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Abstract: In a missing data setting, we have a sample in which a vector of explanatory variables xi is

observed for every subject i, while scalar responses yi are missing by happenstance on some individuals.

In this work we propose robust estimators of the distribution of the responses assuming missing at random

(MAR) data, under a semiparametric regression model. Our approach allows the consistent estimation of

any weakly continuous functional of the response’s distribution. In particular, strongly consistent estimators

of any continuous location functional, such as the median, L-functionals and M-functionals, are proposed.

A robust fit for the regression model combined with the robust properties of the location functional gives

rise to a robust recipe for estimating the location parameter. Robustness is quantified through the breakdown

point of the proposed procedure. The asymptotic distribution of the location estimators is also derived. The

proofs of the theorems are presented in Supplementary Material available online. The Canadian Journal of
Statistics 41: 111–132; 2013 © 2012 Statistical Society of Canada

Résumé: Avec les données manquantes, nous avons un échantillon pour lequel les variables explicatives xi

sont observées pour chaque sujet i, tandis que les variables réponses yi sont manquantes au hasard pour

quelques individus. Dans ce travail, nous proposons des estimateurs robustes pour la fonction de distribution

des variables réponses en supposant que les données soient manquantes au hasard (MAR), sous un modèle

de régression non paramétrique. Notre approche permet l’estimation cohérente de n’importe quelle fonction-

nelle faiblement continue de la distribution des variables réponses. Plus particulièrement, nous proposons des

L- et M-fonctionnelles qui sont des estimateurs fortement cohérents de n’importe quelle fonctionnelle con-

tinue du paramètre de position (par exemple, la médiane). Une méthode d’ajustement robuste du modèle de

régression combinée aux propriétés de robustesse des fonctionnelles de tendance centrale fournissent une

méthode robuste pour l’estimation du paramètre de position. La robustesse de notre procédure est mesurée

à l’aide du point de rupture. Nous obtenons aussi la fonction de distribution asymptotique des estimateurs

du paramètre de position. Des suppléments, contenant les démonstrations des théorèmes, sont disponibles

en ligne. La revue canadienne de statistique 41: 111–132; 2013 © 2012 Société statistique du Canada

1. INTRODUCTION

Suppose we have a sample of a population, such that for every subject i in the sample we observe

a vector of explanatory variables xi while a scalar response yi is missing by happenstance on some

individuals. A classical problem is to construct consistent estimators for the mean value of the

response based on the observed data. In order to identify the parameter of interest in terms of the

distribution of observed data, missing at random (MAR) is assumed.
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This hypothesis establishes that the value of the response does not provide additional infor-

mation, on top of that given by the explanatory variables, to predict whether an individual will

present a missing response (see Rubin, 1976). To be more rigorous, let us introduce a binary

variable ai such that ai = 1 whenever the response is observed for subject i. In this way, MAR

states that

P(ai = 1|xi, yi) = P(ai = 1|xi). (1)

This condition also implies that the conditional distribution of the responses given the vector

of explanatory variables remains the same, regardless of the fact that the response is also ob-

served: yi|xi ∼ yi|xi, ai = 1. Then E[yi|xi] = E[yi|xi, ai = 1]. Since E[yi] = E[E[yi|xi]], a pos-

sible approach to estimate E[yi] is based on a regression model (parametric or nonparametric) for

E[yi|xi] = g(xi), which is fitted using only the individuals for whom the response is observed.

Then an estimator for E[yi] is obtained by averaging ĝ(xi) over the whole sample, where ĝ is an

estimator of g. A recent survey and discussion of this and other methods for dealing with this

problem can be found in Kan & Schafer (2007) and Robins et al. (2007).

The estimation of the mean response under a missing at random assumption finds one of its

most frequent applications in observational studies with medical or economic data. In particular,

in the context of causal inference, to quantify the effect of two different treatments, say t0 and t1,

on some response of interest, two random variables y(0) and y(1) are introduced. These variables

represent responses in hypothetical worlds were all individuals are treated with t0 and t1, respec-

tively. The average treatment effect is defined by E[y(1)] − E[y(0)]. Note that y(j), for j = 0, 1,

is only observed in those individuals whose treatment level is T = tj , and so it is considered a

missing response for those individuals with treatment different from tj . Since in observational

studies the treatment assignment is in general not randomized, the estimation of E[y(j)] should

be addressed using missing data techniques. This approach has been widely studied in the causal

literature and examples of this methodology can be found in Dehejia &Wahba (1999) or in Bang

& Robins (2005).

As is well known, the mean is not a robust location parameter, that is, a small change in the

population distribution may have a large effect on this parameter. As a consequence of this, the

mean does not admit consistent non-parametric robust estimators, except when strong properties

on the distribution are assumed, as for example symmetry. For this reason, to introduce robust-

ness in the present setting, we start by reformulating the statistical object of interest: instead of

estimating the mean value of the response, we look for consistent estimators of TL(F0),where TL

is a robust location functional and F0 is the distribution of yi. For example, if we are interested

in estimating the median of F0, we take TL(F0) = med(F0). According to this, we say that a

sequence of estimators µ̂n is consistent for TL(F0) if limn→∞ µ̂n = TL(F0). Note that the naive

estimator TL(Fn), where Fn is the empirical distribution of the non missing responses, in general

is not consistent. In fact, TL(Fn) → TL(F
∗
0 ) where F∗

0 is the distribution of yi conditionally on

ai = 1.

Bianco et al. (2010) obtain robust and consistent estimators of M-location functionals of the

distribution of the responses. In their treatment they assumed a partially linear model to describe

the relationship between yi and xi, and also that the distributions of the response yi and of the

regression error under the true model are both symmetric.

In this paper we introduce a new estimator of any continuous location functional assuming

that the relation between yi and xi is given by means of a semiparametric regression model. We

show that, once the regression model is fitted using a robust estimator, we can define a consistent

estimator of the distribution function of the response. Then, any location parameter of the response

distribution defined throughout a weak continuous location functional may be also consistently

estimated. This can be done by evaluating the functional at the estimated distribution function.
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The consistency of this procedure does not require the symmetry assumptions used by Bianco

et al. (2010).

A robust fit for the regression model combined with the robust properties of TL gives rise to a

robust recipe for estimating TL(F0). Robustness is quantified by looking at the breakdown point

of the proposed procedure. For this purpose, we introduce for the first time a definition of the

breakdown point when there are missing data in the sample.

