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Abstract. We introduce a scale of weighted Carleson norms, which depend

on an integrability parameter p, where p = 2 corresponds to the classical

Carleson measure condition. Relations between the weighed BMO norm of a
vector-valued function f : R → X, and the Carleson norm of the sequence of

its wavelet coefficients, are established. These extend the results of Harboure–

Salinas–Viviani, also in the scalar-valued case when p 6= 2.

1. Introduction

Given a positive non-decreasing function % on (0,∞) (so-called growth function),
a weight w on R, and a Banach space X, the function space BMO%(w;X) consists
of those locally Bochner integrable f : R → X for which the norm

‖f‖BMO%(w;X) := sup
I

1
w(I)%(|I|)

∫
I

‖f(x)− 〈f〉I‖X dx

is finite. Here and below, supI refers to supremum over all finite intervals I ⊂ R,
and we use the abbreviations w(I) :=

∫
I
w(x) dx and 〈f〉I := |I|−1

∫
I
f(x) dx. This

is a natural vector-valued generalization of the space BMO%(w) := BMO%(w; C),
which has been recently studied in [4, 5, 6, 13].

Recall that ψ ∈ L2(R) is called an orthonormal wavelet if the functions ψJ(x) :=
|J |−1/2ψ

(
|J |−1(x−inf J)

)
form an orthonormal basis of L2(R) when J runs through

the set D of all dyadic intervals J = 2j [k, k + 1), j, k ∈ Z. In [4], the wavelet
coefficients 〈ψJ , f〉 :=

∫
ψJ(x)f(x) dx of f ∈ BMO%(w) were studied, and it was

shown — under appropriate conditions on %, w, and ψ — that the norm ‖f‖BMO%(w)

dominates the following Carleson measure norm, where aJ = 〈ψJ , f〉:

‖{aJ}J∈D‖C%(w) := sup
I

1
%(|I|)

( 1
w(I)

∑
J∈D
J⊆I

|aJ |2
|J |
w(J)

)1/2

,

=sup
I

1
%(|I|)

( 1
w(I)

∫
I

E
∣∣∣ ∑

J∈D
J⊆I

εJaJ

( |J |
w(J)

)1/2 1J(x)
|J |1/2

∣∣∣2 dx
)1/2

.

Conversely, the finiteness of this norm implies that the series
∑

J∈D aJψJ con-
verges, in a suitable sense, to a function in BMO%(w) whose norm is controlled by
‖{aJ}J∈D‖C%(w).
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On the right side, the εJ designate independent random signs with probability
distribution P(εJ = +1) = P(εJ = −1) = 1

2 , and E is the mathematical expectation.
The equality, which is completely elementary for scalar coefficients cJ (or even
Hilbert space -valued ones), no longer holds for cJ ∈ X, when X is a more general
Banach space.

In our situation, following the experience from other vector-valued problems
(e.g., [1, 2, 8]), we take the right side as the definition of the vector-valued Carleson
norm. In fact, we define a one-parameter scale of such norms by setting

‖{cJ}J∈D‖Cp
% (w;X)

:= sup
I

1
%(|I|)

( 1
w(I)

∫
I

E
∥∥∥ ∑

J∈D
J⊆I

εJcJ

( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

.

As usual in vector-valued harmonic analysis, we require that our Banach space have
the unconditionality property for martingale difference sequences (UMD). In the
present paper, this assumption will never be used directly, but rather through a
number of earlier results which have been established in this class of spaces and
which will be recalled below. See e.g. [1, 2] for more on this notion.

Let us now assume that the weight w is in the Muckenhoupt class Aq for some
fixed q ∈ (1, 2), i.e.,

sup
I

1
|I|

∫
I

w(x) dx
( 1
|I|

∫
I

w−1/(q−1)(x) dx
)q−1

≤ C.

Let the growth function be such that
∫∞
1
%(s)sq−3 ds <∞, and set

η(t) := t2−q

∫ ∞

t

%(s)
s3−q

ds =
∫ ∞

1

%(tu)
u3−q

du.

Note that η(t) ≥ %(t), since % is non-decreasing. If % has the property that

%(ut) ≤ Cuα%(t)

for some α < 2 − q and all t > 0, u > 1 (so-called upper-type α), then conversely
η(t) . %(t), so that η and % are comparable, but we do not necessarily assume this.
However, we do assume that % has some upper-type α <∞, which is equivalent to
the doubling property %(2t) ≤ C%(t).

