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Trajectory Tracking of Underactuated Surface Vessels: A Linear
Algebra Approach

Mario Emanuel Serrano, Gustavo J. E. Scaglia, Sebastián Alejandro Godoy, Vicente Mut, and Oscar Alberto Ortiz

Abstract— This brief presents the design of a controller that
allows an underactuated vessel to track a reference trajectory
in the x− y plane. A trajectory tracking controller designed
originally for robotic systems is applied for underactuated surface
ships. Such a model is represented by numerical methods and,
from this approach, the control actions for an optimal operation
of the system are obtained. Its main advantage is that the
condition for the tracking error tends to zero, and the calculation
of control actions are obtained solving a system of linear
equations. The proofs of convergence to zero of the tracking
error are presented here and complete the previous work of the
authors. Simulation results show the good performance of the
proposed control system.

Index Terms— Control system design, linear algebra, nonlinear
model, tracking trajectory control.

I. INTRODUCTION

THIS brief addresses the problem of trajectory tracking for
an underactuated surface vessel (USV). The challenge

of these problems appears relevant because of the fact that
the motion of the USV in question possesses three degrees
of freedom (yaw, sway, and surge neglecting the motion in
roll, pitch and heave, see Fig. 1), whereas there are only two
available controls (surge force and yaw moment). The use
of trajectory tracking for a vessel system is justified in
structured working spaces as well as in partially structured
workspaces, where unexpected obstacles are found during the
navigation. In the first case, the reference trajectory is set from
a global trajectory planner. In the second case, the algorithms
used to avoid obstacles usually replan the trajectory to avoid a
collision, generating a new reference trajectory from this point
on. In general, the goal is to find the combined control actions
to track the reference trajectory, defined by the variables x ref
and yref .

The trajectory tracking control of the USV receives great
attention from the control community in recent years. In the
literature, different control strategies are proposed. Oh and
Sun [1] proposed a model with predictive control scheme with
line of sight for tacking problems of underactuated vessels
based on linearization. In [2], a feedback controller that forced
the ship to exponentially follow the desired trajectory from any
initial conditions were shown.
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Fig. 1. Marine vessel: global coordinate frame {U} and a body-fixed
coordinate frame {B}.

In [3], the authors proposed a single controller, called
universal controller, which solved both the stabilization and
tracking, simultaneously. An observer-controller scheme to
track a trajectory in real time using the position and heading
measurements of the ship were proposed in [4].

On the basis of Lyapunov’s direct method and passivity
scheme, Jiang [5] proposed two constructive tracking solu-
tions for the underactuated ship. However, both Jiang [5]
and Do et al. [6] imposed the yaw velocity to be nonzero.
Ghommam et al. [7] considered the problem of controlling the
plane position and orientation of an autonomous surface vessel
using two independent side thrusters. Two transformations are
introduced to represent the system into a pure cascade form.
A discontinuous backstepping approach is then employed for
the stabilization of the chained form system via a partial-state
feedback. In [8], a controller was obtained based on Lya-
punov’s direct method and backstepping technique. A similar
control strategy, which is also based on backstepping and
Lyapunov synthesis, was proposed in [9]. The authors con-
sider the problem of tracking a desired trajectory for fully
actuated ocean vessels, in the presence of uncertainties and
unknown disturbances. Similar ideas were also found in [10],
an adaptive dynamical sliding mode controller based on
backstepping method and dynamical sliding mode control
theory was presented. Lapierre and Jouvencel [11] presented a
robust nonlinear controller designed for driving an autonomous
underwater vehicle onto a predefined path at constant for-
ward speed. In most existing backstepping-based techniques,
a very restrictive assumption is that yaw reference velocity
must satisfy persistent excitation conditions and thus, it does
not converge to zero. Consequently, a vessel cannot track
straight-line reference trajectories, which renders unrealistic
practice.

This brief provides a positive answer to the above chal-
lenging problem. A trajectory tracking controller, designed
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originally for robotic systems [12]–[14], is applied for an
underactuated surface ships. This simple approach suggests
that knowing the value of the desired state, we can find a value
for the control action, which forces the system to move itself
from its current state to the desired one. The main contribution
of this brief is that the proposed methodology is based on eas-
ily understandable concepts, and there is no need of complex
calculations to attain the control signal. The algorithm can
be implemented directly on the ship’s microcontroller without
the need to implement it on an external computer, because
the calculations are simple to perform. This avoids the need
to have an external computer and it also avoids problems
that may arise in the communication between the external
computer and the surface vessel. The methodology developed
for tracking the reference trajectory (x ref and yref ) is based
on determining the desired trajectories of the remaining state
variables. These variable states are determined by analyzing
the conditions for a system of linear equations to have an
exact solution. Therefore, the control signals are obtained by
solving the system of linear equations. The main advantage
of this approach is the simplicity of the controller, and the
use of discrete-time equations, which for its implementation
on a computer system becomes natural. Also, to complete
the previous work of the authors, the proof of the zero-
convergence of the tracking error is included in this brief.

