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Abstract Phenotypic modulation (PM) of vascular smooth
muscle cells (VSMCs) is central to the process of intimal
hyperplasia which constitutes a common pathological lesion
in occlusive vascular diseases. Changes in the functional
expression of Kv1.5 and Kv1.3 currents upon PM in mice
VSMCs have been found to contribute to cell migration and
proliferation. Using human VSMCs from vessels in which
unwanted remodeling is a relevant clinical complication, we
explored the contribution of the Kv1.5 to Kv1.3 switch to PM.
Changes in the expression and the functional contribution of
Kv1.3 and Kv1.5 channels were studied in contractile and

proliferating VSMCs obtained from human donors. Both a
Kv1.5 to Kv1.3 switch upon PM and an anti-proliferative
effect of Kv1.3 blockers on PDGF-induced proliferation were
observed in all vascular beds studied. When investigating the
signaling pathways modulated by the blockade of Kv1.3
channels, we found that anti-proliferative effects of Kv1.3
blockers on human coronary artery VSMCs were occluded
by selective inhibition of MEK/ERK and PLCγ signaling
pathways, but were unaffected upon blockade of PI3K/
mTOR pathway. The temporal course of the anti-
proliferative effects of Kv1.3 blockers indicates that they have
a role in the late signaling events essential for the mitogenic
response to growth factors. These findings establish the in-
volvement of Kv1.3 channels in the PM of human VSMCs.
Moreover, as current therapies to prevent restenosis rely on
mTOR blockers, our results provide the basis for the devel-
opment of novel, more specific therapies.
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Introduction

The cellular responses to vascular injury lead to clinical events
such as atherosclerosis, hypertension, and restenosis. One
common feature of these lesions is the proliferation of vascu-
lar smooth muscle cells (VSMCs). While VSMC proliferation
plays a key role in the development and homeostasis of blood
vessels, it also contributes to the pathogenesis of vascular
diseases such as hypertension and restenosis [31]. Aside from
the complications related to acute rejection, heart allograft
vascular disease is a major complication determining long-
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term survival after heart transplantation. In spite of the im-
provements in prevention and treatment, up to 50 % of the
patients undergoing heart transplantation are diagnosed of
allograft vasculopathy within 10 years [38]. This condition
represents also the most common complication after percuta-
neous vascular interventions and stent implantation. In all
these pathologies, dedifferentiated VSMCs are the major cel-
lular component of the thickened vessel [5].

Proliferation of VSMC occurs in response to mitogens
produced by platelets, activated T cells, endothelial cells,
macrophages, and VSMCs themselves, including vasoactive
agents (angiotensin II, endothelin [15, 20]), cytokines such as
interleukin I [19], and growth factors such as platelet-derived
growth factor (PDGF) [31]. Mechanistically, mitogens can
activate intrinsic protein tyrosine kinase receptors (such as
PDGF and EGF) or G-protein-coupled receptors (endothelin
I, angiotensin II). In both cases, subsequent signaling via
mitogen-activated protein kinases (MAPKs) leads to the reg-
ulation of gene expression and cell cycle re-entry to stimulate
cell proliferation [3, 22, 35].

PDGF-BB is the most potent known chemoattractant for
VSMCs. Upon PDGF binding, the receptor tyrosine kinase
autophosphorylates, creating docking sites for recruitment of
SH2 domain-containing signaling molecules. Within minutes,
many signaling modules are engaged, including several
MAPKs, the phospholipase C gamma (PLCγ), and
phosphoinositide 3 kinase (PI3K) [17, 29, 40].

K+ channels have been implicated in the proliferation of a
large number of cell types since the initial description of a
voltage-dependent K+-channel (Kv1.3) mediating proliferation
in T cells [9]. Subsequently, a plethora of K+ channels have
been linked to migration and proliferation in numerous non-
excitable tissues, including cancer cells, T lymphocytes, endo-
thelial cells and VSMCs [1, 11, 32, 43]. Several K+ channels,
including KCa3.1, Kv3.4, and Kv1.3 have been shown to
associate with VSMC proliferation [8, 24, 27, 41]. While in
some cases this association depends on their ion-conducting
properties, in others, it is unknown how their activity is linked
to proliferation. In fact, there are some studies indicating that
the effect of ion channels on cell proliferation relies on non-
conducting properties of the channel proteins [7, 16, 28].

