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• PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken.
• PT-symmetric multidimensional oscillators appear to show PT phase transitions.
• This transition was conjectured to be a high-energy phenomenon.
• We show that point group symmetry is useful for predicting broken PT symmetry in multidimensional

oscillators.
• PT-symmetric oscillators with C2v symmetry exhibit phase transitions at the trivial Hermitian limit.
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a b s t r a c t

We analyse several non-Hermitian Hamiltonians with antiunitary
symmetry from the point of view of their point-group symmetry.
It enables us to predict the degeneracy of the energy levels
and to reduce the dimension of the matrices necessary for the
diagonalization of the Hamiltonian in a given basis set. We can also
classify the solutions according to the irreducible representations
of the point group and thus analyse their properties separately.
One of the main results of this paper is that some PT-symmetric
Hamiltonians with point-group symmetry C2v exhibit complex
eigenvalues for all values of a potential parameter. In such cases
the PT phase transition takes place at the trivial Hermitian limit
which suggests that the phenomenon is not robust. Point-group
symmetry enables us to explain such anomalous behaviour and to
choose a suitable antiunitary operator for the PT symmetry.
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1. Introduction

It was shown some time ago that some complex non-Hermitian Hamiltonians may exhibit real
eigenvalues [1,2]. The conjecture that such intriguing feature may be due to unbroken PT-symmetry
[3] gave rise to a very active field of research [4] (and references therein). The first studied PT-
symmetric models were mainly one-dimensional anharmonic oscillators [3–6] and lately the focus
shifted towards multidimensional problems [7–15]. Among the most widely studied multidimen-
sional PT-symmetric models we mention the complex versions of the Barbanis [7,8,10–12,14,15] and
Hénon–Heiles [7,12] Hamiltonians. Several methods have been applied to the calculation of their
spectra: the diagonalizationmethod [7–10,12,14], perturbation theory [7,9,10,12], classical and semi-
classical approaches [7,8], amongothers [12,15]. Typically, thosemodels dependon apotential param-
eter g so that the Hamiltonian is Hermitian when g = 0 and non-Hermitian when g ≠ 0. Bender and
Weir [14] conjectured that the models studied so far may exhibit PT phase transitions so that their
spectra are entirely real for sufficiently small but nonzero values of |g|. Such phase transition appears
to be a high-energy phenomenon.

Multidimensional oscillators exhibit point-group symmetry (PGS) [16,17]. As far as we know such
a property has not been taken into consideration in those earlier studies of the PT-symmetric models,
except for the occasional parity in one of the variables. It is to be expected that PGS may be relevant
to the study of the spectra of multidimensional PT-symmetric anharmonic oscillators. One of the
purposes of this paper is to start such research.

The main interest in the study of PT-symmetric oscillators has been to enlarge the class of such
models that exhibit real spectra, at least for some values of the potential parameter. In such cases
PT-symmetry is broken at particular values g = gc of the parameter that are known as exceptional
points [18–21] and can be easily calculated as critical parameters by means of the diagonalization
method [22]. The PT phase transition is determined by the smallest |gc |. Another goal of this paper is
to test that conjecture about PT phase transitions by trying to find PT-symmetric models that do not
exhibit real spectra, except at the trivial Hermitian limit g = 0.

In Section 2 we outline the main ideas of unitary (point-group) and antiunitary symmetries. In
Section 3we show that two exactly solvable PT-symmetric oscillators with different PGS exhibit quite
different spectra. One of them shows a phase transition at the trivial Hermitian limit. In Section 4 we
discuss some non-Hermitian operators, already studied earlier by other authors, from the point of
view of PGS. All of them have been shown to exhibit nontrivial phase transitions. In Section 5 we
show a PT-symmetric anharmonic oscillator with complex eigenvalues for all values of the potential
parameter. In Section 6 we explain why the PT symmetry is broken for the models in Sections 3 and
5. Finally, in Section 7 we summarize the main results of the paper and draw conclusions.

2. Unitary and antiunitary symmetries

We assume that there is a group of unitary transformations G = {U1,U2, . . . ,Un} and a set of
antiunitary transformations S = {A1, A2, . . . , Am} that leave the non-Hermitian Hamiltonian operator
invariant

UjHU−1
j = H, AkHA−1

k = H, j = 1, 2, . . . , n, k = 1, 2, . . . ,m. (1)

Therefore, if ψ is an eigenvector of H with eigenvalue E we have

HUjψ = EUjψ, j = 1, 2, . . . , n (2)

and

HAkψ = E∗Akψ, k = 1, 2, . . . ,m. (3)

The latter equation tells us that the eigenvalues of H are either real or appear as pairs of conjugate
complex numbers.