This brief is organized as follows. In Section II, the dynamic
model of a underactuated surface ship is presented. The
methodology of the controller design is shown in Section III.
In Section IV, the theoretical results are validated with sim-
ulation results of the control algorithm. Finally, Section V
presents the conclusion and some topics that are addressed
in future contributions.

II. DYNAMIC MODEL OF A MARINE VESSEL

A. Ship Model

Marine vessels require six independent coordinates to deter-
mine their complete configuration (position and orientation).
The six different motion components are conveniently defined
as surge, sway, heave, roll, pitch, and yaw (see Fig. 1). It is
common to reduce the general six degrees of freedom model
to motion in surge, sway, and yaw only. This is done by
neglecting the heave, roll, and pitch modes, which are open
loop stable for most ships. We consider marine surface vessels
described by the three-DOF model (see [15])

ẋ = u cos(ψ)− v sin(ψ) (1)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r (2)

B f = M υ̇ + C (υ)υ + Dυ (3)

where n = [x, y, ψ]T represents the earth-fixed position
and heading, υ = [u, v, r ]T ∈ R3 represents the vessel-
fixed velocities, M is the vessel inertia matrix, C(υ) is
the centrifugal and coriolis matrix, D is the hydrodynamic
damping matrix, the vector f = [Tu, Tr ]T is the control
input vector, where Tu is the surge control and Tr is the
yaw control, respectively. The mass and inertia matrix are

assumed to be symmetric and positively definite. In particular,
the matrixes M and D are assumed to have the following
structure (see [16]):

M �

⎡
⎣

m11 0 0
0 m22 m23
0 m23 m33

⎤
⎦ = MT >0, D �

⎡
⎣

d11 0 0
0 d22 d23
0 d32 d33

⎤
⎦. (4)

The particular structure chosen for M and D is motivated
by the fact that most marine surface vessels are port-starboard
symmetric. In this case, the surge mode is decoupled from
the sway-yaw subsystem, as it can be seen in (4). With the
particular structure of the mass and inertia matrix M given in
(4), the Coriolis and centripetal matrix C(v) is parameterized
as in (5) (see [15]). The matrix B is the actuator matrix,
it maps the control inputs and the real control forces and
moments that act on the vessel

C(υ) �

⎡
⎣

0 0 −m22v − m23r
0 0 m11u

m22v + m23r −m11u 0

⎤
⎦

B �

⎡
⎣

b11 0
0 0
0 b32

⎤
⎦. (5)

The skew-symmetric property of the C(υ) matrix simply
implies the physical fact that centrifugal and Coriolis forces
and moments do not contribute to the kinetic energy of the
vessel.

Finally, we get

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

u̇ = m22

m11
vr + m23

m11
r2 − d11

m11
u + b11

m11
Tu

v̇ = −
(

m23

m22
ṙ − m11

m22
ur − d22

m22
v − d23

m22
r

)

ṙ = −m23

m33
v̇ + m11 − m22

m33
vu − m23

m33
ru − d32

m33
v

− d33

m33
r + b32

m33
Tr . (6)

From (6), replacing the sway acceleration v̇ in yaw accelera-
tion ṙ (row six), the ship model is expressed as

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ) + v cos(ψ)

ψ̇ = r

u̇ = m22

m11
vr + m23

m11
r2 − d11

m11
u + b11

m11
Tu

ṙ = m23

m33

(
m23

m22
ṙ + m11

m22
ur + d22

m22
v + d23

m22
r

)

+m11 − m22

m33
vu − m23

m33
ru − d32

m33
v − d33

m33
r + b32

m33
Tr .

(7)
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Finally, the equations that define the marine vessel model is
written as

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ)+ v cos(ψ)

ψ̇ = r

u̇ = m22

m11
vr + m23

m11
r2 − d11

m11
u + b11

m11
Tu

ṙ = m22

m22m33 − m2
23

×
(
(m11 − m22) vu +

(
m11m23

m22
− m23

)
ru

+
(

d22m23

m22
− d32

)
v+
(

d23m23

m22
− d33

)
r + b32Tr

)
.

