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a b s t r a c t

We prove a Berger-type theorem which asserts that if the orthogonal subgroup generated
by the torsion tensor (pulled back to a point by parallel transport) of a metric connection
with skew-symmetric torsion is not transitive on the sphere, then the spacemust be locally
isometric to a Lie group with a bi-invariant metric or its symmetric dual (we assume the
space to be locally irreducible). We also prove that a (simple) Lie group with a bi-invariant
metric admits only two flat metric connections with skew-symmetric torsion: the two
flat canonical connections. In particular, we get a refinement of a well-known theorem
of Cartan and Schouten. Finally, we show that the holonomy group of a metric connection
with skew-symmetric torsion on these spaces generically coincides with the Riemannian
holonomy.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The family of metric connections on a Riemannian manifold M which have the same geodesics as the Levi-Civita
connection is a distinguished class among the family of all connections onM . This family attracted the attention of É. Cartan
in the early 20th century. Since then, many mathematicians have been concerned with its study. In the last few years, these
connections have also been studied, in a modern approach, because of its applications to physics (string and superstring
theory; see [1] and the references therein for some examples).

Let∇ be the Levi-Civita connection ofM and let us consider ametric connection ∇̃ onM which has the same geodesics as
∇ . It is a well-known fact that this is equivalent to the difference tensor D = ∇ −∇̃ being totally skew-symmetric. That is, it
defines a 3-form by contracting with the metric tensor ofM . In such a case, the torsion tensor of ∇̃ is obtained as a constant
multiple of D, and so we say that ∇̃ is a connection with skew-symmetric torsion. One of the more remarkable examples of
this kind of geometry is the case of the naturally reductive spaces, endowed with the so-called canonical connection. In a
recent work [2] it is shown that, for irreducible compact naturally reductive spaces, the canonical connection is essentially
unique (i.e., provided the space is not a sphere, a real projective space or a Lie groupwith a bi-invariantmetric). Moreover, in
a forthcoming joint work with C. Olmos, it is proved that the same is true in the non-compact case (provided the space is not
the dual of a compact Lie group; this includes the hyperbolic 3-space, which is the dual of S3 = Spin(3)). On the other hand,
the only geometries admitting a flat metric connection with skew-symmetric torsion are the compact Lie groups and the
sphere S7. This fact is due to Cartan and Schouten [3] (see [4] for a modern proof that does not depend on the classification
of the symmetric spaces).

∗ Tel.: +54 3514334051; fax: +54 3514334054.
E-mail address: reggiani@famaf.unc.edu.ar.

0393-0440/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2012.11.012



Author's personal copy

S. Reggiani / Journal of Geometry and Physics 65 (2013) 26–34 27

The main goal of this short article is to establish a Berger-type result, Theorem 3.10, for connections of this kind. In
fact, given a metric connection ∇̃ on M with skew-symmetric torsion, we have associated an orthogonal Lie subgroup
H(M, ∇̃) ⊂ SO(dimM). Our Berger-type theorem asserts that if {e} ≠ H(M, ∇̃) ≠ SO(dimM), then M is isometric to a
(simple) Lie group with a bi-invariant metric or its symmetric dual (M is assumed to be complete, simply connected and
irreducible). Moreover, if the torsion tensor of ∇̃ is invariant under the resulting Lie group, then ∇̃ is a canonical connection
onM . Recall that the group H(M, ∇̃) is obtained by pulling back the ∇̃-torsion by (Riemannian) parallel transport to a given
point in M . Notice the analogous construction for the holonomy group, which is obtained in this way from the curvature
tensor (the Ambrose–Singer theorem).We need to deal with the groupH(M, ∇̃) instead of Hol(∇̃) since this last group does
not seem to carry enough information (see the flat examples in Section 4). In fact, we have to enlarge Hol(∇̃) to H(M, ∇̃) to
get a Berger-type theorem.

The definition of the group H(M, ∇̃) is in the spirit of studying geometries which admit a metric connection with skew-
symmetric torsion, and Theorem 3.10 characterizes these spaces when the torsion is not generic.

