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Abstract. We study the critical behavior and the out-of-equilibrium dynamics of a two-dimensional Ising
model with non-static interactions. In our model, bonds are dynamically changing according to a majority
rule depending on the set of closest neighbors of each spin pair, which prevents the system from ordering
in a full ferromagnetic or antiferromagnetic state. Using a parallel-tempering Monte Carlo algorithm,
we find that the model undergoes a continuous phase transition at finite temperature, which belongs to
the Ising universality class. The properties of the bond structure and the ground-state entropy are also
studied. Finally, we analyze the out-of-equilibrium dynamics which displays typical glassy characteristics
at a temperature well below the critical one.

PACS. 75.10.Nr Spin-glass and other random models – 75.40.Gb Dynamic properties (dynamic suscepti-
bility, spin waves, spin diffusion, dynamic scaling, etc.) – 75.40.Mg Numerical simulation studies

1 Introduction

Many simple mathematical models showing a complex
glassy behavior have been proposed in the literature. From
well-known ordered systems, a possible way to obtain its
spin glass relative is by introducing randomness in the
frozen spatial structure of interactions, so as to achieve a
highly frustrated ground state [1]. Nevertheless, introduc-
ing quenched disorder is not the only possible recipe to
obtain some characteristic glassy properties from a given
ordered model. Systems with p-body short-range (no ran-
dom quenched) interaction and p ≥ 3 [2–6], or incorpo-
rating constraints on the maximum permitted number of
neighboring particles on the lattice [7,8], are valid exam-
ples of how it is possible to attain a glassy behavior from a
model without quenched disorder. In all these cases, in one
form or another, Hamiltonians incorporating non-pairwise
interactions are invoked to accomplish this end.

Instead of starting from a non-disordered model, it is
also possible to change the glassy properties by modifying
a system with quenched disorder so that interactions are
no longer frozen in space. In Ref. [9], for example, based
on the two-dimensional (2D) Edwards-Anderson ±J spin-
glass model [10,11], an Ising system with mobile bonds
was proposed as a viable toy model of vitrification. By
allowing bonds to hop to nearest neighbors at the same
Glauber Monte Carlo rate as spin flips, the authors de-
termined that the system has a similar dynamic behavior

as found in structural glasses (but does not undergo a
phase transition at finite temperature [12]). In addition,
a crossover from a liquid-like to a glassy-like behavior is
found for annealed versions of diluted spin-glass models
when different constraints are imposed to the bonds struc-
ture [13].

With the aim of having an alternative route to glassy
behavior, we consider here a strategy similar to the one
used in Ref. [9], where the interaction bonds are no longer
frozen. Our starting point is also the Edwards-Anderson
±J spin-glass model and we introduce a 2D short-range
toy model which exhibits a rich physical behavior. In this
model, ferromagnetic and antiferromagnetic bonds between
pairs of neighboring spins are dynamically established from
a specific rule defined through the spins configurations sur-
rounding that pair. This rule is designed to avoid both,
a full ferromagnetic and a full antiferromagnetic ground
state. We show in this work that such model system presents
both a well-defined finite-temperature continuous phase
transition and non-trivial out-of-equilibrium properties.

The paper is organized as follows. In Sec. 2, we present
the model and the Monte Carlo simulation schemes. Sec-
tion 3 is devoted to the study of the equilibrium and the
ground state properties, and also to the out-of-equilibrium
dynamics. Finally, in Sec. 4 we discuss the obtained re-
sults.
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2 The model and the simulation schemes

The Hamiltonian of the model is

H = −
∑

(ij)

Jij(Ωij)σiσj , (1)

where the sum runs over all pairs of nearest neighbors
of a square lattice of linear dimension L, with periodic
boundary conditions and the variables σi = ±1 represent
N = L2 Ising spins. Unlike the Hamiltonian of the 2D
Edwards-Anderson model [10,11], here the bonds or cou-
plings Jij dynamically depend, according to a majority
rule, on the closest neighborhood of the pair σi, σj . This
neighborhood is defined as the six nearest-neighbors spins
surrounding the pair σi, σj and is denoted as Ωij . The
coupling Jij are then chosen with the following rule:

Jij(Ωij) =

{
+1 if |mij | <

1
2 ,

−1 if |mij | >
1
2 ,

(2)

where

mij =
1

6

∑

Ωij

σk. (3)

In other words, a coupling is chosen to be ferromagnetic
(antiferromagnetic), Jij = +1 (Jij = −1), if the mag-
netic order of their environment is mainly antiferromag-
netic (ferromagnetic). Thus, the majority rule given by
Eq. (2) prevents the formation of a perfect ferromagnetic
or antiferromagnetic ground state.

