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A B S T R A C T

Rhodnius pallescens, main vector of Trypanosoma cruzi in Panama and secondary vector in Colombia,

Costa Rica and Nicaragua, represents an important epidemiological risk in those countries. It occupies

sylvatic ecotopes, and because of this its distribution and abundance could be conditioned by

environmental factors. In this work, we integrated environmental variables recorded by remote sensing

and data of R. pallescens presence in the countries mentioned above in order to know the environmental

variables with better capacity to describe the insects’ distribution, which will help to entomological

surveillance and control. Standard discriminant analysis (DA) was used to determine if there is a

significant difference in the environmental variation between the presence and the absence sites of R.

pallescens. Forward stepwise discriminant analysis (fDA) was used to determine the environmental

variables which better discriminated between presence and absence sites, and to construct a predictive

map of geographical distribution. Univariate analyses were used to determine the discriminatory power

of individual variables. The model derived from DA showed 89% of sensitivity and 92.8% of specificity.

Multivariate and univariate analyses showed the vapor pressure deficit minimum as the principal

variable among the nine most important to describe the distribution of the species, which is in

agreement with the R. pallescens stenohydric status. Map shows insects’ distribution predicted by

environmental variables, and moreover includes the distribution of most species belonging to Rhodnius

genus, except R. domesticus, R. nasutus and R. neglectus. We interpreted these results as a reflection of the

common evolution of the most Rhodnius species, except for the last ones that probably evolved isolated

due to particular environmental conditions. In conclusion, this study showed that a reduced number of

environmental variables can predict the distribution of R. pallescens and related species. This

methodology can be very useful to make critical decisions for vectorial surveillance and control of

Chagas disease vectors.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Rhodnius pallescens (Hemiptera: Reduviidae) is a triatominae
vector of Trypanosoma cruzi, the etiological agent of Chagas
disease. It has been reported in Belize, Nicaragua, Costa Rica,
Panama and Colombia, where it inhabits sylvatic environment,
and often visits human dwellings (Calzada et al., 2006; Moreno-
Mejı́a et al., 1992a,b; Vasquez et al., 2004; Zeledón et al., 2006);
although without following domestication processes, according
the criteria of Dujardin et al. (2000). However, the finding of
nymphs and adults infected with trypanosomes and fed with
* Corresponding author. Tel.: +57 4 2106521; fax: +57 4 2106565.
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human blood (Calzada et al., 2006; Christensen and de Vasquez,
1981) suggests a vector-human contact that represents an
important epidemiological risk. In addition, anthropic forest
transformations, generalized in its distribution area, could
induce changes in the vector ecology initiating a behavioral
gradient leading to synanthropic (Abad-Franch and Monteiro,
2007).

R. pallescens contact with humans needs to be monitored and
controlled, and thus strategies should be developed to attain this.
Among strategies a geographical information system (GIS) could
help to identify the environmental variables whose interaction
defines, at least in a significant part, the characteristics of the
ecosystem associated with the vector presence.

Data for GIS may be obtained from remote sensors (RS) onboard
earth observation satellites. RS provides global information of a
broad spectrum, spatial and temporal resolution, sometimes freely
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http://dx.doi.org/10.1016/j.meegid.2008.12.006
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available in internet databases about climate and ground cover
variation (Kitron, 2000; Thomson and Connor, 2000).

These are critical factors to determine the geographical
distribution of arthropod vectors and the incidence of the parasites
they transmit (Hay, 1997). The study of environmental conditions
affecting biological properties of a vector species based on ground
collected data is generally expensive and sometimes impossible to
carry out, because of the geographical amplitude of the species
distribution. But remotely sensed data integrated within a GIS is a
low cost and a good approach to study the relationship between
environmental variables and the distribution species (Beck et al.,
2000).