This work is organized as follows. In Section 2 we formalize the problem of the robust

estimation of a location parameter with missing data. In Section 3 we present our proposal for

estimating TL(F0), when TL is a weakly continuous location functional. In Section 4 we show

that, under general conditions, the proposed estimators are strongly consistent and asymptotically

normal. In Section 5 we study the breakdown point of the proposed estimators. In Sections 6

and 7 we introduce some possible robust regression and location functionals, respectively, and

show that they satisfy the assumptions required for consistency and asymptotic normality of the

proposed estimators. In Section 8 we discuss the results of a Monte Carlo study. These results

confirm that the proposed estimators are highly robust under outlier contamination. In Section 9

we analyze an example with real data. The proofs of the theorems are presented in Supplementary

Material available online.

2. DESCRIBING OUR SETTING: THE DATA, THE PROBLEM AND THE MODEL

We first introduce some notation. Henceforth EG[h(z)] and PG(A) will respectively denote the

expectation of h(z) and the probability that z ∈ A, when z is distributed according to G. If z has

distribution G we write z ∼ G or D(z) = G. Weak convergence of distributions, convergence

in probability and convergence in distribution of random variables or vectors are denoted by

Gn →w G, zn →p z and zn →d z, respectively. By an abuse of notation, we will write zn →d G

to denote D(zn) →w G. We use oP (1) to denote a sequence that converges to zero in probability

and OP (1) to denote a sequence bounded in probability. The complement and the indicator of the

set A are denoted by Ac and 1A, respectively. The scalar product of vectors a, b ∈ Rs is denoted

by a′b and R≥0 denotes the set of non-negative real numbers.

In this paper we use the expression empirical distribution of z1, z2, . . . , zn, n points in Rk,

to denote the function Fn : Rk → [0, 1] such that given z ∈ Rk, Fn(z) = m/n, where m is the

number of points zi such that all its coordinates are smaller than or equal to the corresponding

ones of z.
Throughout this work, we have a random sample of n subjects and for each subject i in the

sample, 1 ≤ i ≤ n, a vector of explanatory variables xi is always observed, while the response yi

is missing for some subjects. Let ai be the indicator of whether yi is observed for subject i: ai = 1

if yi is observed and ai = 0 if it is not.

We will be concerned with the estimation of a location functional of the distribution of the

response.A location functionalTL, defined on a class of univariate distribution functionsG, assigns
to each F ∈ G a real number TL(F ) satisfying TL(Fay+b) = aTL(Fy) + b, where Fy denotes the

distribution of the random variable y.

Examples of location functionals are the mean and median. The M-location functionals form

an important class of robust location functionals that includes, among others, the median. Another

important class of location functionals is that of L-functionals. BothM- and L-location functionals

are studied in Section 7.

A functional T is said to be weakly continuous at F if given a sequence {Fn} of distribution
functions that converges weakly to F (Fn →w F ), then T (Fn) → T (F ). In order to obtain a

consistent estimator of a location parameter defined by means of a weakly continuous functional,

it is sufficient to have a sequence of estimators F̂n that converges weakly to the distribution of

the yi’s.
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To be more precise, denote by F0 the distribution of the outcomes yi. Let TL be a weakly

continuous location functional at F0. We are interested in estimating µ0 = TL(F0). We assume a

semiparametric regression model

yi = g(xi, β0) + ui, 1 ≤ i ≤ n, (2)

with yi, ui ∈ R, xi ∈ Rp, ui independent of xi, β0 ∈ B ⊂ Rq, g : Rp × B → R. Furthermore, in

order to guarantee the MAR condition, we assume that ui is independent of (xi, ai). We denote

by Q0 and K0 the distributions of xi and ui, respectively.

To identify β0, without requiring that either (i) K0 is symmetric around 0 or (ii) K0 satisfies a

centring condition (as, e.g., EK0 [u] = 0), we assume that

PQ0 (g(x, β0) = g(x, β) + α) < 1 (3)

for all β 
= β0 and for all α. To satisfy this condition it is required that, if there is an intercept,

it should be included in the error term ui instead of being a parameter of the regression function

g(x, β). For a linear regression model, we have g(x, β) = β′x and so, in this case, condition (3)

means that the vector xi is not concentrated on any hyperplane.

The function g can be selected by cross validation using different robust criteria as in Hubert &

Engelen (2007), Boente &Rodriguez (2008), and Boente, González-Manteiga, & Pérez-González

(2009). One possibility is to consider that g is a polynomial functional whose degree can be chosen

by any robust selection criteria for linear models. Examples of such criteria for linear models are

given in Ronchetti & Staudte (1994), Ronchetti, Field, & Blanchard (1997), Khan, van Aelst, &

Zamar (2007), and Section 5.12 of Maronna, Martin, & Yohai (2006).

3. THE PROPOSED ESTIMATORS

Recall that K0 denotes the distribution of ui and let R0 denote the distribution of g(xi, β0).

Independence between xi and ui implies that F0 is given by the convolution between R0 and K0.

Then, by convoluting consistent estimators R̂n and K̂n of each of these distributions, we get a

consistent estimator for F0.

In order to estimate R0 and K0 we need to have a robust and strongly consistent estimator β̂n

of β0. This estimator may be, for example, an S-estimator (see Rousseeuw & Yohai, 1984) or an

MM-estimator (see Yohai, 1987). Since ui is independent of ai, β̂n may be obtained by a robust fit

of the model using the data for which yi is available, that is, using the observations (xi, yi) with

ai = 1. Let R̂n be the empirical distribution of g(xj, β̂n), 1 ≤ j ≤ n, defined by

R̂n = 1

n

n∑
j=1

δ
g(xj ,̂βn)

, (4)

where δs denotes the point mass distribution at s.

Let A = {i : ai = 1} and m = #A. For i ∈ A consider

ûi = yi − g(xi, β̂n).

The estimator K̂n of K0 is defined as the empirical distribution of {ûi : i ∈ A}:

K̂n = 1

m

∑
i∈A

δ̂
ui

= 1∑n
i=1 ai

n∑
i=1

aiδ̂ui
. (5)
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Then, we estimate F0 by

F̂n = R̂n ∗ K̂n, (6)

where ∗ denotes convolution. Note that F̂n is the empirical distribution of the nm points

ŷij = g(xj, β̂n) + ûi, 1 ≤ j ≤ n, i ∈ A,

and therefore we can also express F̂n as

F̂n = 1

nm

∑
i∈A

n∑
j=1

δ̂
yij

= 1

n
∑n

i=1 ai

∑
i∈A

n∑
j=1

δ̂
yij

. (7)

Finally, we estimate µ0 by

µ̂n = TL(F̂n). (8)

Since we have assumed weak continuity of TL at F0, in order to prove that µ̂n is a strongly

consistent estimator of µ0, we only need to prove that F̂n →w F0 a.s. Observe that

E
F̂n
[h(y)] = 1

nm

∑
i∈A

n∑
j=1

h(ŷij).