Equilibrium calculations were made using a Monte Carlo
parallel-tempering algorithm [14,15]. It consists in making
an ensemble of R replicas of the system, each of which is
at temperature Tk (T1 ≥ Tk ≥ TR). The basic idea of the
algorithm is to independently simulate each replica with
a single spin-flip dynamics where updates are attempted
with a probability given by the Metropolis rule [16], and
to periodically swap the configurations of two randomly
chosen replicas. A unit of time or parallel-tempering step
(PTS), consists of a number of R×N elementary spin-flip
attempts followed by only one swap attempt.

The purpose of these swaps is to try to avoid that
replicas at low temperatures get stuck in local energy
minima. Thus, the highest temperature, T1, is set in the
high-temperature phase where relaxation time is expected
to be very short, while the lowest temperature, TR, is
set in the low-temperature phase. In order to implement
the parallel-tempering algorithm, we have chosen equally
spaced temperatures, i.e. Tk −Tk+1 = (T1 − TR) /(R− 1).
Typically, a run starts from a random initial configura-
tion of the ensemble, half of PTSs are discarded, which is
usually enough to reach equilibrium, and averages are per-
formed over the remaining simulation steps. More infor-
mation regarding this Monte Carlo method can be found
in Refs. [17–19].

Several quantities were numerically computed in order
to characterize the equilibrium and critical behavior of the
described model. In particular, the mean energy per spin
was determined as,

e =
〈H〉

N
, (4)

where 〈· · ·〉 represents a thermal average, i. e., the time
average throughout a Monte Carlo run at temperature
T . Also, the specific heat CH was sampled from energy
fluctuations,

CH =
1

NT 2
[〈H2〉 − 〈H〉2]. (5)

To discuss the nature of the phase transition, the fourth-
order energy cumulant was computed as

UH(T ) = 1−
〈H4〉

3〈H2〉2
. (6)

Since the ground state of the system has nonzero net mag-
netization (see below), the magnetization

M =

N∑

i=1

σi, (7)

and the mean normalized magnetization

m =
〈|M |〉

N
(8)

were defined. The magnetization m will be used as an
order parameter and it therefore has related quantities
such as the susceptibility χ [20] and the reduced fourth-
order Binder cumulant UM [21], which were calculated as

χ =
1

NT
[〈M2〉 − 〈|M |〉2] (9)

and

UM (T ) = 1−
〈M4〉

3〈M2〉2
, (10)

respectively.
At equilibrium we also study the properties of the bond

structure. With this aim, we define f as the mean fraction
of frustrated plaquettes [11]. A square plaquette is frus-
trated if and only if, the product of the Jij bonds along
all four edges of the plaquette is a negative number. Also,
we consider the functions pF and pAF which we define as,
respectively, the mean fraction of ferromagnetic and anti-
ferromagnetic bonds.

Error bars of equilibrium quantities are calculated by
using standard methods [20]. It is important to notice that
global moves in the parallel-tempering algorithm signifi-
cantly reduce the critical slowing down and then we can
sample in each PTS (the algorithm reduce the autocorre-
lation times dramatically, even close to the critical point).
In addition, error bars for the energy and the Binder cu-
mulants are computed using a bootstrap method [22].