(7)

III. CONTROLLER DESIGN

A. Problem Statement

Let us consider the first-order differential equation

dy

dt
= ẏ = f (y, t, u) y(0) = y0 (8)

where y represents the output to the system to be controlled,
u the control action, and t the time. The values of y(t) at
discrete time t = nT0, where T0 is the sampling period and
n ∈ {0, 1, 2, 3, . . .} is denoted as y(n). Thus when computing
y(n+1) by knowing y(n), (1) should be integrated over the time
interval nT0 ≤ t ≤ (n + 1)T0 as follows:

y(n+1) = y(n) +
ˆ (n+1)T0

nT0

f (y, t, u)dt (9)

where u remains constant during the interval nT0 ≤ t <
(n + 1)T0. Therefore, if we know beforehand the reference
trajectory (referred to as yref(t)) to be followed by y(t), then

y(n+1) is substituted by yref(n+1) into (3), and it is possible to
calculate u(n) that represents the control action required to go
from the current state to the desired one.

There are several numerical integration methods to calculate
y(n+1). For instance, the Euler method approaches can be used

y(n+1) ∼= y(n) + T0 f (y(n), t(n), u(n)). (10)

The use of numerical methods in the simulation of the
system is based mainly on the possibility to determine the state
of the system at instant n + 1 from the state, control action,
and other variables at instant n. Therefore, y(n+1) is substituted
by a function of reference trajectory and then the control
action to make the output system evolve from the current
value (y(n)) to the desired one can be calculated. Therefore,
the approximation is used to find the best way to go from one
state to the next, according to the availability of the system
model.

In this brief, we apply this approach in the dynamic model
of a marine vessel and thus obtain the control actions that
allow the ship to follow a trajectory previously established.
In Section II-A, the design of the proposed controller will be
analyzed.

B. Controller Design

In this section, a control law capable of generating the
signals [T u, Tr ] is designed, with the objective that the
ship position [x(t), y(t)] follows the reference trajectory
[x ref(t), yref (t)].

Then, (7) can be expressed in (11), as shown at the
bottom of the page. When using the Euler approximation, we
have (12), shown at the bottom of the page, or, in compact
form as

Aτ = b. (13)

Equation (13) represents a system of linear equations which
allows at each sampling instant to calculate the control actions

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0

b11 0
0 b32

⎤
⎥⎥⎥⎥⎦

[
Tu

Tr

]
=

⎡
⎢⎢⎢⎢⎢⎣

ẋ − u cos(ψ)− v sin(ψ)
ẏ − u sin(ψ)+ v cos(ψ)

ψ̇ − r
m11u̇ − m22vr − m23r2 + d11u

m22m33−m2
23

m22
ṙ − (m11 − m22) vu −

(
m11m23

m22
− m23

)
ru −

(
d22m23

m22
− d32

)
v −

(
d23m23

m22
− d33

)
r

⎤
⎥⎥⎥⎥⎥⎦

(11)

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0

b11 0
0 b32

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

[
Tu(n)

Tr(n)

]

︸ ︷︷ ︸
τ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(n+1)−x(n)
T0

− u(n) cos(ψ(n))−v(n) sin(ψ(n))
y(n+1)−y(n)

T0
− u(n) sin(ψ(n))+v(n) cos(ψ(n))
ψ(n+1)−ψ(n)

T0
− r(n)

m11
u(n+1)−u(n)

T0
− m22v(n)r(n) − m23r2

(n) + d11u(n)(
m22m33−m2

23
m22

)
r(n+1)−r(n)

T0
− (m11 − m22)v(n)u(n) −

(
m11m23

m22
−m23

)
r(n)u(n)−

(
d22m23

m22
− d32

)
v(n)−

(
d23m23

m22
− d33

)
r(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
b

. (12)
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so that the ship achieves the reference trajectory. If the
reference trajectory is given, [xref(n+1), yref(n+1)]T , then it can
be taken into account to calculate the required control action
[T u, Tr ]T that allows the marine vessel to evolve from the
present position to the reference trajectory one. Now, it is
necessary to specify the conditions for this system to have
an exact solution.