A few works have been done using RS data for study the
potential distribution of Triatominae, mainly on Triatoma infestans

and T. dimidiata (Dumonteil and Gourbiere, 2004; Gorla, 2002;
Townsend et al., 2002). Dumonteil and Gourbiere (2004) exploring
the relationship between T. dimidiata’s geographic distribution and
bioclimatic factors in the Yucatán peninsula in Mexico developed
predictive models of its domestic abundance and of its infection
rates by T. cruzi. These predictions were used to build the first
natural transmission risk map for Chagas disease in the Yucatán
peninsula. Gorla (2002) found that only six environmental
variables are enough to describe the T. infestans distribution in
South America. Townsend et al. (2002) applied ecologic niche
modeling to identify relationships between Triatoma species
implicated in the transmission of Chagas disease and their
mammal hosts, which allowed stratifying the risk factors accord-
ing to overlapping of vectors and particular mammal species. In
Fig. 1. Presence and absence sites of Rhodnius pallescens. Circles represent sites where th

triatomines has been made but other species different to R. pallescens have been found
this work we used a similar ecological approach to determine for
the first time in the literature the environmental factors impacting
R. pallescens distribution, and then use this information to build a
predictive map, which may help to planning vector-control and
surveillance strategies.

2. Materials and methods

2.1. Study area and data set

Data were compiled from the literature, and also collected
continuously during the field work by authors since 1989
(Appendix A). The geographical window analyzed includes the
inter-tropical zone stretching from southern Mexico to northern
Argentina (upper left 258160N, 938460W; lower right 278100S,
348190W). They were used geographical coordinates of 101 sites
where R. pallescens is present (60 at Colombia, 27 at Panama, 8 at
Costa Rica, and 6 at Nicaragua) (Fig. 1). These sites are stretched
between 48310, 118410N and 85850, 728290W. Belize was not
included because the specific site of collection is not known (Lent
and Wygodzinsky, 1979). Absence sites were selected by
considering places where triatomines belonging mainly to
Rhodnius genus were searched, but species different to R. pallescens

were found. Thus, we took in account 299 sites reported in the
literature for presence of triatomines different to R. pallescens

(Guhl et al., 2007; Abad-Franch et al., 2005) or kindly informed by
several investigation groups (Biodiversity Laboratory—Medical
Entomology, Centro de Pesquisa Leônidas and Maria Deane,
e species has been collected and squares indicate sites where an intensive search of

.
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Fiocruz, Manaus, Brazil; Instituto Conmemorativo Gorgas de
Estudios de la Salud, Panama, Panama; LIPT, Universidad del
Tolima, Ibagué, Colombia; CNRFV, Facultad de Ciencias de la Salud,
Universidad de Carabobo, Núcleo Aragua, Maracay, Venezuela).
From these 299 absence sites, 100 sites were chosen at random, so
that sample size of absence data was balanced respect to presence
data. Absence data are located between 58360S, 128230N and 87810,
688550W (Fig. 1). Latitude and longitude data for each presence and
absence site were imported into the integrated GIS and Image
Processing Software IDRISI Andes (Eastman, 2006).

2.2. Satellite data

Satellite images were obtained from a temporal series of
monthly images taken from 1982 to 2000 by the advanced very
high-resolution radiometer (AVHRR) sensor onboard the meteor-
ological satellites of the National Oceanic and Atmospheric
Administration (NOAA). The sensor records the energy from
1.1 km � 1.1 km of ground cover and the information is stored in a
digital format as a numeric data matrix that represents an image.
The images correspond to monthly measures of the physical
variables calculated with the maximum value composition method
to diminish the contamination by clouds (Holben, 1986). Due to
the computational process used to obtain the images, the final
spatial resolution of each one is 8 km � 8 km per pixel. Images of
air temperature (TAIR), land surface temperature (LST), middle
infra-red (MIR), vegetation index (NDVI), and vapor pressure
deficit (VPD) were calculated by equations described in Hay (2000)
and the appropriate combination of the five bands of the AVHRR.

