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A discontinuous model aimed at modeling ductile fracture for metals is presented. The
effect of microvoid nucleation, growth and coalescence on the inelastic response of
structural metals is modeled through a suitable interface proposal for cracking analysis.
The discontinuos proposal is completely conceived within the general framework of
fracture mechanics and porous plasticity concepts. The porosity affects the strength
parameters and softening rules defining the failure initiation and post-cracking response
of the interface. To demonstrate the soundness and capability of the proposed formulation,
a comparative study against numerical simulations obtainable from a classical well-known
continuous approach for capturing ductile fracture, based on finite element analysis, is
presented.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Ductile fracture in metals usually follows a multi-step inelastic process involving several concurrent mechanisms, which,
at microscopic level, can be subdivided into (a) nucleation of microscopic voids (mostly at second phase particles and
inclusions), (b) growth of fine microscopic voids due to localized inelastic deformation and eventual coalescence, (c)
localization of plastic flow (the crack initiation) and (d) final failure and crack growing [1,2].

Void nucleation, growth and coalescence and the subsequent crack initiation deal with two distinct mechanisms of
ductile fracture [3]: (i) the first mechanism is represented by a crack growth initiation as a consequence of a single void
and interacting with the crack tip along the fracture front, while (ii) the second failure considers the simultaneous growth
and interaction of multiple voids on the plane ahead of the crack tip.

Moreover, failure under intense shearing at close to zero hydrostatic stress (the mean stress is zero or even negative) is
widely observed for ductile metallic materials [4]. Experimental studies [5] and numerical formulations by Barsoum and
Faleskog [6,7] aimed at investigating ductile failure under such conditions. Furthermore, the progressive reduction of
material ductility with increasing triaxial stress was investigated by Bonora et al. [8] and Benzerga et al. [9], while the tem-
perature effect on the ductile fracture of metal was considered in several works [10,11].

Ductile failure mechanisms and simulations of crack growth in metals are classically analyzed through several of
constitutive formulations which mainly represent modified versions or extensions of the model originally developed by
Gurson [12]. His study dealt with the growth of a single spherical void which produces the development of ductile fracture.
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Nomenclature

A nucleation parameter of the continuous model
AIE nucleation parameter of the interface model
C elastic stiffness matrix
Cep tangential interface stiffness matrix for elasto-plastic degradation
E Young’s modulus
f void volume fraction (porosity)
f C void volume fraction value at the beginning of the coalescence
f F void volume fraction value corresponding to a total failure
f 0 initial void volume fraction
f � modified void volume fraction function
f gro void volume fraction due to growth of existing voids
f nuc void volume fraction due to nucleation of new voids
f N volume fraction of the nucleated voids for the normal distribution
G shear modulus
Ha set of scalar state variables
�H softening parameter
kN normal elastic stiffness
kT tangential elastic stiffness
l thickness of the joint
n vector outlining the direction of the interface fracture displacements
N hardening exponent of the power hardening law
qb internal parameters of the yield function
sN standard deviation value for the nucleation normal distribution of the GTN model
sNIE standard deviation value for the nucleation normal distribution of the interface model
t interface contact stress vector
u relative interface displacement vector
uel elastic part of the relative interface displacement vector
up plastic part of the relative interface displacement vector
u relative interface normal displacement
�u equivalent plastic interface displacement
_�u equivalent plastic interface displacement rate
u0 elastic limit relative displacement for the interface hardening law
uN model parameter to be calibrated for the nucleation description
v relative interface transversal displacement
�e equivalent plastic strain
eN mean strain value for the nucleation normal distribution
e0 elastic strain limit
/ yield function equation
_k non-negative plastic multiplier
m Poisson’s coefficient
h mixed mode load angle
r normal interface contact stress
r0 yield stress of the interface fully dense matrix material
re von Mises stress
rm hydrostatic pressure
ry initial matrix yield strength
�r yield stress of the continuous fully dense matrix material
s shear interface contact stress
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Enakoutsa [13] developed a nonlocal methodology to delocalize the damage in Gurson model for porous ductile materials.
An original way to account for the surface/interface stresses effect at micro-scale, between the nano-inclusion and the
surrounding matrix, was extended for the classical Gurson model for ductile porous media by Dormieux and Kondo [14].
A modified Gurson model was also developed by Jackiewicz [15] for the simulation of damage growth and ductile fracture
under low, medium and high triaxial stresses. A phenomenological modification to the Gurson model that incorporates dam-
age accumulation under shearing was proposed by Nahshon and Xue [16]. Furthermore, Nahshon and Hutchinson [17]
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proposed an extension of the Gurson formulation which models damage growth under low triaxiality straining for
shear-dominated states. Further extensions of the original Gurson formulation are available in literature [18–20].