In our previous work, we postulate that Kv1.3/Kv1.5 ratio
can be considered as a landmark of VSMC phenotype, be-
cause proliferation of VSMCs from several vascular beds in
mice associates with a Kv1.5 to Kv1.3 channel switch [7].
Here, we explore if this role of Kv1.3 in the VSMC pheno-
typic modulation (PM) is also present in human vessels, and
we investigate the signaling cascade linking Kv1.3 expression
to increased VSMC proliferation. We confirm the anti-
proliferative effect of Kv1.3 blockers in human VSMCs.
The effects of Kv1.3 blockers can be occluded by selective
inhibition of MEK/ERK and PLCγ pathways, but were addi-
tive to those of PI3K/mTOR blockers, opening interesting

possibilities for the use of Kv1.3 blockers in the prevention
and treatment of occlusive diseases.

Materials and methods

Sample collection

Human uterine (hUA), renal (hRA), and coronary arteries
(hCA) and saphenous veins (hSV) belonging to the
COLMAH collection of the HERACLES network (http://
www.redheracles.net/plataformas/en_coleccion-muestras-
arteriales-humanas.html) were obtained from donors at the
Clinic Hospitals of Barcelona and Valladolid. Vessels were
divided into two pieces, one was placed in RNAlater
(Ambion) for RNA extractions and the other in a Dulbecco’s
modified Eagle’s medium (DMEM) for cell isolation.
Samples kept at 4 °C were received within 24 h after inter-
vention. Cultured VSMCs were obtained from explants of the
vessels as described elsewhere [27].

mRNA and protein determinations

RNA from tissue homogenates and from cultured VSMCs
was isolated with TRIzol Reagent and reverse transcribed.
mRNA levels were determined by real-time qPCR with
TaqMan® Gene Expression Assays (Applied Biosystems) on
a Rotor-Gene 3000 instrument (Corbett Research) using the
2−ΔΔCt relative quantification method [26]. Western blot of
protein lysates obtained from vascular tissues (contractile
VSMCs) or primary cultures (proliferative VSMCs) were
used for protein detection. Detection was carried out with
the VersaDoc™ 4000 Image System (BioRad) with chemilu-
minescence reagents.

Electrophysiological methods and intracellular calcium
measurements

Ionic currents were recorded at room temperature (20–25 °C)
using the whole-cell configuration of the patch-clamp tech-
nique as previously described [27, 30]. Membrane potential
(VM) measurements were obtained at RT using the perforated
patch technique [39]. For intracellular calcium measurements,
hCA VSMCs were loaded with Fluo-4-AM (Molecular
Probes, Invitrogen, OR, USA). Changes in fluorescence in
response to the indicated stimuli were analyzed with Imaging
Workbench 4.0 image software.

Proliferation assays

Proliferation was determined using a commercial kit (Click-
iT® EdU Imaging Cell Proliferation Assay, Invitrogen).
VSMCs at passages 3–8 were seeded onto 12-mm poly-L-
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lysine-coated coverslips and synchronized in serum-free (SF)
medium during 48 h before adding the proliferative stimulus
(alone or in combination with specific inhibitors) during 24 h.

An expanded material and methods section with detailed
protocols can be found in the Electronic supplementary
material.