The right hand side of this equation was proposed by Müller (2009) to estimate EF0

[
h(y)

]
.

A property that characterizes robust functionals is weak continuity. When a functional T

is weakly continuous, a small change in the underlying distribution (e.g., when there is a small

fraction of outliers) has a minor influence on the asymptotic value of the associated estimator.

Assume that β̂n = TR(G
∗
n), where G∗

n is the empirical distribution of the pairs (xi, yi) with

ai = 1, and TR is a weakly continuous regression functional. Then, we will show that if TL

is weakly continuous and g(x, β) is continuous in β, the functional T ∗ associated with the

proposed estimator is also weakly continuous. Note that this functional depends on M, the joint

distribution of (y, x,a), and is defined as follows. Let G(M) be the marginal distribution of (y, x)
given a = 1, when (y, x, a) is distributed according to M. Let R(M) and H (M) be the distributions

of y − g(x, TR(G
(M))) given a = 1 and of g(x, TR(G

(M))), respectively. Finally let F (M) be the

convolution between R(M) and H (M). Then, the functional associated with our procedure can

be written as T ∗(M) = TL(F
(M)). To prove the weak continuity of T ∗ we start by observing

that if Mn →w M0 then G(Mn) →w G(M0). Moreover, the continuity of g and TR implies that

R(M) →w R(M0) andH (M) →w H (M0). Then, since the convolution preservesweak convergence,

(proved in Lemma 2 (i) in the Supplementary Material), we get that F (Mn) →w F (M0) and thus,

by the weak continuity of TL we obtain T ∗(Mn) → T ∗(M0), proving the weak continuity of T ∗.
We should emphasize that the procedure defined in this section canbe applied to any continuous

location functional, for example M-functionals, L-functionals, that is, functionals associated with

estimators based on linear combination of order statistics, and R-functionals, that is, functionals

associated with estimators based on ranks.

4. CONSISTENCY AND ASYMPTOTIC DISTRIBUTION

Let (xi, yi) and ui satisfy model (2), with ui independent of (xi, ai). Denote by G0, Q0 and K0

the distributions of (xi, yi), xi and ui, respectively, and denote by G∗
0 and Q∗

0 the distributions of

(xi, yi) and xi conditioned on ai = 1, respectively.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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The MAR condition implies that under G∗
0 model (2) is still satisfied with x∗

i and u∗
i inde-

pendent, x∗
i with distribution Q∗

0 and u∗
i with distribution K0. We also assume that the regression

function g satisfies the following assumption:

A0. The function g(x, β) is twice continuously differentiable with respect to β and there exists

δ > 0 such that

EQ0

[
sup

‖β−β0‖≤δ

‖ġ(x1, β)‖2
]

< ∞ and EQ0

[
sup

‖β−β0‖≤δ

‖g̈(x1, β)‖
]

< ∞, (9)

where ġ(x, β) and g̈(x, β) denote, respectively, the vector of first derivatives and the matrix

of second derivatives of g with respect to β, and for any matrix A, ||A|| denotes its L2 norm.

In order to prove the consistency and the asymptotic normality of µ̂n the following as-

sumptions on β̂n and TL are required.

A1. {β̂n} is strongly consistent for β0.

A2. The regression estimator β̂n satisfies

√
n(β̂n − β0) = 1

n1/2

n∑
i=1

aiIR(xi, yi) + oP (1) (10)

for some function IR(x, u) with E[aiIR(xi, yi)] = 0 and finite second moments.

A3. TL is weakly continuous at F0.

A4. The following expansion holds:

√
n
(
TL(F̂n) − TL(F0)

) = √
nE

F̂n

[
ITL,F0 (y)

] + oP (1), (11)

where ITL,F0 is the influence function, see Hampel (1974), of TL at F0. We assume also

that EF0 [ITL,F0 (y)] = 0, EF0 [I
2
TL,F0

(y)] < ∞, and ITL,F0 is differentiable with |I ′
TL,F0

(y)|
bounded.

The following theorem shows the consistency of µ̂n = TL(F̂n).

Theorem 1. Let F̂n be defined as in (7) and assume that A0 and A1 hold. Then

(a) {F̂n} converges weakly to F0 a.s., that is,

P(F̂n →w F0) = 1.

(b) Assume also that A3 holds; then µ̂n = TL(F̂n) converges a.s. to µ0 = TL(F0).

In order to find the asymptotic distribution of µ̂n, define η = E[a1],

c = E
[
a1 I ′

TL,F0
(y1 − g(β0, x1) + g(β0, x2)) {ġ(β0, x2) − ġ(β0, x1)}

]
,

e(xi, ui, ai) = E
[
aiITL,F0

(ui + g(xj, β0))|ui, ai

]
= aiE

[
ITL,F0

(ui + g(xj, β0))|ui, ai

]
,

f (xj) = E
[
aiITL,F0

(ui + g(xj, β0))|xj

]
,

τ2 = 1

η2
E
[{e(x1, u1, a1) + f (x1) + a1c′IR(x1, u1)}2

]
.
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Then, the following theorem gives the asymptotic normality of the estimator µ̂n, defined

in (8).

Theorem 2. Assume A0–A4. Then

n1/2(µ̂n − µ0) →d N(0, τ2). (12)

4.1. The Median as Location Parameter
Themedian is one of themost popular robust location functionals. However, since for this case A4

is not satisfied, Theorem 2 can not be applied to prove the asymptotic distribution of the median

of F̂n, where F̂n is defined at (7). In this subsection, we will prove consistency and asymptotic

distribution for the median of F̂n, assuming that {β̂n} satisfies A1 and A2.

The functional Tmed is defined by

Tmed(F ) = argmin
µ

EF [|y − µ|]. (13)

When there is more than one value attaining the minimum, the functional is defined by choosing

any of them. We have the following result, whose proof needs an extra argument to compensate

for the absence of differentiability of ITmed,F0 (y).

Theorem 3. Assume that µ0 = Tmed(F0) is well defined and let µ̂n = Tmed(F̂n). Suppose that
F0 is continuous and strictly increasing at µ0 and that A0–A1 holds. Then

(a) We have µ̂n → µ0 a.s.
(b) Assume also that A2 holds, that F0 and K0 have continuous and bounded densities f0 and k0

respectively, and that f0(µ0) > 0. Then

n1/2(µ̂n − µ0) →d N(0, τ2), (14)

where τ2 is as in Theorem 2, with c replaced by

c∗ = 1

ηf0(µ0)
E[a1k0(−g(x2, β0) + µ0){ġ(x2, β0) − ġ(x1, β0)}] (15)

and ITL,F0 (y) replaced by

ITmed,F0 (y) = sign(y − µ0)

2f0(µ0)
.