We wish to clarify briefly what we mean by a Berger-type theorem. Informally, it means a result which asserts that if a
certain orthogonal subgroup is ‘‘generic’’, then our object is ‘‘symmetric’’. The fanciest example is the Berger holonomy
theorem [5,6], which asserts that if the holonomy group of an irreducible Riemannian space is not transitive (on the
sphere of the tangent space), then the space must be locally symmetric. Another geometric Berger-type theorem is due
to Thorbergsson [7,8]: if M is a submanifold of the sphere with constant principal curvatures and the normal holonomy
group of M acts irreducibly and non-transitively, then M is the orbit of an s-representation. In [9] a Berger-type theorem
for complex submanifolds is proved: if M is a complete and full complex submanifold of CPn and the normal holonomy
of M is non-transitive, then M is the (projectivized) orbit of an irreducible Hermitian s-representation. A famous algebraic
Berger-type theorem is the so-called Simons holonomy theorem [10,11]: every irreducible and non-transitive holonomy
system must be symmetric. Recall that Simons theorem implies the Berger theorem.

In order to prove Theorem 3.10, we work with the concept of the skew-torsion holonomy system, and we make use
of the skew-torsion holonomy theorem [2,12] (which is a Berger-type theorem!) In fact, [TpM,Dp,H(M, ∇̃)] turns out to
be a skew-torsion holonomy system. Notice that the only transitive case for an skew-torsion holonomy system is the full
orthogonal group (and this explains the assumption that H(M, ∇̃) ≠ SO(dimM) in Theorem 3.10).

As an application of our results we study the holonomy group of metric connections with skew-symmetric torsion on
Lie groups. Let G be a simple Lie group with a bi-invariant metric and let ∇̃ be a metric connection with skew-symmetric
torsion on G. We can summarize the results obtained as follows:

• In the flat case, R̃ = 0, we have that ∇̃ is one of the two flat canonical connections, whose torsion tensor is given by
T̃ (X, Y ) = ±[X, Y ] (for these connections left or right invariant vector fields are parallel, depending on the chosen sign).
See Theorem 4.5, which is a refinement of the Cartan–Schouten theorem [3,4].

• In the general case, when ∇̃ is not flat and H(G, ∇̃) ≠ SO(dimG) we have that Hol(∇̃) = G. See Theorem 4.8.

2. Preliminaries

In this section we wish to recall some results on skew-torsion holonomy systems and naturally reductive spaces that we
use throughout this article. The general reference for this section is [2].

A skew-torsion holonomy system is a triple [V, Θ,G]where V is a Euclidean space, G is a connected Lie subgroup of SO(V)
andΘ is a totally skew-symmetric 1-formwhich takes values in g = Lie(G). That is to say,Θ : V → g is linear and such that
(x, y, z) → ⟨Θxy, z⟩ is an algebraic 3-form on V. We say that such a triple is irreducible if G acts irreducibly on V, transitive
if G acts transitively on the unit sphere of V, and symmetric if g∗(Θ) = Θ for all g ∈ G (where g∗(Θ)x = g ◦ Θg−1(x) ◦ g−1).

The definition of skew-torsion holonomy systems is motivated by the holonomy systems introduced by J. Simons in [10],
where he considered an algebraic curvature tensor (instead of a 1-form) taking values in g. Skew-torsion holonomy systems
arise in a natural way in a geometric context, on considering the difference between two metric connections with the
same geodesics as the Levi-Civita connection. There is an analogue to the Simons holonomy theorem, which asserts that an
irreducible and non-transitive holonomy systemmust be symmetric. This result is actually stronger, since for skew-torsion
holonomy systems the only transitive case is the full orthogonal group G = SO(V).

Skew-Torsion Holonomy Theorem (See [12,2]). Let [V, Θ,G], Θ ≠ 0, be an irreducible skew-torsion holonomy system with
G ≠ SO(V). Then [V, Θ,G] is symmetric and non-transitive. Moreover,

1. (V, [·, ·]) is an orthogonal simple Lie algebra, of rank at least 2, with respect to the bracket [x, y] = Θxy;
2. G = Ad(H), where H is the connected Lie group associated with the Lie algebra (V, [·, ·]);
3. Θ is unique, up to a scalar multiple.

Now, we refer briefly to some recent results on naturally reductive spaces. A homogeneous space M = G/H endowed
with a G-invariant metric is said to be a naturally reductive space if there exists a reductive decomposition g = h ⊕ m, where
g = Lie(G), h = Lie(H) and m is an Ad(H)-invariant subspace of g such that the geodesics through p = eH are given by
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Exp(tX) · p, X ∈ m. The reductive complement m induces a so-called canonical connection ∇
c onM . The above definition is

equivalent to the fact that the Levi-Civita connection and the canonical connection have the same geodesics.
In [2] it is proved that the canonical connection is unique (in the compact irreducible case) unless M is isometric to a

sphere, a real projective space or a compact Lie group endowed with a bi-invariant metric. As a consequence of this result
it follows that the connected component of the ∇

c-affine group (i.e., the subgroup of diffeomorphisms of M that preserve
∇

c) coincides with the connected component of the isometry group, Aff0(∇c) = Iso0(M), except if M is a sphere or a real
projective space. Moreover, if there is an isometry which does not preserve the canonical connection, thenM is isometric to
a Lie group with a bi-invariant metric.