It is well known that a product of antiunitary operators is a unitary one [23]. Therefore, since AiAj
leaves the Hamiltonian invariant then AiAj = Uk ∈ G, provided that G is the actual symmetry point
group for H [24,25].
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If Ajψ = λψ then the antiunitary symmetry is said to be unbroken and E = E∗. For some
non-Hermitian Hamiltonians with degenerate states the eigenvalue can be real even though Ajψ ≠

λψ [22].

3. Exactly solvable examples

In this section we discuss exactly solvable PT-symmetric models similar to those studied earlier by
Nanayakkara [9] and Cannata et al. [13]. In the present case we focus on the PGS of the Hamiltonian
operators thatwasnot consideredby those authors. The first simplemodel is theHamiltonian operator

H = p2x + p2y + x2 + y2 + iaxy (4)

where a is a real parameter. It is exactly solvable and invariant under the operations of the symmetry
point group C2v : {E, C2, σv1, σv2} that transform the variables according to

E : (x, y) → (x, y),
C2 : (x, y) → (−x,−y),
σv1 : (x, y) → (y, x),
σv2 : (x, y) → (−y,−x). (5)

Note that C2 is a rotation by an angle π around the z axis and σv are vertical reflection planes [24,25].
It should be assumed that the same transformations apply to the momenta (px, py). In the case of a
two-dimensional model the effect of the symmetry operations on the z variable is irrelevant and for
this reason there may be more than one point group suitable for the description of the problem. For
example, here we can also choose the symmetry point groups C2h or D2 [24,25]. For concreteness we
restrict ourselves to the C2v point group with irreducible representations {A1, B1, A2, B2}.

To the PGS discussed above we can also add the antiunitary operations

A(x) = C2(x)T , A(y) = C2(y)T , (6)

where T is the time reversal operation [26] and

C2(x) : (x, y) → (x,−y),
C2(y) : (x, y) → (−x, y), (7)

are rotations by π about the x and y axis, respectively. Note that A(x)A(y) = C2 is an example of the
product of two antiunitary operators that results in one of the elements of the symmetry point group
for H .

This model is separable into two harmonic oscillators by means of the change of variables

x =
1

√
2
(s + t),

y =
1

√
2
(s − t), (8)

that leads to

H = p2s + p2t + ks2 + k∗t2,

k = 1 + i
a
2
. (9)

If we write ω =
√
k = ωR + iωI then the eigenvalues are given by

Emn = 2(m + n + 1)ωR + 2(m − n)iωI , (10)

where m, n = 0, 1, . . . and

ωR =


1
2

+
1
2


1 +

a2

4
, ωI =

a
4ωR

. (11)
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We see that all the eigenvalues with m = n are real and those with m ≠ n are complex when
a ≠ 0 (more precisely: Emn = E∗

nm). In this case the PT phase transition [14] takes place at the trivial
Hermitian limit a = 0. It is also obvious that the perturbation series for this model exhibits only
powers of a2 whenm = n and all powers of awhenm ≠ n.

The eigenfunctions can be written as

ψmn(s, t) = φm(k, s)φn(k∗, t), (12)

where φm(k, s) is an eigenfunction of p2s + ks2. Therefore

A(x)ψmn(s, t) = ψ∗

mn(t, s) = ψnm(s, t),

A(y)ψmn(s, t) = ψ∗

mn(−t,−s) = (−1)m+nψnm(s, t) (13)

that are consistent with Eq. (3).
The states ψ2m 2n, ψ2m+1 2n+1, ψ2m+1 2n and ψ2m 2n+1 are bases for the irreducible representations

A1, A2, B1 and B2, respectively. It is clear that only some of the states with symmetries A1 and A2 have
real eigenvalues and that those with symmetries B1 and B2 exhibit only complex ones. Moreover, the
antiunitary operators A(x) and A(y) transform functions of symmetry B1 into functions of symmetry B2
and vice versa, which shows that PT symmetry is broken for all a ≠ 0. More precisely, the eigenvalue
of ψ2m+1 2n (B1) is the complex conjugate of the one for ψ2n 2m+1 (B2).

We also appreciate that the eigenfunctions of the non-Hermitian Hamiltonian retain their
symmetry in the Hermitian limit: lima→0 ψmn(s, t) = φm(1, s)φn(1, t).