Finally, we say that a function φ on R is of class Ψu
v if

|φ(x)| ≤ C(1 + |x|)−u, |φ′(x)| ≤ C(1 + |x|)−v.

Under these assumptions, we have the following results:

Theorem 1.1. Let ψ ∈ Ψ2+ε
1+ε, ε > 0, be an orthonormal wavelet. If f ∈ BMO%(w;X)

and p ∈ (1, q′], then {〈ψJ , f〉}J∈D ∈ Cp
η (w;X) and

‖{〈ψJ , f〉}J∈D‖Cp
η (w;X) . ‖f‖BMO%(w;X).

Theorem 1.2. Let ψ ∈ Ψ2+ε
2 , ε > 0, be an orthonormal wavelet. If {aJ}J∈D ∈

Cp
% (w;X) for some p ∈ (1,∞), then the series

∑
J∈D aJψJ converges to a function

f ∈ BMOη(w;X) in the following sense: For every interval I ⊂ R, there are
“renormalization constants” cJ ∈ C, ξ ∈ X such that∑

J∈D

aJ(ψJ − cJ)|I
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converges to f |I − ξ, unconditionally in Ls(I;X) for some s > 1. Here f |I means
the restriction of f on I. Moreover,

‖f‖BMOη(w;X) . ‖{aJ}J∈D‖Cp
% (w;X)

Under the additional assumption that % be of upper type α < 2− q, the growth
function η in the theorems may be replaced by %, so that the two results establish a
kind of norm equivalence. The appearance of the “renormalization constants” may
be seen as a reflection of the fact that constant functions have a vanishing BMO
norm, which results in BMO functions only being defined up to additive constants.

Theorems 1.1 and 1.2 generalize, on the one hand, the unweighted vector-valued
results from [8] and, on the other, the weighted but scalar-valued theorems from [4].
More precisely, the case w ≡ % ≡ 1 of the above theorems, for a more restricted
class of wavelets, is contained in [8], Proposition 4.1; in this case, the full range
p ∈ (1,∞) is admissible in Theorem 1.1. With X = C and p = 2, the above results
essentially reduce to [4], Theorems A and B, but a different sense of convergence
(involving an appropriate weighted version of the H1–BMO-duality) of the series∑

J∈D aJψJ was used there.
For X = C, the Carleson norms have equivalent non-probabilistic expressions

thanks to Hinčin’s inequality:

‖{cJ}J∈D‖Cp
% (w;C)

h sup
I

1
%(|I|)

( 1
w(I)

∫
I

[ ∑
J∈D
J⊆I

|cJ |2
( |J |
w(J)

)2/p′ 1J(x)
|J |

]p/2

dx
)1/p

,

with equality for p = 2, as already mentioned. When p 6= 2, both the definition of
these norms and their appearance in the above theorems appear to be new even in
the scalar case. Other variants of p-dependent Carleson norms have been recently
used in [9, 10].

A word on the organization of the paper: the following two sections contain
preliminary material, after which Theorems 1.1 and 1.2 are proved in the last to
sections.

Acknowledgement. A major part of the research was carried out during T.H.’s
visit to the Instituto de Matemática Aplicada del Litoral, Santa Fe, in November
2007. He wants to thank the colleagues in Santa Fe for their kind hospitality, and
the institute for financial support. T.H. was also supported by the Academy of
Finland through the projects “Stochastic and harmonic analysis, interactions and
applications” and “Vector-valued singular integrals”.

2. Preliminaries

2.1. Vector-valued random series. Due to the very definition of our Carleson
spaces Cp

% (w;X), it is clear that some knowledge on how to handle the vector-valued
random series (

E
∥∥∥ ∑

J⊆I

εJξJ

∥∥∥p

X

)1/p

will be needed in proving the two theorems. In fact, there are only a few basic
tricks which we shall employ, and they are recalled in this section.
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The basic estimate is Kahane’s contraction principle ([11], Theorem 2.5), which
allows to “pull out” bounded scalar coefficients,(

E
∥∥∥ ∑

J⊆I

εJλJξJ

∥∥∥p

X

)1/p

≤
(
E

∥∥∥ ∑
J⊆I

εJξJ

∥∥∥p

X

)1/p

if λJ ∈ [−1, 1]; with complex |λJ | ≤ 1, one gets a similar estimate with an additional
factor 2 on the right by simply splitting to real and imaginary parts. A very
particular case of this estimate, corresponding to coefficients which are zero except
for one, is the fact that the norm of the random series dominates the norm of any
of the vectors appearing in it.