Remark 2.1 (See Theorem 1.1 and Remark 6.1 in [2]). IfM is a simple Lie group endowed with a bi-invariant metric, then the
family of canonical connections onM is the affine line

L = {t∇ + (1 − t)∇c
: t ∈ R},

where ∇ is the Levi-Civita connection ofM and ∇
c
≠ ∇ is a fixed canonical connection onM . This is due to the fact that the

difference tensor between two canonical connections is unique up to a scalar multiple.

3. The Berger-type theorem

Let (M, ⟨·, ·⟩) be a Riemannian manifold. We denote by ∇ the Levi-Civita connection of M and by τc the Riemannian
parallel transport along a curve c on M . Let ∇̃ be a metric connection on M . We say that ∇̃ is a metric connection with
skew-symmetric torsion if the ∇̃-geodesics coincide with the Riemannian geodesics. It is well-known that this is equivalent
to the difference tensor

D = ∇ − ∇̃

being totally skew-symmetric, that is (u, v, w) → ⟨Duv, w⟩ defines a 3-form on M . Recall that the torsion tensor T̃ of ∇̃ is
obtained as

DXY = −
1
2
T̃ (X, Y ),

for all X, Y ∈ X(M).

Definition 3.1. Let M be a Riemannian manifold, and let ∇̃ be a metric connection on M with skew-symmetric torsion. Let
p ∈ M .

1. We define hp(M, ∇̃) ⊂ so(TpM) as the Lie subalgebra generated by elements of the form

(τc)∗(Dv) := (τc)
−1

◦ Dv

where c is taken among all the piecewise smooth curves c : [0, 1] → M with c(0) = p and v is arbitrary in Tc(1)M .
2. We define Hp(M, ∇̃) ⊂ SO(TpM) as the connected Lie subgroup with Lie algebra hp(M, ∇̃).

Remark 3.2. We remark some points on the above definition.

1. IfM is connected, then the group Hp(M, ∇̃) does not depend on the base point p. More precisely, Hq(M, ∇̃) is conjugated
to Hp(M, ∇̃) by (Riemannian) parallel transport along any curve joining p with q. Sometimes, when it is clear from the
context, we will denote the group Hp(M, ∇̃) just by H(M, ∇̃).

2. If M is locally irreducible, then Hp(M, ∇̃) is a closed subgroup of the orthogonal group SO(TpM). See Remark 3.11 after
Theorem 3.10.

3. Our definition of Hp(M, ∇̃) is motivated by the Ambrose–Singer theorem [13]. In fact, recall that if ∇
′ is a (linear)

connection onM , then the holonomy algebra holp(∇
′) at p is spanned by elements of the form

(τc)∗(R′

v,w) = (τc)
−1

◦ R′

v,w

where R′ is the curvature tensor of ∇ ′ and v, w ∈ Tc(1)M . In our particular case, we find it more interesting to work with
the difference tensor D, instead of the curvature R̃, because, as we shall see later, the group Hp(M, ∇̃) carries nontrivial
information about the geometry of (M, ∇̃) even in the flat case R̃ = 0. (Recall that in the flat case M is the Riemannian
product of Lie groups with bi-invariant metrics and seven-dimensional spheres of constant curvature [3,4].)

Remark 3.3 (Related Concepts in the Literature). We wish to recall that the definition of Hp(M, ∇̃) is actually implicit in the
work of Agricola and Friedrich [14] (see also [12,2]). In fact, let V be a Euclidean space and let T ∈ Λ3(V) be an algebraic
3-form on V. In [14],

g∗

T := span{Tv : v ∈ V} ⊂ so(V) (algebraic span)
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and

h∗

T := [g∗

T , g∗

T ]

are defined. We have that g∗

T is semisimple, and h∗

T coincides with the holonomy algebra of the metric connection with
(constant) skew-symmetric torsion on V defined as ∇

T
= ∇ − T . These holonomy algebras have been studied exhaustively

in [14] (and also in [12,2]).
Now, let ∇̃ be a metric connection with skew-symmetric torsion on a Riemannian manifoldM . Observe that, if T = Dp

∈

Λ3(TpM) is the difference tensor D = ∇ − ∇̃ specialized at the point p ∈ M , then

h∗

T ⊂ hp(M, ∇̃).

