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Abstract: In a missing data setting, we have a sample in which a vector of explanatory variables x; is
observed for every subject i, while scalar responses y; are missing by happenstance on some individuals.
In this work we propose robust estimators of the distribution of the responses assuming missing at random
(MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of
any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators
of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed.
A robust fit for the regression model combined with the robust properties of the location functional gives
rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown
point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The
proofs of the theorems are presented in Supplementary Material available online. The Canadian Journal of
Statistics 41: 111-132; 2013 © 2012 Statistical Society of Canada

Résumé: Avec les données manquantes, nous avons un échantillon pour lequel les variables explicatives x;
sont observées pour chaque sujet i, tandis que les variables réponses y; sont manquantes au hasard pour
quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution
des variables réponses en supposant que les données soient manquantes au hasard (MAR), sous un modele
de régression non paramétrique. Notre approche permet I’estimation cohérente de n’importe quelle fonction-
nelle faiblement continue de la distribution des variables réponses. Plus particulierement, nous proposons des
L- et M-fonctionnelles qui sont des estimateurs fortement cohérents de n’importe quelle fonctionnelle con-
tinue du parametre de position (par exemple, la médiane). Une méthode d’ajustement robuste du modele de
régression combinée aux propriétés de robustesse des fonctionnelles de tendance centrale fournissent une
méthode robuste pour I’estimation du parametre de position. La robustesse de notre procédure est mesurée
a I’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs
du parametre de position. Des suppléments, contenant les démonstrations des théorémes, sont disponibles
en ligne. La revue canadienne de statistique 41: 111-132; 2013 © 2012 Société statistique du Canada

1. INTRODUCTION

Suppose we have a sample of a population, such that for every subject i in the sample we observe
a vector of explanatory variables x; while a scalar response y; is missing by happenstance on some
individuals. A classical problem is to construct consistent estimators for the mean value of the
response based on the observed data. In order to identify the parameter of interest in terms of the
distribution of observed data, missing at random (MAR) is assumed.
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This hypothesis establishes that the value of the response does not provide additional infor-
mation, on top of that given by the explanatory variables, to predict whether an individual will
present a missing response (see Rubin, 1976). To be more rigorous, let us introduce a binary
variable a; such that a; = 1 whenever the response is observed for subject i. In this way, MAR
states that

P(a; = 1]x;, yi) = P(a; = 1]x;). ey

This condition also implies that the conditional distribution of the responses given the vector
of explanatory variables remains the same, regardless of the fact that the response is also ob-
served: y;|X; ~ yi|X;, a; = 1. Then E[y;|x;] = E[y;|x;, a; = 1]. Since E[y;] = E[E[y;|x;]], a pos-
sible approach to estimate E[y;] is based on a regression model (parametric or nonparametric) for
Ely;|x;] = g(x;), which is fitted using only the individuals for whom the response is observed.
Then an estimator for E[y;] is obtained by averaging g(x;) over the whole sample, where g is an
estimator of g. A recent survey and discussion of this and other methods for dealing with this
problem can be found in Kan & Schafer (2007) and Robins et al. (2007).

The estimation of the mean response under a missing at random assumption finds one of its
most frequent applications in observational studies with medical or economic data. In particular,
in the context of causal inference, to quantify the effect of two different treatments, say #y and 71,
on some response of interest, two random variables y© and y(!) are introduced. These variables
represent responses in hypothetical worlds were all individuals are treated with ¢y and #1, respec-
tively. The average treatment effect is defined by E[y(V] — E[y(?]. Note that y\/), for j = 0, 1,
is only observed in those individuals whose treatment level is T = ¢, and so it is considered a
missing response for those individuals with treatment different from #;. Since in observational
studies the treatment assignment is in general not randomized, the estimation of E[y\)] should
be addressed using missing data techniques. This approach has been widely studied in the causal
literature and examples of this methodology can be found in Dehejia & Wahba (1999) or in Bang
& Robins (2005).

As is well known, the mean is not a robust location parameter, that is, a small change in the
population distribution may have a large effect on this parameter. As a consequence of this, the
mean does not admit consistent non-parametric robust estimators, except when strong properties
on the distribution are assumed, as for example symmetry. For this reason, to introduce robust-
ness in the present setting, we start by reformulating the statistical object of interest: instead of
estimating the mean value of the response, we look for consistent estimators of 77 (Fp), where Tp,
is a robust location functional and Fj is the distribution of y;. For example, if we are interested
in estimating the median of Fy, we take 77 (Fp) = med(Fp). According to this, we say that a
sequence of estimators i, is consistent for T (Fp) if lim,— oo i1, = T1(Fp). Note that the naive
estimator 77 (F,), where F}, is the empirical distribution of the non missing responses, in general
is not consistent. In fact, T7,(F,,) — Tr(F§) where Fj is the distribution of y; conditionally on
a; = 1.

Bianco et al. (2010) obtain robust and consistent estimators of M-location functionals of the
distribution of the responses. In their treatment they assumed a partially linear model to describe
the relationship between y; and x;, and also that the distributions of the response y; and of the
regression error under the true model are both symmetric.

In this paper we introduce a new estimator of any continuous location functional assuming
that the relation between y; and x; is given by means of a semiparametric regression model. We
show that, once the regression model is fitted using a robust estimator, we can define a consistent
estimator of the distribution function of the response. Then, any location parameter of the response
distribution defined throughout a weak continuous location functional may be also consistently
estimated. This can be done by evaluating the functional at the estimated distribution function.
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The consistency of this procedure does not require the symmetry assumptions used by Bianco
et al. (2010).

A robust fit for the regression model combined with the robust properties of 77, gives rise to a
robust recipe for estimating 77 (Fp). Robustness is quantified by looking at the breakdown point
of the proposed procedure. For this purpose, we introduce for the first time a definition of the
breakdown point when there are missing data in the sample.