A somewhat deeper result, which relies on the UMD property of the space X and
assumes that p ∈ (1,∞), is Bourgain’s vector-valued Stein inequality ([1], Lemma 8;
cf. [2], Proposition 3.8), which allows to “pull out” averaging operators:( ∫

I

E
∥∥∥ ∑

J⊆I

εJ
1J(x)
|J |

∫
J

fJ(y) dy
∥∥∥p

X
dx

)1/p

≤ C
( ∫

I

E
∥∥∥ ∑

J⊆I

εJ1J(x)fJ(x)
∥∥∥p

X
dx

)1/p

.

Moreover, Kahane’s inequality ([11], Eq. (∗) on p. 282) permits changing the
exponent, in fact, (

E
∥∥∥ ∑

J⊆I

εJξJ

∥∥∥p

X

)1/p

h
(
E

∥∥∥ ∑
J⊆I

εJξJ

∥∥∥r

X

)1/r

for all p, r ∈ [1,∞). For X = C and r = 2, this reduces after simplification to the
classical Hinčin inequality(

E
∣∣∣ ∑

J⊆I

εJλJ

∣∣∣p)1/p

h
( ∑

J⊆I

|λJ |2
)1/2

.

2.2. Weighted John–Nirenberg inequality. For weighted BMO functions, the
celebrated John–Nirenberg inequality takes the following form: Given w ∈ Aq, q ∈
(1,∞), and a growth function % with the doubling property, the norm ‖f‖BMO%(w;X)

is equivalent to

sup
I

1
%(|I|)

( 1
w(I)

∫
I

‖f(x)− 〈f〉I‖p
Xw

1−p(x) dx
)1/p

for all p ∈ (1, q′]; clearly p = 1 corresponds to the original norm of this space.
This was first proved in the case % ≡ 1 by Muckenhoupt and Wheeden [14],

and then extended to the growth function case by Morvidone [13]. Their results
are stated in the case X = C, but an inspection of the proofs reveals that they
immediately generalize to the vector-valued context.

3. Wavelets in weighted Bochner spaces

Before studying the wavelet expansions of vector-valued BMO functions, we
need some results in the Lp spaces for p ∈ (1,∞). These will be collected in this
section. Let us note that the unweighted case has been considered before by Kaiser
and Weis [12]; the general treatment here is based on similar ideas but does not
presuppose any knowledge of their results. The roughness of the wavelets is the
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same as in [7], Section 6.4, where the unweighted, scalar-valued case is treated by
maximal function techniques.

Definition 3.1. A function K(x, y) defined for x, y ∈ R × R with x 6= y is called
a standard kernel provided that

|K(x, y)| ≤ C
1

|x− y|
,

and for some δ > 0,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|δ

|x− y|1+δ
.

Some results concerning Calderón–Zygmund operators of the form

Tf(x) =
∫

R
K(x, y)f(y) dy,

for x /∈ supp f , will be needed. It is convenient to formulate Figiel’s T1 theorem [3]
in the following form:

Theorem 3.2. Let K be a standard kernel and T ∈ L (L2(R)). Then for every
UMD space X and p ∈ (1,∞), T is also bounded on Lp(R;X).

The following extrapolation result can be extracted out of the more general
statements in Theorems 1.2 and 1.3 of [15].

Theorem 3.3. Let X be a Banach space, K be a standard kernel and for some
q ∈ (1,∞), T ∈ L (Lq(R;X)). Then for all p ∈ (1,∞) and all w ∈ Ap, there holds
T ∈ L (Lp(w;X)).

The two results obviously imply:

Corollary 3.4. Let K be a standard kernel and T ∈ L (L2(R)). Then for every
UMD space X, every p ∈ (1,∞) and all w ∈ Ap, T is also bounded on Lp(w;X).

In all of the results quoted above, the bound on the norm of T only depends on
the constants implicit in the assumptions, and the dependence is uniform in the
sense that a family of operators verifying the assumptions with uniformly bounded
constants will also satisfy the conclusions with uniform norm bounds.

Following [7], Eq. (2.12) of Chapter 6, let R0 :=
⋃

ε>0 Ψ2+ε
1+ε.