Besides equilirium mesures, to explore the low-temperature
behavior, we have run out-of-equilibrium simulations. A
typical protocol is used which consists on a quench at time
t = 0 from a random state (T → ∞) to a low temperature
T . From this initial condition the system is simulated by
a standard Glauber dynamics. Then, the correlation func-
tion

C(t, tw) =
1

N

N∑

i=1

〈σi(t)σi(tw)〉0 (11)
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is defined, which depend on both, the waiting time tw
when the measurement begins and a given time t > tw. We
also computed its associated integrated response function

ρ(t, tw) =
T

N

N∑

i=1

δ〈σi(t)〉h
δhi

∣∣∣∣
h→0

, (12)

where hi is a local external field of magnitude h, which is
switched on only for times t > tw. In these equations 〈· · ·〉0
and 〈· · ·〉h indicate, respectively, averages over different
thermal histories (different initial configurations and real-
izations of the thermal noise) of the unperturbed and the
perturbed system. Instead of performing additional simu-
lations with applied fields of small strength, the integrated
response function (12) was calculated for infinitesimal per-
turbations using the algorithm proposed in Refs. [23,24].
This technique permits us to determine correlation and
integrated response functions in a single simulation of the
unperturbed system.

At thermodynamic equilibrium, correlation (11) and
integrated response (12) functions depend on τ = t − tw
and are related through the fluctuation-dissipation theo-
rem (FDT)

ρ(t− tw) = 1− C(t− tw). (13)

For a nonequilibrium process, however, the FDT is not
fulfilled. Nevertheless, it has been proposed that a gener-
alized quasi-fluctuation-dissipation theorem (QFDT) [25,
26] of the form

ρ(t− tw) = X(C) [1− C(t− tw)] , (14)

where X(C) is the fluctuation-dissipation ratio, should be
obeyed by any physical model.

Finally, it is worth to mention that for out-of-equilibrium
simulations all thermal histories are totally independent
of each other, and then errors bars are simply calculated
as the standard deviation divided by the square root of
the number of runs.

3 Numerical results

In this section we present the numerical results. We start
by analyzing the critical behavior of the system at in-
termediate temperatures. Then, the bond structure prop-
erties in a wider temperature range and its relation with
the ground-state configurations are studied. Finally, in the
lower temperature region where for large lattice sizes equi-
librium calculations are not possible, we study the out-of-
equilibrium dynamics of the model. For simplicity, error
bars are omitted in the figures since those are smaller than
data points.

3.1 Equilibrium phase transition

Simulations parameters were chosen after making a typi-
cal equilibration test [27], by studying how the numerical
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Fig. 1. Temperature dependence of the heat capacity and the
energy cumulant (inset), for different lattice sizes as indicated.

results vary when the number of PTSs are successively in-
creased by factors of 2. We require that the last three
results for all observables agree within the error bars.
Note that, since the system is not disordered, it should
be enough to perform a single Monte Carlo run. Never-
theless, we choose to calculate average values along some
paths generated with different initial states and random
numbers, and thus to minimize the statistical errors.

We have simulated ensembles of R = 200 replicas, with
T1 = 5.0 and TR = 1.0 (temperatures are given in units
of 1/kB , where kB is the Boltzmann’s constant). Lattice
sizes ranging from L = 20 to L = 80 were studied using in
all cases 106 PTSs and, to calculate the equilibrium values
of different observables, we have also performed averages
over few independent runs (102 for L = 20 and only 10 for
the biggest size L = 80).

Figure 1 shows the heat capacity as function of T .
A peak around T ≈ 2.94, whose intensity increases with
increasing lattice size, indicates the possibility of a phase
transition at that temperature. As a first step, we analyze
the behavior of the energy cumulant. It is well-known that
the finite-size analysis of this quantity is a simple and
direct way to determine the order of a phase transition
[28–30]. The curves of UH versus T are shown in the inset
of Figure 1. It can clearly be observed that the minima
in the energy cumulants tend to 2/3 as the lattice size is
increased. This behavior is typical of a continuous phase
transition, because it indicates that the latent heat is zero
in the thermodynamic limit.

As it will be justified below, the normalized magneti-
zation m is a good parameter to study the magnetic order
of the system. Although the ground state of the present
model is not purely ferromagnetic, it can be shown that
m tends to a constant value: limT→0 m = 0.5. In Figure
2 we show the temperature dependence of m for different
lattice sizes. In the inset, the corresponding Binder cumu-
lants are presented, which intersect at around T ≈ 2.94
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Fig. 2. Temperature dependence of the normalized magneti-
zation and the Binder cumulant (inset), for different lattice
sizes as indicated. Cumulants cross at around T ≈ 2.94 and
U∗

M ≈ 0.613.

and U∗

M ≈ 0.613, confirming the existence of a finite-
temperature continuous phase transition.