This work presents a zero-thickness interface model for ductile fracture. The formulation is based on the flow theory of
plasticity and porous-based concepts to control the energy release during cracking processes in Mode I, II and mixed. This
model represents a new extension of the continuous formulation classically known as the modified Gurson model or
Gurson–Tvergaard–Needleman (GTN) model [21].

After the above introduction, the paper is organized as follows. Section 2 reports the general formulation and basic
assumptions of the elasto-plastic interface model. Section 3 figures out the failure criterion outlining the crack initiation
of the interface model while Section 4 deals with the calculation of the tangent constitutive tensor. Then, the classical
continuous formulation and the adopted techniques to create a link between this and the corresponding discontinuous
approach are discussed in Section 5. Finally, the study for capturing ductile fracture by comparing these two approaches
is presented and discussed in Section 6.

It is worth mentioning that the interface model proposed in this paper can be employed in microscopic analyses aimed at
simulating failure processes developed at the inclusion-surrounding matrix interfaces [22]. A micro-mechanical approach
(and the consequent possibility of modeling the behavior of ductile fracture in metals starting from both their components
and the interactions among them) represents the key contribution of the proposed model.

Under micro and mesoscale levels of observation, the increasing damage of ductile materials gives rise to the develop-
ment of discontinuous cracks, representing first order displacement discontinuities which, e.g. in some steels, can evolve
at interfaces of second phase particles and inclusions of the material under consideration. Therefore, the fixed crack
approach, based on the proposed porosity-based interface model, represents the most appropriate and direct procedure
to model the mechanical response and the displacement jumps in the aforementioned discontinuities. A fundamental advan-
tage of this approach, based on zero-thickness interfaces, is the related objectivity of the FE predictions of localized failure
processes regarding mesh size and orientation, provided when a sufficient mesh density is considered. Furthermore, Finite
Element Analyses (FEA) based on zero thickness interfaces are characterized by the inexistence of element locking which
constitutes a relevant shortcoming of classical continuous-based thin-layer FEA.

2. The porous-based interface model

The constitutive zero-thickness Interface Element (IE) formulation is inspired on the modified Gurson model [12,21,23–
25] which is typically employed to model ductile damage. A brief description of the continuous approach is summarized in
Section 5.1.

The proposed model is based on the following rate constitutive equations [26,27]
_u ¼ _uel þ _up ð1aÞ
_uel ¼ C�1 � _t ð1bÞ
_t ¼ C � _u� _upð Þ ð1cÞ
being
_u ¼ ½ _u; _v �T ð2Þ
the rate of the relative interface displacement vector, decomposed into the elastic part, _uel, and the plastic one, _up; with _u and
_v the relative displacements rate in the normal and tangential direction, respectively; whereas _t ¼ ½ _r; _s�T is the vector of the
incremental contact stress defined in the interface plane, being r and s the normal and shear components, respectively.

C defines the elastic stiffness matrix
C ¼
kN 0
0 kT

� �
ð3Þ
with kN and kT representing the normal and tangential elastic contact stiffnesses.
The vector of the plastic displacement rate, _up, is defined according to the following associated flow rule
_up ¼ _kn ¼ _up; _vp½ �T : ð4Þ
The non-negative plastic multiplier, _k, is derived starting from the classical Kuhn–Tucker loading/unloading (Eq. (5a)) and
consistency (Eq. (5b)) conditions
_k P 0; / 6 0; _k/ ¼ 0 ð5aÞ
_k _/ ¼ 0 ð5bÞ
being / ¼ / r; s;Ha� �
the yield function of the model, with Ha (a ¼ 1;2; . . . ;n) a set of scalar state variables. The n vector,

outlining the direction of the interface fracture displacements, can be calculated as follows
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n ¼ @/
@t
¼ @/