Lemma 3.5. Let φ, ψ ∈ R0 and |ajk| ≤ 1. Then

K(x, y) :=
∑

j,k∈Z
ajk2jφ(2jx− k)ψ(2jy − k)

is a standard kernel.
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Proof. Without loss of generality, x < y and 0 < |x′ − x| < |x− y|/2.

|K(x, y)| .
∑

j

2j
∑

k

(1 + |2jx− k|)−1−ε(1 + |2jy − k|)−1−ε

.
∑

j

2j
( ∑

k≤(x+y)2j−1

(1 + |2jx− k|)−1−ε · (1 + 2j |x− y|)−1−ε

+
∑

k>(x+y)2j−1

(1 + 2j |x− y|)−1−ε · (1 + |2jy − k|)−1−ε
)

.
∑

j

2j(1 + 2j |x− y|)−1−ε

.
∑

j:2j |x−y|≤1

2j +
∑

j:2j |x−y|>1

2−jε|x− y|−1−ε .
1

|x− y|
.

Consider next the difference

|K(y, x)−K(y, x′)| ≤
∑

j

∑
k

2j(1 + |2jy − k|)−2−ε|ψ(2jx− k)− ψ(2jx′ − k)|;

the other type of difference will have a similar bound by symmetry. By the two
obvious estimates either applying the mean value theorem or the triangle inequality,

|ψ(2jx− k)− ψ(2jx′ − k)| .

{
2j |x− x′|

(
1 + dist(k, 2j [x′, x])

)−1−ε
,(

1 + dist(k, 2j [x, x′])
)−2−ε

.

Let A > 0 be an auxiliary number to be chosen. The part of the sum with small
j is estimates as follows:

∑
2j≤A

2j
∑

k

2j |x− x′|
(
1 + dist(k, 2j [x′, x])

)−1−ε(1 + |2jy − k|)−1−ε

.
∑

2j≤A

22j |x− x′|
( ∑

k≤(x+y)2j−1

(
1 + dist(k, 2j [x′, x])

)−1−ε(2j |x− y|)−1−ε

+
∑

k>(x+y)2j−1

(
2j |x− y|

)−1−ε(1 + |2jy − k|)−1−ε
)

.
∑

2j≤A

2j(1−ε) |x− x′|
|x− y|1+ε

(
1 + 2j |x− x′|

)
. A1−ε |x− x′|

|x− y|1+ε

(
1 +A|x− x′|

)
.

(3.6)
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As for large j, there holds∑
2j>A

2j
∑

k

(
1 + dist(k, 2j [x′, x])

)−2−ε(1 + |2jy − k|)−2−ε

.
∑

2j>A

2j
( ∑

k≤(x+y)2j−1

(
1 + dist(k, 2j [x′, x])

)−2−ε(2j |x− y|)−2−ε

+
∑

k>(x+y)2j−1

(2j |x− y|)−2−ε(1 + |2jy − k|)−2−ε
)

.
∑

2j>A

2−(1+ε)j |x− y|−2−ε
(
1 + 2j |x− x′|

)
.

A−1−ε

|x− y|2+ε

(
1 +A|x− x′|

)
.

(3.7)

Requiring the equality of the two upper bounds and solving for A gives A =
|x − x′|−1/2|x − y|−1/2. Then A|x − x′| =

(
|x − x′|/|x − y|

)1/2 ≤ 1, so the upper
bound in both (3.6) and (3.7) becomes

|x− x′|(1+ε)/2

|x− y|(3+ε)/2
,

and hence the claim is proved with δ = (1 + ε)/2. �

Theorem 3.8. Let ψ, φ ∈ R0 be orthonormal wavelets. Let X be a UMD space,
1 < p <∞, and w ∈ Ap. Then for all f ∈ Lp(w;X),

‖f‖Lp(w;X) h
(
E

∥∥∥ ∑
J∈D

εJ〈f, ψJ〉ψJ

∥∥∥p

Lp(w,X)

)1/p

h
(
E

∥∥∥ ∑
J∈D

εJ〈f, ψJ〉φJ

∥∥∥p

Lp(w,X)

)1/p

h
(
E

∥∥∥ ∑
J∈D

εJ〈f, ψJ〉
1J

|J |1/2

∥∥∥p

Lp(w;X)

)1/p

.

Proof. The first and second comparison follow from the fact that the operators of
the form

f 7→
∑
J∈D

εJ〈f, ψJ〉φJ

are uniformly bounded Calderón–Zygmund operators.
As for the last comparison, it has been shown in [8] (see the proof on p. 134) that

there is finite collection Φ of orthonormal wavelets φ ∈ R0 (in fact even infinitely
regular) such that

1J

|J |1/2
≤ C

∑
φ∈Φ

|φJ |.