This work is organized as follows. In Section 2 we formalize the problem of the robust
estimation of a location parameter with missing data. In Section 3 we present our proposal for
estimating Ty (Fp), when Ty, is a weakly continuous location functional. In Section 4 we show
that, under general conditions, the proposed estimators are strongly consistent and asymptotically
normal. In Section 5 we study the breakdown point of the proposed estimators. In Sections 6
and 7 we introduce some possible robust regression and location functionals, respectively, and
show that they satisfy the assumptions required for consistency and asymptotic normality of the
proposed estimators. In Section 8 we discuss the results of a Monte Carlo study. These results
confirm that the proposed estimators are highly robust under outlier contamination. In Section 9
we analyze an example with real data. The proofs of the theorems are presented in Supplementary
Material available online.

2. DESCRIBING OUR SETTING: THE DATA, THE PROBLEM AND THE MODEL

We first introduce some notation. Henceforth Eg[4(z)] and PG (A) will respectively denote the
expectation of /1(z) and the probability that z € A, when z is distributed according to G. If z has
distribution G we write Zz ~ G or D(z) = G. Weak convergence of distributions, convergence
in probability and convergence in distribution of random variables or vectors are denoted by
G, —w G,z, —p zand z, —4 z,respectively. By an abuse of notation, we will write z, —4 G
to denote D(z,) — G. We use op(1) to denote a sequence that converges to zero in probability
and O p(1) to denote a sequence bounded in probability. The complement and the indicator of the
set A are denoted by A and 14, respectively. The scalar product of vectors a, b € R® is denoted
by a’b and R denotes the set of non-negative real numbers.

In this paper we use the expression empirical distribution of 21,2, ..., Z,, n points in Rk,
to denote the function F, : R¥ — [0, 1] such that given z € R¥, F,(z) = m/n, where m is the
number of points z; such that all its coordinates are smaller than or equal to the corresponding
ones of z.

Throughout this work, we have a random sample of n subjects and for each subject i in the
sample, 1| <i < n, a vector of explanatory variables X; is always observed, while the response y;
is missing for some subjects. Let a; be the indicator of whether y; is observed for subjecti: @; = 1
if y; is observed and a; = 0 if it is not.

We will be concerned with the estimation of a location functional of the distribution of the
response. A location functional 77, defined on a class of univariate distribution functions G, assigns
to each F' € G a real number T} (F) satistying Ty (Fyuy1p) = aTp(Fy) + b, where F\ denotes the
distribution of the random variable y.

Examples of location functionals are the mean and median. The M-location functionals form
an important class of robust location functionals that includes, among others, the median. Another
important class of location functionals is that of L-functionals. Both M- and L-location functionals
are studied in Section 7.

A functional T is said to be weakly continuous at F if given a sequence {F},} of distribution
functions that converges weakly to F (F, — F), then T(F,) — T(F). In order to obtain a
consistent estimator of a location parameter defined by means of a weakly continuous functional,
it is sufficient to have a sequence of estimators F,, that converges weakly to the distribution of
the y;’s.
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To be more precise, denote by Fy the distribution of the outcomes y;. Let 77 be a weakly
continuous location functional at F. We are interested in estimating po = 71 (Fp). We assume a
semiparametric regression model

yi = g(Xi, Po) +ui, 1 <i<n, )

with y;, u; € R, x; € R?, u; independent of x;, By € B C R?, g : R? x B — R. Furthermore, in
order to guarantee the MAR condition, we assume that u; is independent of (x;, ;). We denote
by Qo and Ky the distributions of x; and u;, respectively.

To identify By, without requiring that either (i) Ko is symmetric around O or (ii) K¢ satisfies a
centring condition (as, e.g., Eg,[u] = 0), we assume that

P, (g(x. Bo) = g(x, B) + ) < | 3)

for all B # By and for all . To satisfy this condition it is required that, if there is an intercept,
it should be included in the error term u; instead of being a parameter of the regression function
g(x, B). For a linear regression model, we have g(x, 8) = 8'x and so, in this case, condition (3)
means that the vector x; is not concentrated on any hyperplane.

The function g can be selected by cross validation using different robust criteria as in Hubert &
Engelen (2007), Boente & Rodriguez (2008), and Boente, Gonzdlez-Manteiga, & Pérez-Gonzdlez
(2009). One possibility is to consider that g is a polynomial functional whose degree can be chosen
by any robust selection criteria for linear models. Examples of such criteria for linear models are
given in Ronchetti & Staudte (1994), Ronchetti, Field, & Blanchard (1997), Khan, van Aelst, &
Zamar (2007), and Section 5.12 of Maronna, Martin, & Yohai (2006).

3. THE PROPOSED ESTIMATORS

Recall that Ky denotes the distribution of u; and let Ry denote the distribution of g(x;, Bo).
Independence between x; and u; implies that Fj is given by the convolution between Ry and K.
Then, by convoluting consistent estimators R, and K, of each of these distributions, we get a
consistent estimator for Fy.

In order to estimate Ry and K( we need to have a robust and strongly consistent estimator Bn
of Bo. This estimator may be, for example, an S-estimator (see Bousseeuw & Yohai, 1984) or an
MM-estimator (see Yohai, 1987). Since u; is independent of a;, 8, may be obtained by a robust fit
of the model using the data for which y; is available, that is, using the observations (x;, y;) with
ai = 1. Let R, be the empirical distribution of g(x;, ,Bn) 1 < j < n, defined by

n

~
R =+ Z‘Smx_,-,ﬁn)’ )

J=1

where §; denotes the point mass distribution at s.
Let A={i:a; =1}and m = #A. For i € A consider

Ui = yi — 8(Xi, Bn)-

The estimator K » of K is defined as the empirical distribution of {u; : i € A}:

- 1 1 -
Kn= 0D 00, = s D aiby, 5)
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Then, we estimate Fy by
F, = Ry % K, (6)
where * denotes convolution. Note that F,, is the empirical distribution of the nm points
Vij = gXj, B) + 0, 1< j<n, i€A,

and therefore we can also express F, as

1 n
?ZZS/}\:/ - n Zz 1a ZZ Yij® (7)

icA j=1 LicA j=1

Finally, we estimate o by
fin = TL(Fy). ®)

Since we have assumed weak continuity of Ty, at Fp, in order to prove that i, is a strongly
consistent estimator of (o, we only need to prove that F,, —,, Fp a.s. Observe that

Eg [h(y)] = Z Zh(yu)

IEAjl

The right hand side of this equation was proposed by Miiller (2009) to estimate Ef, [h(y)] .