Furthermore, finite-size scaling theory [21,31,32] al-
lows for other efficient routes to estimate Tc from the nu-
merical data. One possible method, which is more accurate
than the intersection of the Binder cumulant presented in
the inset of Figure 2, relies on the extrapolation of the size-
dependent inverse temperature, Kc(L), to which different
thermodynamic quantities reach their maximum values.
Scaling theory predicts that

Kc(L) = Kc + const.L−1/ν . (15)

Among others, the maxima of the slopes of the order
parameter and the Binder cumulant, (dm/dK)max and
(dUM/dK)max, as well as of the susceptibility, χmax, are
quantities that can be used with this method. Perform-
ing a simultaneous fitting procedure using Eq. (15) and
setting only two variables on the fit, i.e., Kc and the ex-
ponent ν, we obtain Kc = 0.3405(4) or Tc = 2.937(3),
and ν = 1.07(3). Figure 3 shows the corresponding plot of
these quantities versus L−1/ν . Note that the critical tem-
perature coincides, within numerical errors, with the value
calculated from the crossing of the cumulants.

Next, to calculate precise values for the critical ex-
ponents (including ν), we make a conventional finite-size
scaling analysis [21,31,32]. At criticality, the finite-size
scaling relations are

CH = Lα/νC̃H(L1/νǫ) (16)

m = L−β/νm̃(L1/νǫ) (17)

χ = Lγ/ν χ̃(L1/νǫ) (18)

UM = ŨM (L1/νǫ) (19)
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Fig. 3. Size-dependent inverse temperature, Kc(L), to which
the maxima of the derivatives of the order parameter,
(dm/dK)

max
, and the Binder cumulant, (dUM/dK)

max
, as well

as of the susceptibility, χmax, reach their maximum values.
Dashed lines correspond to fitting results.

for L → ∞, ǫ → 0 such that L1/νǫ = finite, where ǫ ≡
T/Tc−1. Here, α, β, γ and ν are the standard critical expo-
nents of the specific heat (CH ∼ |ǫ|−α for ǫ → 0, L → ∞),
order parameter (m ∼ −ǫβ for ǫ → 0−, L → ∞), suscepti-
bility (χ ∼ |ǫ|γ for ǫ → 0, L → ∞) and correlation length

ξ (ξ ∼ |ǫ|−ν for ǫ → 0, L → ∞), respectively. C̃H , m̃, χ̃

and ŨM are scaling functions for the respective quantities.
Following the line of Refs. [33–35], the critical expo-

nent ν is firstly computed by considering different deriva-
tives with respect to the inverse temperature K = 1/T ,
for example, the derivative of the Binder cumulant and
the logarithmic derivative of the order parameter. It is ex-
pected that the maximum value of these derivatives as a
function of the lattice size follows a power law of the form
∼ L1/ν . Once the value of ν is known, the critical expo-
nent γ can be determined by scaling the maximum value
of the susceptibility, i. e., from χmax ∼ Lγ/ν . In addition,
the standard way to extract the exponent β is to study
the scaling behavior of the order parameter at the point
of inflection, minf . We expect that minf ∼ L−β/ν . From
this analysis we obtain ν = 1.02(2), γ/ν = 1.746(6), and
β/ν = 0.126(6), and then γ = 1.78(4) and β = 0.128(8).
On the other hand, the maximum of the specific heat,
CHmax, does not follow a power law. Instead, we observe
a logarithmic divergence of the form CHmax ≈ 0.071 +
0.268 ln(L). This implies that the corresponding critical
exponent is zero, α = 0 [36].

We simulated system sizes only up to L = 80, which
gives probably the main contribution to the size of the er-
ror bars of the obtained critical exponents. Nevertheless,
as the obtained values are compatible with those of the
2D Ising model, ν = 1, β = 1/8 = 0.125, γ = 7/4 = 1.75,
and α = 0, we conclude that the observed phase transi-
tion probably belongs to this universality class. We should
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Fig. 4. Data collapses for (a) the order parameter, (b) the
Binder cumulant, (c) the susceptibility and (b) the heat ca-
pacity. Symbols are the same as in Figure 2.

notice that ν = 1.07(3), calculated from the simultaneous
fitting to the Eq. (15), is very close to one but does not
agree within error bars. This discrepancy may be due to
the finite-size effects.