Results

The ratio of Kv1.3 to Kv1.5 mRNA can define the VSMC
phenotype

In mice VSMCs, PM associates with a consistent change in
the Kv1.3 to Kv1.5 ratio [7]. Here, we determined the relative
abundance of Kv1.3 and Kv1.5 mRNA in VSMCs obtained
from several human vascular beds, both in contractile (Tissue)
and in proliferative phenotype (Culture). mRNA expression
levels of another K+ channel (the intermediate conductance
Ca2+-activated K+ channel, KCa3.1) previously reported to
associate with VSMC proliferation [24, 42] were also ex-
plored. Figure 1a showsmRNA levels in VSMCs from human
saphenous veins (hSV), coronary (hCA), and renal arteries
(hRA). Kv1.5 mRNA expression was predominant in all
vascular beds in the contractile phenotype, decreasing dramat-
ically upon PM. Otherwise, Kv1.3 and KCa3.1 mRNA levels
were significantly lower and the changes upon PM smaller.
Similar data has been found in human uterine artery (hUA)
[27]. Nevertheless, when these data are represented as Kv1.3/
Kv1.5 ratio (2−ΔΔCt), it is evident that a clear switch from
Kv1.5 to Kv1.3 upon PM is conserved in all vascular beds
explored. This ratio is expressed in Fig. 1b in a logarithmic
scale so that negative values reflect a higher expression of
Kv1.5 mRNAwhile positive values reflect a higher expression
of Kv1.3 mRNA. In all cases, Kv1.3 became the predominant
Kv1 channel expressed in cultured VSMCs, mainly due to the
dramatic decrease of Kv1.5 mRNA upon PM (Fig. 1c).

Changes in mRNA Kv1.3/Kv1.5 ratio upon PM correlate
with changes in functional channel protein expression

We next explored the protein expression of Kv1.3 and Kv1.5
channels. Protein extracts obtained from hRAVSMCs, both in
contractile (Tissue) and proliferating (Cultured) phenotype, were
used for immunoblots with anti-Kv1.3 and anti-Kv1.5 (Fig. 2a).
The expression of Kv1.5 protein significantly decreased in
cultured VSMCs, in agreement with the mRNA expression
levels. However, changes in Kv1.3 protein (almost not detect-
able in contractile VSMCs and robustly expressed in cultured
VSMCs) were not anticipated from the mRNA expression data.

Electrophysiological studies in VSMCs obtained from hRA
allowed functional characterization of the channels (Fig. 2b–d).
Whole-cell patch-clamp experiments were carried out in

VSMCs freshly dispersed (contractile) or from VSMCs main-
tained in primary culture. Kv currents were elicited by
depolarizing pulses to +40 mV, and Kv1.3 and Kv1.5 contribu-
tion was estimated as the fraction of current sensitive to the
selective blockers 5-(4-phenoxybutoxy) psoralen (PAP-1) or
diphenyl phosphine oxide (DPO), respectively [7, 36].
Representative experiments (Fig. 2b) and average data (part c)
are depicted. Kv1.5 currents represented a large fraction of the
Kv currents elicited in contractile VSMCs, being almost absent
in cultured VSMCs. On the contrary, the fraction of PAP-1
sensitive currents (Kv1.3) increased from contractile to cultured
VSMCs. This increase remains when Kv1.3 currents are nor-
malized by cell capacitance (Fig. 2d), in spite of the bigger size
of proliferating VSMCs (43.4±4.0 pF vs. 29.27±2.34 pF of the
freshly dissociated cells), indicating an increased expression of
Kv1.3 channels in the plasma membrane of proliferative
VSMCs. In addition, we explored whether Kv1.3 currents
contribute to set the restingmembrane potential (EM) in cultured
VSMCs with current clamp experiments (Fig. 2e). We found
that 100 nM PAP-1 induced small, consistent depolarization,
averaging 2.48±0.3 mV (n=6). Similar depolarizations were
obtained in hCA cultured VSMCs (2.62±0.35 mV, n=12).

Comparable results were obtained in hCA and hSV (Online
supplemental resource, Figure I). In all cases, the almost
absence of DPO-sensitive currents and the large contribution
of Kv1.3 channels to total Kv currents in cultured VSMCs
were evident.

Exploring the contribution of changes in Kv1.3/Kv1.5 ratio
to PM

We hypothesized that the Kv1.5 to Kv1.3 switch could be a
relevant event needed to facilitate the acquisition of the prolif-
erative and/or migratory capabilities of the PM. In explants
from hRA, the switch on mRNA expression could be observed
as soon as after 3 days in culture, becomingmore pronounced at
7 days (Fig. 3a). No evident proliferation and migration could
be observed at these times, suggesting that the Kv1 switch is
needed for the PM and that the changes in their expression
levels are modulated by the mitogenic signals initiating PM.