A property that characterizes robust functionals is weak continuity. When a functional T
is weakly continuous, a small change in the underlying distribution (e.g., when there is a small
fraction of outliers) has a minor influence on the asymptotic value of the associated estimator.
Assume that 8, = Tr(G};), where G} is the empirical distribution of the pairs (x;, y;) with
a;i =1, and Tg is a weakly continuous regression functional. Then, we will show that if 7},
is weakly continuous and g(x, 8) is continuous in 8, the functional T* associated with the
proposed estimator is also weakly continuous. Note that this functional depends on M, the joint
distribution of (y, x,a), and is defined as follows. Let G be the marginal distribution of (y, x)
given a = 1, when (y, X, a) is distributed according to M. Let R and HM) be the distributions
of y — g(x, Tr(GM)Y) given a = 1 and of g(x, TrR(GM)Y), respectively. Finally let FM) be the
convolution between R™) and H™), Then, the functional associated with our procedure can
be written as T*(M) = Ty (F™). To prove the weak continuity of 7% we start by observing
that if M, —,, My then GM») —  GMo) Moreover, the continuity of g and Tg implies that
RM) . RMo) and HM) . HM0) Then, since the convolution preserves weak convergence,
(proved in Lemma 2 (i) in the Supplementary Material), we get that F(M») — = F(M0) and thus,
by the weak continuity of T; we obtain T*(M,) — T*(My), proving the weak continuity of 7*.

We should emphasize that the procedure defined in this section can be applied to any continuous
location functional, for example M-functionals, L-functionals, that is, functionals associated with
estimators based on linear combination of order statistics, and R-functionals, that is, functionals
associated with estimators based on ranks.

4. CONSISTENCY AND ASYMPTOTIC DISTRIBUTION

Let (x;, y;) and u; satisfy model (2), with u; independent of (x;, a;). Denote by Gg, Qp and Ky
the distributions of (x;, y;), X; and u;, respectively, and denote by G(’)k and Qa the distributions of
(x;, yi) and x; conditioned on a; = 1, respectively.

DOI: 10.1002/cjs The Canadian Journal of Statistics/ La revue canadienne de statistique
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The MAR condition implies that under G model (2) is still satisfied with x} and u inde-
pendent, x; with distribution Q(; and u] with distribution K. We also assume that the regression
function g satisfies the following assumption:

AOQ. The function g(x, B) is twice continuously differentiable with respect to B and there exists
6 > 0 such that

Eg, | sup lgxi,PI*| <oo and Egq,| sup [gxi, Pl <o, (9
|B—PBoll<d [1B—Boll<é

where g(x, ) and g(x, B) denote, respectively, the vector of first derivatives and the matrix
of second derivatives of g with respect to 8, and for any matrix A, ||A|| denotes its L, norm.
In order to prove the consistency and the asymptotic normality of iy, the following as-
sumptions on B, and 7, are required.
Al. {,Bn} is strongly consistent for B.
A2. The regression estimator B,, satisfies

~ 1 <
ViBy = Bo) = —73 ;aﬂR(xi, ¥) + op(1) (10)

for some function Ig(x, u) with E[a; Ir(Xj, y;)] = 0 and finite second moments.
A3. Ty, is weakly continuous at Fj.
Ad4. The following expansion holds:

VA (Tu(F) = Tu(Fo) = VBg [I1, 5, ()] + op(D), (1)

where I7; F, is the influence function, see Hampel (1974), of Ty at F. We assume also
that Eg, [I1;, 7, ()] =0, EFO[I%L,Fo(y)] < 00, and I, F, is differentiable with |I’TL’FO(y)|
bounded.

The following theorem shows the consistency of [, = TL(??,,).
Theorem 1. Let /Fn be defined as in (7) and assume that AO and Al hold. Then
(a) {I?n} converges weakly to Fy a.s., that is,

P(F, = Fo) = 1.
(b) Assume also that A3 holds; then {1, = TL(IA*"W) converges a.s. to (1o = Tp (Fp).

In order to find the asymptotic distribution of fi,,, define n = E[ay],

¢ = Elai I7, g, (y1 — &(Bo. x1) + g(Bo. X2)) {&(Bo. X2) — &(Bo. x1)}],
e(x;, ui, a;) = Elail;, ;. (i + g(x;, fo))|ui, ;)
= aiE[ITL,FO(Mi + g(xj, Bo)lui, ai],

fx;) = E[ailh,po(ui + g(x;, Bo))Ix;],

2 1 / 2
= ?E[{e(xl,ul,a1)+ f&x1) + arc Ir(xi, up)}’].
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Then, the following theorem gives the asymptotic normality of the estimator i,, defined
in (8).

Theorem 2. Assume AO-A4. Then

n'2(f — p0) —a N(O, 7). (12)

4.1. The Median as Location Parameter
The median is one of the most popular robust location functionals. However, since for this case A4
is not satisfied, Theorem 2 can not be applied to prove the asymptotic distribution of the median
of F,, where F, is defined at (7). In this subsection, we will prove consistency and asymptotic
distribution for the median of Fn, assuming that { ,3,,} satisfies A1 and A2.

The functional Teq is defined by

Tned(F) = argH}LinEF[Iy—,uI]‘ 13)

When there is more than one value attaining the minimum, the functional is defined by choosing
any of them. We have the following result, whose proof needs an extra argument to compensate
for the absence of differentiability of Ir, ., r,(¥).