Hence, by the contraction principle,(
E

∥∥∥ ∑
J∈D

εJ〈f, ψJ〉
1J

|J |1/2

∥∥∥p

Lp(w;X)

)1/p

.
( ∑

φ∈Φ

E
∥∥∥ ∑

J∈D

εJ〈f, ψJ〉φJ

∥∥∥p

Lp(w;X)

)1/p

. ‖f‖Lp(w;X)

by the part already proved.
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As for the other direction, let φ ∈ R0 be an orthonormal wavelet with compact
support, and fix some I1 ⊆ I0 := [0, 1) such that φI1 is supported in I0. Let
Λ : D → D be the mapping J = inf J + |J | · I0 7→ inf J + |J | · I1. Then {φΛ(J)}J∈D

is an orthonormal (incomplete) system in L2(R). Because of the support property
and regularity, for some c there holds 1J/|J |1/2 ≥ c|φΛ(J)|. Hence by the contraction
principle,(

E
∥∥∥ ∑

J∈D

εJ〈f, ψJ〉
1J

|J |1/2

∥∥∥p

Lp(w;X)

)1/p

&
(
E

∥∥∥ ∑
J∈D

εJ〈f, ψJ〉φΛ(J)

∥∥∥p

Lp(w;X)

)1/p

& ‖f‖Lp(w,X)

since the mapping∑
J∈D

aJφΛ(J) 7→
∑
J∈D

aJψJ , or
∑
I∈D

aIφI 7→
∑

I∈Λ(D)

aIψΛ−1(I),

is a bounded Calderón–Zygmund operator. �

4. BMO implies Carleson

We now turn to the proof of Theorem 1.1. Fix a function f ∈ BMO%(w;X) and
a finite interval I ⊂ R. For ` ∈ Z+, let I` := 2`I (the interval concentric with I and
2` times as long), f1 := (f − 〈f〉I)12I , and f` := (f − 〈f〉I)1I`\I`−1 for ` ≥ 2. Then
f = 〈f〉I +

∑∞
`=1 f` and 〈f, ψJ〉 =

∑∞
`=1〈f`, ψJ〉, since ψJ has a vanishing integral.

Consider first ` ≥ 2 fixed. Below, we abbreviate the summation condition J ∈
D , J ⊆ I to J ⊆ I, with the implicit understanding that J is always a dyadic
interval. The estimation starts with( ∫

E
∥∥∥ ∑

J⊆I

εJ〈f`, ψJ〉
( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

=
( ∫

E
∥∥∥∫

f`(y)
∑
J⊆I

εJψJ(y)1I`\I`−1(y)
( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

dy
∥∥∥p

X
dx

)1/p

.
( ∫ {∫

‖f`(y)‖X

[ ∑
J⊆I

|ψJ(y)|2
( |J |
w(J)

)2/p′ 1J(x)
|J |

]1/2

dy
}p

dx
)1/p

.

Next, for y ∈ I` \ I`−1 where f` is supported,∑
J⊆I

|ψJ(y)|2
( |J |
w(J)

)2/p′ 1J(x)
|J |

.
∑
J⊆I

1
|J |

( |J |
|I`|

)4( |J |
w(J)

)2/p′ 1J(x)
|J |

=
1

|I`|4
∑
J⊆I

|J |2+2/p′1J(x)
w(J)2/p′

.
1

|I`|4
∑
J⊆I

|J |2+2/p′1J(x)
w(I)2/p′

( |I|
|J |

)2q/p′

=
1

|I`|4
|I|2q/p′

w(I)2/p′

∑
J⊆I

|J |2(1+1/p′−q/p′)1J(x)

.
1

|I`|4
|I|2q/p′

w(I)2/p′
|I|2(1+1/p′−q/p′)1I(x) =

( |I|
|I`|

)4( |I|
w(I)

)2/p′ 1I(x)
|I|2

,

where the three inequalities were applications of the pointwise bound for ψ ∈ R0,
the estimate w(I)/w(J) ≤ C

(
|I|/|J |

)q for w ∈ Aq, and finally the sum of a geo-
metric progression where q ≤ p′ < p′ + 1.
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Substituting back,( ∫
E

∥∥∥ ∑
J⊆I

εJ〈f`, ψJ〉
( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

.
( ∫ {∫

‖f`(y)‖X

( |I|
|I`|

)2( |I|
w(I)

)1/p′ 1I(x)
|I|

dy
}p

dx
)1/p

=
2−2`

w(I)1/p′

∫
‖f`(y)‖X dy ≤ 2−2`

w(I)1/p′

∫
2`I

‖f(y)− 〈f〉I‖X dy,

(4.1)

where the equality involved computing the trivial integration in x.
The following lemma is needed:

Lemma 4.2. If ‖f‖BMO%(w;X) ≤ 1, then∫
2`I

‖f(y)− 〈f〉I‖X dy .
∑̀
k=1

2`−kw(2kI)%(2k|I|).