@r
;
@/
@s

� �T

: ð6Þ
3. Loading and failure criteria

The yield function for the porous interface model is defined by means of the following criterion (outlining the surface
represented in Fig. 1)
/ t; �u; fð Þ ¼ q4
s
r0

� �2

þ 2q1f � cosh
3
2

q2
r
r0

� �
� 1þ q3f �2
� 	

ð7Þ
being qb (b ¼ 1;2;3;4) internal parameters to be calibrated, r0 ¼ r0 �uð Þ the yield stress, which refers to the so called matrix
material (dealing with the material without voids), depending on the equivalent plastic interface displacement �u. Then,
f � ¼ f � fð Þ is the modified porosity function which simulates the accelerated loss of strength due to the coalescence
phenomenon [21]
f � ¼
f if f 6 f C

f C þ
1

q1
�f C

f F�f C
f � f Cð Þ if f C < f < f F

(
ð8Þ
where f C is the value for the porosity at the beginning of the coalescence and f F the value at which the total fracture is
reached. It is worth noting that a fully dense material implies that f ¼ f � ¼ 0 with no softening whatsoever. On the opposite
side, in case of failure, where f ¼ f F , the limit value of the modified porosity corresponds to f � ¼ 1=q1.

The function f deals with the nucleation of new voids as well as the growth of the existing ones [21]. Therefore, the
evolution of the void volume fraction is governed as follows
_f ¼ _f gro þ _f nuc ð9Þ
where the growth of the existing voids is a function of the plastic uplift rate, _up,
_f gro ¼ 1� fð Þ
_up

l
ð10Þ
being l a length which represents the thickness of the joint layer.
The nucleation of new voids, developed only in case of tension, is given by the following expression
_f nuc ¼ AIE
_�u ð11Þ
with _�u the rate of the interface equivalent plastic displacement. The expression of AIE is described adopting a controlled
nucleation following a normal distribution as follows
AIE ¼
f N

sNIE

ffiffiffiffiffiffiffi
2p
p exp �1

2
�u� uN

sNIE

� �2
" #

ð12Þ
where f N; sNIE and uN are model parameters to be calibrated, as highlighted in Section 6.1.
Fig. 1. Yield surface evolution depending on the porosity up to failure.
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The rate of the equivalent interface plastic displacement is linked to the normal and tangential plastic displacement rates
for the joint through the imposition of the equivalence between the rate of plastic work spent in the matrix material and the
overall one as follows
1� fð Þr0
_�u ¼ t � _up ¼ r _up þ s _vp ð13Þ
then, it can be derived the expression for _�u
_�u ¼ t � _up

1� fð Þr0
ð14Þ
and the total interface equivalent plastic displacement, �u, can be calculated by integrating the above equation during the
fracture process.

Finally, depending on the total interface equivalent plastic displacement �u, the following hardening law is adopted
r0 ¼ ry 1þ
�u

u0

� �N

ð15Þ
where ry is the initial yield limit of matrix, N a hardening exponent and u0 the elastic limit relative displacement.

4. Elasto-plastic constitutive equations

At the core of the nonlinear finite-element solver resides the tangent constitutive tensor which is calculated starting from

the consistency condition of Eq. (5b) [28]. Particularly, for an inelastic load step with a positive plastic multiplier _k > 0
� 	

it

follows that
_k _/ ¼ 0 ) _/ ¼ 0 ð16Þ
and consequently
@/
@t
� _tþ @/

@f
_f þ @/

@�u
_�u ¼ 0: ð17Þ
4.1. Plastic multiplier

The classical expression for the incremental plastic multiplier is obtained by solving Eq. (17), replacing it into the
constitutive Eq. (1c), accounting the evolution of porosity from Eq. (9) and the rate of the equivalent plastic displacement
from Eq. (14).