Theorem 3.  Assume that (1o = Ted(Fo) is well defined and let [i,, = Tmed(IA’n). Suppose that
Fy is continuous and strictly increasing at (o and that AO-Al holds. Then

(a) We have (i, — o a.s.
(b) Assume also that A2 holds, that Fy and K¢ have continuous and bounded densities fo and ko
respectively, and that fo(uo) > 0. Then

n'2(lin — po) —a N(O, 7, (14)
where t% is as in Theorem 2, with ¢ replaced by
1
¢ = Elaiko(—g(x2, Bo) + ro){&(x2, Bo) — &(x1, fo)}] (15)
nfo(ro)

and It; r,(y) replaced by

sign(y — po)

e F00) = 5 o)

5. BREAKDOWN POINT

Consider first a dataset of n complete observations Z = {z,, .., z,}, where z; € R/, and let gn(Z)
be an estimator of a parameter 6 € R defined on all possible datasets. Donoho & Huber (1983)
define the finite sample breakdown point (FSBP) of 6, at Z by

&* (0, Z) = min {; L osup [6,(Z)] = oo} ,

1*eZ;
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where

n
Z = {Z* = {ZT, e Z:} : Zl{z;f;éz,-} < S} .
i=1

Then &* is the minimum fraction of outliers required to take the estimator beyond any bound.
Now, we extend the notion of FSBP for samples with missing data. Let

W= {(X17 ylval)""'(xna yn’a}’l)} (16)

be the set of all observations and missingness indicators, and let A={i: 1 <i <n, a; = 1},
m = #A. Denote by W;, the set of all samples obtained from W where no more than ¢ points
are replaced by outliers, with at most s of these replacements corresponding to the non missing
observations. Then W* = {(x], ], a1), ....(X};, ¥, a,)} belongs to W if

Z Hixr iy, + Z Iixroaxy <1

icA icAC

and

> I,y (xi, v} < -
i€eA

Given an estimator i, of o, we define

Mis = _sup [f,(W")|
W*EW;S

and
tr s
k(t, s) = max (7, —) .
n m
We define the finite sample breakdown point (FSBP) of an estimator ji,, at W by
&* = min{k(t, s) : Ms; = 00}.

This definition means that £* is the minimum fraction of outliers in the complete sample or in the
set of non missing observations required to take the estimator beyond any bound.

In order to get a lower bound for the FSBP of the location estimator i, introduced in (8), we
need to define the uniform asymptotic breakdown point €7, of Ty, as follows:

Definition 1.  Given a functional Ty, its uniform asymptotic breakdown point (UABP) e{;(Tr)
is defined as the supremum of all ¢ > 0 satisfying the following property: for all M > 0 there
exists K > 0 depending on M so that

Pr(lyl = M) > 1 —e = |TL(F)| < K. (7)

It is easy to show that for any location functional 7; we have that &7;(77) < 0.5 and that
€}7/(Tmea) = 0.5. The following theorem gives a lower bound for the FSBP of the estimator i,
defined in (8).
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2013 ROBUST LOCATION ESTIMATION 119

Theorem 4.  Let W be given by (16) and let Z = {(x;, y;) : i € A}. Suppose that Bn =Em (Z),
where By, is a regression estimator for samples of size m. Let &1 > 0 be a lower bound of the
FSBP at Z of B,, and let &2 > 0 be a lower bound of the UABP of Ty. Then the FSBP &* of the
estimator i1, at W satisfies

8*283:min(81,1—\/1—82). (18)

In the next section we introduce MM-estimators of regression. The maximum value of &
for an MM-estimator of regression is (n — ¢(G}))/(2n) (see Martin et al. 2006), where c(G) is
defined by (24). In Theorem 8 we show that M-location functionals may have £ = 0.5. Then, if
c(G})/n is small, we can have ¢3 closeto 1 — V0.5 = 0.293. A similar statement holds when 7,
is the median. Instead, as we will see in Section 7.1, the value of &, for location L-functionals is
in general smaller than 0.5.

6. ESTIMATING THE REGRESSION PARAMETER: MM-REGRESSION
FUNCTIONALS

In this section, we introduce robust regression estimators satisfying A1 and A2. Several robust esti-
mators for the parameters of the regression model (2) based on complete data (X1, y1), - - ., (Xn, Yn)
have been proposed. In this paper we will consider the MM-estimator. However any other robust
regression estimator satisfying A1 and A2 can be used.

The MM-estimators were introduced by Yohai (1987) for the linear model while Fasano et al.
(2011) extended these estimators to the case of nonlinear regression. For linear regression, MM-
estimators may combine the highest possible breakdown point with an arbitrarily high efficiency
in the case of Gaussian errors. It will be convenient to present MM-estimators of By in their
functional form, that is, as a functional Tym, g(G) defined on a set of distributions in RPFL taking
Xalues in R?. Given a sample (x{, yi), ..., (X,, yn) the corresponding estimator of B is given by
Bum = Tnvm, p(Gr), where G, is the empirical distribution of the sample. As we explained in the
Introduction, we have excluded the intercept in model (2). However, to get consistent estimators
of By without requiring symmetric errors, it is necessary to estimate an additional parameter,
which can be naturally interpreted as an intercept or a centre of the error distribution. For this
purpose consider & = (B, o) with o € R, and define g(x,§) = g(x, B) + «.

We need the following definition

Definition 2. A function p : R — Rxg is called a rho-function if (i) p is continuous, (ii) p is
even, (iii) p(t) is a non-decreasing function of |t| and (iv) p(0) = 0. If p is bounded, without loss
of generality, we will assume that p(c0) = 1.

To define aregression MM-functional Tym(G) = (Tmm,p(G), Tmm,«(G)), two bounded rho-
functions, pg and p1, are required. The function py is used to define a dispersion functional S(G)
of the error distribution as follows. For any distribution G of (x, y) and & = (8, ), let S*(G, &)

be defined by
y = g(X, %‘)
E —— || =6, 19
G[p°< 5%(G.5) ﬂ 1
where § € (0, 1). Then the dispersion functional S(G) is defined by

S(G) = min_ S*(G, &) 20)
£eBxR
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and the MM-estimating functional Tym(G) = (TMM, 8(G), TMM,O,(G)) by

. y—8kx,8)
Tvm(G) = arg SSBIB]R Eg [Pl (S(G))] . (2D)

We can also consider another regression functional Ts(G) = (Ts, 8(G), Ts,a(G)), called the
S-regression functional, as follows:

. y—8x,8)
Ts(G) = argggalilREG {,00 (S(G))} ) (22)

where S(G) is defined by (20).
In the case of a linear regression model, the asymptotic breakdown point of both Tynm and
Tgs is given by

g =min(s, 1 — 8§ — c(G)), (23)
where
c(G)= sup Pe(y/x,1) =0). 24
y#0,yeRr+1

See, for example, Maronna, Martin, & Yohai (2006), Chapter 5. The maximum breakdown point
occurs when § = (1 — ¢(G))/2 and its value is (1 — ¢(G))/2. It can be proved that this is the
maximum possible breakdown point for equivariant regression functionals. In the case of nonlinear
regression both Tyv and T have also the same breakdown point, but it is not given by a simple
closed expression (see Fasano, 2009).