Proof. ∫
2`I

‖f(y)− 〈f〉I‖X dy

≤
∫

2`I

‖f(y)− 〈f〉2`I‖X dy + |2`I|
∑̀
k=1

‖〈f〉2kI − 〈f〉2k−1I‖X

The first term is bounded by w(2`I)%(2`|I|), while the kth term in the sum has the
estimate

‖〈f〉2kI − 〈f〉2k−1I‖X ≤ 1
2k−1|I|

∫
2k−1I

‖〈f〉2kI − f(y)‖X dy

≤ 1
2k−1|I|

∫
2kI

‖〈f〉2kI − f(y)‖X dy ≤ w(2kI)%(2k|I|).

The assertion follows from the combination of these two estimates �

Continuing from (4.1) and summing over all ` ≥ 2, it follows that
∞∑

`=2

2−2`

w(I)1/p′

∫
2`I

‖f(y)− 〈f〉I‖X dy

.
∞∑

`=2

2−2`

w(I)1/p′

∑̀
k=1

2`−kw(2kI)%(2k|I|)

. w(I)−1/p′
∞∑

k=1

2−2kw(2kI)%(2k|I|)

. w(I)1/p
∞∑

k=1

2−2k2qk%(2k|I|)

. w(I)1/p|I|2−q

∫ ∞

|I|

%(s) ds
s3−q

= w(I)1/pη(|I|).

This is the desired estimate for the part considered, and it remains to treat ` = 1.
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Lemma 4.3. ( |J |
w(J)

)1/p′

≤ 1
|J |

∫
J

dy
w(y)1/p′

.

Proof. The claim is equivalent to |J |1+1/p′ ≤ w(J)1/p′w−1/p′(J). This follows from
Hölder’s inequality:

|J | =
∫

J

wαw−α ≤
( ∫

J

wαq
)1/q( ∫

J

w−αq′
)1/q′

with q = 1/α = p′ + 1, hence q′ = 1 + 1/p′. �

By the contraction principle and Stein’s inequality,( ∫
E

∥∥∥ ∑
J⊆I

εJ〈f1, ψJ〉
( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

.
( ∫

E
∥∥∥ ∑

J⊆I

εJ〈f1, ψJ〉
1
|J |

∫
J

dy
w(y)1/p′

1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

.
( ∫

E
∥∥∥ ∑

J⊆I

εJ〈f1, ψJ〉
1

w(x)1/p′

1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

=
( ∫

E
∥∥∥ ∑

J⊆I

εJ〈f1, ψJ〉
1J(x)
|J |1/2

∥∥∥p

X

dx
wp−1(x)

)1/p

.

Since w ∈ Aq ⊆ Ap′ (recalling that q ≤ p′), we have w1−p ∈ Ap, and the estimate
further continues with

. ‖f1‖Lp(w1−p;X) =
( ∫

2I

‖f(x)− 〈f〉I‖p
X

dx
wp−1(y)

)1/p

.
( ∫

2I

‖f(x)− 〈f〉2I‖p
X

dx
wp−1(y)

)1/p

+
(
w1−p(2I)

)1/p‖〈f〉2I − 〈f〉I‖X .

The first term is bounded by Cw(2I)1/p%(2|I|) . w(I)1/p%(|I|) by Morvidone’s
weighted John–Nirenberg inequality. By the defining inequality of w1−p ∈ Ap,
there holds w1−p(2I) . w(2I)1−p|2I|p, whereas ‖〈f〉2I − 〈f〉I‖X . w(2I)%(2|I|).
Hence the bound w(I)1/p%(|I|) is valid also for this term after some simplification.

Altogether, we have shown that
∞∑

`=1

( ∫
E

∥∥∥ ∑
J⊆I

εJ〈f`, ψJ〉
( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

. w(I)1/pη(|I|)‖f‖BMO%(w;X),

and this completes the proof of Theorem 1.1 since f and I were arbitrary.