Informally, we say that hp(M, ∇̃) carries more information (for example, Dp could be the zero 3-form on TpM for some
points).

In the particular case of a naturally reductive spaceM = G/H and a canonical connection∇
c different from the Levi-Civita

connection, we have the equality

h∗

T = hp(M, ∇c)

for all p ∈ M , since ∇
c is G-invariant (see [2], for instance). More generally, if ∇̃ = ∇ − f (∇ − ∇

c), where f : M → R is a
smooth function, we have that

h∗

T = hp(M, ∇̃)

provided f (p) ≠ 0.

Example 3.4. For metric connections with constant skew-symmetric torsion on Rn, i.e., that of the form∇
T

= ∇ −T where
T ∈ Λ3(Rn), we have that hp(Rn, ∇T ) = h∗

T has been calculated in [14] for a large family of examples. More generally,
hp(Rn, ∇̃) = h∗

T , for ∇̃ = ∇ − fT where f : Rn
→ R is a smooth non-zero function.

In particular, for n = 4, h∗

T = {0} or h∗

T = so(3), since every non-zero 3-form onR4 is equivalent to e123 (and in dimension
3 there is only one 3-form up to multiples).

Example 3.5. Let us consider the skew-symmetric 3-form on R4

D = fe123 + ge234

where f , g are smooth, non-zero, real-valued functions such that f (x) ≠ 0 implies g(x) = 0. If ∇̃ = ∇ − D, then
hp(R4, ∇̃) = so(4) = so(3) ⊕ so(3) for all p ∈ R4. However, if T = Dp, then h∗

T = {0} or h∗

T = so(3).

Example 3.6 (Examples from Naturally Reductive Spaces). Let Mn
= G/H be a simply connected, irreducible naturally

reductive space, and let ∇
c be the associated canonical connection. It follows from [2] that ∇

c is unique, except in certain
cases (and in such cases the space must be symmetric). More precisely, the canonical connection is unique except when
M = Sn, orM is a compact Lie group with a bi-invariant metric or its symmetric dual. (Actually, the uniqueness result in [2]
is only for the compact case, and the general case follows from a forthcoming joint work with C. Olmos.)

If M = K is a Lie group with a bi-invariant metric, then Hp(M, ∇c) = K , identified in the natural way. This is explained
in detail in Section 4, but we wish to point out that one can get non-compact examples when M is the symmetric dual of
a compact Lie group K . In this case, we also have that Hp(M, ∇c) = K , since canonical connections on M are in a one–one
correspondence with canonical connections on K .

When Mn
= G/H is not a symmetric space or M = Sn, we have that Hp(M, ∇c) = SO(n), as will follow from our main

result.

Let us study the group Hp(M, ∇̃) from a holonomic point of view, and the implications of its properties on the geometry
ofM .

First, observe that if g ∈ Hol(∇), the holonomy group ofM , then gHp(M, ∇̃)g−1
⊂ Hp(M, ∇̃). So,

Hol(∇) ⊂ N(Hp(M, ∇̃)),

where N(Hp(M, ∇̃)) is the normalizer of Hp(M, ∇̃) in the orthogonal group.

Lemma 3.7. If Hp(M, ∇̃) acts irreducibly on TpM, then

Hp(M, ∇̃) = N(Hp(M, ∇̃)).

As a consequence, Hol(∇) ⊂ Hp(M, ∇̃).
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Proof. Let p ∈ M such thatDp
≠ 0.We just have to observe that ifΘ = Dp, then [TpM, Θ,Hp(M, ∇̃)] is an irreducible skew-

torsion holonomy system. So, by Lemma 3.4 in [2] we have that Hp(M, ∇̃) acts on TpM as an s-representation. Therefore,
Hp(M, ∇̃) = N(Hp(M, ∇̃)), a well-known fact on s-representations (see for example [15, p. 192]). �

Remark 3.8. One can prove Lemma 3.7 directly from the skew-torsion holonomy theorem. In fact, for both skew-torsion
holonomy systems [TpM, Θ,N(Hp(M, ∇̃))] and [TpM, Θ,Hp(M, ∇̃)] we have that Hp(M, ∇̃) = Ad(G) = N(Hp(M, ∇̃)),
where G is the (simple) Lie group with Lie algebra (TpM, [·, ·]), with the Lie bracket given by [v, w] = Θvw. But recall that
in the proof of the skew-torsion holonomy theorem, the fact that Hp(M, ∇̃) acts as an s-representation is used.