After some algebra, the plastic multiplier in compact form becomes
_k ¼ n � C
n � C � nþ �H

� _u ð18Þ
where the softening parameter (namely H) is represented by the following expression
�H ¼ �/;f 1� fð Þn1 þ A
t � n

1� fð Þr0

� �
� /;�u

t � n
1� fð Þr0

� �
ð19Þ
being n1 ¼ @/
@r ; /;f ¼ @/

@f and /;�u ¼ @/
@�u.

4.2. Tangent stiffness operator

Consequently, the rate of normal and tangential interface stresses can be derived by the rate of interface displacements as
_t ¼ Cep � _u: ð20Þ
The plastic multiplier from Eq. (18) is replaced into the associated flow rule (Eq. (4)). These are then replaced into Eq. (1c)
obtening, after some algebra, the following tangential interface stiffness for elasto-plastic degradation
Cep ¼ C� C � n� n � C
n � C � nþ �H

� �
: ð21Þ
4.3. Derivatives

All the derivatives needed from Eqs. (18)–(21) are reported below



24 D. Said Schicchi, A. Caggiano / Engineering Fracture Mechanics 138 (2015) 19–32
@/
@r
¼

3f �q1q2 sinh 3q2r
2r0

� 	
r0

; ð22Þ

@/
@s
¼ 2q4s

r2
0

; ð23Þ

@f �

@f
¼

1 if f 6 f C
1

q1
�f C

f F�f C
if f C < f < f F

(
; ð24Þ

/;f ¼
@/
@f
¼ @/

@f �
@f �

@f
¼ 2q1 cosh

3q2r
2r0

� �
� 2f �q3

� �
@f �

@f
; ð25Þ

/;�u ¼
@/
@�u
¼ @/
@r0

@r0

@�u
¼ �

3f �q1q2rr0 sinh 3q2r
2r0

� 	
þ 2q4s2

r3
0

@r0

@�u
: ð26Þ
5. Continuous GTN model and homogenization against the interface proposal

The well-known Porous metal plasticity model available in Abaqus [29] is used at the continuous standpoint in this work.
The proposal is based on the GTN model [21] accounting void nucleation as proposed by Chu and Needleman [30]. This
section is aimed at summarizing such continuous model.

5.1. General overview of the GTN model

The yield function of the GTN model is given by
/ r; �e; fð Þ ¼ re

�r

� 	2
þ 2q1f cosh �3

2
q2

rm

�r

� �
� 1þ q3f 2
� 	

ð27Þ
being re the von Mises stress, rm the hydrostatic pressure, qb (with b ¼ 1;2;3) material parameters to be calibrated, �r ¼ �r �eð Þ
the yield stress of the fully dense matrix material (f ¼ 0) which depends on the equivalent plastic strain, �e, and f the material
porosity which can reach a maximum value f ¼ 1=q1 for re ¼ rm ¼ 0 and the widespread case of q3 ¼ q2

1 [23,29].
The original version of Gurson model [12] was conceived to take into account the spherically symmetric deformation of a

rigid perfectly plastic body which surrounds a spherical void. Then, Tvergaard [23,24] introduced the parameters q1 and q2

(also q3 ¼ q2
1) as coefficients of the void volume fraction and hydrostatic pressure, respectively, for analyzing the case of

uniaxial plane strain tension for elasto plastic materials with a periodic array of circular cylindrical voids. The adopted values
of these parameters were q1 ¼ 1:5; q2 ¼ 1:0 and q3 ¼ q2

1 ¼ 2:25 instead of Gurson values which originally were
q1 ¼ q2 ¼ q3 ¼ 1. The aforementioned parameters directly affect the material strength and post-elastic response of the
material behavior. For example, the growth of q1 increases the effect of the void volume fraction, resulting in a decrease
of the material strength; q2 accounts the effect of the hydrostatic stress into the inelastic material response: e.g., high values
of q2 lead to a strong softening response due to the void growth, revealing the annihilation of the strain hardening properties
of the matrix material [31].