5. BREAKDOWN POINT

Consider first a dataset of n complete observations Z = {z1, .., zn}, where zi ∈ Rj , and let θ̂n(Z)
be an estimator of a parameter θ ∈ Rk defined on all possible datasets. Donoho & Huber (1983)

define the finite sample breakdown point (FSBP) of θ̂n at Z by

ε∗(θ̂n, Z) = min

{
s

n
: sup

Z∗∈Zs

‖θ̂n(Z∗)‖ = ∞
}

,

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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where

Zs =
{

Z∗ = {z∗
1, . . . , z∗

n} :
n∑

i=1

I{z∗
i

=zi} ≤ s

}
.

Then ε∗ is the minimum fraction of outliers required to take the estimator beyond any bound.

Now, we extend the notion of FSBP for samples with missing data. Let

W = {(x1, y1, a1), ....(xn, yn, an)} (16)

be the set of all observations and missingness indicators, and let A = {i : 1 ≤ i ≤ n, ai = 1},
m = #A. Denote by Wts the set of all samples obtained from W where no more than t points

are replaced by outliers, with at most s of these replacements corresponding to the non missing

observations. Then W∗ = {(x∗
1, y

∗
1, a1), ....(x

∗
n, y

∗
n, an)} belongs to Wts if∑

i∈A

I{(x∗
i
,y∗

i
)
=(xi,yi)} +

∑
i∈AC

I{x∗
i

=xi} ≤ t

and ∑
i∈A

I{(x∗
i
,y∗

i
)
=(xi,yi)} ≤ s.

Given an estimator µ̂n of µ0, we define

Mts = sup
W∗∈Wts

∣∣µ̂n(W∗)
∣∣

and

κ(t, s) = max
( t

n
,

s

m

)
.

We define the finite sample breakdown point (FSBP) of an estimator µ̂n at W by

ε∗ = min{κ(t, s) : Mts = ∞}.

This definition means that ε∗ is the minimum fraction of outliers in the complete sample or in the

set of non missing observations required to take the estimator beyond any bound.

In order to get a lower bound for the FSBP of the location estimator µ̂n introduced in (8), we

need to define the uniform asymptotic breakdown point ε∗
U of TL as follows:

Definition 1. Given a functional TL, its uniform asymptotic breakdown point (UABP) ε∗
U (TL)

is defined as the supremum of all ε > 0 satisfying the following property: for all M > 0 there
exists K > 0 depending on M so that

PF (|y| ≤ M) > 1 − ε =⇒ |TL(F )| < K. (17)

It is easy to show that for any location functional TL we have that ε∗
U (TL) ≤ 0.5 and that

ε∗
U (Tmed) = 0.5. The following theorem gives a lower bound for the FSBP of the estimator µ̂n

defined in (8).
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Theorem 4. Let W be given by (16) and let Z = {(xi, yi) : i ∈ A}. Suppose that β̂n =β̃m (Z),
where β̃m is a regression estimator for samples of size m. Let ε1 > 0 be a lower bound of the
FSBP at Z of β̃m and let ε2 > 0 be a lower bound of the UABP of TL. Then the FSBP ε∗ of the
estimator µ̂n at W satisfies

ε∗ ≥ ε3 = min
(
ε1, 1 −

√
1 − ε2

)
. (18)

In the next section we introduce MM-estimators of regression. The maximum value of ε1
for an MM-estimator of regression is (n − c(G∗

n))/(2n) (see Martin et al. 2006), where c(G) is

defined by (24). In Theorem 8 we show that M-location functionals may have ε2 = 0.5. Then, if

c(G∗
n)/n is small, we can have ε3 close to 1 − √

0.5 = 0.293. A similar statement holds when TL

is the median. Instead, as we will see in Section 7.1, the value of ε2 for location L-functionals is

in general smaller than 0.5.

6. ESTIMATING THE REGRESSION PARAMETER: MM-REGRESSION
FUNCTIONALS

In this section,we introduce robust regression estimators satisfyingA1 andA2. Several robust esti-

mators for the parameters of the regressionmodel (2) based on complete data (x1, y1), . . . , (xn, yn)

have been proposed. In this paper we will consider the MM-estimator. However any other robust

regression estimator satisfying A1 and A2 can be used.

The MM-estimators were introduced by Yohai (1987) for the linear model while Fasano et al.

(2011) extended these estimators to the case of nonlinear regression. For linear regression, MM-

estimators may combine the highest possible breakdown point with an arbitrarily high efficiency

in the case of Gaussian errors. It will be convenient to present MM-estimators of β0 in their

functional form, that is, as a functional TMM,β(G) defined on a set of distributions inRp+1, taking

values in Rq. Given a sample (x1, y1), . . . , (xn, yn) the corresponding estimator of β0 is given by

β̂MM = TMM,β(Gn),whereGn is the empirical distribution of the sample. As we explained in the

Introduction, we have excluded the intercept in model (2). However, to get consistent estimators

of β0 without requiring symmetric errors, it is necessary to estimate an additional parameter,

which can be naturally interpreted as an intercept or a centre of the error distribution. For this

purpose consider ξ = (β, α) with α ∈ R, and define g(x,ξ) = g(x, β) + α.

We need the following definition

Definition 2. A function ρ : R→ R≥0 is called a rho-function if (i) ρ is continuous, (ii) ρ is
even, (iii) ρ(t) is a non-decreasing function of |t| and (iv) ρ(0) = 0. If ρ is bounded, without loss
of generality, we will assume that ρ(∞) = 1.

Todefine a regressionMM-functionalTMM(G) = (
TMM,β(G), TMM,α(G)

)
, two bounded rho-

functions, ρ0 and ρ1, are required. The function ρ0 is used to define a dispersion functional S(G)

of the error distribution as follows. For any distribution G of (x, y) and ξ = (β, α), let S∗(G, ξ)

be defined by

EG

[
ρ0

(
y − g(x, ξ)

S∗(G, ξ)

)]
= δ, (19)

where δ ∈ (0, 1). Then the dispersion functional S(G) is defined by

S(G) = min
ξ∈B×R

S∗(G, ξ) (20)
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and the MM-estimating functional TMM(G) = (
TMM,β(G), TMM,α(G)

)
by

TMM(G) = arg min
ξ∈B×R

EG

[
ρ1

(
y − g(x, ξ)

S(G)

)]
. (21)

We can also consider another regression functional TS(G) = (
TS,β(G), TS,α(G)

)
, called the

S-regression functional, as follows:

TS(G) = arg min
ξ∈B×R

EG

[
ρ0

(
y − g(x, ξ)

S(G)

)]
, (22)

where S(G) is defined by (20).