Figures 4 (a)-(d) show good data collapses for, respec-
tively, the order parameter, the Binder cumulant, and the
susceptibility where we use the Ising exponents (the data
collapses do not change significantly if the exponents ob-
tained numerically are used), while for the heat capacity
we use the logarithmic correction term determined above.
As we can see, we obtain very satisfactory scalings.

3.2 Bond structure and the ground-state properties

In the previous subsection we have shown that the present
model has a standard finite-temperature transition. We
show here that the low-temperature equilibrium dynam-
ics and the ground-state properties of the model present
a rather interesting and rich behavior. To carried out the
corresponding studies, we have performed additional sim-
ulations on smaller lattice sizes (ranging from L = 6 to
L = 20) and for lower temperature, TR = 0.1.

Figure 5 shows, for a system of lattice size L = 20,
the fraction of frustrated plaquettes, f , as function of T .
For the limit T → ∞ this fraction tends to a constant
value of about 0.28. In contrast, the Edwards-Anderson
±J model has a larger value f = 0.5 (in this case, for any
temperature). This shows that, even for the full-disordered
state, the majority rule given by Eq. (2) induces strong
correlations between bonds. On the other hand, for T → 0
the model shows a non-frustrated ground state with f =
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Fig. 5. Mean fraction of frustrated plaquettes as function of T
for a lattice size L = 20. Inset: Temperature derivative df/dT
for different lattice sizes as indicated.

0. What happens is that, at equilibrium, the dynamics
efficiently eliminates any frustration.

In the inset of Figure 5 we can see the temperature
derivative df/dT for different lattice sizes. Because it is
not possible to equilibrate large lattice sizes up to very low
temperatures, these curves are only shown in the range
of T = 1 to T = 4. As expected, df/dT shows a size-
dependent peak at approximately Tc, but another at T ≈
1.4 which for L > 20 quickly leads to a characteristic knee
feature. We can not associate the latter temperature to a
critical one. Nevertheless, this is in the temperature range
at which we observe the onset of the slow dynamics, as
shown below.

A more complex behavior is displayed by the frac-
tions of ferromagnetic and antiferromagnetic bonds, pF
and pAF, respectively. Figure 6 shows these quantities for
L = 20. It is observed in Figure 6 that when T → ∞ the
fractions of ferromagnetic and antiferromagnetic bonds
reach a limiting constant value, with pF > pAF. Both
limit values are easily calculated. The number of config-
urations of the spins surrounding a given pair is 26. Two
of them corresponds to all spins pointing in the same di-
rection while in another twelve, one spin point in a di-
rection opposite to the remaining (e. g., one spin up and
the other down, or vice versa). The majority rule, Eq. (2),
indicates that for these fourteen configurations the bond
Jij is antiferromagnetic and otherwise is ferromagnetic.
Then, considering that for T → ∞ all configurations are
equally likely, we obtain limT→∞ pAF = 14/26 = 0.21875
and limT→∞ pF = 1− 0.21875 = 0.78125. Dotted lines in
Figure 6 indicate these limit values.

Furthermore, it can be observed in Figure 6 that for
T → 0 the system tends to a ground state with the same
fractions of both types of bonds, limT→0 pF = limT→0 pAF =
0.5. Interestingly enough, the inset shows that the frac-
tions of ferromagnetic and antiferromagnetic bonds have
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Fig. 7. Temperature dependence of the mean energy per spin
for L = 20. Inset shows the ground-state entropy as function
of 1/N .

a non-monotonous behavior in a finite temperature range.
At T ≈ 2.3 the curves of pF and pAF cross each other
and, between this temperature and T ≈ 0.7, the fraction
of ferromagnetic bonds is smaller than 0.5 and reaches
a minimum at T ≈ 1.7 (and of course, pAF reaches its
maximum). Then, for T . 0.7 both quantities are vir-
tually identical. In what follows, we will always have in
mind these particular temperatures when analyzing other
observables.