In order to test the effect of symmetry on the spectra of the non-Hermitian Hamiltonians we next
consider the less symmetric operator

H = p2x + p2y + 2x2 + y2 + iaxy, (14)

that is invariant under the operations of the point group C2 : {E, C2}. In this case the eigenfunctions
are bases for the irreducible representations {A, B} and all the eigenvalues

Emn = (2m + 1)ω1 + (2n + 1)ω2, (15)

where

ω1 =


3
2

+

√
1 − a2

2
, ω2 =


3
2

−

√
1 − a2

2
, (16)

are real provided that |a| < 1. In this less symmetric examplewe find a PT phase transition at a = 1 for
all the states. This particular value of the potential parameter exhibits all the properties of an excep-
tional point [18–21] and alsomakes singular the Jacobian of the variable transformation that separates
the two-dimensional Schrödinger equation into two one-dimensional eigenvalue equations [13].

The results of this section suggest that PGS determines whether the PT symmetry is broken or
unbroken. In order to confirm such conjecture we should find other examples (preferably non exactly
solvable) with PT phase transitions at the trivial Hermitian limit. Before doing so we first discuss the
non-Hermitian Hamiltonians studied so far from the point of view of PGS.

4. Earlier two- and three-dimensional models

The PT-symmetric version of the Barbanis Hamiltonian

H =
1
2


p2x + p2y


+

1
2


x2 + y2


+ iaxy2, (17)

is one of the simplest nontrivial two-dimensional models chosen by several authors as a suitable
illustrative example [7,8,10–12,14,15]. Most of them have exploited the fact that it is invariant under
y parity: Py : (x, y) → (x,−y). If we take into account that the effect of Py is equivalent to a rotation by
an angle π about the x axis then we realize that the appropriate symmetry point group for this model
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is C2 already discussed in the preceding section. This model with a rather low symmetry appears to
exhibit a PT phase transition at a ≈ 0.1 [14].

The slightly modified Hamiltonian [14]

H =
1
2


p2x + p2y


+

1
2
x2 + y2 + iax2y, (18)

exhibits the same symmetry and in this case the phase transition occurs approximately at a ≈ 0.08.
A more interesting non-Hermitian anharmonic oscillator is the PT-symmetric version of the

Hénon–Heiles one [7,12]

H = p2x + p2y + x2 + y2 + ia

xy2 −

1
3
x3


. (19)

Earlier treatments of this problem have taken into account the y parity already discussed above.
This symmetry is insufficient to account for the existence of two-fold degenerate eigenvalues already
mentioned by Wang [12]. The fact is that this Hamiltonian is invariant under rotations around the z
axis by angles 2π/3 and 4π/3 as well as under three vertical and equivalent reflection planes σv [17].
The appropriate symmetry point group is thus C3v and the eigenfunctions are bases for the irreducible
representations {A1, A2, E} [24,25]. This PGS already shows that the degeneracy just mentioned is not
accidental and comes from the irreducible representation E.

If instead of the three vertical planes σv we choose three equivalent axes C2 perpendicular to the
principal C3 one the suitable point group results to beD3. The results coming from any of these choices
are equivalent. In Section 3 we already explained why we can choose more than one symmetry point
group for the two-dimensional models discussed here.

The eigenvalues and eigenfunctions of the Hermitian operator H(a = 0) are

Emn(a = 0) = 2(m + n + 1), m, n = 0, 1, . . . , (20)

and

ϕmn(x, y) = φm(x)φn(y), (21)

respectively, where φj(q) is a normalized eigenfunction of the harmonic oscillator H = p2q + q2. It is
convenient for the discussion below to label the eigenfunctions asψM,j(x, y), whereM = m + n, j =

0, 1, . . . ,M and EM,0 ≤ EM,1 ≤ · · · ≤ EM,M so that (as outlined in Section 3)

lim
a→0

ψM,j(x, y) =

M
i=0

cM−i,i,jϕM−i,i(x, y), (22)

where the coefficients cij are determined by the symmetry of the eigenfunction. For example, the first
eigenfunctions in this limit and their corresponding symmetries are

M = 0 : {ϕ00}, A1,

M = 1 : {ϕ10, ϕ01}, E,

M = 2 :




1
√
2
(ϕ20 + ϕ02)


, A1

1
√
2
(ϕ20 − ϕ02) , ϕ11


, E.