Yohai (1987) showed that MM-estimators for linear regression may combine the highest pos-
sible breakdown point (1 — ¢(G))/2 with a Gaussian efficiency as high as desired. However,
Hossjer (1992) showed that this is not possible for S-estimators. The maximum asymptotic Gaus-
sian efficiency of an S-estimator with £* = (1 — ¢(G))/2 is 0.33.

Let (x, y) and u satisty model (2). Let {G}:} be the sequence of empirical distribution associated
with observed pairs (X;, y;), that is, those pairs such that
a; = 1. That is,

1 n
G = —— i0(x;.vi)- 25
n Z?:l P Zaz (i, i) (25)

i=i
Then we can estimate 8y by
Ba = Tanp(G2). (26)

For the validity of assumptions Al and A2, the rho-functions used to define the regression
MM-functionals should satisfy assumptions R1 and R2 below.

R1. For some m, p(u) = 1iff |u| > m, and log(1 — p) is concave on (—m, m).
R2. The function p is twice continuously differentiable.

A family of very popular bounded rho-functions satisfying R1 and R2 is Tukey’s bisquare family:
un2\ >
prx) =1 - (1 - (%) ) 1(u) < k). @)
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We denote by o and i the derivatives of py and pj, respectively. Let ag; = TMM,O,(Gé),
ooy = TS,a(GS) and og = S(GS).

Regression MM- and S-functionals are studied in detail in Fasano et al. (2011). There we
can find sufficient conditions for weak continuity and Fisher-consistency. Moreover, a weak
differentiability notion involving the influence function of the functionals is also developed. This
notion allows us to obtain asymptotic expansions, like the one required in (10). The following
numbers will be used to derive the influence functions of the regression functionals:

aoi = Bk, [¥] (u — aoi)/00) ], i=0,1,

do = Ex, [0 (u — &00)/00) (4 — @00)/00],  bo = Egz[4(x, Po)l.

We denote by Ag the covariance matrix of g(x, o) under Q.
The following theorem shows that conditions A1 and A2 are satisfied by MM-estimators of
the regression parameter.

Theorem 5. Assume that AO holds and let py and p1 be bounded rho-functions satisfying R1,
with p1 < po. Assume that Ko has a strongly unimodal density and that (3) holds replacing Qg
by Q. We will consider that either (a) B is compact or (b) g(x, p) = Bxand § <1— c(G{).
Then

(i) limy—oo Twmm,g(G)) = Po a.s. and therefore Bn satisfies Al. Moreover, lim,_ o
Tvmm,«(Gy) = ao1.

(ii) Assume also that agyg, ao; and do are different from 0 and that py and py satisfy R2. Then (10)
holds with Ig(x, y) = ITMM,ﬁsGS (x, y)/Ela1], where ITMM,,S,GS (X,y) is the influence function
of Tmwm, g at G, given by

y — 8, (Bo, @o1))
00

Py G500 = V1 ( ) A7 3(x fo) —bo).  (28)

Then A2 holds.

Note that, according to Theorem 5, En converges to B without assuming symmetry for the error
distribution. Instead, in general the value of «q is different from E[u], except in the case that
u has a symmetric distribution. However, since as established in Theorem 1, the consistency of
TL(TT,,) only requires the consistency of g, this is not a problem.

When pg and p; are taken in the bisquare family, we have to choose the values of the corre-
sponding tuning constants kg and k1. To get MM-estimators with breakdown point 0.5, we should
set kp=1.55 and § = 0.5. Maronna, Martin, & Yohai (2006) recommend setting k; = 3.44 as a
good trade off between robustness and efficiency. This value corresponds to an asymptotic Gaus-
sian efficiency of 85% with respect to the LS-estimator. Larger values of k| allow for a larger
efficiency, at the expense of sacrificing robustness.

The MM-estimator obtained with these values has a relatively high efficiency compared
to the least squares (LS) estimator for a large variety of non Gaussian distributions, including
asymmetric ones. In Table 1 we show the asymptotic efficiency of this MM-estimator with respect
to the LS-estimator for some asymmetric distributions.

We note that in the case of the chi-squared distribution with one degree of freedom, the
efficiency of the MM-estimate is very high. This is due to the fact that this distribution has a very
heavy tail.
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TABLE 1: Asymptotic relative efficiencies of the MM-estimator for some asymmetric distributions.

Distribution W ox o X xi logW logx?  logxs logxi  logxi

% Efficiency 84 187 97 86 85 91 97 91 88 87

W, Weibull distribution with shape parameter equal to 10; x?,, Chi squared with p degrees of freedom.

7. LOCATION FUNCTIONALS

We can apply the procedure described in Section 3 to estimate puo = T (Fp), for any weakly
continuous location functional 77 . The most popular ones are the L- and M-functionals. For this
reason we will give here their influence functions that, according to Theorem 2, are necessary
to compute the asymptotic variance of the estimator defined in (8). In this section we also prove
that, under general conditions, The L- and M- functionals satisfy assumptions A3 and A4.

7.1. L-Functionals
The L-functionals are defined by

1
T(F) = / F )W (v)dv, (29)
0

where F~'(u) = inf{y : F(y) > u), W : [0, 1] — R>p is a symmetric function around 0.5, non-
increasing for v > 0.5, satisfying fol W(v)dv = 1. Given a sample yi, ..., y,, let F;, be the
corresponding empirical distribution and y(;y, 1 < i < n, the order statistics. Then

n
I(F,) = Z Win Yy
i=1

where y1) < yo) < -+ < Y and w;, = f(ii/_"l)/n W(v)dv. Let o9 = inf{or : W(e) > 0}. It is
straightforward to show that the uniform asymptotic breakdown point of an L-functional is .