Remark 3.9. Recall that if M is locally irreducible, then Hp(M, ∇̃) acts irreducibly on TpM . In fact, this is done in the proof
of Theorem 3.10 below. However, Hp(M, ∇̃) could act irreducibly on TpM even if M splits off (as a Riemannian manifold).

In order to give a counterexample, let us consider on the sphere Sn a canonical connection ∇
c
≠ ∇ and let D = ∇ − ∇

c .
Indeed, if n = 6 or n = 7 we have such canonical connections associated with the nonstandard naturally reductive
decompositions S6 = G2/SU(3) or S7 = Spin(7)/G2. Let us consider on M = Sn × Sn the totally skew-symmetric
tensor D̃(v,w)(v

′, w′) = (Dvv
′
+ Dww′,Dw(v′

+ w′)) and the corresponding connection on M . It is not hard to see that
Hp(M, ∇̃) = SO(2n). Thus, the irreducibility of the Hp(M, ∇̃)-action does not imply that M is irreducible. In fact, we can
write

D̃(v,w) =


Dv Dw

Dw Dw


.

So, sinceM is a product, the parallel transport τc along a curve c splits along the projected curves c1 and c2. Thus,

(τ−1
c )∗(D̃(v,w)) =


τ−1
c1 0
0 τ−1

c2

 
Dv Dw

Dw Dw

 
τc1 0
0 τc2


=


τ−1
c1 Dvτc1 τ−1

c1 Dwτc2
τ−1
c2 Dwτc1 τ−1

c2 Dwτc2


and this implies that hp(M, ∇̃) = so(2n).

Theorem 3.10. Let M be a Riemannian manifold and let ∇̃ be a metric connection on M with skew-symmetric torsion T̃ . Assume
that M is simply connected, complete and irreducible. If {e} ≠ Hp(M, ∇̃) ≠ SO(TpM), then M is isometric to a Lie group with a
bi-invariant metric or its symmetric dual. Moreover, if T̃ is invariant, then ∇̃ is a canonical connection on M.

Proof. Let p ∈ M such that Dp
≠ 0 and let Θ = Dp be the difference tensor evaluated at p. We denote H = Hp(M, ∇̃)

to simplify notation. Then [TpM, Θ,H] is an irreducible and non-transitive skew-torsion holonomy system. In fact, sinceM
is irreducible, we have that Hol(∇) acts irreducibly on TpM , and then N(H) acts irreducibly on TpM . By making use of the
skew-torsion holonomy theorem we get that N(H) is a simple Lie group. Since H is a normal subgroup of N(H) it follows
that H = N(H). Thus, the holonomy group is non-transitive on the sphere andM is a symmetric space.

Let g be the Lie algebra (TpM, [·, ·]), where [v, w] = Θvw, and let G be the connected Lie group with Lie algebra g.
Recall that G is isomorphic to H via the adjoint representation Ad : G → H (cf. Preliminaries and [2]). Let us consider the
bi-invariant metric on H induced by the inner product on TpM .

Let R be the curvature tensor of M evaluated at p and let R̃ be the curvature tensor of H evaluated at e ≃ p. Observe
that both R and R̃ take values in the Lie algebra of H . So, [TpM, R,H] and [TpM, R̃,H] are irreducible holonomy systems in
Simons’ sense. Therefore, it follows from Theorem 5 in [10] (see also [11]) that R = λR̃, for some λ ≠ 0. Just by taking a
scalar multiple of the Lie bracket on the Lie algebra h of H , we may assume that λ = ±1.

If λ = 1, then by the Cartan–Ambrose–Hicks theoremwe have that the identity id : TpM → TpM extends to an isometry
from M onto the universal cover of H . On the other hand, if λ = −1, taking the symmetric dual M∗ of M , we have that
R∗

= −R. So, with the same argument as before,M∗ is isometric to a Lie group endowed with a bi-invariant metric.
Finally, let us fix a canonical connection ∇

c
≠ ∇ on M . Then, from the skew-torsion holonomy theorem we have that

D = f (∇ − ∇
c), where f : M → R is a differentiable function. Notice that the invariance of T̃ implies that D is invariant. So,

since ∇
c is an invariant connection, we have for all v ∈ TqM ,

0 = ∇
c
vD = v(f )(∇ − ∇

c) + f (q)∇c
v(∇ − ∇

c) = v(f )(∇ − ∇
c).