KCa3.1 channels in coronary VSMCs are upregulated
upon PM as a consequence of the proliferative stimulus [37,
41]. To explore if this was also the case for Kv1.3 channels,
we analyzed the changes in mRNA expression levels upon
treatment of VSMC cultures with 20 % FBS (Fig. 3b) or
100 ng/ml PDGF (Fig. 3c). KCa3.1 mRNA increased both
in hRA and hSV VSMCs upon stimulation with FBS or
PDGF. However, Kv1.3 mRNA expression did not change
significantly. These data point to a fundamental difference in
the regulation of both ion channels during PM. While KCa3.1
channels seem to be regulated transcriptionally, Kv1.3 in-
creased protein expression in the proliferative phenotype
(Fig. 2) requires an alternate explanation.
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Selective blockade of Kv1.3 currents inhibits proliferation

The increased functional expression of Kv1.3 currents in
cultured VSMCs suggests a link between the channel and
the establishment and/or maintenance of the proliferative phe-
notype. To explore this possibility, we have tested the effect of
100 nM PAP-1 and 10 nM Margatoxin (MgTx) on the FBS-
induced proliferation in VSMCs obtained from four different
human vessels (Fig. 4a). In all cases, we found a significant
decrease on the rate of FBS-induced proliferation in the pres-
ence of Kv1.3 blockers, suggesting a functional association of
Kv1.3 expression with PM. To further investigate the signal-
ing pathways linking the functional expression of Kv1.3
channels to VSMC proliferation, we explored the effects of
Kv1.3 blockade on the proliferation induced by specific

growth factors such as PDGF or angiotensin II (ATII)
(Fig. 4b). ATII (1 μM) was a proliferative stimulus not as
potent as PDGF (100 ng/ml). However, the inhibitory effect of
100 nMPAP-1was the same in the two conditions, suggesting
a common signaling pathway. Interestingly, when 100 ng/ml
PDGF was used as the proliferative stimulus in VSMCs,
proliferation rates were comparable to those obtained with
5–20 % FBS (see Online supplemental resource, Figure II),
but the effect of 100 nM PAP-1 inhibiting proliferation was
much stronger. Although this difference was particularly evi-
dent in hCA (∼20 % inhibition with FBS vs. ∼60 % inhibition
with PDGF), similar results were obtained whenVSMCs from
other vascular beds were studied (Fig. 4c). Figure 4d shows
the summary data obtained from hRAVSMCswhen exploring
the effect of different K+ channel blockers on PDGF-induced
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Fig. 1 mRNA expression levels of Kv1.3 and Kv1.5. a Relative abun-
dance of Kv1.3, Kv1.5, and KCa3.1 mRNA was determined in human
saphenous veins (hSV), coronary arteries (hCA), and renal arteries (hRA)
both in contractile (Tissue, open bars) and in proliferative phenotype
(Culture, gray bars). Expression levels were normalized to the house-
keeping gene RPL18 and expressed as 2−ΔCt, where ΔCt=Ctchannel-
CtRPL18. (see Electronic supplementary material). Each data is the mean
± SEM of 5–9 different preparations with triplicate determinations.
*p<0.05, **p<0.01, *** p<0.001 (all through the text). b Bar plots

show the Kv1.3:Kv1.5 ratio in four human vascular beds both in con-
tractile (white bars) and proliferative (gray bars) phenotype. The ratio
was expressed as log 2–(ΔCtKv1.3–ΔCtKv1.5). In this scale, a value of 0
indicates equal expression (i.e., a Kv1.3:Kv1.5 ratio of 1), −2 denotes 100
times higher Kv1.5 expression than Kv1.3, and +2 Kv1.3 expression
levels 100 times higher than Kv1.5. Each data point was obtained from at
least six different vessels/cultures. c. The relative abundance of Kv1.3
(white) and Kv1.5 (gray) mRNA in the four preparations in both tissue
and cultured VSMCs is illustrated by the pie charts
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proliferation. Both PAP-1 (100 nM) and MgTx (10 nM) show
a similar inhibitory effect. A marked inhibition was also
observed with the selective KCa3.1 blocker TRAM-34
(100 nM). The specific role of these two channels (Kv1.3
and KCa3.1) in the proliferative phenotype is supported by
the lack of effect of selective blockers of BKCa channels, even
though BKCa currents are present in cultured VSMCs (data
not shown).

