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We investigate theoretically the combined effects of the electron–electron and the Rashba spin–orbit

interactions on two electrons confined in quasi-one-dimensional semiconductor double quantum dots.

We study both InSb-based structures, which are of interest due to their strong spin–orbit coupling, and

also InAs-based systems, which have been recently studied experimentally. We calculate the two-

electron wave functions in the effective-mass approximation and explore the interplay between the two

interactions on the energy levels and the spin of the states. The energy spectrum as a function of an

applied magnetic field shows crossings and anticrossings between triplet and singlet states, associated

with level mixing induced by the spin–orbit coupling. We find that the fields at which these crossings

occur can be naturally controlled by the interdot barrier width, which controls the exchange integral in

the structure.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Substantial efforts have been devoted to understanding and
manipulating the electron spin and its dynamics aiming at
potential applications in semiconductor spintronics [1–5]. In part
due to the fact that quantum bit interactions are a fundamental
element in quantum computing schemes, spintronic quantum
dots with more than one electron have attracted increasing
attention. Numerous theoretical studies of the electronic structure

of quantum dots (QDs) with two or more electrons in the presence
of the spin–orbit interaction have appeared recently [6–21]. Also,
the theory of spin relaxation of two or few electrons in QDs has
attracted much interest in the last five years. As a partial
bibliographical source including these two aspects of the problem
of spin in QDs, we mention the up-to-date review of spin–orbit
effects in QDs with one and two electrons, written from an
experimentalist’s point of view, given in Ref. [22].

The QDs considered in the literature are usually of the quasi-
two-dimensional type, with one dimension much smaller than
the other two. Motivated by the recent availability of nanorod or
nanowhisker QDs, in which the carriers are confined to elongated
or quasi-one-dimensional (Q1D) dot combinations, we reported in
ll rights reserved.
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two previous publications on the electronic structure and spin
relaxation of one electron with spin–orbit interactions in Q1D
dots [23,24]. (See references to experimental works on nanorod
dots in those two papers.) In two recent experiments related to
the work we present here, Fasth et al. [25] measured the strength
of the spin–orbit interaction in two-electron cylindrical dots
defined inside InAs-based nanowhiskers (diameter �50 nm,
length �120 nm), and Pfund et al. [26] studied spin relaxation in
a similar system. As a necessary extension of our previous work,
and motivated by the current interest in spin phenomena in few-
electron structures, in this paper we calculate and analyze in
detail the two-electron states in narrow nanowhisker QDs. We
take into account the Rashba spin–orbit coupling and the
Coulomb interaction between the electrons and work in
the effective mass approximation. We pay special attention to
the degree of admixture of different two-electron spin wave
functions, which will influence the spin–flip transitions in this
system. We monitor the mean value of the spin projection as a
function of the structural parameter that determines the strength
of the Rashba spin–orbit coupling. Also, we investigate the
combined influence on the energy levels of the electron–electron
interaction, the Rashba interaction, and an applied magnetic field
(through the Zeeman energy).

This paper is organized as follows. In Section 2 we introduce
the effective quasi-one-dimensional Hamiltonian of two interact-
ing electrons in the presence of the Rashba interaction and
0.1016/j.physe.2009.04.039
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describe the method used to diagonalize the Hamiltonian. In
Section 3 we present the results and discussion of our calcula-
tions, and in Section 4 we provide concluding remarks.
2. Theoretical description

We investigate the problem of two interacting electrons in a
quasi-one-dimensional double quantum dot structure in the
presence of the structural or Rashba spin–orbit interaction. We
study a system with two coupled 30 nm wide dots, separated by an
interdot barrier 3 nm wide. In our calculations we consider
Al0.1In0.9Sb–InSb and Al0.48In0.52As–InAs structures which have a
potential energy depth of 100 and 690 meV, respectively. In Fig. 1
we show the confining potential in the longitudinal direction, VzðzÞ,
and the eigen-functions unðzÞ of the single-particle Hamiltonian
H0
¼ ðp2

z =2m�Þ þ VzðzÞ, displaced vertically according to their
corresponding energy levels, En, for the InSb structure.