Although the ground state has an equal number of
ferromagnetic and antiferromagnetic bonds, there are im-
portant differences between this system and the Edwards-

(a) (b)

Fig. 8. (a) Typical and (b) fully ordered ground-state configu-
rations for lattice size L = 20. Minority and majority spins are
indicated by closed and open black circles, respectively, while
ferromagnetic bonds are denoted by red lines (antiferromag-
netic bonds are omitted for simplicity).

Anderson ±J model. Figure 7 shows the mean energy
as a function of T . We can see that this quantity tends
to −2 at zero temperature, e0 ≡ limT→0 e = −2. This
is a logical limit value since, as we have previously ob-
served, the ground state is not frustrated. In contrast, the
2D Edwards-Anderson ±J model has a higher value of
e0 ≈ −1.4 [37].

We can obtain more information from the ground-state
entropy per spin, s0. In order to determine s0, we have
simulated the system between T1 = 300 and TR = 0.1.
Samples with L ≤ 20 were used because only for these
lattice sizes it is possible to achieve equilibrium at such low
temperatures. The ground-state entropy per spin (in units
of kB) is calculated using the thermodynamic integration
method [37–39] and is defined by the expression [40]

s0(N) = ln 2 +

∫ e0

e∞

de

T
, (20)

where e∞ ≡ limT→∞ e = 0. Inset in Figure 7 shows s0(N)
as function of 1/N . Extrapolating, we obtain a thermody-
namic limit value of s0 ≡ limN→∞ s0(N) = 0.117(4). To
extrapolate, only lattices with L ≥ 10 were used because
the entropy for smaller lattice sizes present some oscilla-
tions, which seem to be related to the periodic boundary
conditions [40]. This entropy value is larger than the cor-
responding one of the 2D Edwards-Anderson ±J , sEA

0 ≈
0.07 [40–43]. So that, our system has a non-frustrated and
highly-degenerated ground state.

A better understanding of this phenomenon can be
achieved by analyzing the structure of the ground state.
The parallel-tempering algorithm can be used as a heuris-
tic to obtain the lowest energy configurations [44,45]. We
emphasize that for this application it is not necessary to
reach equilibrium, because only configurations with e =
−2 are sought. Figure 8 (a) shows a typical ground state.
Analyzing many configurations like the one in Figure 8
(a), one can conceive that a fully ordered structure as the
one shown in Figure 8 (b) might also be found in the
ground-state. Although this latter configuration has en-
ergy e = −2 and is compatible with the majority rule,
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(b)(a)

Fig. 9. Typical configurations for (a) T = ∞ and (b) T = 3.0.
Symbols are the same as in Figure 8.

Eq. (2), it is extremely rare and is very unlikely to obtain
using any algorithm.

Such ground-state configurations have some interest-
ing features. On one hand, we can see that a quarter of
the spins (minority spins) point in a direction opposite
to the remaining spins (majority spins). This is clearly
related to the fact that limT→0 m = 0.5 and the reason
for using the magnetization m as a good order parameter.
More strictly, the ground state is not fully ferromagnetic
but has a ferrimagnetic character. On the other hand, no-
tice that minority spins have as nearest neighbors majority
spins only, and these pairs are linked by antiferromagnetic
bonds. Thus, in Figs. 8 (a) and (b) minority spins look as
if they were isolated, i.e. minority spins do not interact
among them.

At infinite temperature all configurations are equally
likely. Figure 9 (a) shows a typical high-temperature con-
figuration, which has equal number of up and down spins
(here, closed and open black circles represent, respectively,
up and down spins). But, for a temperature close to the
critical one, T = 3.0, Figure 9 (b) shows that the “low-
temperature phase” begins to develop [compare with Fig-
ures 8 (a) and (b)]. We can see that excitations are charac-
terized by violations of the above features observed in the
ground state (let us recall that, at T = 0, minority spins
have as nearest neighbors majority spins only, and these
pairs are linked by antiferromagnetic bonds). For the par-
ticular temperatures indicated in the inset of Figure 6, in
the range between T = 2.3 and T = 0.7, no anomaly is
observed and all configurations are similar to those of the
ground state.