The influence function of an L-functional is given by (see Huber & Ronchetti, 2009)

y o)
IT,F(y)=/ W(F(u)du—/ (1 = Fu))W(F(u))du.

One of the most popular location L-functionals is the o-trimmed mean. For this functional W(u) =
I 1—a)()/(1 = 2a), for 0 < a < 0.5, and g = a.

The following theorem shows that L-functionals satisfy A3 and A4 under very general con-
ditions.

Theorem 6. Suppose that W is bounded and continuous a.e. Lebesgue. Assume also (i) oy > 0,
(ii) Ko and Fy have bounded densities, (iii) X has bounded support and (iv) nl/z(,Bn — Bo) =
Op(1). Then the L-functional given by (29) satisfies A3 and A4.

More information on L-functionals can be found, for example, in Huber & Ronchetti
(2009).
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7.2. M-Functionals of Location
An M-functional of location is defined by

Ta(F) = argminE | pF [ = 30
M( )_argmﬁn [Pl <S(F)>}’ (30)

where p is a rho-function and S(F') is a dispersion functional satisfying (i) S(F)) > 0, and (ii)
S(F0y+u) = |G|S(F)*)-

The condition for the robustness of an M-functional defined by (30 ) is that yf = p}” must be
bounded and S(F) has to be robust. However, contrary to what is required in the regression case
with random covariables, it is not necessary for pj to be bounded. For example pj may be in the
unbounded Huber family

Hi u? if  |ul <k, ah
u)—=
Pk klu| — k2 if Ju| > k.

where 0 < k < co. Note that when k — 0, the function px(u)/k — |u| and therefore the cor-
responding functional approaches the median. However, when k — oo, the function px(u) ap-
proaches 12 and the corresponding M-functional approaches the mean. Then, for 0 < k < oo, the
corresponding M-functional can be interpreted as an intermediate location measure between the
mean and the median. We can also use as p] a bounded function such as those in the bisquare
family given in (27).

The dispersion functional S can be defined simultaneously with or separately of Ty (F). An
example of an M-estimator where S is defined simultaneously with 7y is proposal 2 of Huber
(1964). However, when S(F) is defined simultaneously, the breakdown point of the location
functional is smaller than 0.5. For example, Maronna, Martin, & Yohai (2006) show in pp. 60-61
that proposal 2 of Huber with a Gaussian efficiency of 95% has a breakdown point equal to 0.33.
For this reason we consider here only M-functionals with S(F) obtained separately. A convenient
way to define the dispersion functional S(F) is, as in the regression case, by means of an S-
functional. For this purpose, let pjj be a bounded rho-function satisfying R1. For any distribution
F of yand u € R let S*(F, ) be defined by

o [" ° (S*(E mﬂ = oY

where 0 < § < 1. Then the dispersion functional S(F) is defined by

S(F) = min S*(F, p). (33)

UE

Note that we can also define an S-functional of location by

Ts(F) = arg min S*(F, w). (34)
m

The breakdown point of the dispersion functional S(F) is given by min(§, 1 — §) and therefore
its maximum is 0.5, which is attained when § = 0.5.

We will consider here two types of M-location functionals that may have simultaneously a
breakdown point equal to 0.5 and high Gaussian efficiency. These two types of M-functionals
use the dispersion functional S(F) given in (33) with § = 0.5.
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Convex p} and bounded /}: The functional is defined by (30), where p is a differentiable
and convex rho-function with bounded ¥} = p}’. For example
P} may be in the Huber family given by (31).
Bounded p} (MM-estimator): In this case, the functional is defined by (30) with a bounded
rho-function p7, such that p}(u) < pfj(u). For example, we can
take pj = pry, with kg < ki, where p7 is defined in (27).

When p is convex, existence and uniqueness of the functional defined in (30) are guaranteed
if (i) the support of F is a finite or infinite interval I where F is strictly increasing and (ii)
¥ (u) > 0 for u > 0. When p7 is bounded the functional is well defined if p] satisfies R1 and F
has an unimodal density (see Theorem 7 (i) in Fasano et al., 2011).

It is easy to prove that for M-functionals the following equation holds

y—TM(F)ﬂ

S(F) 35)

Twm(F) =Er [yw (

where w(u) = ¥(u)/u is even and non-increasing for u > 0. Then Tyj(F') can be interpreted as a
weighted mean, where the weights decrease with the distance to the centre Tyj(F).
Let wop = Tm(Fo), mnos = Ts(Fop), and a(’)k = S(Fp). Then define

ap; = Ery [¥7 (v — o) /o0)] . i =0,1,
€5 = Ery [V§' (v — woi)/00) (v — woi)/oo)]
ds = Eg, [V§ (v — 100)/00) (y — 1100)/00)] -
In both cases, p] convex or bounded, the influence function of Ty is given by

o y— uk et ot y— uk
Iny. k() = —-07 ( *OM) A G e 05 ) _5). (36)
01

* *
99 ag, do 0

When Fj is symmetric with respect to vo we have e = 0, i, = pg ¢ = v and
Gg « Y~V
Ity R (y) = 71#1 * :
o1 %

The following theorem establishes that, under general conditions, M-location functionals
satisfy A3 and A4.

Theorem 7.  Assume that p§j is a bounded rho-function and that p7 is either a bounded or convex
rho-function. In both cases assume that p} is differentiable and that 7§ is bounded. Let Ty be
an M-location functional defined by (30), with S(F) given by (33). Assume also that T\ (Fo) and
Ts(Fy) are uniquely defined. Then

(i) The functional Ty is weakly continuous at Fy, and so assumption A3 holds.
(ii) Assume also that p§ and py satisfy R2, and that n'’2(B, — Bo) = Op(1). Then the functional
Twm satisfies assumption A4 with It r,(y) given by (36).