The internal parameters (qb, with b = 1, 2, 3, 4) affect the failure behavior of the interface law proposed in this paper
(described in Section 3) in the same way as above described: i.e., q1 (and q3) influences the effect of the void volume fraction,
q2 the effect of the normal contact stress while the new introduced constant q4 allows to ponderate the effects of the
tangential contact stress into the yield criterion. The influence of q4 has been accurately reported and discussed in the
numerical results section where a parametric study has been done.

The classical associated flow rule is employed for the continuous GTN model
_ep ¼ _k
@/
@r

: ð28Þ
The evolution of the void volume fraction is governed by
_f ¼ 1� fð Þ _ep
kk þ A �eð Þ _�e ð29Þ
where the expression of A is given by Chu and Needleman [30] as
A ¼ f N

sN

ffiffiffiffiffiffiffi
2p
p exp �1

2
�e� eN

sN

� �2
" #

ð30Þ
being eN; sN and f N material parameters to be calibrated.
The microscopic equivalent plastic strain varies according to the equivalent plastic work balance [32]
1� fð Þ�r d _�e ¼ r : dep: ð31Þ
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Finally, the hardening response is modeled through the following power law
F

�r ¼ ry 1þ E�e
ry

� �N

¼ ry 1þ
�e
e0

� �N

ð32Þ
where ry is the initial matrix yield strength, E is the Young’s modulus, N is the hardening exponent and e0 is the elastic limit.

5.2. Homogenization technique between GTN and interface model

It is noteworthy that in order to objectively compare the numerical simulations obtained by means of the discontinuous
proposal, described in Section 2, with those results reached through the continuous GTN model of Section 5.1 a scale length
need to be introduced (classically known as ‘‘characteristic length’’).

Particularly, the normal and tangential stiffness are calculated as
C ¼
E
l 0
0 G

l

 !
ð33Þ
with E the Young’s modulus, G the shear modulus and l the thickness of the joint.
The nucleation parameters of Eq. (12) are calculated as
uN ¼ eNl ð34Þ
sNIE ¼ sNl ð35Þ
with sNIE the standard deviation of the nucleation law for the IE model and sN the standard deviation for the corresponding
continuous GTN model.

Finally, combining the power laws (15) and (32) with the relation e0 ¼ ry

E for the continuous elastic strain limit, the
derived expression for the elastic strain limit of the discrete approach is obtained as follows
u0 ¼
ryl
E
: ð36Þ
6. Numerical results

The numerical examples presented in this section are intended to demonstrate the basic features of the proposed
interface model. With this purpose, a comparison between numerical simulations obtained through a well-established con-
tinuum proposal and results based on the discontinuous IE formulation are realized covering various material parameters
and load conditions.

Numerical tests performed in failure Mode I, II and mixed are considered while the basic element patches, shown in Fig. 2,
are employed. Particularly, the upper and bottom rigid elements are connected, in the first scheme (case of the continuous
problem of Fig. 2a), through a 4-Node Plane Strain Isoparametric Element (4NPSIE) equipped with the non-linear GTN model.
While, for the discontinuous analysis, a zero thickness IE connects such rigid elements (Fig. 2b). Therefore, the contact
ig. 2. Problem statement and boundary conditions: (a) continuous problem and (b) discontinuous approach based on the interface model.
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interaction is modeled through the formulation proposed in Sections 2–4 which is implemented within the user-subroutine
UINTER in Abaqus/Standard. For the numerical purpose, the upper and bottom rigid elements have unitary dimensions
(1� 1 cm2) and displacement-based control is assumed.

In the first part of this section, a general comparison of the numerical responses obtained through the Continuous and the
Discontinuous Model (CM and DM) is performed for a set of material parameters previously calibrated in a work of literature.
Then, in the second and third part, the sensitivity of the model concerning the variation of different material parameters is
tested and their influence on the final failure response for the three modes of failure is discussed.
6.1. Model prediction and comparison with the continuous-based model

In first place, stress histories activating failure processes under both Mode I, II and mixed types of fracture are investi-
gated. Both normal and transverse relative displacements are co-imposed on the upper borders of the specimens, as high-
lighted in Fig. 2, while the remaining bottom borders are fixed with the aim of reproducing cracking processes under
these three modes of fracture. Tensile displacements u are combined with transverse ones v defining a prefixed load angle
h (being tan h ¼ u=v).