The temporal series were processed using Fourier decomposi-
tion (thanks to the TALA Research Group, Oxford University;
Rogers and Robinson, 2004) in order to remove data redundancy
and to produce a set of uncorrelated variables whilst retaining a
description of seasonality. It is commonly applied to AVHRR data
collected by more than one year producing orthogonal harmonic
series, which exactly describe the temporal series of environ-
mental variables, and are considered efficient descriptors of
environment variability (Rogers, 2000; Rogers et al., 1996; Rogers
and Robinson, 2004; Rogers and Williams, 1994). That decom-
position produced a set of 11 descriptive statistics for each
variable: average (A0), minimum (MN), maximum (MX), ampli-
tudes and phases of the annual, bi-annual and tri-annual cycles
(A1, A2, A3, P1, P2, P3), the percentage of the total variance of the
three first Fourier components (DALL) and the variance of the
complete series (VR) (Hay et al., 2006). In summary, the AVHRR
images and additionally the land elevation model (DEM) obtained
from Shuttle Radar Topography Mission (SRTM) gave 56 indepen-
dent environmental variables set for each pixel location (11
descriptive statistics for each of the five environmental variables
plus DEM). Originally DEM was of 90 m of resolution, but it was
converted into images with 8 km of resolution to be able to process
them together with images from the AVHRR which had such
resolution.

2.3. Data analysis

2.3.1. Spatial autocorrelation and discriminant analysis (DA)

We calculated the spatial autocorrelation with the Moran index,
and found no autocorrelation for presence data, and a partial
autocorrelation for absence data, enabling to apply discriminant
analysis on the environmental variables data set.

To test if there are significant environmental differences
between the presence and absence sites, an standard DA (Fisher,
1936) was conducted using the dichotomic variable presence-
absence as the independent one (201 sites) and the set of 56
environmental variables extracted over the same 201 geographical
locations as the dependent variables. Cross-classification analyses
were conducted to verify the first DA outcome. For this each site
was removed sequentially and used as external data for
reclassification in subsequent DA analyses. Additionally, post hoc

analyses were conducted to evaluate the stability of the model;
that is, to test capacity of the new discriminant functions to re-
classify when new presence and absence data are introduced. For
this, five new matrix data sets were constructed with 75% of the
data randomly selected from the original matrix, and new standard
DAs were conducted over each matrix. The 25% of the remaining
data were introduced as new, ‘‘unknown’’, data to calculate the
capacity of the discriminant functions for reclassify correctly the
presence or absence sites.

To determine the variables better discriminate between the
presence and the absence sites, a fDA was conducted with the data
mentioned above. The model with higher discrimination and less
number of variables was selected. The criteria for variables
selection used only the statistically significant ones to discriminate
between groups; non-significant variables were ignored. It was
determined sensitivity and specificity of the model by the
reclassification percentage calculated in the fDA. Sensitivity is
the probability of classifying correctly a presence site, and the
specificity is the probability of classifying correctly an absence site.
Predictive accuracy of re-classification was determined by Kappa
statistical, k (Cohen, 1960). Landis and Koch (1977) suggested that
a value of k < 0.4 is poor; 0.4 < k < 0.75 is good and k > 0.75 is
excellent.

A graphical representation of the presence and absence sites
and of the selected variables in the fDA was done using a GH-Biplot
(Gabriel, 1971), where the vector longitude represents the
variability (or importance) of variables, and the relationship
site-variable is deduced by projecting the presence or absence sites
onto the vectors that represent the higher important variables.

The above analyses were performed using the computational
programs JMP 6.0.3 (SAS, 2006) and PADwin (Dujardin, 2006).

2.3.2. Construction of a predictive map

The predictive map of R. pallescens distribution was constructed
using the discriminant functions of the presence and absence sites
derived from the fDA. The functions classified the recorded sites,
and additional ones with environmental characteristics similar to
those of presence or absence sites. The extension of the
geographical predicted area is the same described in Section 2.1.

The image derived from the presence function was calculated
using the equation:

f presence ¼ b0 þ b1X1 þ b2X2 þ � � � þ bkXk;

where k is the number of variables that has higher discrimination;
b0, b1, b2, . . ., bk represent the function coefficients for the presence
sites calculated in the fDA, and X1, X2, . . ., Xk represent the value
that a variable took in the corresponding pixel.

The image for the absence function was calculated using a
similar approach describe for presences sites.

These two images, representing the presence and absence
functions resulting from the fDA, were compared pixel by pixel.
Based on this comparison, each pixel was classified as absence or
present site according to the function which had the higher value.
The classification unit is an 8 km � 8 km pixel, and the total
classified area is close to 130 millions of square kilometers. All
analyses were performed using the IDRISI Andes software (East-
man, 2006).