The nanowhisker where the double-dot structure is defined is
assumed to be so thin (’ 2 nm in the transverse direction) that
only the lowest transverse mode is active. Although this is indeed
a very small lateral size we can still use the effective-mass
approximation since the details of the transverse wave function
are not relevant to the physical effects we examine here, which are
related to the longitudinal degree of freedom. As we will see
shortly below, the lateral wave function appears only in the
determination of the effective one-dimensional interaction, which
is robust against the details of the transverse averaging-out. Thus,
the effective one-dimensional Hamiltonian of two interacting
electrons with Rashba interaction, in the absence of a magnetic
field, is written as [23]

H ¼ H0
1 þ H0

2 þ H1dR þ Vint , (1)

where H0
i ¼ ðp

2
z;i=2m�Þ þ VzðziÞ, m� is the conduction-band effec-

tive mass (m� ¼ 0:013m0 for InSb and m� ¼ 0:0239m0 for
InAs, where m0 is the bare electron mass), z1 and z2

are the z-coordinates of the two electrons, and pz;1 and pz;2 are
the z-components of their linear momentum. H1dR and Vint are the
Rashba spin–orbit coupling and the electron–electron interaction
potential, respectively. The Rashba spin–orbit coupling in the
quasi-one-dimensional structure considered here is given by [23]

H1dR ¼
X2

i¼1

gR

‘
@Vx

@x

� �
pz;iðsxi

� syi
Þ, (2)
Fig. 1. The Al0.1In0.9Sb–InSb double-well confining potential in the longitudinal

direction of the quasi-one-dimensional nanowhisker quantum dots. The single-

particle eigenfunctions and energies are also shown.
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where gR ¼ 500 Å
2

(InSb), gR ¼ 110 Å
2

(InAs) [30], sxi ;yi
are Pauli

matrices, and h@Vx=@xi is an effective electric field which we will
call here ‘‘the Rashba parameter’’, and which can be tuned to some
extent by applying a lateral gate voltage [27–29].

The effective one-dimensional electron–electron Coulomb
interaction is given by [31]

Vintðjz2 � z1jÞ ¼

Z
dx1 dx2 dy1 dy2

�
e2Fðx1Þ

2Fðx2Þ
2Fðy1Þ

2Fðy2Þ
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ

2
þ ðy1 � y2Þ

2
þ ðz1 � z2Þ

2
q , (3)

where ri ¼ ðxi; yi; ziÞ, i ¼ 1;2, are the electron positions, and � is the
dielectric constant of the material (16.8 for InSb and 15.15 for
InAs). The lateral averaging-out is done over the ground state F of
the laterally confining potential Vx ¼ Vy. Notice that for simplicity
and only to the effect of calculating the effective one-dimensional
Coulomb interaction, Vx ¼ Vy is assumed to be a harmonic
oscillator potential, whose ground state F has a spatial extent of
roughly 2 nm.

As a basis set for the two-electron Hilbert space we take all the
un ðn ¼ 1;4Þ which gives 28 two-particle basis states:

ji ¼ uiðz1Þuiðz2Þj0;0i,

jjþ3 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þujðz2Þ þ ujðz1Þu1ðz2Þ�j0;0i,

jkþ5 ¼ ð1=
ffiffiffi
2
p
Þ½u2ðz1Þukðz2Þ þ ukðz1Þu2ðz2Þ�j0;0i,

j10 ¼ ð1=
ffiffiffi
2
p
Þ½u3ðz1Þu4ðz2Þ þ u4ðz1Þu3ðz2Þ�j0;0i,

jlþ9 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þulðz2Þ � ulðz1Þu1ðz2Þ�j1;1i,

jlþ12 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þulðz2Þ � ulðz1Þu1ðz2Þ�j1;�1i,

jlþ15 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þulðz2Þ � ulðz1Þu1ðz2Þ�j1;0i,