In those analyses, the influence of the 4NPSIE thickness employed for the continuous-based simulations is comparatively
evaluated against the same numerical tests obtained through the discrete crack approach. For this purpose, two different
thicknesses l ¼ l1 ¼ 0:01 mm and l ¼ l2 ¼ 0:1 mm are considered into the numerical predictions (Fig. 3). All material parame-
ters and variables are fixed while the thickness is modified in the continuous-based simulations. Based on typical values for
steel grades, calibrated for the model identification in previous works available in literature [21], the following GTN model
parameters are herein assumed: q1 ¼ 1:5; q2 ¼ 1 and q3 ¼ q2

1 ¼ 2:25; the nucleation parameters eN ¼ 0:3; sN ¼ 0:08;
f N ¼ 0:5 and f 0 ¼ 0:005; the Young’s modulus E ¼ 210 GPa and the Poisson’s coefficient m ¼ 0:3; and finally, according to
the power hardening law of Eq. (32) the exponent N ¼ 0:1 and the yield strength ry ¼ 300 MPa are used. However, the model
testing through the parametric study implies a variation of all of them. The model parameters for the IE problem are calcu-
lated as explained in Section 5.2. Then, the adopted value for q4 is assumed equal to 3 as justified in the following
subsections.

The numerical results for the first 4NPSIE thickness l1 ¼ 0:01 mm and the respective results from the interface con-
stitutive formulation are firstly presented and discussed. Failure Mode I results can be seen in Fig. 4. On the left (Fig. 4a)
the results in terms of normal stress vs. opening displacement u are presented for both approaches. The comparison between
them demonstrates that the peak values in both formulations are reached for the same displacement level, showing a very
small difference in terms of peak stress. As a result of the simulations the results based on the continuous GTN model high-
light a small major strength compared with that of the porous-based interface modeling. Beside the peak value, the softening
slope of the curve is slightly more pronounced for the continuous approach, due to the faster increase of the porosity as
clearly figures out on the right side of Fig. 4b where the internal porosity evolution and the subsequent nucleation of
new voids and growth of the existing ones are described during the whole fracture processes.

The numerical simulations obtained under failure Mode II are presented in Fig. 5. The results in terms of shear stress vs.
lateral displacement (Fig. 5a) show an almost perfect agreement between the compared approaches. Furthermore, Fig. 5b
reports the corresponding evolution of the total porosities for both GTN model and IE-based proposal. It is worth highlighting
that f gro, meaning the evolution due to the growth of existing voids, is null under shear load cases while the initial void frac-
tion is f 0 ¼ 0:005. Due to these reasons and for the sake of clarity, only the total void volume fraction f is plotted in Fig. 5b,
since f nuc and f are parallel and nearly coincident. As occurs with the case of direct tensile stress, an excellent concordance
Fig. 3. Thickness detail l of the 4-node isoparametric elements analyzed in the ductile fracture simulations.



Fig. 4. Continuous vs. discontinuous simulation of tensile tests with l1 ¼ 0:01 mm.

Fig. 5. Continuous vs. discontinuous simulation of shear tests with l1 ¼ 0:01 mm.
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can also be seen between the models under failure Mode II. The proposed tests deal with a shear-hardening response in the
first part of the simulation, then, once the total porosity reaches the value f ¼ 0:020 a shear-softening behavior characterizes
the failure Mode II response of the considered analysis.

Beside the performed Mode I and II, the results for a mixed Mode of failure are now discussed. For the sake of brevity, the
only case in which h ¼ 45� is analyzed. Numerical analyses show on the one hand, the very good agreement between the CM
and DM on the numerical predictions when normal stress vs. opening displacement curves (Fig. 6a) are compared. On the
other hand, the results in terms of tangent stress vs. transverse displacement illustrate the same kind of post-elastic
behavior. Particularly, after the peak a sharp loss of strength takes place at which follows an hardening response with a final
softening behavior. Even the response is quite similar analyzing both approaches, a significant difference in shear strength
characterizes both simulations. In spite of the agreement is not so good for the shear side, it is worth noting that the order of
magnitude is much lower when compared to the normal stresses. Based on this, a small effect on the structural behavior of
the whole mixed mode process can be observed. Particularly, Fig. 7 reports the total reaction, FTOT , vs. the total mixed mode
displacement, uTOT , where
FTOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

N þ F2
T

q
ð37aÞ

uTOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ð37bÞ
being FN and FT the resulting reactions in the normal and shear directions, respectively; while u and v are the normal and
shear displacements.