In the case of a linear regression model, the asymptotic breakdown point of both TMM and

TS is given by

ε∗ = min(δ, 1 − δ − c(G)), (23)

where

c(G) = sup
γ 
=0,γ∈Rp+1

PG(γ
′(x′, 1)′ = 0). (24)

See, for example, Maronna, Martin, & Yohai (2006), Chapter 5. The maximum breakdown point

occurs when δ = (1 − c(G))/2 and its value is (1 − c(G))/2. It can be proved that this is the

maximumpossible breakdownpoint for equivariant regression functionals. In the case of nonlinear

regression both TMM and TS have also the same breakdown point, but it is not given by a simple

closed expression (see Fasano, 2009).

Yohai (1987) showed that MM-estimators for linear regression may combine the highest pos-

sible breakdown point (1 − c(G))/2 with a Gaussian efficiency as high as desired. However,

Hössjer (1992) showed that this is not possible for S-estimators. The maximum asymptotic Gaus-

sian efficiency of an S-estimator with ε∗ = (1 − c(G))/2 is 0.33.

Let (x, y) andu satisfymodel (2). Let {G∗
n} be the sequence of empirical distribution associated

with observed pairs (xi, yi), that is, those pairs such that

ai = 1. That is,

G∗
n = 1∑n

i=1 ai

n∑
i=i

aiδ(xi,yi). (25)

Then we can estimate β0 by

β̂n = TMM,β

(
G∗

n

)
. (26)

For the validity of assumptions A1 and A2, the rho-functions used to define the regression

MM-functionals should satisfy assumptions R1 and R2 below.

R1. For some m, ρ(u) = 1 iff |u| ≥ m, and log(1 − ρ) is concave on (−m, m).

R2. The function ρ is twice continuously differentiable.

A family of very popular bounded rho-functions satisfying R1 and R2 is Tukey’s bisquare family:

ρT,k(u) = 1 −
(
1 −

(u

k

)2
)3

I(|u| ≤ k). (27)
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We denote by ψ0 and ψ1 the derivatives of ρ0 and ρ1, respectively. Let α01 = TMM,α(G
∗
0),

α00 = TS,α(G
∗
0) and σ0 = S(G∗

0).

Regression MM- and S-functionals are studied in detail in Fasano et al. (2011). There we

can find sufficient conditions for weak continuity and Fisher-consistency. Moreover, a weak

differentiability notion involving the influence function of the functionals is also developed. This

notion allows us to obtain asymptotic expansions, like the one required in (10). The following

numbers will be used to derive the influence functions of the regression functionals:

a0i = EK0

[
ψ′

i ((u − α0i)/σ0)
]
, i = 0, 1,

d0 = EK0

[
ψ0 ((u − α00)/σ0) (u − α00)/σ0

]
, b0 = EG∗

0
[ġ(x, β0)].

We denote by A0 the covariance matrix of ġ(x, β0) under Q∗
0.

The following theorem shows that conditions A1 and A2 are satisfied by MM-estimators of

the regression parameter.

Theorem 5. Assume that A0 holds and let ρ0 and ρ1 be bounded rho-functions satisfying R1,
with ρ1 ≤ ρ0. Assume that K0 has a strongly unimodal density and that (3) holds replacing Q0

by Q∗
0. We will consider that either (a) B is compact or (b) g(x, β) = β′x and δ < 1 − c(G∗

0).
Then

(i) limn→∞ TMM,β(G
∗
n) = β0 a.s. and therefore β̂n satisfies A1. Moreover, limn→∞

TMM,α(G
∗
n) = α01.

(ii) Assume also that a00, a01 and d0 are different from 0 and that ρ0 and ρ1 satisfy R2. Then (10)
holds with IR(x, y) = ITMM,β,G∗

0
(x, y)/E[a1], where ITMM,β,G∗

0
(x,y) is the influence function

of TMM,β at G∗
0, given by

ITMM,β,G∗
0
(x,y) = σ0

a01
ψ1

(
y − g(x, (β0, α01))

σ0

)
A−1
0 (ġ(x, β0) − b0). (28)

Then A2 holds.

Note that, according to Theorem 5, β̂n converges to β0 without assuming symmetry for the error

distribution. Instead, in general the value of α01 is different from E[u], except in the case that

u has a symmetric distribution. However, since as established in Theorem 1, the consistency of

TL(F̂n) only requires the consistency of β̂n, this is not a problem.

When ρ0 and ρ1 are taken in the bisquare family, we have to choose the values of the corre-

sponding tuning constants k0 and k1. To get MM-estimators with breakdown point 0.5, we should

set k0=1.55 and δ = 0.5. Maronna, Martin, & Yohai (2006) recommend setting k1 = 3.44 as a

good trade off between robustness and efficiency. This value corresponds to an asymptotic Gaus-

sian efficiency of 85% with respect to the LS-estimator. Larger values of k1 allow for a larger

efficiency, at the expense of sacrificing robustness.

The MM-estimator obtained with these values has a relatively high efficiency compared

to the least squares (LS) estimator for a large variety of non Gaussian distributions, including

asymmetric ones. In Table 1 we show the asymptotic efficiency of thisMM-estimator with respect

to the LS-estimator for some asymmetric distributions.

We note that in the case of the chi-squared distribution with one degree of freedom, the

efficiency of the MM-estimate is very high. This is due to the fact that this distribution has a very

heavy tail.
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Table 1: Asymptotic relative efficiencies of the MM-estimator for some asymmetric distributions.

Distribution W χ2
1 χ2

2 χ2
3 χ2

4 logW logχ2
1 logχ2

2 logχ2
3 logχ2

4

% Efficiency 84 187 97 86 85 91 97 91 88 87

W , Weibull distribution with shape parameter equal to 10; χ2
p, Chi squared with p degrees of freedom.

7. LOCATION FUNCTIONALS

We can apply the procedure described in Section 3 to estimate µ0 = TL(F0), for any weakly

continuous location functional TL. The most popular ones are the L- and M-functionals. For this

reason we will give here their influence functions that, according to Theorem 2, are necessary

to compute the asymptotic variance of the estimator defined in (8). In this section we also prove

that, under general conditions, The L- and M- functionals satisfy assumptions A3 and A4.