3.3 Out-of-equilibrium dynamic

At very low temperatures, it is numerically hard to reach
equilibrium for large lattice sizes. In order to explore this
region, we carry out extensive out-of-equilibrium simula-
tions. Lattices of L = 200 and six values of the waiting
time, tw = 100, 200, 400, 800, and 1600, were used. For
each temperature we have performed averages over 5000
independent runs.
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Fig. 10. (a) Spin correlation and (b) spin integrated response
functions, at temperatures T = 2.9, 2.3, 1.0, and 0.3, and for
different tw as indicated. Inset shows a zoom of the correlations
functions for the two lower temperatures.

Figures 10 (a) and (b) show the spin correlation and
spin integrated response functions for different temper-
atures. For temperatures T = 2.9 (just below Tc) and
T = 2.3, above which pF > pAF, correlation functions tend
to develop a plateau for increasing waiting time while re-
sponse functions get stuck in a well defined plateau for
all waiting times. When represented in a FDT paramet-
ric plot, as in Figure 11, this behavior leads to the typical
coarsening-like violation of the FDT [26] signaled by a con-
stant ρ(C) curve, highlighted with dotted lines in Figure
11. This would be the expected result for our model, which
undergoes a thermodynamic continuous phase transition
belonging to the 2D Ising universality class.

For a lower temperature T = 1.0, all correlation and
response functions curves in Figure 10 show a slightly dif-
ferent behavior which is more evident in Figure 11. In this
case the FDT parametric plot seems to slowly converge to
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Fig. 11. FDT parametric plots ρ(c) for the cases shown in
Figs. 10 (a) and (b). Inset shows a zoom of the FDT plots for
the two lower temperatures.

a FDT violation characterized by a finite slope at suffi-
ciently long times, i.e. small values of C, although some
curvature due to finite tw effects cannot be discarded. In-
terestingly, this FDT violation is reminiscent of the typical
FDT violation found in mean-field models for structural
glasses [26,46], characterized by a one-step replica sym-
metry breaking [47]. This singular behavior is displayed
within a wide temperature range around T = 1.0, and is
concomitant with the onset of the slow dynamics. On the
other hand, even more surprising is the fact that upon
further lowering the temperature, for T = 0.3 the corre-
lation functions show the emergence of a plateau close to
C = 1 and the response function also develops a plateau
at a very small value, as shown in Figure 10. The result is
a coarsening-like FDT violation as shown in Figure 11.

In order to shed some light on this phenomenon, we
analyze again the bond structure but this time compar-
ing thermal equilibrium with out-of-equilibrium measure-
ments of the same observables. Figure 12 (a) shows the
temperature dependence of the mean fraction of frustrated
plaquettes comparing equilibrium with time-dependent mea-
surements. The same comparison is shown in Figure 12 (b)
and its inset for the mean energy per spin and the mean
fraction of ferromagnetic bonds, respectively. From these
figures some common features are revealed. For temper-
atures around the critical temperature Tc, all quantities
rapidly relax to their equilibrium values [for long times
there is not a perfect agreement between equilibrium and
out-of-equilibrium values, because both calculations were
performed for different lattice sizes, as indicated in the key
of Figure 12 (a)]. Therefore, in this temperature range, for
example at T = 2.9 and T = 2.3, the out-of-equilibrium
dynamics is fast enough to develop a coarsening process,
as noted in the analysis of the QFDT, Figure 11 above.

A different situation arises for T ∼ 1, where for the
studied time scales the dynamics is clearly slower and the
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Fig. 12. Temperature dependence of (a) the mean fraction
of frustrated plaquettes and (b) the mean energy per spin.
Both panels show the corresponding equilibrium and out-of-
equilibrium curves for different times as indicated. Inset shows
the same information for the mean fraction of ferromagnetic
bonds.

system remains in a state with higher energy than ex-
pected at equilibrium. In this state, as can be observed in
Figure 12 (a), the slow dynamics has not been effective in
removing the frustration of the system. It is not surpris-
ing then that this dynamic and structural changes around
T ∼ 1 lead to a different QFDT characteristic, which in
this case resembles the one observed in structural glasses.