5. Carleson implies BMO

We now turn to the proof of Theorem 1.2. Let {aJ}J∈D ∈ Cp
% (w;X), without

loss of generality with norm at most 1. Fix a finite interval I ⊂ R, and consider
the collections of dyadic intervals

J1 := {J ∈ D ; 2|J | > |I|},
J2 := {J ∈ D ; 2|J | ≤ |I|, 2J ∩ 2I = ∅},
J3 := {J ∈ D ; 2|J | ≤ |I|, 2J ∩ 2I 6= ∅},
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and the a priori formal series

f1(x) :=
∑

J∈J1

aJ [ψJ(x)− ψJ(xI)], fi(x) :=
∑

J∈Ji

aJψJ(x), i = 2, 3,

where xI is the centre of the interval I.
In order to prove Theorem 1.2, we want to show that fI := f1 +f2 +f3 converges

in the asserted sense, and moreover∫
I

‖fI(x)‖X dx . η(|I|)w(I). (5.1)

Suppose for the moment that this is already done.

Lemma 5.2. Given two intervals I ⊂ I ′, the function fI′ − fI is constant on I.

Proof. Let Ji, fi be as above, and J ′
i , f

′
i denote the corresponding collections

and functions related to I ′ instead of I. Thus

fI = f1 + f2 + f3, fI′ = f ′1 + f ′2 + f ′3.

Now clearly J ′
1 ⊆ J1 and J2 ∪J3 ⊆ J ′

2 ∪J ′
3, so we can write

f ′1 − f1 =
∑

J∈J ′
1

aJ [ψJ − ψJ(xI′)]−
∑

J∈J1

aJ [ψJ − ψJ(xI)]

=
∑

J∈J ′
1

aJ [ψJ(xI)− ψJ(xI′)]−
∑

J∈J1\J ′
1

aJ [ψJ − ψJ(xI)],

and

(f ′2 + f ′3)− (f2 + f3) =
∑

J∈J ′
2∪J ′

3

aJψJ −
∑

J∈J2∪J3

aJψJ

=
∑

J∈(J ′
2∪J ′

3)\(J2∪J3)

aJψJ .

Observing that (J ′
2 ∪J ′

3) \ (J2 ∪J3) = J1 \J ′
1, it follows upon summing up

that

fI′ − fI =
∑

J∈J ′
1

aJ [ψJ(xI)− ψJ(xI′)] +
∑

J∈J1\J ′
1

aJψJ(xI) = constant.

Note that the convergence of this X-valued series follows from the fact that it is
a sum of the convergent function series above, and a series of X-valued constant
functions converges in Ls(R;X) if and only if it converges in X. �

Then consider an increasing sequence of intervals I1 ⊂ I2 ⊂ . . . → R. By
Lemma 5.2, there are constants ξk ∈ X such that fIk

|I1 = fI1 +ξk. Then fIk
|Ik−1 −

ξk = fIk−1 − ξk−1 on I1, and hence on all of Ik−1, since fIk
|Ik−1 − fIk−1 is also a

constant. Thus
f(x) := fIk

(x)− ξk if x ∈ Ik
gives a well-defined function on all of R. If I ⊂ R is any finite interval, then I ⊂ Ik
for some k, and thus f |I = fIk

|I − ξk = fI + ξI for some ξI ∈ X. Thus (5.1) is just
the BMO condition for f corresponding to the interval I. It hence suffices to prove
(5.1), with the asserted convergence of the series defining fI .
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We first deal with f1 and f2. For them, not only does the convergence happen in
a much stronger sense, but also we only need to exploit a rather weak consequence
of the assumed Carleson estimate, namely the following bound for individual terms:

‖aJ‖X ≤ %(|I|)w(I) |I|−1/2. (5.3)

Lemma 5.4. The series defining f1(x) converges absolutely and uniformly for x ∈
I, and the limit satisfies |I| · ‖f1(x)‖X . w(I)η(|I|).

Proof. Using (5.3) and the derivative bound for ψ ∈ Ψ2+ε
2 ,

‖f1(x)‖X ≤
∑

J∈J1

‖aJ‖X · |ψJ(x)− ψJ(xI)|

.
∑

J∈J1

%(|J |)w(J)|J |−1/2 · |I||J |−3/2
(
1 +

dist(I, J)
|J |

)−2

. |I|
∞∑

j=0

%(2j |I|)(2j |I|)−2
∑

|J|∈(2j−1,2j ]|I|

w(J)
(
1 +

dist(I, J)
|J |

)−2

.