Moreover, a second 4NPSIE thickness l2 ¼ 0:1 mm is considered and the same failure cases as before, for l1, are analyzed.
Particularly, the numerical results of the first load case, corresponding to failure Mode I, are illustrated in Fig. 8. Then, Fig. 9
reports the shear–displacement curves of failure Mode II and finally, Fig. 10 highlights the mixed mode of fracture
considering the 45� load condition.

Almost the same observations can be stated for these second family of tests. The behavior in Mode I is analogous to that of
the previous case in terms of stress and porosity evolutions as well. Then, the agreement in Mode II is excellent, while the
same conclusions made for the first 4NPSIE thickness test loaded in mixed mode can be observed (i.e., there is a considerable
difference when the shear stress vs. transverse displacement curves of the two models are compared, however this does not
affect significantly the overall response of the mixed mode of failure). It is worth highlighting that Figs. 4–10 demonstrate a



Fig. 6. Continuous vs. discontinuous simulations of mixed mode tests for h ¼ 45� with l1 ¼ 0:01 mm.

Fig. 7. Total force vs. total displacement for h ¼ 45� with l1 ¼ 0:01 mm.

Fig. 8. Continuous vs. discontinuous simulation of tensile tests with l2 ¼ 0:1 mm.
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rather good agreement between both models when the same set of input parameters are considered for describing the elastic
and failure response of the ductile fracture process.

Finally, in Fig. 11a and b a comparison of the normal and shear stresses against normalized uplift/transverse
displacements is illustrated. Particularly, Fig. 11a summarizes the results of Figs. 4a and 8a, as well as Fig. 11b does the same
with Figs. 5a and 9a. All results are unified through normalizing the normal/shear displacements with the corresponding
4NPSIE thickness (labeled l1 and l2). A perfect agreement can be observed for both 4NPSIE thicknesses employing the two
aforementioned models, even more keeping in mind that the same set of material parameters are used in all simulations.
6.2. Parametric sensitivity analysis of material parameters

In this subsection h ¼ 45� fracture mixed mode cases, as shown in Fig. 2, are considered. The adopted material parameters
for the CM are summarized in Table 1 and, consequently, for the IE problem are derived as explained in Section 5.2.



Fig. 9. Continuous vs. discontinuous simulation of shear tests with l2 ¼ 0:1 mm.

Fig. 10. Continuous vs. discontinuous simulation of mixed mode tests for h ¼ 45� with l2 ¼ 0:1 mm.

Fig. 11. Stresses vs. normalized displacements for both l ¼ l1 and l ¼ l2.
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Furthermore, the qi parameters are: q1 ¼ 1:5; q2 ¼ 1 and q3 ¼ 2:25 in both the CM and the DM, while for the six IE cases
q4 ¼ 3. The influence of the last one is addressed more widely in subSection 6.3.

The main purpose of these analyses is to evaluate the capability of the proposed IE to predict failure behavior of metal
joints under general mixed modes of fracture when a series of internal parameters are considered. The study is focused
on the sensitivity analysis of the model parameters involved in the simulation. The comparison between these numerical
results with those obtainable with a well-established GTN model are shown.

As a starting point, a reference test is considered and labeled as C1 case. Beside this, the initial porosity, the nucleation
parameters, the yield strength, the hardening exponent of the hardening rule, are modified one at a time with the aim of
consider several cases (from C2 to C6 cases) as figures out in Table 1.



Table 1
Material parameters for the continuous model.