2.3.3. Univariate analysis

T-tests were used to test each variable for differences between
the presence and the absence sites. Afterward, probability density
functions for both classes of sites were estimated for each variable,



Table 1
Post hoc classification between presence and absence sites.

Model 1 Model 2 Model 3 Model 4 Model 5

Presence 85.2 74.1 62 68.9 80

Absence 70.8 79.2 81.8 68.2 72

Correct re-classification (%) of presence and absence sites for each of the five matrix

data sets as indicated in the text. Models 1 and 5 showed better re-classification for

presence sites, and model 3 showed better re-classification for absence sites.
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which showed significant differences in the previous analyses. For
this the total range of conditions of each variable was divided into
10 categories, and presence or absence pixels were assigned to
their corresponding category. Thus, the ratio between the number
of pixels corresponding to presence (or absence) sites (according to
their appropriate categories) and the total number of presence (or
absence) pixels were calculated. This produced probability density
functions of presence or absence per unit of measurement on the x-
axis (Fig. 5). For each environmental variable an optimal threshold
for to predict presence or absence sites was calculated as the
maximum difference between the accumulated probability
density function of both types of sites (Robinson et al., 1997).

In order to evaluate the selected variables in the fDA by their
individual capacity of discrimination, sensitivity and specificity of
each variable were calculated as TP/(TP + FN) and TN/(TN + FP)
respectively, where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives, and FN
is the number of false negatives (Fernández and Dı́az, 2003). Correct
classification for each variable was calculated dividing the sum of
sensibility plus specificity by two (Fernández and Dı́az, 2003).

3. Results

3.1. Discriminant analysis

The standard DA, including all variables, showed that 89% of the
presence sites and 92.8% of the absence sites were well classified.
Fig. 2 shows a significant discrimination between the presence and
the absence sites in the multivariate space represented by a
canonical factor (Wilks lambda = 0.3587, F56,144 = 4.5981,
p < 0.0001). The cross classification showed 86% of presence sites
and 76% of absence sites correctly classified. The post hoc

prediction for the five matrix data sets, in which the 25% of
removed data were re-introduced, showed a good re-classification.
The presence data were re-classified correctly between 62% and
85.2%, and the absence data between 68.2% and 81.8% (Table 1).

In the fDA, nine of 56 variables allowed to classify the localities
in presence or absence sites (Wilks lambda = 0.551511,
F9,191 = 17.2579, p < 0.0001). Three of them correspond to land
surface temperature: mean, bi-annual amplitude and variance
(LSTA0, LSTA2 and LSTVR); four to air temperature: tri-annual
amplitude, percentage of total variance in the annual to tri-annual
Fig. 2. Factorial map derived from standard discriminant analysis. Presence (gray

squares) and absence sites (black crossings) are distributed in a one-dimensional

canonical space separating both groups. Centroid (multivariate mean) for each

group is showed as fill squares; circles surrounding them are determining 95%

confidence intervals within which it is possible to find the centroid. Variables in the

canonical space are showed as vectors emerging from the ‘‘grand media’’. Vector

longitude indicates variable importance.
cycles, maximum and tri-annual phase (TAIRA3, TAIRDA, TAIRMX
and TAIRP3); one to vapor pressure deficit: minimum (VPDMN);
and one to middle infra-red: tri-annual phase (MIRP3). The
function estimated for fDA classified correctly the 81.6% of
localities: 81.2% of presence sites and 82% of absence sites. Kappa
statistical had a value of 0.63 indicating a good concordance
between the categorical variable presence–absence. Table 2 shows
the standardized coefficients of functions, which indicate the most
discriminant variable as the VPDMN. Variables with the lowest
discriminatory power are the tri-annual phase of air temperature
(TAIRP3), the middle infra-red (MIRP3), and the tri-annual
amplitude of air temperature (TAIRA3).

GH-Biplot (Fig. 2) shows that the most discriminant variable
(VPDMN) presents the highest variability, and together with LSTVR
and TAIRDA shows high values in absence sites and low values in
presence sites (projection of point-sites onto vector-variables). The
TAIRMX and LSTA2 variables present high values in presence sites
and low values in absence sites. These variables are correlated
(angle less than 908 between vectors), which indicate redundancy
in the information.