Then df = 0, and thus f is a constant function. This implies that ∇̃ is a canonical connection onM (see Remark 2.1). �

Remark 3.11. It follows from the proof of the above theorem thatHp(M, ∇̃) is always closed in SO(TpM). In fact, ifHp(M, ∇̃)

is transitive on TpM , then Hp(M, ∇̃) = SO(TpM), by the skew-torsion holonomy theorem. Otherwise, if ∇̃ ≠ ∇,Hp(M, ∇̃)
coincides with the restricted holonomy group of a symmetric space of the group type.
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Taking into account the proof of the above theorem, it makes sense to study the family of connections with skew-
symmetric torsion on a compact Lie group G, which have the form ∇ − fD, where f : G → R is a differentiable function
(actually, we will see later that almost all have this form). We shall do this study in the next section.

4. The holonomy group of metric connections with skew-symmetric torsion on compact Lie groups

Let M be a (simple) compact Lie group endowed with a bi-invariant metric. We present M as a symmetric space
M = (G× G)/diag(G× G). We will denote, with no distinction, the Riemannian manifoldM by (G× G)/diag(G× G) or just
G. We also identify, in the natural way, the holonomy group ofM with G. Recall that the family of canonical connections on
M is the one-parameter family associated with the naturally reductive complements

mλ = {((λ + 1)X, (λ − 1)X) : X ∈ g}, λ ∈ R.

In particular,m0 = p in the symmetric decomposition g⊕g = k⊕p, and in this case the corresponding canonical connection
is the Levi-Civita connection ofM .
Notation.We will denote by ∇

λ the canonical connection associated with the reductive decomposition

g ⊕ g = diag(g ⊕ g) ⊕ mλ.

The ∇
λ-parallel transport along a curve c will be denoted by τ λ

c . In particular, ∇0
= ∇ is the Levi-Civita connection ofM .

Notice that both ∇
1 and ∇

−1 have trivial holonomy, hol(∇1) = hol(∇−1) = {0}. Moreover, these are the canonical
connections that we get from the presentationM = G/{e}, where the action of G onM is given by left or rightmultiplication,
respectively. For all other canonical connections ∇

λ, λ ≠ ±1, we have Hol(∇λ) = diag(G × G) ≃ G. In fact, the holonomy
group of any canonical connection ∇

λ, λ ∈ R, coincides with the isotropy subgroup of the group of transvections of ∇λ. But
the Lie algebra of the group of transvections of ∇λ is given by tr(∇λ) = [mλ, mλ] + mλ (not a direct sum, in general).

From the results in the previous section we have that the group H(M, ∇λ) associated with the difference tensor D =

∇ − ∇
λ, λ ≠ 0, coincides with G. In fact, this follows from Theorem 3.10, where we proved that G ≃ H(M, ∇λ) (up to

universal cover).
Let us fix λ ≠ 0, and consider the difference tensor D = ∇ − ∇

λ. The aim of this section is to study the holonomy group
of the family of metric connections with skew-symmetric torsion given by

∇̃
f
= ∇ − fD, f ∈ C∞(G),

that is, with difference tensor equal to fD.
First of all, recall that if f is a constant function then ∇̃

f is a canonical connection (this is due to the fact that in a simple
compact Lie group there exists only a line of canonical connections; see Remark 2.1). In particular, for f ≡ 0 we have
∇̃

0
= ∇

0
= ∇ , and for f ≡ 1 we have ∇̃

1
= ∇

λ. Recall the special case in which∇
λ

= ∇
±1 is a flat canonical connection. In

this case, the geodesic symmetry moves ∇
λ into the opposite flat canonical connection ∇

−λ
= ∇

∓1 (because the geodesic
symmetry reverses the sign of the difference tensor; see [2, Theorem 1.1]).

Let c(t) be a curve on M with c(0) = p, and denote by τt (resp. τ λ
t ) the ∇-parallel (resp. ∇λ-parallel) transport along

c|[0,t].

Lemma 4.1. We have that τ λ
−tτt is a one-parameter subgroup of Hp(M, ∇λ) ≃ G.

Proof. In fact, let us show that the curve α(t) = τ λ
−tτt ∈ SO(TpM) is always tangent to Hp(M, ∇λ). Let v ∈ TpM and let

v(t) = τt(v) be the parallel transport of v along c(t). Clearly we have that

∇
λ
c′(t)v(t) = −Dc′(t)v(t) = −Dc′(t)τt(v).

On the other hand,

∇
λ
c′(t)v(t) =

∂

∂s


0
τ λ
t τ λ

−(t+s)τt+s(v) = τ λ
t

d
dt

τ λ
−tτt(v).