The following theorem gives a lower bound for the uniform asymptotic breakdown point of
the two types of M-location functionals proposed in this section. In both cases, the bound is 0.5
when § = 0.5.
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Theorem 8. Let T\ be an M-location functional defined by (30), with S(F) given by (33). Then,
under the same conditions as in Theorem 7, the uniform asymptotic breakdown point €f; of Tm
satisfies

(i) ef; = min(0.5, 8), if p} is convex and \} is bounded.
(ii) &}, = min(l — 8, 8), if p} is bounded and p} < pj.

8. MONTE CARLO STUDY

We performed a Monte Carlo study to compare the classical procedure that uses as Bn the LS-
estimator and as 77, the mean functional, with the robust proposal presented in this work and that
introduced by Bianco et al. (2010). We consider three regression models:

Model 1 The variable y is generated as y = 5x1 4+ xp 4+ x3 +4v 4+ 9, where x1 x2, x3, and v are
independent random variables with distribution N(0, 1). Note that in this model both y
and the regression error have a symmetric distribution.

Model 2 The variable y is generated as y = 5x; + x2 4+ x3 + 4v + 4, where x{, x2, and x3 have a
chi-squared distribution with one degree of freedom, v has a standard normal distribution
and the four variables are independent. In this case the regression error has a symmetric
distribution but the distribution of y is asymmetric.

Model 3 In this case y is generated by the nonlinear model y = 5exp(—0.5x1) 4+ x2 + x3 + v,
where x1, x2, x3, and v are independent random variables with a chi-squared distribution
with one degree of freedom. In this case both the regression error and the distribution
of y are asymmetric.

For the three models, the variable a that indicates when y is observed is generated so that

P(a = 1|x1, x2, x3)

=0.15 .
I~ P(a = Ljx1, 12 13) 1422+ 33)

This mechanism together with the distribution of x1, x>, and x3 gives P(a = 1) = 0.605 for models
2 and 3, and 0.50 for Model 1.

For the three models we study 62 cases. The first one corresponds to the central model,
without outlier contaminations. Then, we consider 61 cases where 10% of the observations (x;
i) are replaced by the same values (x*, y*), where x* = (2, 0, 0) and with y* varying in a grid of
61 equally spaced values in the interval [—20, 40]. For each of the 62 simulations we performed
1,000 replications using samples of size 100.

We considered 5 location functionals: the mean (MEAN), the median (MED), an M-location
functional with p} in the Tukey family, defined at (27) with ki = 3.44 (TU), an M-location
functional with pj in the Huber family with & = 1.37 (HU) and the 0.1-trimmed mean functional
(TR10). For both M-location functionals we use the dispersion functional S(G) defined by (33),
with pf} in the Tukey’s family with k = 1.57 and § = 0.5. Table 2 gives exact values of the 5
functionals for Model 1 and approximated ones for Models 2 and 3. The approximated values
of the functionals for Models 2 and 3 were computed with one sample of size 100,000. Since in
Model 1 the distribution of y is symmetric, the values of the five functionals are the same and
coincide with the centre of symmetry. However, for Models 2 and 3 the five functionals take
different values.

To estimate the mean, we use as Bn the LS-estimator. However, for the four robust location
functionals, we use as 8, an MM-estimator with p; = pry;, ko=1.57, k1 = 3.44, and § = 0.5.

For each of the four robust location functionals we consider two estimators: the one proposed
in this work, defined at (8), and the one proposed by Bianco et al. (2010), which is given by
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TABLE 2: Values of the location functionals.

Model Location functional
MEAN MED TU HU TR10
9.00 9.00 9.00 9,00 9.00
11.00 9.47 9.29 10.02 10.05
6.54 6.16 6.14 6.32 6.33

TAaBLE 3: Monte Carlo results for Model 1 under the true model (lines 1-3) and with 10% of outliers
(lines 4-5).

Estim. MEAN MED, TU, HU, T™I10, MED, TU , HU, TM10,

MSE; 0.50 0.65 0.64 0.62 0.61 0.84 0.76 0.72 0.73
Bias i, —0.002 —0.003 0.000 —0.001 —0.001 —0.005 -—0.001 —0.002 —0.003
As. bias —0.000 —0.000 0.000 —0.000  0.000  0.000  0.000  0.000  0.000
MSEx 921 2.69 2.59 3.14 4.01 3.07 2.85 2.56 2.67
Ymax 40 25 24 40 40 22 22 23 23

TL(T?:), where IATn* is the empirical distribution of g(x;, //f}n) + o,. The results of the simulations
for Models 1-3 are shown in Tables 3-5, respectively. In these tables the results for the estimators
that we propose are denoted with the subscript 1 and those corresponding to Bianco et al. (2010)
with the subscript 2. The first line of these tables shows the mean squared errors without outliers
(MSEy). The second line (Bias [i,) shows estimates of the bias of the estimators, obtained as the
mean of the 1,000 replications minus the true value of the corresponding functional. The third
line gives the asymptotic bias of the estimators, defined as the asymptotic value of the estimators
minus the true values of the corresponding functionals. The fourth line (MSEp.x) contains the
maximum mean squared error under outlier contamination. The maximum is taken along the 61
values of y*. The fifth line contains the value of y* where the maximum of the fourth line is
attained.

Line 3 of these tables shows that, as expected, the Bianco et al. (2010) estimators are consistent
for the corresponding location functionals only for Model 1, where both y and the regression errors
have symmetric distributions. However, for Models 2 and 3 these estimators have an important

TABLE 4: Monte Carlo results for Model 2 under the true model (lines 1-3) and with 10% of outliers
(lines 4-5).

Estim. MEAN MED, TU, HU, TMI0, MED, TU, HU, TMIO0,

MSE, 0.78 0.61 0.63  0.64 0.65 1.43 1.57 1.08 0.84
Bias 11, 0.04 0.00 0.00  0.03 002 -082 -09 —-0.60 —0.37
As. bias 0.00 0.00 0.00  0.00 000 -079 -093 -0.61 —0.39
MSE . 11.10 2.75 294 313 4.19 6.77 7.37 5.56 4.41
Ymax -20 -5 =5 40 -20 -3 -3 -3 -3
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TABLE 5: Monte Carlo Results for Model 3 under the true model (lines 1-3) and with 10% of outliers
(lines 4-53.