It is important to mention that VPDMN, LSTVR, TAIRDA,
TAIRMX and LSTA2 allow greater discrimination; while LSTA0,
MIRP3, TAIRA3 and TAIRP3, gave the worst discrimination.

3.2. A geographical distribution model of R. pallescens

Of the 16,727,806.75 km2 from the window geographical
analyzed, 2,499,358.75 km2 were classified as presence sites for R.

pallescens, and 14,228,448 km2 were classified as absence sites. Fig. 3
shows the potential geographical distribution map that resulted
from the re-classification of the presence and absence sites.
Table 2
Significant variables selected by the forward stepwise discriminant analysis using

100% of the available data for presence and absence.

Variable Standardized

coefficients

Non-standardized

coefficients

Absence

function

Presence

function

MIRP3 �0.177 �0.019 �3.666 �3.633

LSTVR 0.836 0.086 �2.516 �2.670

TAIRA3 �0.396 �0.067 �0.056 0.064

LSTA0 �0.426 �0.010 3.731 3.750

VPDMN 1.287 0.002 �0.340 �0.344

TAIRP3 �0.384 �0.039 �0.608 �0.538

LSTA2 �0.616 �0.069 �3.715 �3.590

TAIRDA 0.576 0.039 �4.107 �4.177

TAIRMX �0.680 �0.015 3.353 3.379

Constant 74.164 �10,452.297 �10,585.371

Tri-annual phase of middle infra-red (MIRP3), variance of land surface temperature

(LSTVR), tri-annual amplitude of air temperature (TAIRA3), mean of land surface

temperature (LSTA0), minimum of vapor pressure deficit (VPDMN), tri-annual

phase of air temperature (TAIRP3), bi-annual amplitude of land surface temperature

(LSTA2), percentage of total variance in the annual to tri-annual cycles of air

temperature (TAIRDA), maximum of air temperature (TAIRMX). For each variable,

the standardized and non-standardized coefficients, and the presence and absence

functions are showed. The most important variable in the model was the VPDMN.



Fig. 3. Predicted distribution map of Rhodnius pallescens. Dark gray areas are sites environmentally similar to sites where the species occur. Upward diagonal are indicating the

northern radiation that gave rise to R. robustus, R. prolixus, R. ecuadoriensis, R. colombiensis, R. pallescens, R. pictipes, R. stali, R. brethesi, R. dalessandroi, R. neivai and R. paraensis,

and the diagonal crosses are indicating the southern radiation that gave rise to R. neglectus, R. nasutus and R. domesticus (re-drawn after Carcavallo et al., 1999).
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3.3. Univariate analysis

Individual variables with significant differences between the
presence and the absence sites, among the nine selected by the
fDA, were LSTVR, TAIRA3, MIRP3, TAIRP3 and VPDMN (Fig. 4).
Probability density functions showing the range of values
associated with the presence or absence sites are described for
these variables (Fig. 5). Some of them showed an unimodal
distribution and others a bimodal distribution (Fig. 5, Table 3),
indicating these last more than one optimum range for the species
occurrence.

In general, the variables in individual way did not showed a
good classification capacity. They showed greater sensibility than
specificity (Table 3). TAIRDA showed the greatest ability to
describe the species distribution with a correct classification of
71.6% (77.2% of sensibility and 66% of specificity). Variables with
better sensibility were TAIRP3 and TAIRMX (86.1%), and the
variable with better specificity was TAIRA3 (73%).
Table 3
Capacity of individual variables to describe the Rhodnius pallescens distribution.

Correct classification (%) Sensibility (%)

MIRP3 66.7 83.2

LSTVR 67.2 74.3

TAIRA3 62.7 52.5

LSTA0 67.2 83.2

VPDMN 69.2 76.2

TAIRP3 64.2 86.1

LSTA2 62.7 62.4

TAIRDA 71.6 77.2

TAIRMX 66.7 86.1

Outcomes from univariate analyses show the percentage of correct classification, the s
Although in the fDA the best discriminant variable was VPDMN,
in the univariate analysis this was the second variable to reach the
best re-classification, but its sensibility and specificity was
moderate (76.2% and 62%).