So,
d
dt

τ λ
−tτt = −τ λ

−tDc′(t)τt = −τ λ
−tτt(τ−tDγ ′(t)τt) = −τ λ

−tτtDc′(0),

since D is a ∇-parallel tensor. This differential equation has a unique solution

α(t) = τ λ
−tτt = e−tDc′(0)

which is always tangent to Hp(M, ∇λ). Finally, it is obvious that α(t) is a one-parameter subgroup of Hp(M, ∇λ) which
concludes the proof of the lemma. �

Wehave a similar result for the family of connections ∇̃
f , where f ∈ C∞(G). Denote by τ̃

f
t the ∇̃

f -parallel transport along
c|[0,t].
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Corollary 4.2. We have that τ̃
f
−tτt ∈ Hp(M, ∇λ) for all t. In particular, we have that Hol(∇̃ f ) ⊂ G.

Proof. Just by following the argument in the proof of the previous lemma we get the following differential equation:

d
dt

τ̃
f
−tτt = −f (c(t))τ̃ f

−tτtDc′(0),

which has a unique solution

τ̃
f
−tτt = e−F(t)Dc′(0) ,

where F(t) =
 t
0 f (c(s)) ds. �

Notice that τ̃
f
−tτt is no longer a one-parameter subgroup of H(M, ∇λ), unless f is constant.

Remark 4.3. Since ∇ and ∇̃
f have the same geodesics, any ∇̃

f -affine transformation is a ∇-affine transformation, since it
maps geodesics into geodesics, and ∇ is torsion-free. Since M is compact, this implies that any ∇̃

f -affine transformation in
the connected component is an isometry ofM (see [16, Lemma 3.6]). That is,

Aff0(∇̃ f ) ⊂ Iso0(M) ⊂ Iso(M).

In particular, for any ϕ ∈ Aff0(∇̃ f ), we have

fD = ϕ∗(fD) = (f ◦ ϕ)D,

since ϕ preserves the torsion tensor of ∇̃ f and Aff0(∇λ) = Iso0(M) (see [2, Theorem 1.1]). This gives an obstruction to the
size of the affine group of ∇̃ f for f a non-constant function.

Corollary 4.4. If Aff0(∇̃ f ) is transitive on M, then ∇̃
f is a canonical connection on M.

Proof. It is straightforward from the above remark. In fact, if Aff0(∇̃ f ) is transitive on M , then f turns out to be invariant
under a transitive subgroup of isometries and therefore it must be constant. �

In the case of a flat metric connection with skew-symmetric torsion we can say even more. In fact, we can prove the
following theorem, which is a refinement of the Cartan–Schouten theorem [3,4].

Theorem 4.5. Let M be a complete, simply connected and irreducible Riemannian manifold. Let ∇̃ be a metric connection on M
with the same geodesics as the Levi-Civita connection. If M ≠ S7 and ∇̃ is flat (that is R̃ = 0), then M is a Lie group with a
bi-invariant metric and ∇̃ = ∇

±1 is a canonical connection on M.

Since we assume that M ≠ S7, it follows from the Cartan–Schouten theorem [3,4] that M is a Lie group. So we can keep
the notation of this section. Before giving the proof of Theorem 4.5 we need the following useful remarks.

Remark 4.6. Let X, Y ∈ mλ and X̃, Ỹ be the Killing fields induced by X, Y with initial conditions X̃(p) = X, Ỹ (p) = Y , where
we identify TpM with mλ in the natural way. It is a well-known fact that the Levi-Civita connection ∇ and the canonical
connection ∇

λ are given by

(∇X̃ Ỹ )p =
1
2
[X̃, Ỹ ]p ≃ −

1
2
[X, Y ]mλ

and

(∇λ

X̃
Ỹ )p = [X̃, Ỹ ]p ≃ −[X, Y ]mλ

.

See, for instance, [16]. Taking into account these formulas, it is not hard to show that the relation between the difference
tensors Dλ

= ∇ − ∇
λ and Dµ

= ∇ − ∇
µ is given by

µ

λ
Dλ

= Dµ, λ, µ ∈ R, λ ≠ 0.

In particular, for all λ ≠ 0, we get the two flat canonical connections with difference tensor D±1
= ±

1
λ
Dλ.

