4)

for the even states and{
φo

j , j = 1, 2, . . .
} = {ri+1 sin θ cos j θe−αr, i, j = 0, 1, . . .}

(5)

for the odd ones, where α > 0 is a variational parameter.
This basis set resembles the Slater orbitals commonly used
in quantum chemistry calculations of atomic and molecular
electronic structure [4].

The RR method with the variational ansatz

ψ =
N∑

j=m

cmφm (6)

leads to the generalized eigenvalue problem

HC = εSC, (7)

where Hi j = 〈φi|Ĥ|φ j〉 and Si j = 〈φi|φ j〉. Note that it is
possible to obtain explicit expressions for both kinds of matrix
elements in terms of the variational parameter α; even more
important is the fact that, with the help of a computer algebra
software package, like Mathematica, we can obtain the inverse
of S explicitly for all the cases considered in this paper. In this
way, the inversion does not introduce any round-off errors and
the original generalized eigenvalue problem is converted to the
ordinary eigenvalue problem

S−1HC = εC (8)

for the nonsymmetric matrix S−1H.
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Figure 1. Optimal value of α for the ground state as a function of K.
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Figure 2. Convergence of ε1 in terms of K for the optimal value of α.

3. Results

For brevity, we write both the exact and approximate RR
eigenvalues and eigenfunctions as ε1 < ε2 < . . . and
ψ1, ψ2, . . ., respectively. We express the rate of convergence of
the RR results in terms of the largest parameter K = i+ j in the
wavefunction expansion (6), where i and j are the exponents
of r and cos θ in either equation (4) or (5). Thus, for a given
value of K there are N = (K2 + K + 2)/2 basis functions
of either even or odd symmetry. The optimal value of the
nonlinear variational parameter α depends on both the chosen
eigenvalue and the number of terms N in the wavefunction
expansion (6). For example, figure 1 shows that for the ground
state α increases with K oscillating about a straight line.
Figure 2 shows the RR eigenvalue ε1 for a range of values
of K. The rate of convergence is remarkably greater than the
one for the Coulomb basis set [3].

Table 1 shows the RR eigenvalues obtained with the
nonorthogonal basis sets (4) and (5)

(
εNB

n

)
on the one side

and with the basis sets of even and odd Coulomb functions (3)(
εCB

n

)
on the other. We appreciate the following facts: the

accuracy of the present nonlinear basis set is always greater(
εNB

n � εCB
n

)
in spite of the fact that the RR calculations
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Figure 3. Contour and 3D plot for |ψ1|2.
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Figure 4. Contour plots for the squares of the second, third, fourth and fifth even states.

Table 1. Optimal α and energies for the first five even and odd states for K = 20.

n α εNB even
n εCB even

n α εNB odd
n εCB odd

n

1 1.667 −0.137 7416 −0.127 9886 0.3984 −0.023 2932 −0.023 2932
2 0.7002 −0.041 1524 −0.039 4579 0.2469 −0.012 5862 −0.012 5862
3 0.4273 −0.019 9679 −0.019 3729 0.1773 −0.007 9918 −0.007 991 86
4 0.2676 −0.011 8525 −0.011 5734 0.1239 −0.005 5643 −0.005 564 35
5 0.1515 −0.009 7472 −0.009 7472 0.0997 −0.005 3312 −0.005 331 16
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Figure 5. Contour and 3D plot for the square of the first odd state.
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Figure 6. Contour plots for the squares of the second, third, fourth and fifth odd states.

have been carried out with N = 211 nonorthogonal basis
functions (K = 20) and N = 3600 Coulomb functions [3].
The discrepancy is greater for the lowest states and it is
less notable for the odd ones. We are presently unable to
provide a rigorous proof for the last two facts; however, we
may conjecture that the omitted continuous spectrum is not so
relevant in those cases where there is agreement between the
NB and CB variational results. The number of digits in the
entries of this table is dictated by comparison purposes and
does not reflect the estimated accuracy of the calculation.