4. Discussion

R. pallescens inhabits tropical humid, tropical dry and tropical
very dry forests (Pizarro and Romaña, 1998). This amplitude of life
zones (Holdridge, 1947) suggests that a high number of variables
besides the macro-climatic ones could condition the geographical
distribution of this vector. Attalea butyracea palms, for example,
seem to be very important indicators of the presence of this species
(Romaña et al., 1999). However, only nine macro-climatic variables
associated with land surface temperature, air temperature,
medium infra-red, and vapor pressure deficit (LSTA0, LSTA2,
LSTVR, TAIRA3, TAIRP3, TAIRDA, TAIRMX, MIRP3, VPDMN) were
enough to predict the R. pallescens distribution. Multivariate
Specificity (%) Presence range Units

50 >2.4 months

60 <17, 22–27 8C2

73 >0.7 8C
51 29.2–34.6, 37.7–41.6 8C
62 1.2–11.3, 17.5–21.9 millibars

42 1.2–2.1, >2.5 months

63 0.9–2 8C
66 9–37 %

47 28.2–39.1 8C

ensibility and the specificity, and the range values of species occurrence.



Fig. 4. Histograms showing the average and standard deviation for each of the most important variables in the stepwise discriminant analysis. Variables with significant

differences between presence and absence sites are indicated with asterisks on the boxes (*p < 0.01, **p < 0.001).
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analysis showed that those nine variables were able of correctly
identifying 89% of the presence sites and 92.8% of the absence sites.

The variable with the most discriminatory power in fDA was the
VPDMN. VPD measures the difference (deficit) between the
amount of moisture in the air and how much moisture the air
can hold when it is saturated (http://en.wikipedia.org/wiki/).
Higher VPD values indicate a stronger drying tendency. In the same
way, higher VPDMN values also indicate higher potential desicca-
tion rate. In this work, VDPMN showed the highest values in the
absence sites and the lowest in the presence ones (Fig. 2). The
importance that this variable had in the analysis reflects the
stenohydric status known for R. pallescens (Zeledón et al., 2006;
Jurberg and Rangel, 1984), and suggests that this species could
preferentially occupy places with minimum VPD values. The
variance of land surface temperature (LSTVR) and the total
variance of the three first Fourier components of the air
temperature (TAIRDA) are higher in the absence sites than the
presence sites, too. A large variation in land surface temperature
and air temperature could diminish the habitat stability; in
consequence, they could limit the occurrence of R. pallescens in a
particular site.

Amplitude of the bi-annual cycle of land surface temperature
(LSTA2) and maximum of air temperature (TAIRMX) have the
highest values in presence sites and the lowest values in absence
sites. Both land surface temperature and air temperature play an
important role in the humidity of a place, especially for species
with stenohydric status as R. pallescens.

Stability of the geographical distribution model was tested for
post hoc prediction by using standard DA over five new matrix data
sets, each constructed with 75% of the data randomly selected from
the original matrix and the remaining data introduced as new,
‘‘unknown’’ data. Sensitivity and specificity of this post hoc analysis
was lower than that with 100% of data (Table 3); however it was
good enough to reveal the accuracy of the model. This results show
the utility of discriminant functions for differentiate presence and
absence sites.

According the biogeographical regions proposed by Morrone
(2002), the R. pallescens distribution corresponds to the neotropical
region located within the holotropical kingdom (Morrone, 2004).
The predicted zone of potential distribution of R. pallescens (Fig. 3)
covers additional areas to which this species occur. Generally
species are not occupying all the areas environmentally appro-
priate for them; indeed, they occupy only a subset of these because
their evolutionary history, their internal restrictions for dispersion
and the effect of others variables (e.g. A. butyracea distribution),
which were not took into account in this analysis. Thus, multiple
ecological factors interact to explain why the species occupies
some regions and not others; but it is notorious here that only nine
climatic variables are good predictors of R. pallescens distribution.
On the other hand, it is important to know the sites with
appropriate characteristics for R. pallescens establishment, because
its passive transport by humans and its posterior development in
non-endemic zones is a reality confirmed in Triatominae with
serious consequences for public health (Dujardin et al., 1998).