jmþ17 ¼ ð1=
ffiffiffi
2
p
Þ½u2ðz1Þumðz2Þ � umðz1Þu2ðz2Þ�j1;1i,

jmþ19 ¼ ð1=
ffiffiffi
2
p
Þ½u2ðz1Þumðz2Þ � umðz1Þu2ðz2Þ�j1;�1i,

jmþ21 ¼ ð1=
ffiffiffi
2
p
Þ½u2ðz1Þumðz2Þ � umðz1Þu2ðz2Þ�j1;0i,

j26 ¼ ð1=
ffiffiffi
2
p
Þ½u3ðz1Þu4ðz2Þ � u4ðz1Þu3ðz2Þ�j1;1i,

j27 ¼ ð1=
ffiffiffi
2
p
Þ½u3ðz1Þu4ðz2Þ � u4ðz1Þu3ðz2Þ�j1;�1i,

j28 ¼ ð1=
ffiffiffi
2
p
Þ½u3ðz1Þu4ðz2Þ � u4ðz1Þu3ðz2Þ�j1;0i, (4)

where i ¼ 1� 4, j; l ¼ 2� 4, and k;m ¼ 3;4. The two-particle spin
wave functions are the usual singlet jSi ¼ jS ¼ 0;mS ¼ 0i and
triplet states fjTþi ¼ j1;1i; jT0

i ¼ j1;0i; jT�i ¼ j1;�1ig.
The eigenvalue problem of the full two-electron Hamiltonian

given in Eq. (1) will be solved by expanding the two-electron wave
functions in the given basis set

ci ¼
X28

j¼1

aijjj, (5)

where i ¼ 1; . . . ;28, and determining the coefficients aij by
numerical diagonalization. The Rashba coupling produces the
general effect of mixing states with different spin wave functions,
and as we will see in the next section the degree of mixing
depends markedly on the structure’s parameters.

In order to fully characterize the two-electron system in what
could be the realistic experimental situations we will also
introduce a magnetic field B along the z-direction. The field is
chosen small enough (and the whisker so thin) that the x2y

orbital wave functions are not perturbed significantly by it.
Consider, for example, that for a typical magnetic field of 2 T the
magnetic length is about 10 times larger than the lateral size of
our structure. Thus, we will assume that the magnetic field
contributes only a Zeeman term to the Hamiltonian:

HZ ¼
g0mBB

‘
Sz, (6)
0.1016/j.physe.2009.04.039
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where mB is the Bohr magneton, g0 is the Landé factor (g0 ¼ �51
for InSb and �15 for InAs), and Sz ¼ S1;z þ S2;z is the z-component
of the total spin operator.
Fig. 3. (Color online). (a) Energy levels and (b) mean value of Sz ¼ S1;z þ S2;z versus

applied magnetic field for the two-electron eigenstates with Coulomb interaction

and without Rashba coupling. Barrier width: 3 nm. jSi: singlet state, jT�;0i: triplet

states.
3. Results

We solve the eigenvalue problem of the two-electron Hamil-
tonian given by Eq. (1) plus the Zeeman term, Eq. (6). Our goal is
to understand the interplay between the Pauli exclusion, the
electron–electron Coulomb interaction, the single-particle Rashba
coupling, and the applied magnetic field.

In order to gain some insight into the nature of the two-
electron states, in Fig. 2 we show the probability density of the
ground state and the first five excited states for the two electrons
in a double-dot InSb structure (see Fig. 1) with Coulomb
interaction, no Rashba coupling, and no external magnetic field.
The energies of the low-lying states as functions of the external
magnetic field including the Coulomb interaction (no Rashba) are
given in Fig. 3(a). The six lowest two-particle states can be
analyzed qualitatively taking into account the lowest two,
bonding (symmetric) and antibonding (antisymmetric), orbitals,
u1 and u2, seen in Fig. 1, and the two-spin basis set. In other words,
they can be expanded fairly accurately in the reduced basis set
(extracted from Eq. (4))