Finally, at very small temperatures, Figs. 12 (a) and
12 (b) show that the very slow dynamics is not able to
remove the frustration and the system is stuck in a high
energy configuration. However, the values of mean frac-
tion of frustrated plaquettes and mean energy per spin,
let say for T = 0.3, are very similar to those measured for
temperatures close to Tc, let say T = 2.9. Our interpreta-
tion is that for these values of frustration and energy the
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relaxation processes should be very similar and then we
observe the characteristic coarsening feature in the QFDT
at T = 0.3, Figure 11. At such a small temperature the re-
laxation is so slow that a different relaxation mechanism
at longer times can not be discarded only based on our
numerical simulations.

4 Conclusions

In this work we have studied the critical behavior, the
ground-state properties and the out-of-equilibrium dynam-
ics of a 2D Ising model with non-static interactions. Its
most important feature is that bonds are drawn according
to a majority rule, Eq. (2), which was designed to prevent
the system from ordering in full ferromagnetic or anti-
ferromagnetic states. Nevertheless, we have demonstrated
through equilibrium simulations, that the model has a low-
temperature ferrimagnetic state and undergoes a contin-
uous phase transition at Tc = 2.937(3), which probably
belongs to the 2D Ising universality class.

The ground state is nontrivial. Although frustration is
completely removed at T = 0, (i. e. the energy per spin
is e0 = −2) the ground state is highly degenerated with
an entropy per spin of s0 = 0.117(4). Interactions form a
degenerate structure where minority spins have as nearest
neighbors majority spins only, and these pairs are linked
by antiferromagnetic bonds.

This degenerate low-temperature phase has a low free
energy and therefore is more stable than the one of the
Ising model (which has a non-degenerate ground state).
As a consequence, the critical temperature of the system,
Tc = 2.937(3), is slightly larger than the one of the Ising
ferromagnetic model, T Ising

c ≈ 2.269 [48].
In order to quantify this statement we use a free-energy

minimization criterion [49]. Let us consider a generic model
undergoing a continuous phase transition. In the limits
T → ∞ and T → 0 such a system is characterized by
two extreme states: a fully-disordered (FD) state charac-
terized, respectively, with an energy and an entropy per
spin e′FD and s′FD, and a fully-ordered (FO) state with the
corresponding parameters e′FO and s′FO. The Helmholtz
free energy of these states are f ′

FD = e′FD − Ts′FD and
f ′

FO = e′FO − Ts′FO. The minimization criterion consists
in considering that the critical behavior is mainly deter-
mined by the FD and FO states. Since in thermodynamic
equilibrium the stable state corresponds to the minimum
of the Helmholtz free energy, then

f ′

FD < f ′

FO if T > T ′

c (21)

f ′

FD = f ′

FO if T = T ′

c (22)

f ′

FD > f ′

FO if T < T ′

c. (23)

Finally, from Eq. (22) we can estimate the critical tem-
perature as

T ′

c =
∆e′

∆s′
, (24)

where ∆e′ = e′FD − e′FO and ∆s′ = s′FD − s′FO.

Our model and the Ising model have non-frustrated
ground states and therefore ∆e = ∆eIsing = 2. However,
since for the FD state both systems have the same entropy,

sFD = sIsingFD = ln 2, but for the FO state sFO > sIsingFO =0,
then their entropy changes are different, ∆s < ∆sIsing =
ln 2. Hence, from Eq. (24) we can determine that the crit-
ical temperatures will be Tc > T Ising

c . Note that the free-
energy minimization criterion does not provide a good es-
timation of Tc, but it offers a very useful tool for under-
standing the critical behavior of a system with respect to
parameter variations [49].

Finally, we have determined that the out-of-equilibrium
dynamics has a novel behavior: at very low temperatures
as well as near Tc (but below of this critical tempera-
ture) we observed a coarsening-like FDT violation, while
at an intermediate temperatures (T ∼ 1) the FDT para-
metric plots are quite similar to those found for struc-
tural glasses. Nevertheless, for the latter case, note that
in the parametric FDT plot the slope at sufficiently long
times (FDT ratio) shows a small dependence on tw, and
therefore we cannot exclude that such phenomenon is due
to finite-time effects. Comparing equilibrium with out-of-
equilibrium measurements of different observables (f , e,
and pF), we have been able to establish a connection be-
tween this phenomenon and the bond structure properties
of the system.
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