Remark 4.7. Let ∇̃
f

= ∇ − fD. We give an explicit formula for the curvature tensor R̃f of ∇̃
f in local coordinates xi. By

abuse of notation we denote the coordinate vector fields by i = ∂/∂xi. It is not hard to check that the expression for the
∇̃

f -curvature is

R̃f
i,j = Ri,j + f 2[Di,Dj] + f


[∇j,Di] − [∇i,Dj]


+

∂ f
∂xj

Di −
∂ f
∂xi

Dj,
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where [∇j,Di]k = ∇j(Dik) − Di(∇jk). By making use of the fact that there are two flat canonical connections with f ≡ ±
1
λ
,

we get

[∇j,Di] − [∇i,Dj] = 0.

So, the above formula is simplified to

R̃f
i,j = Ri,j + f 2[Di,Dj] +

∂ f
∂xj

Di −
∂ f
∂xi

Dj.

Proof of Theorem 4.5. For each p ∈ G we consider the Lie subalgebra hp ⊂ so(g) defined by hp = span{D̃v : v ∈ TpG}

(algebraic span), with the usual identifications (see Remark 3.3 and [14]).
If hp ≠ so(g) for all p ∈ G, then D̃ is a scalar multiple of D at each point (this follows from the skew-torsion holonomy

theorem) and therefore ∇̃ = ∇̃
f for some f ∈ C∞(G). On the other hand, if there is a p ∈ G such that hp = so(g) then G

has constant sectional curvatures (see [4]) and it must be a sphere, G̃ = Spin(3) = S3 (universal cover). But in the three-
dimensional case, there is only one algebraic 3-form, up to a multiple. So, ∇̃ = ∇̃

f for some f ∈ C∞(G).
Then we may assume that ∇̃ has the form ∇̃ = ∇̃

f for some f ∈ C∞(G).
Now, the previous remark gives a (nonlinear) system of partial differential equations for a flat connection ∇̃

f ,

0 = Ri,j + f 2[Di,Dj] +
∂ f
∂xj

Di −
∂ f
∂xi

Dj, i ≠ j. (*)

If we show that system (*) does not admit a non-constant solution, then we will prove that ∇̃
f is a canonical connection.

Since there are two constant solutions f ≡ ±
1
λ
, we have that Ri,j = −

1
λ2

[Di,Dj], and the above equation becomes

0 =


f 2 −

1
λ2


[Di,Dj] +

∂ f
∂xj

Di −
∂ f
∂xi

Dj.

Now, since D induces a simple orthogonal Lie bracket in each tangent space (by the skew-torsion holonomy theorem), we
can always choose an index couple i, j such that Di,Dj and [Di,Dj] is a linear independent set (locally). So, f 2 −

1
λ2

≡ 0 and
therefore f ≡ ±

1
λ
. �

Next, we prove that the holonomy group of a generic metric connection with skew-symmetric torsion ∇̃ on G coincides
with the Riemannian holonomy.

Theorem 4.8. Let G be a simple, simply connected Lie group endowed with a bi-invariant metric and let g be the Lie algebra of
G. Let ∇̃ be a metric connection with skew-symmetric torsion on G. If ∇̃ is not flat and He(G, ∇̃) ≠ SO(g), then Hol(∇̃) = G.

Proof. Since He(G, ∇̃) ≠ SO(g) we may assume that ∇̃ = ∇̃
f for some f ∈ C∞(G). In fact, this is done in the proof of

Theorem 4.5. Since ∇̃ is not flat, from Theorem 4.5 we have that ∇̃
f
≠ ∇

±1.
Let p ∈ G be such that |f (p)| ≠ 1 and grad(f )p ≠ 0. We choose local coordinates xi like in Remark 4.7. Without loss of

generalitywe can assume that ∂/∂x1 = grad(f ) is the gradient field of f near p and the coordinate fields ∂/∂xi are orthogonal
at p. Then, the linear map R̃f

1,· : g → hol(∇̃ f ) is injective when restricted to the space normal to grad(f )p. In fact, by previous
computations we have that

R̃f
1,j|p =


f (p)2 −

1
λ2


[D1,Dj]p − ∥grad(f )p∥2Dj|p.

Since D induces an orthogonal Lie algebra, [D1,Dj] is orthogonal to Dj at p. Then R̃f
1,j ≠ 0 for all j ≥ 2, and therefore

dim hol(∇̃ f ) ≥ dim g − 1. If dim hol(∇̃ f ) = dim g − 1, then hol(∇̃ f ) is a codimension 1 ideal of g, which is absurd. So,
hol(∇̃ f ) = hol(∇) = g.

Finally, the connected component of Hol(∇̃ f ) coincides with G = Hol(∇). From Corollary 4.2 it follows that Hol(∇̃ f ) is
connected and coincides with G. �
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