(23)

The projection operators PS are suitable for a systematic construction of symmetry-adapted
functions [24,25]. For example, forM = 3 we have

PA1ϕ30 =
1
4
ϕ30 −

√
3
4
ϕ12,

PA2ϕ21 =
3
4
ϕ21 −

√
3
4
ϕ03,
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PEϕ30 =
3
4
ϕ30 +

√
3
4
ϕ12,

PEϕ21 =
1
4
ϕ21 +

√
3
4
ϕ03. (24)

These functions are not normalized to unity because ⟨PSϕ|PSϕ⟩ ≤ ⟨ϕ|ϕ⟩ for any projection operator
PS . Note that the functions with symmetries A1 and A2 exhibit even and odd parity, respectively, with
respect to the operation Py discussed above. On the other hand, one of the functions of the basis for
the irreducible representation E is even and the other odd.

The spectrum of this model also appears to be real for all 0 ≤ a < ac and the perturbation series
exhibits only even powers of g = ia [7,12]. The order of the first energy levels for sufficiently small
values of a (say a = 0.1) is: 1A1, 1E, 2E, 2A1, 3A1, 1A2, 3E, 4E, 5E, 4A1, 6E, 5A1, 2A2, 7E, where the
number before the symbol of the irreducible representation just indicates the order of appearance of
the eigenvalue. Present discussion of the Hénon–Heiles Hamiltonian provides a PGS explanation of
the results obtained by Wang [12] by means of perturbation theory and diagonalization.

Bender et al. [7] and Bender and Weir [14] also discussed some PT-symmetric Hamiltonians in
three dimensions. One of them is

H = p2x + p2y + p2z + x2 + y2 + z2 + iaxyz. (25)

In order to analyse its PGS it is convenient to transform it into

H = p2x + p2y + p2z + x2 + y2 + z2 + i
a
2
(x2 − y2)z, (26)

by means of a rotation about the z axis by an angle of π/4.
The corresponding symmetry point group is D2d with operations {E, S4, S34 , C2, C ′

2, C
′′

2 , σ
′

d, σ
′′

d }

where S4 is an improper rotation of order 4 about the z axis [24,25]. From the irreducible representa-
tions {A1, A2, B1, B2, E} we conclude that some energy levels are two-fold degenerate.

The eigenfunctions of the Hamiltonian with a = 0 are products of harmonic-oscillator eigenfunc-
tions ϕmn j(x, y, z) = φm(x)φn(y)φj(z) and the eigenvalues Emn j(a = 0) = 2(m + n + j) + 3 are
(M+1)(M+2)

2 -fold degenerate, where M = m + n + j. When a → 0 the eigenfunctions of the Hamil-
tonian operator (26) become linear combinations of degenerate eigenfunctions ϕmn j(x, y, z)with the
appropriate symmetry. For example, for the first values ofM we have

M = 0 : {ϕ000} A1

M = 1 :


{ϕ001} B2
{ϕ100, ϕ010} E

M = 2 :




1

√
2
(ϕ200 + ϕ020)


A1

ϕ002 A1
ϕ110 B1

1
√
2
(ϕ200 − ϕ020)


B2

{ϕ101, ϕ011} E.

(27)

In this case it also appears to be a PT phase transition at a finite nonzero value of the potential param-
eter a.

5. Non-Hermitian oscillator with C2v point-group symmetry

In Section 3 we saw that the phase transition for the exactly solvable example with symmetry
point group C2v occurs at a = 0. The purpose of this section is to show that at least one family of
PT-symmetric anharmonic oscillators with that symmetry exhibits the same behaviour. A suitable
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example is the non-Hermitian modification of the Pullen–Edmonds Hamiltonian [16]

H = p2x + p2y + α

x2 + y2


+ βx2y2 + iaxy. (28)

Note that both the unitary and antiunitary transformations that leave this Hamiltonian invariant are
exactly those already introduced in Section 3. In fact, when α = 1 and β = 0 we obtain the first
exactly solvable example discussed there. When a = 0 we recover the Pullen–Edmonds Hamiltonian
with C4v PGS [16].