Case ry (MPa) Hard. exp. f 0 eN f N sN

C1 300 0.10 0.005 0.3 0.5 –a

C2 300 0.10 0.005 0.3 1.0
C3 300 0.10 0.050 0.3 1.0 0.08
C4 300 0.10 0.050 0.2 1.0
C5 300 0.15 0.050 0.2 1.0
C6 200 0.10 0.050 0.2 1.0

a Test of reference.
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Fig. 12 highlights the total reactions, FTOT , vs. the total mixed mode displacements, uTOT for the analyzed Ci cases. These
results demonstrate the phenomenological capabilities of the interface model to reproduce failure processes of ductile frac-
ture in metals, when it is applied a discontinuous-based FE modeling. As a matter of result, the numerical predictions based
on the IE analyses compared against the same results, employing a largely validated GTN model, demonstrate a very good
agreement for each considered case. Furthermore, no special influence on the accuracy of the proposed model can be
observed due to the variation of any of the model parameters.
6.3. Parametric sensitivity analysis: influence of q4

The third numerical examples involve a direct shear test under different values of the q4 parameter. This latter represents
the only additional parameter introduced in the zero-thickness interface formulation. As it can be inferred from Eq. (7), it
affects the failure Mode II response and, consequently, the mixed one. In other words, the proposed failure criterion for
the IE proposal is not affected by q4 when the pure tensile case is considered.

As described above, the Mode II of failure in this work is accomplished by progressively applying a relative shear displace-
ment to the nodes on the top surface whereas the nodes situated at the bottom one remain fixed (Fig. 2). The parameters
used for this example for the CM are: q1 ¼ 1:5; q2 ¼ 1; q3 ¼ q2

1 ¼ 2:25; eN ¼ 0:3; sN ¼ 0:08; f N ¼ 0:5; f 0 ¼ 0:005;
E ¼ 210 GPa; m ¼ 0:3 , ry ¼ 300 MPa and N ¼ 0:1.

Shear traction and the total void volume fraction evolution against the relative tangential displacement are plotted for
different values of q4 (q4 ¼ 1;2;3 and 4) in Fig. 13. The Mode II results demonstrate the influence of this parameter on
the shear capacity of the interface. A decreasing shear strength can be registered as q4 increases. After the peak, all curves
show a similar post-peak behavior characterized by a steeper softening response when q4 ¼ 1 compared with that obtained
for higher values of such parameter.

A perfect agreement between the responses based on the continuous against the proposed IE-based model is reached for a
value of q4 ¼ 3, which is used for the totality of the numerical examples in this work. A lower value leads to an overestima-
tion of the shear strength of the contact, while, on the contrary, a higher value conduce to underestimate the Mode II of
resistance.
Fig. 12. Continuous vs. discontinuous simulation of mixed mode tests for h ¼ 45� for various material parameters.



Fig. 13. Influence of q4: (a) s–v and (b) total void volume fraction-v curves.
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7. Conclusions

In the context of ductile fracture modeling, a new zero-thickness interface element conceived within the general frame-
work of fracture mechanics and porous plasticity has been presented in this paper. A series of final remarks can be drawn out
on the bases of both the model formulation and the proposed applications:

	 Although a large amount of models derived from the original Gurson model exist, the authors have no knowledge of any
discontinuous proposal based on the direct extension of this class of formulation. The model proposed in this work
actually represents a key novelty in this aspect.
	 The numerical results obtained through the proposed interface formulation show an excellent agreement with those

obtained with the well-established continuous-based GTN model, which has largely been validated in scientific literature
and represents, as a matter of fact, one of the main pillars in the field of ductile fracture modeling in metals.
	 There is a proportional correspondence between the parameters of the continuous approach with those of the discontinu-

ous model, making all the available research on material parameters directly applicable.
	 Only one additional parameter, q4, has to be adjusted in order to keep similar post-elastic responses employing the

aforementioned models. In the whole comparisons, realized during the model testing, q4 assumed values within the range
2.5–3. Particularly, the value adopted in this work is q4 ¼ 3.

Further validations of the proposed interface formulation in structural scale cases as well as its extension in transient
thermomechanical problems represent, among others, future steps of this research line. The interface model proposed in this
paper could also be employed in mesoscopic analyses aimed at simulating failure processes possibly developing at interfaces
of second phase particles and inclusions.
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