Kv1.3 effects on proliferation are mediated by ERK1/2
and PLCγ signaling pathway

We sought to identify the signaling pathway(s) contributing to
PDGF-induced proliferation that can be affected by Kv1.3
blockade. We determined the effect of selective blockers of
the different pathways activated by PDGF in hCAVSMCs on
proliferation. No effect on proliferation was observed upon

blockade of JNK or p38 kinases with 1 μM SP600125 or
20 μM SB203580, respectively (Fig. 5a). On the contrary,
blockers of the ERK1/2, PI3K/mTOR, and PLCγ pathways
were effective inhibiting VSMC proliferation. In these cases,
we also studied if some additional effects could be observed
upon selective blockade of Kv1.3 channels with PAP-1
(100 nM) or MgTx (10 nM). The effect of PAP-1 or MgTx
was occluded in the presence of either ERK1/2 blockers or
PLCγ blockers, suggesting that the pro-proliferative effects of
Kv1.3 are mediated by these two pathways. In contrast, the
effect of 100 nM PAP-1 is still present when either PI3K or
mTOR was inhibited. In fact, the percent inhibition was not
significantly changed when the proliferation obtained with the
different PI3K/mTOR blockers were taken as control (51.5 %
in control vs. 51.2 % in the presence of LY294002, 44 % with
rapamicin 1 nM and 58 % with everolimus 0.1 nM) suggest-
ing independent pathways and strictly additive effects.
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Fig. 2 Changes in the functional expression of Kv1.3 andKv1.5 proteins
during PM. a Representative immunoblots of VSMC lysates obtained
from hRA homogenates (Tissue, T) or hRA primary cultures (C) with
anti-Kv1.3 (left) or anti-Kv1.5 antibodies (right). Positive controls were
brain (Br) and heart (H) lysates (Kv1.3 and Kv1.5, respectively), and β-
actin was used as loading control. Bar plots show averaged data from 3 to
5 immunoblots. Kv1.3 or Kv1.5 protein expression was corrected for β-
actin and normalized to the amount expressed in tissue. Note the loga-
rithmic scale. b Time course of the peak current amplitude elicited by
200 ms pulses to +40 mVapplied every 10 s in freshly dissociated (upper
graph) or cultured (lower graph) hRAVSMCs. PAP-1 (100 nM) or DPO

(100 nM) were applied to the bath solution as indicated. Representative
traces at the time points labeled 1, 2, and 3 are depicted in the insets. c The
effects of the blockers were expressed as percentage of inhibition of the
current amplitude. Mean ± SEM values, n=8–12 cells in each group. d
Absolute values of the Kv1.3 current density (pA/pF) obtained from
contractile (n=9) and proliferative (n=12) VSMCs from renal arteries.
Kv1.3 current density was defined as the 100 nMPAP-1 sensitive current.
e Representative recording of membrane potential from a cultured renal
VSMC obtained in current clamp with perforated patch. The indicated
drugs/solutions were present in the bath solution as marked with the lines
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Finally, the inhibitory effects of PD98059 (ERK1/2) and
U73122 (PLCγ) were not additive, suggesting that these two
signaling pathways converge in a common effector that could
be the target of Kv1.3. However, the PI3K/mTOR pathway
was clearly independent from ERK1/2 or PLCγ, since 0.1 nM
everolimus clearly potentiated the effect of ERK1/2 and PLCγ
blockers.

The additive effect of Kv1.3 blockers and mTOR blockers
was explored in more detail by analyzing the dose-response
curve for everolimus inhibition of PDGF-induced proliferation,
either alone or in the presence of 100 nMPAP-1 (Fig. 5c). PAP-
1 increased the inhibitory effect of everolimus at all the con-
centrations tested, with a similar effect at all the concentrations
of everolimus, suggesting again independent mechanisms.
PAP-1 (100 nM) had submaximal effects on proliferation, as
illustrated in the PAP-1 dose-response curve obtained in hCA
VSMCs (Online supplemental resource, Figure III).