The inner sum is comparable with

w(2jI) +
∞∑

`=0

w(2j+`+1I \ 2j+`I)2−2` . w(2jI) +
∞∑

`=1

w(I)2(q+j)`2−2` . 2jqw(I),

since w(2`I)/w(I) . 2q` for w ∈ Aq, and q < 2. Substituting back gives

‖f1(x)‖X . |I|w(I)
∞∑

j=0

%(2j |I|)(2j |I|)−22jq

.
w(I)
|I|

|I|2−q

∫ ∞

|I|

%(s)
s3−q

ds =
w(I)η(|I|)

|I|
,

which completes the proof. �

Lemma 5.5. The series defining f2(x) converges absolutely and uniformly for x ∈
I, and the limit satisfies |I| · ‖f2(x)‖X . w(I)%(|I|).

Proof. Using (5.3) and the pointwise bound for ψ ∈ Ψ2+ε
2 (ε = 0 suffices here),

‖f2(x)‖X ≤
∑

J∈J2

‖aJ‖X · |ψJ(x)|

.
∑

J∈J2

%(|J |)w(J)|J |−1/2 · |J |−1/2
(dist(J, I)

|J |

)−2

.
∞∑

j=1

%(2−j |I|)(2−j |I|)−1
∑

|J|∈(2−j−1,2−j ]|I|
dist(J,I)>2−1|I|

w(J)
(dist(J, I)

|J |

)−2

.

Similarly to the previous proof, the inner sum is comparable with
∞∑

`=0

w(2`+1I \ 2`I)2−(`+j)2 . w(I)
∞∑

`=0

2`q2−2(`+j) . 2−2jw(I).
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Substituting back and using the trivial bound %(2−j |I|) ≤ %(|I|), it follows that

‖f2(x)‖X .
%(|I|)w(I)

|I|

∞∑
j=1

2−j ,

and the claim follows. �

Lemma 5.6. For a sufficiently small s > 1, the series defining f3(x) converges
unconditionally in Ls(I;X), and the limit satisfies

|I|1/s′
( ∫

I

‖f3(x)‖s
X dx

)1/s

. w(I)%(|I|).

Proof. ( ∫
I

‖f3(x)‖s
X dx

)1/s

.
( ∫

R
E

∥∥∥ ∑
J∈J3

εJaJ
1J(x)
|J |1/2

∥∥∥s

X
dx

)1/s

.
( ∫

R
E

∥∥∥ ∑
J∈J3

εJaJ

( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

M(14Iw)1/p′(x)
∥∥∥s

X
dx

)1/s

.
( ∫

R
E

∥∥∥ ∑
J∈J3

εJaJ

( |J |
w(J)

)1/p′ 1J(x)
|J |1/2

∥∥∥p

X
dx

)1/p

×
( ∫

R
M(14Iw)s(p−1)/(p−s)(x) dx

)(p−s)/ps

by Theorem 3.8 (the unweighted version suffices here), the pointwise bound w(J)/|J | ≤
CM(14Iw)(x) for x ∈ I together with the contraction principle, and Hölder’s in-
equality with exponent p/s.

The first integral norm is bounded by w(I)1/p%(|I|) due to the Carleson condi-
tion, whereas( ∫

R
M(14Iw)s(p−1)/(p−s)(x) dx

)(p−s)/ps

.
( ∫

4I

ws(p−1)/(p−s)(x) dx
)(p−s)/ps

=
( 1

4|I|

∫
4I

ws(p−1)/(p−s)(x) dx
)(p−s)/s(p−1)×(p−1)/p

(4|I|)(p−s)/ps

.
(w(4I)

4|I|

)(p−1)/p

|I|(p−s)/ps . w(I)1/p′ |I|−1/s′

by the maximal theorem, the reverse Hölder inequality (provided that s, and then
s(p − 1)/(p − s), is taken sufficiently close to 1), and the doubling property of
Muckenhoupt weights. Everything combined,( ∫

I

‖f3(x)‖s
X dx

)1/s

. w(I)1/p%(|I|)× w(I)−1/p′ |I|−1/s′ = w(I)%(|I|)|I|−1/s′ ,

which is again the asserted bound. �



14 T. HYTÖNEN, O. SALINAS, AND B. VIVIANI

Clearly all the estimates in the previous lemmas were actually stronger than∫
I

‖fi(x)‖X dx . %(|I|)w(I);

hence the proof of (5.1), and then of Theorem 1.2, is complete.
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