j1 ¼ u1ðz1Þu1ðz2Þj0;0i,

j2 ¼ u2ðz1Þu2ðz2Þj0;0i,

j5 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þu2ðz2Þ þ u2ðz1Þu1ðz2Þ�j0;0i,

j11 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þu2ðz2Þ � u2ðz1Þu1ðz2Þ�j1;1i,

j14 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þu2ðz2Þ � u2ðz1Þu1ðz2Þ�j1;�1i,

j17 ¼ ð1=
ffiffiffi
2
p
Þ½u1ðz1Þu2ðz2Þ � u2ðz1Þu1ðz2Þ�j1;0i. (7)

In Fig. 2 we see that in the ground state the two electrons occupy,
as expected, different dots, due to their mutual Coulomb
repulsion. It can easily be checked that c1 is a linear
superposition of mainly the two states j1 and j2, which can
efficiently remove the probability density for having both
electrons in the same dot. Incidentally, it is thus verified also
that it is a spin singlet state (a general theorem for bound pairs of
Fig. 2. (Color online). Probability density of two electrons in the double quantum

dot with Coulomb interaction but without Rashba coupling. c1: ground state (GS),

ci¼2;...;6: low-lying excited states. Note that in c5 and c6 both electrons are mainly

in the same dot, while the other states can be seen as having one electron in each

dot.

Please cite this article as: C.L. Romano, et al., Physica E (2009), doi:1
electrons establishes that this must be the case). The presence of
the bonding orbital u1 in j1 and therefore in c1 introduces a non-
zero probability density in the interdot barrier region, seen in the
figure. The way that the energy levels are affected by the Coulomb
interaction can be appreciated by comparing Fig. 3(a) to the
spectrum of energies without Coulomb nor Rashba interaction
given in Fig. 4(a). In particular, it can be seen that the ground state
energy is shifted upwards on the order of 10 meV due to the
electron–electron Coulomb repulsion.

The states c2;c3, and c4 at B ¼ 0 shown in Fig. 2 also have the
two electrons de-localized (i.e. sitting in different dots), but they
correspond to the spin triplet and therefore their orbital wave
function is antisymmetric with respect to particle exchange. These
triplet states are not affected strongly by the Coulomb interaction
since the Pauli exclusion principle already keeps the electrons
apart in the absence of their mutual repulsion. Indeed, these three
states are given essentially by the non-interacting basis states
j11;j14, and j17 (see Eq. (7)). This spatial two-electron wave
function has a node at the point ðz1; z2Þ ¼ ð0;0Þ, i.e. it has a global
‘‘antibonding’’ character. Notice finally that the two higher energy
states, c5 and c6, correspond to singlet states and differ
significantly from the previous states, in the sense that both
electrons lie mostly in the same dot in spite of the Coulomb
repulsion. The eigenstate c5 is similar to j5, but its energy is
strongly shifted upwards due to the Coulomb energy cost of
having both electrons in the same dot.

In Fig. 4 we plot the two-electron energy levels versus the
applied magnetic field for the InSb-based system shown in Fig. 1,
0.1016/j.physe.2009.04.039
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Fig. 4. Energy levels versus applied magnetic field for the two-electron

eigenstates: (a) without Coulomb and Rashba interactions, (b) with only Rashba

coupling, and (c) with Coulomb and Rashba interactions.
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in the following cases: (a) no Rashba nor Coulomb interaction,
(b) with Rashba interaction only (structural parameter
h@Vz=@xi ¼ 1 meV=˚̊A), and in (c) adding Coulomb interaction.