7.1. L-Functionals
The L-functionals are defined by

T (F ) =
∫ 1

0

F−1(v)W(v) dv, (29)

where F−1(u) = inf{y : F (y) ≥ u), W : [0, 1] → R≥0 is a symmetric function around 0.5, non-

increasing for v ≥ 0.5, satisfying
∫ 1
0 W(v) dv = 1. Given a sample y1, . . . , yn, let Fn be the

corresponding empirical distribution and y(i), 1 ≤ i ≤ n, the order statistics. Then

T (Fn) =
n∑

i=1

wi,ny(i),

where y(1) ≤ y(2) ≤ · · · ≤ y(n) and wi,n = ∫ i/n

(i−1)/n
W(v) dv. Let α0 = inf{α : W(α) > 0}. It is

straightforward to show that the uniform asymptotic breakdown point of an L-functional is α0.

The influence function of an L-functional is given by (see Huber & Ronchetti, 2009)

IT,F (y) =
∫ y

−∞
W(F (u) du −

∫ ∞

−∞
(1 − F (u))W(F (u)) du.

One of themost popular location L-functionals is theα-trimmedmean. For this functionalW(u) =
I[α,1−α](u)/(1 − 2α), for 0 ≤ α < 0.5, and α0 = α.

The following theorem shows that L-functionals satisfy A3 and A4 under very general con-

ditions.

Theorem 6. Suppose thatW is bounded and continuous a.e. Lebesgue. Assume also (i) α0 > 0,
(ii) K0 and F0 have bounded densities, (iii) x has bounded support and (iv) n1/2(βn − β0) =
Op(1). Then the L-functional given by (29) satisfies A3 and A4.

More information on L-functionals can be found, for example, in Huber & Ronchetti

(2009).
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7.2. M-Functionals of Location
An M-functional of location is defined by

TM(F ) = argmin
µ

E

[
ρ∗
1

(
x − µ

S(F )

)]
, (30)

where ρ∗
1 is a rho-function and S(F ) is a dispersion functional satisfying (i) S(F ) ≥ 0, and (ii)

S(Fσy+µ) = |σ|S(Fy).

The condition for the robustness of an M-functional defined by (30 ) is that ψ∗
1 = ρ∗′

1 must be

bounded and S(F ) has to be robust. However, contrary to what is required in the regression case

with random covariables, it is not necessary for ρ∗
1 to be bounded. For example ρ∗

1 may be in the

unbounded Huber family

ρH
k (u) =

{
u2 if |u| ≤ k,

2k|u| − k2 if |u| > k,
(31)

where 0 < k < ∞. Note that when k → 0, the function ρk(u)/k → |u| and therefore the cor-

responding functional approaches the median. However, when k → ∞, the function ρk(u) ap-

proaches u2 and the corresponding M-functional approaches the mean. Then, for 0 < k < ∞, the

corresponding M-functional can be interpreted as an intermediate location measure between the

mean and the median. We can also use as ρ∗
1 a bounded function such as those in the bisquare

family given in (27).

The dispersion functional S can be defined simultaneously with or separately of TM(F ). An

example of an M-estimator where S is defined simultaneously with TM is proposal 2 of Huber

(1964). However, when S(F ) is defined simultaneously, the breakdown point of the location

functional is smaller than 0.5. For example, Maronna, Martin, & Yohai (2006) show in pp. 60–61

that proposal 2 of Huber with a Gaussian efficiency of 95% has a breakdown point equal to 0.33.

For this reason we consider here only M-functionals with S(F ) obtained separately. A convenient

way to define the dispersion functional S(F ) is, as in the regression case, by means of an S-

functional. For this purpose, let ρ∗
0 be a bounded rho-function satisfying R1. For any distribution

F of y and µ ∈ R let S∗(F, µ) be defined by

EF

[
ρ∗
0

(
y − µ

S∗(F, µ)

)]
= δ, (32)

where 0 < δ < 1. Then the dispersion functional S(F ) is defined by

S(F ) = min
µ∈R

S∗(F, µ). (33)

Note that we can also define an S-functional of location by

TS(F ) = argmin
µ

S∗(F, µ). (34)

The breakdown point of the dispersion functional S(F ) is given bymin(δ, 1 − δ) and therefore

its maximum is 0.5, which is attained when δ = 0.5.

We will consider here two types of M-location functionals that may have simultaneously a

breakdown point equal to 0.5 and high Gaussian efficiency. These two types of M-functionals

use the dispersion functional S(F ) given in (33) with δ = 0.5.
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Convex ρ∗
1 and bounded ψ∗

1: The functional is defined by (30), where ρ∗
1 is a differentiable

and convex rho-function with bounded ψ∗
1 = ρ∗′

1 . For example

ρ∗
1 may be in the Huber family given by (31).

Bounded ρ∗
1 (MM-estimator): In this case, the functional is defined by (30) with a bounded

rho-function ρ∗
1, such that ρ∗

1(u) ≤ ρ∗
0(u). For example, we can

take ρ∗
i = ρT,ki with k0 ≤ k1, where ρT,k is defined in (27).

When ρ is convex, existence and uniqueness of the functional defined in (30) are guaranteed

if (i) the support of F is a finite or infinite interval I where F is strictly increasing and (ii)

ψ∗
1(u) > 0 for u > 0. When ρ∗

1 is bounded the functional is well defined if ρ∗
1 satisfies R1 and F

has an unimodal density (see Theorem 7 (i) in Fasano et al., 2011).

It is easy to prove that for M-functionals the following equation holds

TM(F ) = EF

[
yw

(
y − TM(F )

S(F )

)]
, (35)

where w(u) = ψ(u)/u is even and non-increasing for u > 0. Then TM(F ) can be interpreted as a

weighted mean, where the weights decrease with the distance to the centre TM(F ).

Let µ0M = TM(F0), µ0S = TS(F0), and σ∗
0 = S(F0). Then define

a∗
0i = EF0

[
ψ∗′

i ((y − µ0i)/σ0)
]
, i = 0, 1,

e∗
0 = EF0

[
ψ∗′
0 ((y − µ0i)/σ0) (y − µ0i)/σ0

]
,

d∗
0 = EF0

[
ψ∗
0 ((y − µ00)/σ0) (y − µ00)/σ0

]
.

In both cases, ρ∗
1 convex or bounded, the influence function of TM is given by

ITM,F0 (y) = σ∗
0

a∗
01

ψ∗
1

(
y − µ∗

0M

σ∗
0

)
− e∗

01σ
∗
0

a∗
01d

∗
0

(
ρ∗
0

(
y − µ∗

0S

σ∗
0

)
− δ

)
. (36)

When F0 is symmetric with respect to ν0 we have e∗
0 = 0, µ∗

0M = µ∗
0,S = ν and

ITM,F0 (y) = σ∗
0

a:∗01
ψ∗
1

(
y − ν0

σ∗
0

)
.