In the geographical distribution model, the predicted areas of R.

pallescens presence not only match 89% the observed records of this
species, but also coincided with the distribution of the most species
of the genus Rhodnius except R. domesticus Neiva and Pinto, 1932, R.

nasutus Stål, 1859 and R. neglectus Lent, 1954, according to Atlas of
Chagas diseases vectors (Carcavallo et al., 1999; Fig. 3). This

http://en.wikipedia.org/wiki/


Fig. 5. Probability density functions for presence (pdfP) and absence (pdfA) sites. The pdfP is showed by dark gray lines and pdfA by light gray lines. Dotted lines are indicating

the difference between cumulative density functions of presence and absence. The threshold separates with higher probability the presence and absence sites.
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suggests that distribution of other species of this genus is similarly
associated with the same environmental variables, which may in
turn be an additional indication of their common ancestry
(Schofield and Dujardin, 1999).

Univariate analysis of the nine more important variables
according to the fDA showed good sensibility (62–85.2%) and
specificity (70.8–81.8%), but did not have much discriminatory
power as when they were analyzed together (89% of sensibility and
92.8% of specificity). This indicates that individual variables are not
good as predictors of R. pallescens presence, but it is necessary to
study them in a multivariate way to determine their relative
weight in the species ecology.

Acknowledgments

The authors thank the financial support contributed by
Colciencias, project no. 1115-05-11485, by the European Com-
munity Specific Support Activity—SSA (Project Trypanosomiasis
Update, contract no: INCO-SA 515942), by the ‘‘Dirección General
de Cooperación para el Desarrollo, Presidencia de Gobierno de la
Generalitat Valenciana’’, Valencia, España (Expediente 2000/3042)
and by the Committee for the Development of the Investigation of
the Universidad de Antioquia, Medellı́n, Colombia (CODI, project:
CPT-0604). This work was benefited from the international
cooperation through the European Community-Latin American
Network for Research on the Biology and Control of Triatominae
(ECLAT). We acknowledge TALA Research Group (University of
Oxford Department of Zoology, Oxford) the provision of the images
processed with Fourier analyses from where the environmental
variables were extracted. We thank to anonymous reviewer who
help to improve this manuscript.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at doi:10.1016/j.meegid.2008.12.006.

References

Abad-Franch, F., Monteiro, F.A., 2007. Biogeography and evolution of Amazonian
triatomines (Heteroptera: Reduviidae): implications for Chagas disease sur-
veillance in humid forest ecoregions. Mem. Inst. Oswaldo Cruz 102,
57–69.

Abad-Franch, F., Palomeque, F.S., Aguilar, V.H.M., Miles, M.A., 2005. Field ecology of
sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm
tree infestation in western Ecuador. Trop. Med. Int. Health. 10, 1258–1266.

Beck, L.R., Lobitz, B.M., Wood, B.L., 2000. Remote sensing and human health: new
sensors and new opportunities. Emerg. Infect. Dis. 6, 217–227.

Calzada, J.E., Pineda, V., Montalvo, E., Alvarez, D., Santamaria, A.M., Samudio, F.,
Bayard, V., Caceres, L., Saldaña, A., 2006. Human trypanosome infection and the
presence of intradomicile Rhodnius pallescens in the western border of the
Panama Canal, Panama. Am. J. Trop. Med. Hyg. 74, 762–765.

Carcavallo, R., Curto de Casas, S., Sherlock, I., Galı́ndez, I., Jurberg, J., Galvao, C.,
Mena, C., Noireau, F., 1999. Geographical distribution and alti–latitudinal
dispersion. In: Carcavallo, R.U., Galı́ndez, I., Jurberg, J., Lent, H. (Eds.), Atlas
of Chagas’ Disease Vectors in the Americas, 3. Editora Fiocruz, Rio de Janeiro,
pp. 747–792.

Christensen, H.A., de Vasquez, A.M., 1981. Host feeding profiles of Rhodnius pal-
lescens (Hemiptera: Reduviidae) in rural villages of Central Panama. Am. J. Trop.
Med. Hyg. 30, 278–283.