Both the analytical calculation of the matrix elements and
the analytical inversion of the matrix S are time consuming,
but we do them only once for all the states. On the other hand,

the optimization of the variational parameter α for each state
is a time consuming calculation that we should repeat several
times. Earlier and present calculations suggest that the RR
variational method is less efficient for the ground state. For
this reason, we have attempted variational calculations with
considerably greater basis sets only for this state. For example,
we have obtained εNB even

1 = −0.137 746 772 27 with N = 466
NB functions (K = 30) and εNB even = −0.137 747 782 05
with the N = 821 ones (K = 40). These results suggest that
the first six digits remain stable and, consequently, that the
RR calculation with the Slater-type basis functions no longer
appears to approach the RSDM results closely. However, it
is worth noting that the present RR eigenvalues agree with
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the RSDM ones within the 2% error estimated by Dasbiswas
et al [1].

By means of the approximate ground-state wavefunction
ψ1(x, y) in terms of the Slater-like orbitals, we have also
calculated the effective dimensionless coupling constant [1]

g =
∫

dx dy|ψ1(x, y)|4. (9)

Dasbiswas et al [1] obtained g = 0.017 by means of a simple
variational function constructed from the first three elements of
the even nonorthogonal basis set (4): {e−αr, re−αr, r cos θ e−αr}
and g = 0.0194 by means of the RSDM. Amore [3] obtained
g = 0.017 by means of a reduced RR basis set of Coulomb
functions (N = 345). Note that just N = 3 NB functions yield
the same result as the N = 345 Coulomb ones. The RR method
with N = 211 functions (K = 20) of the basis set (4) yields
g = 0.0193, which is quite close to the RSDM result.

Figures 3 (left panel), 4, 5 (left panel) and 6 show the
contour plots for ψ(x, y)2 for the first five even and odd states
obtained by means of the N = 211 NB functions. One clearly
realizes that there are two types of nodal lines ψ(x, y)2 = 0
and that the energy depends differently on each of them. The
right panels of figures 3 and 5 show 3D plots of the probability
densities of the first even and odd states.

4. Conclusions

The present results clearly show that the basis set of Slater-
type orbitals is preferable to the Coulomb basis set. With
just a few functions of the former set, one obtains results
that are considerably more accurate than those arising from
much larger sets of the latter. As argued above, the reason
is that any linear combination of discrete-spectrum Coulomb
eigenfunctions is orthogonal to the continuous-spectrum
eigenfunctions. On the other hand, no continuous-spectrum
functions are required when using the Slater-type basis set.
The contribution of the continuous spectrum appears to be
more relevant for the lowest states and for the even ones.
However, we have not proved that the RR variational method
with the Slater-type functions converges towards the actual
eigenvalues as K increases. The present variational eigenvalues
converge to limits that are slightly larger than the RSDM ones
and we cannot safely state that all the stable digits of our
results agree with those of the exact eigenvalues. Accurate
lower bounds are required for that purpose and we have
not yet been able to obtain them. In spite of this fact, it is
encouraging that the present RR results agree with the RSDM

ones within the reported 2% accuracy of the latter [1]. If, as
argued by Dasbiswas et al [1], the RR variational method is
more convenient than the RSDM for highly excited states, then
the present contribution is relevant because there is no doubt
that the basis set proposed in this paper is preferable to the
Coulomb one.

Finally, we mention an alternative approach based on the
Sturmian functions that are solutions to the Sturm–Liouville
equation [5](

−1

2
∇2 + 1

2
p2

0 − np0

r

)
fa = 0, (10)

where p0 is a fixed parameter, n the principal quantum number
and a the set of two quantum numbers that specify the
state of the two-dimensional hydrogen atom. The Sturmian
eigenfunctions satisfy the orthogonality condition

n

p0

∫
f ∗
a

1

r
fa′ dr = δaa′ . (11)

The Sturm–Liouville equation (10) can be solved in
terms of polar coordinates (r, θ ) or parabolic ones(
x = μν, y = 1

2

(
μ2 − ν2

))
. The two sets of eigenfunctions

un,l(r, θ ) and Un1,n2 (μ, ν) are related by a unitary
transformation [6]. The complete set of Sturmian functions (in
either set of coordinates) is discrete and it is therefore suitable
for the calculation of the energies of the quantum dipole. It
has the additional advantage of being orthogonal. However, in
this paper we resorted to the Slater-type functions because the
calculation of the necessary integrals is quite straightforward
and the overlap matrix in the generalized eigenvalue equation
can be inverted explicitly.
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