When exploring the contribution of KCa3.1 channels in a
series of similar experiments, we found that, as in hRA
(Fig. 4d), 100 nM TRAM-34 inhibited PDGF-induced prolif-
eration in hCAVSMCs (Fig. 6). However, this inhibitory effect
of TRAM-34 was not additive to the effect of 100 nM PAP-1
(or 10 nM MgTx, not shown), suggesting a common effector.
Finally, in a similar fashion to the effects of Kv1.3 blockers, the
effect of TRAM-34 seems to be mediated by signaling through

ERK1/2 (as previously described in A7r5 VSMCs, [37]) but
not through PI3K/mTOR pathways. We conclude that both
Kv1.3 and KCa3.1 channels contribute to VSMCs through
some common effectors, indicating some redundancy on the
mechanisms controlling VSMC proliferation.

Exploring the mechanisms involved in the anti-proliferative
effect of Kv1.3 blockers

Data obtained in hCA VSMCs suggested that the effects of
Kv1.3 channels on PDGF-induced proliferation were mediat-
ed through some common effectors of the ERK1/2 and the
PLCγ signaling pathways. In order to identify this effector, we
explored the effects of PAP-1 treatment on some well-known
early events taking place upon activation of these signaling
pathways, namely the phosphorylation of ERK1/2 or the
increase in [Ca2+]i upon PDGF activation of PLCγ (Fig. 7).
ERK1/2 phosphorylation was evaluated by immunoblot anal-
ysis. pERK levels peaked around 10 min after PDGF stimu-
lation, decreasing to levels close to basal ones for PDGF
incubations up to 24 h (Fig. 7a). No significant differences
in the levels of pERK production or in the temporal pattern
were observed in VSMCs pretreated with 100 nM PAP-1.

The possible effect of Kv1.3 blockers on the initial steps of
PDGF activation of PLCγ was studied by determining the
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Fig. 3 a The Kv1.3:Kv1.5 ratio (as in Fig. 1) was obtained from renal
explants incubated during 3 or 7 days in serum-free media or with 20 %
FBS, or PDGF (20 ng/ml). Mean ± SEM, from three different vessels in
triplicate determinations. b, c Changes in the expression of Kv1.3 and
KCa3.1mRNA in cultured hRA and hSVVSMCs after a 24-h incubation
with 20 % FBS (b) or 100 ng/ml PDGF (c). The relative amount of

mRNA (2−ΔΔCt) was calculated using RPL18 mRNA as the housekeep-
ing gene and the mRNA expression in serum-free VSMCs as the calibra-
tor. In c, changes in the expression of cyclin A2 and calponin mRNA
upon PDGF treatment were explored as internal controls for proliferation
and differentiation, respectively. Mean ± SEM, n=4–6 experiments with
triplicate determinations

Pflugers Arch - Eur J Physiol



changes in [Ca2+]i in response to acute application of PDGF. A
short pulse of PDGF elicited a transient increase of [Ca2+]i that
was completely abolished by preincubation with the PLCγ
blocker U73122, but unaffected by the presence of either
MgTx or PAP-1 (Fig. 7b). Also consistent with these observa-
tions, the upregulation of cyclin D, one of the main growth
factor-induced events in early G1, is not affected by treatment
with 100 nM PAP, but is blunted with incubation with everoli-
mus as previously described [3] (Fig. 7c). In fact, short (30min)
incubations with PDGF had aminimal proliferative effect when
compared with long (24 h) incubations (Fig. 8a), suggesting
that ERK1/2 phosphorylation and [Ca2+]i increase may not
suffice to promote PDGF-induced VSMC proliferation. In
agreement with this observation, the inhibitory effect of PAP-
1 on PDGF-induced hCA proliferation is not reduced when
PAP-1 is added 30 min or 1 h after PDGF application, being

only significantly different when its application is delayed
several hours (Fig. 8b). Altogether, these data exclude a role
of Kv1.3 channel at the initial steps of PDGF signaling cascade.