Cohen, J., 1960. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20,
37–46.

Dujardin, J.P., 2006. PADwin version 82, Institut de Recherches pour le Développe-
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Moreno-Mejı́a, J., Jaramillo, N., López Silva, E., Ramı́rez, L., 1992b. Study of triato-
mines of the Magdalena valley and Northeast in the state of Antioquia Colom-
bia. Mem. Inst. Oswaldo Cruz 87 (Suppl. 1), 216.
Morrone, J., 2002. Biogeographic regions under track and cladistic scrutiny. J.
Biogeogr. 29, 149–152.

Morrone, J., 2004. La zona de transición sudamericana: caracterización y relevancia
evolutiva. Acta Entomol. Chilena 28, 41–50.

Pizarro, J., Romaña, C., 1998. Variación estacional de una población silvestre de
Rhodnius pallescens Barber 1932 (Heteroptera: Triatominae) en la costa caribe
colombiana. Bull. Inst. Fr. Études Andines 27, 309–325.

Robinson, T., Rogers, D., Williams, B., 1997. Univariate analysis of tsetse habitat in
the common fly belt of southern Africa using climate and remotely sensed
vegetation data. Med. Vet. Entomol. 11, 223–234.

Rogers, D.J., 2000. Satellites, space, time and the African trypanosomiases. Adv.
Parasitol. 47, 129–171.

Rogers, D.J., Robinson, T.P., 2004. Tsetse distribution. In: Maudlin, I., Holmes, P.H.,
Miles, M.A. (Eds.), The Trypanosomiases. CABI International, Wallingford, UK,
pp. 139–179.

Rogers, D.J., Williams, B.G., 1994. Tsetse distribution in Africa: seeing the wood and
the trees. In: Edwards, P.J., May, R.M., Webb, N. (Eds.), Large-Scale Ecology and
Conservation Biology. Blackwell Scientific Publications, Oxford, England, pp.
247–271.

Rogers, D.J., Hay, S.I., Packer, M.J., 1996. Predicting the distribution of tsetse flies in
West Africa using temporal Fourier processed meteorological satellite data.
Ann. Trop. Med. Parasitol. 90, 225–241.

Romaña, C.A., Pizarro, J.C., Rodas, E., Guilbert, E., 1999. Palm trees as ecological
indicators of risk areas for Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 93,
594–595.

SAS Institute Inc., 2006. JMP version 6.0.3. SAS Institute Inc., Cary, NC, USA. URL:
http://www.jmp.com/.

Schofield, C., Dujardin, J., 1999. Theories on the evolution of Rhodnius. Actual. Biol.
21, 183–197.

Thomson, M.C., Connor, S.J., 2000. Environmental information systems for the
control of arthropod vectors of disease. Med. Vet. Entomol. 14, 227–244.

Townsend, P., Sánchez-Cordero, V., Beard, B., Ramsey, J., 2002. Ecologic niche
modeling and potential reservoirs for Chagas disease. Mexico. Emerg. Inf.
Dis. 8, 662–667.

Vasquez, A.M., Samudio, F.E., Saldaña, A., Paz, H.M., Calzada, J.E., 2004. Eco-
epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their
vector (Rhodnius pallescens) in Panama. Rev. Inst. Med. Trop. Sao Paulo 46,
217–222.

Zeledón, R., Marin, F., Calvo, N., Lugo, E., Valle, S., 2006. Distribution and ecological
aspects of Rhodnius pallescens in Costa Rica and Nicaragua and their epidemio-
logical implications. Mem. Inst. Oswaldo Cruz 101, 75–79.

http://www.clarklabs.org/
http://www.jmp.com/

	Development of a geographical distribution model of Rhodnius pallescens Barber, 1932 using environmental data recorded by remote sensing
	Introduction
	Materials and methods
	Study area and data set
	Satellite data
	Data analysis
	Spatial autocorrelation and discriminant analysis (DA)
	Construction of a predictive map
	Univariate analysis


	Results
	Discriminant analysis
	A geographical distribution model of R. pallescens
	Univariate analysis

	Discussion
	Acknowledgments
	Supplementary data
	References