In order to discuss the results from the point of view of PGS we apply the diagonalization method
with symmetry-adapted products ϕmn(x, y) of eigenfunctions φn(q) of the harmonic oscillator H =

p2q + q2. We thus obtain basis sets with the following functions

ϕ+

2m 2n =


ϕ2n 2n(x, y), m = n
1

√
2
[ϕ2m 2n(x, y)+ ϕ2n 2m(x, y)] , m ≠ n,

ϕ−

2m 2n =
1

√
2
[ϕ2m 2n(x, y)− ϕ2n 2m(x, y)] , m ≠ n,

ϕ+

2m+1 2n+1 =


ϕ2n+1 2n+1(x, y), m = n
1

√
2
[ϕ2m+1 2n+1(x, y)+ ϕ2n+1 2m+1(x, y)] , m ≠ n,

ϕ−

2m+1 2n+1 =
1

√
2
[ϕ2m+1 2n+1(x, y)− ϕ2n+1 2m+1(x, y)] , m ≠ n,

ϕ+

2m 2n+1 =
1

√
2
[ϕ2m 2n+1(x, y)+ ϕ2n+1 2m(x, y)] ,

ϕ−

2m 2n+1 =
1

√
2
[ϕ2m 2n+1(x, y)− ϕ2n+1 2m(x, y)] , (29)

with symmetry

ϕ+

2m 2n, ϕ
+

2m+1 2n+1 : A1,

ϕ−

2m 2n, ϕ
−

2m+1 2n+1 : A2,

ϕ+

2m 2n+1 : B1,

ϕ−

2m 2n+1 : B2. (30)

Since basis functions of different symmetries do not mix then we can carry out four independent
diagonalizations, one for each irreducible representation. This fact not only reduces the dimension of
the matrices to be diagonalized (which may be crucial for greater space dimension) but also enables
us to analyse the behaviour of the eigenfunctions according to their symmetry.

Because A(x)ϕ+

2m 2n+1 = −ϕ−

2m 2n+1 then A(x)ψB1 = λB1B2ψB2 and EB1 = E∗

B2
according to Eq. (3).

Therefore, the eigenvalues for B eigenfunctions are expected to be complex for any a > 0 as in the case
of the exactly solvable model discussed in Section 3. We have verified this conclusion by numerical
calculation (see below).

Straightforward application of the diagonalization method with those symmetry-adapted basis
sets shows that there are no real eigenvalues with eigenfunctions of symmetry B. More precisely,
the characteristic polynomials for the bases with symmetries B1 and B2 exhibit odd powers of
g = ia which do not appear in those for the other two irreducible representations A1 and A2. The
characteristic polynomials for the entire basis set {ϕmn} are only functions of g2 and the complex
eigenvalues appear as pairs of complex conjugate numbers. In other words, the coefficients of the
characteristic polynomials are real for the full basis set as argued elsewhere [27]. On the other hand,
the coefficients of the characteristic polynomials for B1 and B2 are complex and every complex root
EB1 of the former has its counterpart E∗

B2
as a root of the latter.
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Fig. 1. Lowest eigenvalues with symmetries A1, A2, B1 and B2 (top to bottom) of the Hamiltonian operator (28) with α = 1
and β = 0.1.

Fig. 1 shows results for α = 1, β = 0.1 and 0 ≤ a ≤ 1. We appreciate that the A states exhibit
phase transitions at nonzero values of a but the eigenvalues of symmetry B are complex for all a > 0
as argued above.We clearly see that in this case the PT-symmetry is brokenwhen a > 0 and the phase
transition takes place at the trivial Hermitian limit. In other words, the PT phase transition does not
appear to be such a robust phenomenon as it was believed [14].

6. Broken PT symmetry

All the Hamiltonian operators discussed here are of the formH = H0 +gH1 in such a way that they
are Hermitian when g = 0 and PT symmetric when g is imaginary. All of them exhibit unbroken PT
symmetry for sufficiently small |g| except the two cases of symmetry C2v discussed in Sections 3 and
5. The perturbation series for the models with unbroken PT symmetry exhibit only even powers of
the perturbation parameter g . If any of the perturbation corrections of odd order were nonzero then
we would expect a complex eigenvalue even for vanishing small values of |g|.
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In all the cases discussed so far the Hermitian part of the Hamiltonian is invariant under
inversion [24,25]: ı̂H0 ı̂ = H0 so that the unperturbed eigenfunctions exhibit definite parity u or g (note
that C2 may appear instead of ı̂ in some of the examples above but the argument remains unchanged,
except for notation). In all the cases with unbroken PT symmetry the non-Hermitian part changes sign
under inversion ı̂H1 ı̂ = −H1 and the whole Hamiltonian is invariant under the antiunitary symmetry
given by A = ı̂T . On the other hand, the non-Hermitian parts of the two Hamiltonians with broken
PT symmetry are invariant under inversion. These Hamiltonians are not invariant under A = ı̂T but
under other antiunitary operators that we have called A(x) and A(y).