Discussion

The characterization of the mechanisms involved in the
PM of VSMCs is a relevant issue with important clinical
implications, as the cellular responses to vascular injury
are important events in the formation of neointima in
pathological states such as hypertension, atherosclerosis,
and allograft vasculopathy. The knowledge of the signal
transduction pathways controlling VSMC activation and
PM may provide additional points of control that can
represent novel therapeutical opportunities. Kv1.3
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channels could constitute one of those new therapeutical
targets, as we show evidence indicating that the pro-
proliferative role of Kv1.3 previously described in mice
[8] can also be observed in human VSMCs obtained from
different vascular beds. Moreover, the search for some
mechanistic insights aimed to identify the signaling path-
ways involved in the effect of Kv1.3 in proliferation
highlights nontrivial therapeutical opportunities.

The contribution of Kv1.3 channels to human VSMC
proliferation seems to be a conserved, vascular bed-
independent mechanism, as it could be observed in all vessels
studied. Interestingly, unwanted remodeling is a relevant issue
in most of the vascular beds studied.

PM in human VSMC associates with a change in mRNA
Kv1.3/Kv1.5 ratio (Fig. 1). This change is mainly due to the
large decrease of Kv1.5 transcripts (the most abundant Kv1
transcript in contractile VSMCs [6, 7, 30]) on proliferating
cells. The switch in the ratio is an early event in the process of
VSMC dedifferentiation, as it can be observed before VSMC
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proliferation is evident. However, in spite of Kv1.3 increased
functional expression in cultured VSMCs, Kv1.3 mRNA

expression is not significantly different between contractile
and proliferating VSMCs, suggesting that regulation of Kv1.3
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protein expression is not mediated by transcriptional mecha-
nisms. We also studied the changes in the expression of
KCa3.1 channels, since they have been previously implicated
in the control of VSMC proliferation both in vivo and in vitro
[1, 24, 42]. We found variable PM-associated changes in
KCa3.1 expression: increase in proliferating hRA and hCA
VSMCs and no changes in hSV or hUA VSMCs [27].
However, in contrast to Kv1.3, KCa3.1 expression was up-
regulated in the presence of proliferating stimuli such as FBS
and PDGF (Fig. 3, [37]), revealing a fundamental difference in
the modulation of the expression of those two channels.

The functional expression of Kv1.3 channels was explored
electrophysiologically, and their contribution to proliferation
was demonstrated by the anti-proliferative effects of the se-
lective blockers PAP-1 and MgTx. Our data indicate that the
upregulated functional expression of Kv1.3 channels contrib-
utes to VSMC proliferation. An alternative explanation could
be that the relevant change for PM isKv1.5 downregulation so
that VSMC proliferation will not take place if Kv1.5 decrease
is prevented. This idea is consistent with the observation that
while Kv1.3 overexpression is able to increase HEK293 cells
proliferation, Kv1.5 overexpression significantly decreases it
[7]. However, more research will be needed to determine
whether in native VSMCs the functional expression of
Kv1.5 channels is linked to anti-proliferative signaling or if
it is the formation of Kv1.3/Kv1.5 heteromultimers what
occludes the pro-proliferative signaling pathways mediated
by Kv1.3 channels.

Selective blockade of Kv1.3 channels was able to inhibit
FBS-induced proliferation in all human VSMCs tested, albeit
with different potency. The anti-proliferative effect of Kv1.3
blockers was more homogeneous when cells were stimulated
with a specific mitogen such as PDGF. PDGF activates mul-
tiple signaling pathways in VSMCs including Src, PLCγ,
Ras, PI3K/mTOR, and MAPKs, which associate to cellular
responses such as migration, proliferation, and gene expres-
sion (reviewed in [18, 29]). Most of these signaling pathways
are present in VSMCs and activated by PDGF. However,
despite (and possibly because of) the diversity of this complex
network of signals, the precise association of each pathway to
a particular cellular effect is incompletely understood. The
possibility of crosstalk and compensation between pathways
as well as their different contribution in different cell types
also complicates their characterization [29, 40]. We found a
contribution to VSMC proliferation of PI3K/mTOR, PLCγ,
and ERK1/2 signaling, in agreement with previous reports
[14, 25, 44]. Also in agreement with our data, p38 and JNK
kinases have been previously found to have a minor contri-
bution to VSMC proliferation, being more involved in VSMC
migration and remodeling-related gene expression [44].