Let us point out some basic features of the lowest energies of
the two non-interacting electrons, seen in Fig. 4(a). First notice
that since the spatial wave functions do not depend on the
magnetic field and only the Zeeman energy does, the energies
have a linear field dependence. At zero magnetic field, the ground
state c1 (¼ j1 from Eq. (4) or (7)) is a singlet (with energy 2E1),
but around B � 3 T there is a level crossing and its spin part
becomes j1;1i (c1 ¼ j11 after the crossing). The next four levels
at B ¼ 0 are degenerate and equal to E1 þ E2. One of them is a
singlet state ðj5Þ and the other three correspond to triplet states
ðj11;j14;j17Þ. The latter lose their degeneracy when Ba0, but the
two states with Sz ¼ 0 (j5 and j17) remain degenerate.
Please cite this article as: C.L. Romano, et al., Physica E (2009), doi:1
When the Rashba interaction is included (Fig. 4(b)), the two
lower crossings at B � 3 T become avoided crossings. The same
happens to other (not all) avoided crossings throughout the
spectrum. Notice that the width of the avoided crossings is
determined mainly by the strength of the spin–orbit coupling, and
therefore it can be adjusted to some extent with a transverse
electric field (gate voltage). Finally, the inclusion of the Coulomb
interaction produces a more complex energy spectrum (Fig. 4(c)).
For a better understanding of the combined effects of these two
interactions in the energy spectrum, we extract from Figs. 4(b)
and (c) the first seven eigen-energies and plot them along with
their corresponding mean value of the z-projection of the spin
shown in Fig. 5. Let us make the following observations:
(i)
0.10
In both Figs. 5(b) and (d), it can be seen that the Rashba
interaction causes c2 and c5 not to be spin eigenstates
anymore at B ¼ 0. In spite of that, following common
practice, we label these states as if they were pure spin
states, as one spin component dominates the admixture (this
happens in general far from the avoided crossings).
(ii)
 Two of the level crossings in Fig. 5(a) (E1 with E2 and E5 with
E6 at B � 3 T) become avoided crossings, as the pair of states
involved are coupled by the Rashba interaction.
(iii)
 In Fig. 5(a), there is a level crossing at B � 5:6 T between E6

and E7 which does not become an avoided crossing since the
two states involved in it are not coupled by the Rashba
interaction.
(iv)
 In Fig. 5(c), we see that the Coulomb interaction modifies the
energy levels, in some cases substantially, thus shifting the
position (along the magnetic-field axis) of some level cross-
ings, and creating new ones. For example, the first avoided
crossing appears at a smaller magnetic field ðB � 1:6 TÞ than
without Coulomb. This occurs because the Coulomb interac-
tion shifts the ground state upwards more than the
neighboring triplet state jTþi, bringing them closer together.
The following singlet state is pushed strongly upwards by the
Coulomb interaction, producing a new crossing with a triplet
jT�i state, at B � 3:7 T. On the other hand, the latter state is
coupled by Rashba interaction to the next energy level
(another singlet), thus producing an anticrossing at
B � 5:4 T. The crossing between E6 and E7 has been shifted
slightly upward due to the effect of the Coulomb interaction
on each individual level, but it does not become avoided
because the levels are not coupled to each other through the
Rashba interaction. This lack of mixing arises from the
different spatial symmetry of the states and the strong
Coulomb interaction. The symmetry under space reversal
(odd versus even) prevents the mixing of a state with double
dot occupancy (singlet c5) and a state where each dot has
one electron ðc4Þ, where each state has opposite space-
reversal symmetry.
In Fig. 6 we present the mean value of Sz as a function of the
Rashba parameter h@Vx=@xi for only six of the states at a given
magnetic field B ¼ 0:5 T for InSb. In this figure, we compare two
cases, (a) without and (b) with Coulomb interaction, in order to
exhibit better the role of spin–orbit coupling in the spin mixing.
As expected, without Rashba coupling, i.e. with h@Vx=@xi ¼ 0, the
spin projection hSzi of each of these states naturally takes the
exact values 1, 0, and �1, as seen in both Figs. 6(a) and (b). An
important difference between (a) and (b) is that there is a
symmetry around Sz ¼ 0 when the Coulomb interaction is absent.
The ground state in Fig. 6(a) (thick cyan solid line) starts with
Sz ¼ 0 and at a certain (typically large) value of the Rashba
parameter reaches a maximum. On the other hand, in Fig. 6(b),
16/j.physe.2009.04.039