The following theorem establishes that, under general conditions, M-location functionals

satisfy A3 and A4.

Theorem 7. Assume that ρ∗
0 is a bounded rho-function and that ρ

∗
1 is either a bounded or convex

rho-function. In both cases assume that ρ∗
1 is differentiable and that ψ∗

1 is bounded. Let TM be
an M-location functional defined by (30), with S(F ) given by (33). Assume also that TM(F0) and
TS(F0) are uniquely defined. Then

(i) The functional TM is weakly continuous at F0, and so assumption A3 holds.
(ii) Assume also that ρ∗

0 and ρ∗
1 satisfy R2, and that n

1/2(β̂n − β0) = OP (1). Then the functional
TM satisfies assumption A4 with ITM,F0 (y) given by (36).

The following theorem gives a lower bound for the uniform asymptotic breakdown point of

the two types of M-location functionals proposed in this section. In both cases, the bound is 0.5

when δ = 0.5.
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Theorem 8. Let TM be anM-location functional defined by (30), with S(F ) given by (33). Then,
under the same conditions as in Theorem 7, the uniform asymptotic breakdown point ε∗

U of TM
satisfies

(i) ε∗
U ≥ min(0.5, δ), if ρ∗

1 is convex and ψ∗
1 is bounded.

(ii) ε∗
U ≥ min(1 − δ, δ), if ρ∗

1 is bounded and ρ∗
1 ≤ ρ∗

0 .

8. MONTE CARLO STUDY

We performed a Monte Carlo study to compare the classical procedure that uses as β̂n the LS-

estimator and as TL the mean functional, with the robust proposal presented in this work and that

introduced by Bianco et al. (2010). We consider three regression models:

Model 1 The variable y is generated as y = 5x1 + x2 + x3 + 4v + 9, where x1,x2, x3, and v are

independent random variables with distribution N(0, 1). Note that in this model both y

and the regression error have a symmetric distribution.

Model 2 The variable y is generated as y = 5x1 + x2 + x3 + 4v + 4, where x1, x2, and x3 have a

chi-squared distributionwith one degree of freedom, v has a standard normal distribution

and the four variables are independent. In this case the regression error has a symmetric

distribution but the distribution of y is asymmetric.

Model 3 In this case y is generated by the nonlinear model y = 5 exp(−0.5x1) + x2 + x3 + v,

where x1, x2, x3, and v are independent random variables with a chi-squared distribution

with one degree of freedom. In this case both the regression error and the distribution

of y are asymmetric.

For the three models, the variable a that indicates when y is observed is generated so that

log
P(a = 1|x1, x2, x3)

1 − P(a = 1|x1, x2, x3) = 0.15(x1 + x2 + x3).

Thismechanism togetherwith the distribution of x1, x2, and x3 gives P(a = 1) = 0.605 formodels

2 and 3, and 0.50 for Model 1.

For the three models we study 62 cases. The first one corresponds to the central model,

without outlier contaminations. Then, we consider 61 cases where 10% of the observations (xi

yi) are replaced by the same values (x∗, y∗), where x∗ = (2, 0, 0) and with y∗ varying in a grid of
61 equally spaced values in the interval [−20, 40]. For each of the 62 simulations we performed

1,000 replications using samples of size 100.

We considered 5 location functionals: the mean (MEAN), the median (MED), an M-location

functional with ρ∗
1 in the Tukey family, defined at (27) with k1 = 3.44 (TU), an M-location

functional with ρ∗
1 in the Huber family with k = 1.37 (HU) and the 0.1-trimmed mean functional

(TR10). For both M-location functionals we use the dispersion functional S(G) defined by (33),

with ρ∗
0 in the Tukey’s family with k = 1.57 and δ = 0.5. Table 2 gives exact values of the 5

functionals for Model 1 and approximated ones for Models 2 and 3. The approximated values

of the functionals for Models 2 and 3 were computed with one sample of size 100,000. Since in

Model 1 the distribution of y is symmetric, the values of the five functionals are the same and

coincide with the centre of symmetry. However, for Models 2 and 3 the five functionals take

different values.

To estimate the mean, we use as β̂n the LS-estimator. However, for the four robust location

functionals, we use as β̂n an MM-estimator with ρi = ρT,ki , k0=1.57, k1 = 3.44, and δ = 0.5.

For each of the four robust location functionals we consider two estimators: the one proposed

in this work, defined at (8), and the one proposed by Bianco et al. (2010), which is given by
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Table 2: Values of the location functionals.

Model Location functional

MEAN MED TU HU TR10

1 9.00 9.00 9.00 9,00 9.00

2 11.00 9.47 9.29 10.02 10.05

3 6.54 6.16 6.14 6.32 6.33

Table 3: Monte Carlo results for Model 1 under the true model (lines 1–3) and with 10% of outliers

(lines 4–5).

Estim. MEAN MED1 TU1 HU1 TM101 MED2 TU 2 HU2 TM102

MSE0 0.50 0.65 0.64 0.62 0.61 0.84 0.76 0.72 0.73

Bias µ̂n −0.002 −0.003 0.000 −0.001 −0.001 −0.005 −0.001 −0.002 −0.003

As. bias −0.000 −0.000 0.000 −0.000 0.000 0.000 0.000 0.000 0.000

MSEmax 9.21 2.69 2.59 3.14 4.01 3.07 2.85 2.56 2.67

ymax 40 25 24 40 40 22 22 23 23

TL(F̂
∗
n ), where F̂∗

n is the empirical distribution of g(xj, β̂n) + α̂n. The results of the simulations

for Models 1–3 are shown in Tables 3–5, respectively. In these tables the results for the estimators

that we propose are denoted with the subscript 1 and those corresponding to Bianco et al. (2010)

with the subscript 2. The first line of these tables shows the mean squared errors without outliers

(MSE0). The second line (Bias µ̂n) shows estimates of the bias of the estimators, obtained as the

mean of the 1,000 replications minus the true value of the corresponding functional. The third

line gives the asymptotic bias of the estimators, defined as the asymptotic value of the estimators

minus the true values of the corresponding functionals. The fourth line (MSEmax) contains the

maximum mean squared error under outlier contamination. The maximum is taken along the 61

values of y∗. The fifth line contains the value of y∗ where the maximum of the fourth line is

attained.

Line 3 of these tables shows that, as expected, the Bianco et al. (2010) estimators are consistent

for the corresponding location functionals only forModel 1, where both y and the regression errors

have symmetric distributions. However, for Models 2 and 3 these estimators have an important

Table 4: Monte Carlo results for Model 2 under the true model (lines 1–3) and with 10% of outliers

(lines 4–5).