From (12), it is seen that in order for the system of equations
to have an exact solution, the rows of b corresponding to the
zero rows of A must be equal to zero. Then, the first condition
for the system of (12) to have exact solution is that the system
of two equations and one unknown variables in (14) have exact
solution
[

cos(ψ(n))
sin(ψ(n))

]
u(n) =

⎡
⎣
(

x(n+1)−xn
T0

)
+ v(n) sin(ψ(n))(

y(n+1)−y(n)
T0

)
− v(n) cos(ψ(n))

⎤
⎦. (14)

Then, the following expression is defined:
x(n+1) = xref(n+1) − kx(xref(n) − x(n)︸ ︷︷ ︸

ex(n)

) (15)

y(n+1) = yref(n+1) − ky(yref(n) − y(n)︸ ︷︷ ︸
ey(n)

). (16)

It is important to remark that the value of the difference
between the reference and the real trajectory is called tracking
error. It is given by ex(n) = xref(n) − x(n) and ey(n) =
yref(n)− y(n); the tracking error is represented by ‖e(n)‖ =√
(e2

x(n) + e2
y(n)). In (15) and (16), the controller parameters

fulfil 0 < kx , k y < 1 so that the tracking error tends to zero
when n → ∞ (see Appendix section).

Considering (15) and (16), (14) can be expressed as follows:[
cos(ψ(n))
sin(ψ(n))

]

︸ ︷︷ ︸
P

u(n)︸︷︷︸
s

=
⎡
⎣
(

xref(n+1)−kx (xref(n)−x(n))−x(n)
T0

)
+ v(n) sin(ψ(n))(

yref(n+1)−ky (yref(n)−y(n))−y(n)
T0

)
− v(n) cos(ψ(n))

⎤
⎦

︸ ︷︷ ︸
q

. (17)

For the system, (17) has exact solution, the ship orientation
must be

tan(ψez) = sin(ψez(n))

cos(ψez(n))

=
yref(n+1)−ky (yref(n)−y(n))−y(n)

T0
− v(n) cos(ψ(n))

xref(n+1)−kx (xref(n)−x(n))−x(n)
T0

+ v(n) sin(ψ(n))
. (18)

The value of ψ(n) that satisfies (18) will be denominated
ψez(n). It represents the ship orientation so that (18) has an
exact solution. This orientation value allows the vessel reaches
and follows the reference trajectory. Then, replacing ψ(n) by
ψez(n) in the matrix P of (17)[

cos(ψez(n))
sin(ψez(n))

]
u(n)

=
⎡
⎣
(

xref(n+1)−kx (xref(n)−x(n))−x(n)
T0

)
+ v(n) sin(ψ(n))(

yref(n+1)−ky (yref(n)−y(n))−y(n)
T0

)
− v(n) cos(ψ(n))

⎤
⎦. (19)

The system (19) is of type Ps = q with more equations than
unknowns, and its solution represent the surge velocity so that
the tracking errors tends to zero. Its solution by least squares is
obtained by solving the normal equations [17], PT Ps = PT q ,
then the solution of (19) is expressed as

uez

=
(

yref(n+1) − ky(yref(n) − y(n))− y(n)
T0

− v(n) cos(ψ(n))

)

× sin(ψez(n))

+
(

xref(n+1) − kx(xref(n) − x(n))− x(n)
T0

+ v(n) sin(ψ(n))

)

× cos(ψez(n)). (20)

Now, the yaw velocity is analyzed. Considering the third
row of (12) and (18), we define

rez = ψez(n+1) − kψ

eψ(n)︷ ︸︸ ︷(
ψez(n) − ψ(n)

)−ψ(n)
T0

(21)

where 0 < kψ < 1 to the tracking error tends to zero (see
Appendix section). Then uez and rez represent the desired
value of u and r so that the tracking errors (ex(n) and ey(n))
tend to zero (see Appendix section).

Considering (20) and (21), to make the tracking error tends
to zero, the following expression is defined:

u(n+1) = uez(n+1) − ku
(
uez(n) − u(n)

)

r(n+1) = rez(n+1) − kr
(
rez(n) − r(n)

)
(22)

where 0 < ku, kr < 1 so that the tracking error tends to zero
(see Appendix section). Finally, by replacing (20)–(22) in the
system (12), we find the next simplified system that allows to
find the control actions that make that the tracking errors tend
to zero as in (23), as shown at the bottom of the next page.
Solving the system (23), it is possible to find the expression
of the control actions in (24), as shown at the bottom of the
next page.

Theorem 1: If the system behavior is ruled by (12) and
the controller is designed by (18), (20), (21), and (24). Then
e(n) → 0, n → ∞ when trajectory tracking problems are
considered.