dx.doi.org/10.1016/j.physe.2009.04.039


ARTICLE IN PRESS

Fig. 5. (Color online). InSb: (a) and (c) seven lowest energy levels and (b) and (d) their corresponding mean value of SZ ¼ S1;z þ S2;z versus applied magnetic field for the two-

electron eigenstates including Rashba interaction ((a) and (b)) and adding Coulomb interaction ((c) and (d)). The strength of the Rashba coupling is given by

h@VX=@xi ¼ 1 meV=˚̊A. jSi ¼ singlet state, jT�;0i ¼ triplet states.

Fig. 6. (Color online). InSb: mean value of Sz ¼ S1;z þ S2;z as a function of the

Rashba parameter h@Vx=@xi for the six two-electron eigenstates. B ¼ 0:5 T. (a)

Without Coulomb interaction; (b) with Coulomb interaction. lSO is the spin–orbit

length.
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this symmetry about the zero value is lost due to the different
mixing of two-particle orbitals ðjiÞ in higher and lower lying
states produced by the Coulomb interaction. Fig. 6 includes an
axis (top) in terms of the spin–orbit length ðlSO ¼

‘ 2=m�gRh@Vx=@xiÞ [32], which is inversely proportional to the
Rashba parameter. This length parameter helps to visualize
the strength of the Rashba coupling in comparison to the
Please cite this article as: C.L. Romano, et al., Physica E (2009), doi:1
characteristic dimensions of the structure. It is interesting to
point out that spin mixing is first noticeable when lSO ’ 60 nm,
the size of the two-well system.

Finally, we analyze an AlInAs–InAs-based structure with the
same dimensions as the InSb double-dot system treated above.
InAs-based structures have recently been studied experimentally
[25,26]. In Fig. 7, we show the energy levels and the mean value of
Sz of the first six two-particle eigenstates, for
h@Vx=@xi ¼ 0:4 meV=˚̊A. Fig. 7(a) shows two anticrossings at B �

1 T which should be confronted with the two anticrossings seen in
Fig. 5(a). First, we note that they are shifted to a lower magnetic
field, due to the smaller gap between the symmetric and
antisymmetric single-particle eigenstates in the InAs structure
(which is then more easily overcome by the Zeeman energy).
Second, we call attention to the narrower splittings at the avoided
crossings, due, naturally, to a weaker Rashba coupling. The
electron–electron interaction included in Fig. 7(c) has a strong
impact on the energy levels, due to the close proximity of the bare
energy levels. One manifestation of this influence is the large shift
of the first avoided crossing, which now appears at B � 0:05 T,
down from B � 1 T in (a).
4. Conclusions

In this paper, we have investigated the effects of the Coulomb
electron–electron interaction on energy levels and spin z projec-
tion of a two-electron system in a quasi-1D doubled quantum dots
in the presence of Rashba coupling. As a function of a magnetic
field applied in the longitudinal direction, some energy-level
crossings become avoided crossings when the Rashba spin–orbit
is turned on and their width can be controlled to some extent with
a gate voltage that determines the effective field parameter
h@Vx=@xi. Coulomb interaction modifies the positions of the energy
0.1016/j.physe.2009.04.039
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Fig. 7. (Color online). InAs: (a) and (c) lowest energy levels and (b) and (d) their corresponding mean value of Sz ¼ S1;z þ S2;z versus applied magnetic field for the two-

electron eigenstates including Rashba interaction ((a) and (b)) and adding Coulomb interaction ((c) and (d)). The strength of the Rashba coupling is given by

h@Vx=@xi ¼ 0:4 meV=Å. jSi ¼ singlet state, jT�;0i ¼ triplet states.

C.L. Romano et al. / Physica E ] (]]]]) ]]]–]]]6
levels changing the energy spectrum, producing new possible
crossings or moving the original crossings to a different value of
the magnetic field.
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