Estim. MEAN MED1 TU1 HU1 TM101 MED2 TU 2 HU2 TM102

MSE0 0.78 0.61 0.63 0.64 0.65 1.43 1.57 1.08 0.84

Bias µ̂n 0.04 0.00 0.00 0.03 0.02 −0.82 −0.90 −0.60 −0.37

As. bias 0.00 0.00 0.00 0.00 0.00 −0.79 −0.93 −0.61 −0.39

MSEmax 11.10 2.75 2.94 3.13 4.19 6.77 7.37 5.56 4.41

ymax −20 −5 −5 40 −20 −3 −3 −3 −3
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Table 5: Monte Carlo Results for Model 3 under the true model (lines 1–3) and with 10% of outliers

(lines 4–53.

Estim. MEAN MED1 TU1 HU1 TM101 MED2 TU 2 HU2 TM102

MSE0 0.088 0.065 0.073 0.075 0.075 0.242 0.294 0.346 0.345

Bias µ̂n 0.001 0.001 −0.005 −0.002 0.004 −0.423 −0.466 −0.525 −0.524

As. bias 0.000 0.000 0.000 0.000 0.000 −0.466 −0.439 −0.569 −0.570

MSEmax12.45 0.42 0.50 0.86 1.34 0.59 0.91 1.09 1.14

ymax 40 −19 −2 −19 −20 2 1 1 1

asymptotic bias and therefore they are not consistent. The second lines show that the bias of the

estimators using samples of size 100 is very close to the asymptotic bias. Line 1 of Table 3 shows

that, for Model 1, the classical estimator is the most efficient one in the absence of outliers, as

would be expected for normal variables. We also observe that the robust estimators obtained by

the procedure proposed in this work are more efficient than those obtained through the Bianco

et al. (2010) procedure. For Models 2 and 3 the robust estimators obtained with the procedure

proposed here are more efficient than the estimator of the mean. The reason is that for these two

cases the distribution of y has heavy tails.
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Figure 1: Comparison of the two estimators for Model 1 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.
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Figure 2: Comparison of the two estimators for Model 2 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.

The results in line 4 show that, under outlier contamination, the more robust estimators are

MED1 and TU1 and, in the third place, HU1. However, MEAN and TR101 break down since the

mean squared error of each of these estimators goes to ∞ when the value of y∗ goes to −∞ or

∞. Note that, since the 0.1-trimmed mean has a breakdown point equal to 0.10 and the regression

estimator has a breakdown point of 0.5, according to (18), the breakdown point of the estimator

TR101 is 0.0523. This fact explains why TR101 breaks down when the sample has 10% of large

outliers.

In Figures 1–3we compare the behavior of the two estimates of each robust location functional

under outlier contamination. For this purpose, we plot the mean squared errors as a function of

the outlier size y∗. These figures show that for the median and the Tukey M-functionals, our

proposal seems clearly preferable to that of Bianco et al. (2010) for the three models. For the

Huber M-functional, our proposal seems preferable in the case of Models 2 and 3 while in the

case of Model 1, the Bianco et al. (2010) estimator seems to be the best choice. Our proposed

estimator breaks down for large values of y∗ for the 0.1-trimmed mean functional for the reason

mentioned above.

9. AN EXAMPLE

We considered a real example with complete data, andwe have generated a sample with artificially

missing responses by removing some of them using an MAR mechanism. In this way, we were

able to compare the estimators of different location functionals using the whole set of original
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Figure 3: Comparison of the two estimators for Model 3 under outlier contamination. The solid line
corresponds to the Bianco et al. (2010) estimator and the dashed line to the estimator proposed here.

responses with the estimators proposed for the case where there are missing data. The data we

have considered were first studied by LaLonde (1986), and also analyzed by many other authors.

Among them we can cite Dehejia & Wahba (1999). These data were collected to compare the

annual salaries of individuals that followed an employment training program, with those that did

not.

In this work, we consider the data corresponding to one of the groups, consisting of 297

individuals who were involved in a training program (National Supported Work). These data can

be downloaded from http://www.nber.org/∼rdehejia/nsw treated.txt. The variable of interest y

is the annual salary corresponding to 1978. The data set also contains information about seven

variables, that we use as a vector x of covariables. These variables are: education (in years), race

condition (black–white), Hispanic condition (yes–no), educational level (no-degree indicator),

married status, and earnings corresponding to year 1975. We generated the observed indicator a

according to the following mechanism:

log
P(a = 1|x)

1 − P(a = 1|x) = 0.001x7, (37)

where, as defined above, x7 represents the earnings corresponding to 1975. This mechanism

produces 26% of missing responses.

The boxplot of the 297 values of y in Figure 4 shows several outliers and justifies the use

of robust methods. We consider the same location functionals used for the Monte Carlo study:
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Figure 4: Boxplot of the 1975 income of the treated group.

the mean, the median, the Tukey M-location functional, the Huber M-location functional, and a

trimmed mean functional with α = 0.1. The values of these functionals for the empirical distri-

bution of the whole sample of y are shown in the first row of Table 6.

Based on the sample with missing responses, we compute our proposed estimators for the five

location functionals. That is, the values of these functionals for the empirical distributions of the

ŷij’s defined in Section 3 are presented in row 2. In line 3 we present the ratio between rows 2

and 1. Row 4 contains the estimators proposed by Bianco et al. (2010) for samples with missing

observations: the same functionals evaluated for the empirical distribution of the predicted values

α̂n + β̂′
nxi, 1 ≤ i ≤ 297. Finally, the ratio between rows 4 and 1 is presented in row 5.

We observe that, as expected, the means of the second and fourth rows are very close to each

other. Moreover, in comparing rows 3 and 5, we note that, for all functionals except the mean,

the estimators proposed in this paper are closer to the values of the corresponding estimates for

the complete sample than the estimators proposed in Bianco et al. (2010). This may be explained

by the fact that the distribution of the yi’s is not symmetric, and in this case the latter estimators

are not consistent.

Table 6: Estimates for the NSW data.

Sample Estimators

MEAN MED TU HU TR10

yi: 1 ≤ i ≤ 297 5976.35 4232.31 4234.29 5007.08 4910.59

ŷij 6136.84 4070.76 4195.01 4921.18 4918.68

Line 2/line 1 1.03 0.96 0.99 0.98 1.00

α̂n + β̂′
nxi 6136.38 3975.19 3956.13 4015.19 4024.39

Line 4/line 1 1.03 0.94 0.93 0.80 0.82
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