The values of Tu(n) and Tr(n) represent the control actions
necessary to meet the control goal. The proof of Theorem 1
and the convergence to zero of tracking errors are seen in
Appendix. In the proposed methodology, the reference speeds
are identified first so that the error tends to zero and then
control actions are calculated to keep the velocity profile
obtained. This controller structure arises naturally when the
conditions for the system of (12) are analyzed to have an
exact solution.

IV. SIMULATION RESULTS

This section presents three simulations of the ship, using the
designed controller shown in Section III. The goal of the simu-
lations is to confirm the good performance of the control law.
The simulations are performed using a simulator developed
in the MATLAB platform, which considers an accurate model
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Fig. 2. Simulation results. (a) Tracking trajectory in the x −y plane. (b) Tracking error.
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Fig. 3. Simulation results. (a) Control action Tu . (b) Control action Tr .

of the marine vessel. The control approach is applied on the
original time-continuous system. The values of the parameters
of the marine vessel were obtained from [15], where the model
was identified about the center of gravity (CG), and translating
this model to the desired body frame origins. The body origin
is chosen at 25 cm aft of the bow, or 33.5 cm fore of the CG
along the center line of the vessel

M =
⎛
⎝

25.8 0 0
0 33.8 −11.748
0 −11.748 6.813

⎞
⎠

D =
⎛
⎝

2 0 0
0 7 −2.5425
0 −2.5425 1.422

⎞
⎠ (25)

B =
⎛
⎝

1 0
0 0
0 1

⎞
⎠. (26)

The values of the constants of the controller are[
kx ky ku kr kψ

] = [ 0.98 0.98 0.894 0.894 0.3
]
.
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Fig. 4. Simulation results: surge, sway, and yaw velocities.

A. Trajectory Without Environmental Disturbances

To check the performance of the proposed controller, a
trajectory consisting of a straight line generated with constant
linear velocity and then followed by a semicircumference
of 7 m radius is chosen. The trajectory is generated with
a forward velocity of u = 1 m/s and a yaw velocity of
r = 0 rad/s, and r = 0.136 rad/s, respectively. The reference

[
b11 0
0 b32

] [
Tu(n)
Tr(n)

]
=

⎡
⎢⎢⎢⎣

m11
uez(n+1)−ku(uez(n)−u(n))−u(n)

T o − m22v(n)r(n) − m23r2
(n) + d11u(n)⎧⎪⎨

⎪⎩

(
m33 + m2

23
m22

)
rez(n+1)−kr (rez(n)−r(n))−r(n)

T o − (m11 − m22) v(n)u(n)

+
(

m23 − m11m23
m22

)
r(n)u(n) +

(
d32 − d22m23

m22

)
v(n) +

(
d33 − d23m23

m22

)
r(n)

⎫⎪⎬
⎪⎭

⎤
⎥⎥⎥⎦ (23)

[
Tu(n)

Tr(n)

]
=

⎡
⎢⎢⎢⎢⎣

1
b11

(
m11

uez(n+1)−ku(uez(n)−u(n))−u(n)
T o − m22v(n)r(n) − m23r2

(n) + d11u(n)
)

⎧⎪⎨
⎪⎩

1
b32

((
m33 + m2

23
m22

)
rez(n+1)−kr (rez(n)−r(n))−r(n)

T o − (m11 − m22) v(n)u(n)

+
(

m23 + m11m23
m22

)
r(n)u(n) +

(
d22m23

m22
− d32

)
v(n) +

(
d33 + d23m23

m22

)
r(n)
)

⎫⎪⎬
⎪⎭

⎤
⎥⎥⎥⎥⎦
. (24)
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Fig. 6. Results of the simulation of square trajectory. (a) Tracking trajectory in the x −y plane. (b) Tracking error.

trajectory starts at (xref(0), yref(0)) = (3 m, 3 m), the sampling
time T 0 used for the simulation is 0.1 s and the initial position
of the ship is at the system origin. Fig. 2 shows that the ship
tends to the reference trajectory and the error tends to zero.
Fig. 2(a) shows how the ship reaches the reference trajectory
quickly and then continues without undesirable oscillations.
Fig. 2(b) shows how the tracking error tends to zero when
there is a change in reference trajectory, which produces a
slight increase of the tracking error, but later tends to zero.
Fig. 3 shows how the control actions have no undesirable
oscillations and how the control actions change to ensure that
the tracking error tends to zero as can be seen in Fig. 2. Fig. 4
shows the ship velocity in surge, sway, and angular velocity
in yaw. Note that the velocities remain bounded throughout
the trajectory.