The activity of Kv1.3 channels modulates proliferation
acting on ERK1/2 and PLCγ signaling pathways, as inhibi-
tion of proliferation by Kv1.3 blockers was occluded in the

presence of selective inhibitors of these pathways, suggesting
competition for the same site of action. We confirm this
observation using different blockers with unrelated mecha-
nisms of action or even different molecular target. Similarly,
the fact that the effects of PAP-1 on proliferation were always
reproduced by another structurally unrelated blocker such as
MgTx [13, 36] supports the interpretation that their anti-
proliferative effect is due to Kv1.3 channel inhibition. We also
found that blockade of KCa3.1 inhibits VSMCs in all human
vascular beds, but does not potentiate the effect of Kv1.3
channel blockers. These findings suggest in the one hand the
presence of several alternate signaling pathways to ensure the
activation of VSMC proliferation upon PM and in the other
that the control of either EM or [Ca2+]i or both, through the
activation of any of these K+channels, is an important element
of the signaling pathway leading to VSMC proliferation.

Regarding the downstream signaling pathways involved in
cell cycle progression, previous reports demonstrate that there
are two waves of growth factor-dependent signaling events
required for a proliferative response. One is an acute signaling
that occurs immediately and subsides even in the continuous
presence of the growth factor [22], but is insufficient for cell
cycle progression [21, 34]. The second wave overlaps tempo-
rally with the cell cycle program and may be directly respon-
sible for engaging it, as PI3K/mTOR, PKC, and Ras activity
during this second wave are essential for the mitogenic re-
sponse to growth factors [22]. The pathways activated by
these two waves may not be mutually exclusive, as there is a
common signaling cascade that involves the temporally coor-
dinated input of several effectors [21, 22], being the cellular
responses depending on the timing, the duration, and the
intensity of these signals [23, 33, 34]. Within this scheme,
our data suggest that Kv1.3 channels play a role in that second
wave of signaling events, as the same inhibition was found
when PAP-1 is applied together with PDGF or 30 min or 1 h
later (when all early events had taken place) while no signif-
icant inhibition was found when application was delayed for
12 h (when the second wave is over). Moreover, short time
(30 min) application of PDGF only elicited a weak prolifera-
tive response not affected by PAP-1 (Fig. 8b).

The role of EM in VSMC proliferation is an interesting
issue. It has been postulated that K+ channel inhibition depo-
larizes the cells, decreasing the driving force for Ca2+ entry,
and the subsequent decrease of [Ca2+]i could inhibit prolifer-
ation. However, we found that Kv1.3 blockade depolarize the
membrane (Fig. 2b), but does not affect Ca2+ transients
(Fig. 7b and Online supplemental resource, Figure IV). In
the light of these observations, an alternative hypothesis could
be that Kv1.3 modulates proliferation acting as a voltage
sensor through cell cycle progression, coupled to ERK1/2 or
PLCγ pathways [7]. Further experiments, measuring EM

changes and/or [Ca2+] along G0/G1 to S phase progression
in native VSMCs, will contribute to clarify this aspect.
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Interestingly, the pro-proliferative effect of Kv1.3 does not
require PI3K/mTOR activation. This is a clear-cut result in our
study. Both rapamycin and everolimus exhibit potent inhibi-
tion of growth factor-induced proliferation of lymphocytes
and VSMCs and have been extensively used for maintenance
of immunosuppression after transplantation [12] and to pre-
vent neointimal hyperplasia after balloon angioplasty and/or
stenting [10, 14]. In a similar fashion, Kv1.3 channels consti-
tute a promising new anti-inflammatory drug target due to
their roles in lymphocyte activation [4]. Kv1.3 is predomi-
nantly expressed in T cells and macrophages and is upregu-
lated in effector memory T cells, and Kv1.3 blockers have
been proposed as novel therapies for the treatment of autoim-
mune diseases [2, 36, 43]. The present work provides a role
for these channels in the modulation of human VSMC prolif-
eration, as we have demonstrate that they can serve also as
therapeutical targets for the prevention and treatment of allo-
graft vasculopathy. The fact that the anti-proliferative mecha-
nisms involving Kv1.3 channel blockers and mTOR antago-
nist are additive represents a very interesting therapeutical
opportunity.
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