Let us focus on the perturbation correction of first order that is determined by matrix elements
of the form ⟨ϕi|H1|ϕj⟩ where ϕi and ϕj are two degenerate eigenfunctions of H0. The product ϕiϕj is
invariant under inversion [24,25] so that ⟨ϕi|H1|ϕj⟩ = 0 if H1 changes sign under such operation,
and as a result the perturbation correction of first order vanishes. On the other hand, in the examples
with broken PT symmetry some of those matrix elements do not vanish because the whole integrand
is invariant under inversion and the perturbation corrections of first order are nonzero. As a result
the corresponding eigenvalues are complex even for vanishing small values of |g|. Throughout this
discussion we have been tacitly assuming that the symmetry of H0 is greater than that of H1 so that
the non-Hermitian perturbation removes the symmetry of the unperturbed Hermitian operator.

For example, the eigenfunctions of symmetry E of the Hamiltonian operator (28) with a = 0
are linear combinations of the harmonic-oscillator eigenfunctions ϕ2m 2n+1 and ϕ2m+1 2n that are odd
under inversion (or under C2). When a ≠ 0 the perturbation, which is invariant under inversion,
removes the degeneracy at first order and the eigenfunctions of symmetries B1 and B2 emerge. The
corresponding eigenvalues are complex conjugate of each other as described above.

The two dimensional isotropic harmonic oscillator is invariant under the two-dimensional rotation
group (we can choose the C∞v point group [24,25]). However, in this case there is additional dynamical
symmetry (whichwe do not discuss in detail here) and the degeneracy is larger than the one predicted
by that point group [28]. The degenerate eigenfunctions ϕM−j j(x, y), j = 0, 1, . . . ,M exhibit the
same behaviourwith respect to inversion: ϕM−j j(−x,−y) = (−1)MϕM−j j(x, y). Since the off-diagonal
matrix elements ⟨ϕM−i i|xy|ϕM−j j⟩ are nonzero when |i − j| = 1 the perturbation correction of first
order is also nonzero and the corresponding eigenvalues are complex even for vanishing small values
of |a| as shown in Section 3. The greater symmetry of H0 in this case accounts for the fact that not
only the functions of symmetries B1 and B2 but also some of symmetries A1 and A2 have complex
eigenvalues.

The general argument given above does not apply to the second exactly solvable example discussed
in Section 3 because in this case there are no degenerate states when a = 0 and the perturbation
corrections of first order are given solely by diagonal matrix elements that vanish because of the
symmetry of the eigenfunctions with respect to either the variable x or y.

7. Conclusions

Throughout this paper we have discussed Hamiltonians that are Hermitian when a potential
parameter a is zero and non-Hermitian but PT symmetric when a ≠ 0. Those in Section 4 discussed
earlier by several authors exhibit different kinds of PGS but they share the property of having phase
transitions at nonzero values of a [14]. On the other hand, the exactly solvable PT-symmetric harmonic
oscillator of Section 3 exhibits a phase transition at a = 0; that is to say, some of its eigenvalues are
complex for all values of a > 0. This operator exhibits C2v PGS and some of the eigenvalues for the A
eigenfunctions and all of those for the B ones are complex. For such eigenfunctions the PT symmetry
is broken for all values of a and the phase transition occurs at the Hermitian limit.

In order to verify if the broken PT symmetry was actually due to PGS and not to the particular
form of the Hamiltonian (an exactly solvable two-dimensional harmonic oscillator) we constructed
a family of simple but nontrivial examples with the same PGS and found that the eigenvalues with
eigenfunctions of symmetry B are complex for all nonzero values of the model parameter a.

Upon comparing the models with broken and unbroken PT symmetry we concluded that the
relevant difference is the behaviour of the non-Hermitian part of the Hamiltonian with respect
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to inversion. We have shown that the spectrum may not be real for some values of the potential
parameter unless the Hamiltonian is invariant under the antiunitary operator A = ı̂T . The most
important conclusion of this paper is that the existence of a phase transition as a high-energy
phenomenon [14] is not a general property of multidimensional oscillators with arbitrary antiunitary
symmetries (like that given by the operators A(x) and A(y) introduced in Section 3). It does not appear
to be a robust phenomenon unless we restrict PT symmetry to the antiunitary operator A = ı̂T .
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