Estim. MEAN MED;, TU, HU, T™M10, MED, TU, HU, TMI0,

MSE, 0088 0065 0.073 0075 0075 0242 0294 0346 0.345
Bias i, 0.001  0.001 —0.005 —0.002 0.004 —0.423 —0466 —0.525 —0.524
As.bias 0.000  0.000  0.000  0.000 0.000 —0.466 —0.439 —0.569 —0.570
MSE 1245 0.42 0.50 0.86 1.34 059 091 109 114
Ymx 40 =19 -2 19 —20 2 1 1 1

asymptotic bias and therefore they are not consistent. The second lines show that the bias of the
estimators using samples of size 100 is very close to the asymptotic bias. Line 1 of Table 3 shows
that, for Model 1, the classical estimator is the most efficient one in the absence of outliers, as
would be expected for normal variables. We also observe that the robust estimators obtained by
the procedure proposed in this work are more efficient than those obtained through the Bianco
et al. (2010) procedure. For Models 2 and 3 the robust estimators obtained with the procedure
proposed here are more efficient than the estimator of the mean. The reason is that for these two
cases the distribution of y has heavy tails.
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FIGURE 1: Comparison of the two estimators for Model 1 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.
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FIGURE 2: Comparison of the two estimators for Model 2 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.

The results in line 4 show that, under outlier contamination, the more robust estimators are
MED; and TUj and, in the third place, HU;. However, MEAN and TR10; break down since the
mean squared error of each of these estimators goes to co when the value of y* goes to —oo or
oo. Note that, since the 0.1-trimmed mean has a breakdown point equal to 0.10 and the regression
estimator has a breakdown point of 0.5, according to (18), the breakdown point of the estimator
TR10; is 0.0523. This fact explains why TR10; breaks down when the sample has 10% of large
outliers.

In Figures 1-3 we compare the behavior of the two estimates of each robust location functional
under outlier contamination. For this purpose, we plot the mean squared errors as a function of
the outlier size y*. These figures show that for the median and the Tukey M-functionals, our
proposal seems clearly preferable to that of Bianco et al. (2010) for the three models. For the
Huber M-functional, our proposal seems preferable in the case of Models 2 and 3 while in the
case of Model 1, the Bianco et al. (2010) estimator seems to be the best choice. Our proposed
estimator breaks down for large values of y* for the 0.1-trimmed mean functional for the reason
mentioned above.

9. AN EXAMPLE

We considered a real example with complete data, and we have generated a sample with artificially
missing responses by removing some of them using an MAR mechanism. In this way, we were
able to compare the estimators of different location functionals using the whole set of original
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FIGURE 3: Comparison of the two estimators for Model 3 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.

responses with the estimators proposed for the case where there are missing data. The data we
have considered were first studied by Lal.onde (1986), and also analyzed by many other authors.
Among them we can cite Dehejia & Wahba (1999). These data were collected to compare the
annual salaries of individuals that followed an employment training program, with those that did
not.

In this work, we consider the data corresponding to one of the groups, consisting of 297
individuals who were involved in a training program (National Supported Work). These data can
be downloaded from http://www.nber.org/~rdehejia/nsw_treated.txt. The variable of interest y
is the annual salary corresponding to 1978. The data set also contains information about seven
variables, that we use as a vector x of covariables. These variables are: education (in years), race
condition (black—white), Hispanic condition (yes—no), educational level (no-degree indicator),
married status, and earnings corresponding to year 1975. We generated the observed indicator a
according to the following mechanism:

P(a = 1]x)
log ———  — = 0.001x7, 37
1 —Pla=1x)
where, as defined above, x7 represents the earnings corresponding to 1975. This mechanism
produces 26% of missing responses.

The boxplot of the 297 values of y in Figure 4 shows several outliers and justifies the use
of robust methods. We consider the same location functionals used for the Monte Carlo study:

DOI: 10.1002/cjs The Canadian Journal of Statistics/ La revue canadienne de statistique



130 SUED AND YOHAI Vol. 41, No. 1

8
S — o
S
©
o
S
S
S
Vo)
S o
o O
° 8 4
5 9
o
3 o
S o
= 8
S 8
e ®
g [E]
8 ¢)
£ o Q
S
Lo |
S |
[ '
1_N '
|
|
|
o |
o '
S - |
=)
-
o - — —

FIGURE 4: Boxplot of the 1975 income of the treated group.

the mean, the median, the Tukey M-location functional, the Huber M-location functional, and a
trimmed mean functional with ¢ = 0.1. The values of these functionals for the empirical distri-
bution of the whole sample of y are shown in the first row of Table 6.

Based on the sample with missing responses, we compute our proposed estimators for the five
location functionals. That is, the values of these functionals for the empirical distributions of the
yij’s defined in Section 3 are presented in row 2. In line 3 we present the ratio between rows 2
and 1. Row 4 contains the estimators proposed by Bianco et al. (2010) for samples with missing
observations: the same functionals evaluated for the empirical distribution of the predicted values
oy + ,3;lx,-, 1 <i < 297. Finally, the ratio between rows 4 and 1 is presented in row 5.

We observe that, as expected, the means of the second and fourth rows are very close to each
other. Moreover, in comparing rows 3 and 5, we note that, for all functionals except the mean,
the estimators proposed in this paper are closer to the values of the corresponding estimates for
the complete sample than the estimators proposed in Bianco et al. (2010). This may be explained
by the fact that the distribution of the y;’s is not symmetric, and in this case the latter estimators
are not consistent.

TABLE 6: Estimates for the NSW data.

Sample Estimators

MEAN MED TU HU TR10
yiil <i<297 5976.35 4232.31 4234.29 5007.08 4910.59
Vi 6136.84 4070.76 4195.01 4921.18 4918.68
Line 2/line 1 1.03 0.96 0.99 0.98 1.00
o, + B,’lx,- 6136.38 3975.19 3956.13 4015.19 4024.39
Line 4/line 1 1.03 0.94 0.93 0.80 0.82
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