B. Trajectory With Environmental Disturbances

In the second simulation, the goal is to demonstrate the per-
formance of the controller against environmental disturbances
induced by wave, wind, and ocean current given by

ẋ = u cos(ψ)− v sin(ψ)

ẏ = u sin(ψ)+ v cos(ψ)

ψ̇ = r

u̇ = m22

m11
vr + m23

m11
r2 − d11

m11
u + b11

m11
(Tu + Twu)

ṙ = m22

m22m33 − m2
23

×
(
(m11 − m22) vu +

(
m11m23

m22
− m23

)
ru

+
(

d22m23

m22
− d32

)
v +

(
d23m23

m22
− d33

)
r

+b32 (Tr + Twr )

)
. (27)

Several simulations are performed to assess the effect of
random disturbances of different level of intensity. Thus,
Fig. 5 shows the result of 50 simulations, they are performed
varying the disturbance level. These disturbances are given by
Twu = 10−1m11 + λ (sin (10t)− 1) and Twr = 10−1m33 + λ
(sin (10t)− 1), λ changes for each simulation according to
λ = rand (·), where rand(·) is the random noise with a
magnitude of one and zero lower bound. In Fig. 5(a), it
is seen that the ship tends, in all cases, to the reference
trajectory and after reaching the reference value, it keeps on
without unwanted oscillations. Fig. 5(b) shows how all the
tracking errors in x and y are small despite the perturba-
tions. It is possible to see that there is a steady-state error.
Nevertheless, the performance in the variables (x, y) is quite
acceptable.

Finally, the simulation results with a square reference trajec-
tory are shown in Figs. 6 and 7. Thus, the performance of the
system, when the speed of the reference trajectory changes
abruptly, is duly analyzed. The square reference trajectory
is generated with a constant linear velocity of u = 1 m/s
and a yaw velocity of r = 0 rad/s. The initial position of
the ship is at the system origin and the trajectory begins in
the position (x ref(0), yref(0)) = (3 m, 3 m). We assume that
the environmental disturbances are generated similar to that
of [2], Twu = 10−1m11rand (·) and Twr = 10−1m11rand (·),
where rand(·) is the random noise with a magnitude of one
and zero lower bound. This choice results in nonzero mean
disturbances. Fig. 6 represents the performance of the control
law. Fig. 6(a) shows how the ship tends to the reference
trajectory. Fig. 6(b) shows how the error tends to zero. When
the desired trajectory suddenly changes its direction, it is
sensible to expect a momentary increase of the error and then
a later decrease. Values taken by the control actions so that
the marine vessel follows the reference trajectory are shown
in Fig. 7.
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Fig. 6(b) shows that when the trajectory direction suddenly
changes, the error increases, but it decreases afterwards. This
trajectory-type is used to test the performance of the system,
because it is a situation of worst case, where the error is
acceptable.

V. CONCLUSION

In this brief, the trajectory tracking problem of the under-
actuated marine surface vessels were considered. Thus the
design of a trajectory controller for a ship was presented.
The design methodology is based on the search for condi-
tions under which the system of linear equations had exact
solution. These conditions established the desired values of
orientation, linear speed, angular speed, and finally, the control
actions so that the tracking error goes to zero, as shown in
Appendix.

The proposed controller presented the advantages of being
easy to design and to implement, the algorithm was imple-
mented directly on the ship’s microcontroller without the
need of implementing it on an external computer, because
the calculations are simple to perform. In comparison with
previous published control laws [10]–[18], the method pro-
posed here did not need a coordinate transformation. In
addition, our controller did not present the disadvantage of
[5] and [6] where it was imposed that the yaw velocity to be
nonzero. Compared with [12]–[14], in this brief, the demon-
stration of convergence to zero of the tracking errors were
included.

Simulation results showed the effectiveness of the proposed
controller. The proposed controller was simple and presented
an adequate level of robustness to disturbances, as shown in
the simulation results. In addition, the developed methodology
for the controller design was applied to other types of systems.
The possibility to include the saturation of the control signals
and observer-controller schemes, as shown in [3], in the
formulation of the problem will be addressed in the future
contributions.

APPENDIX

PROOF OF THEOREM 1

If the system behavior is ruled by (12) and the controller is
designed by (18), (20), (21), and (24). Then e(n) → 0, n → ∞
when the trajectory tracking problems are considered. First,
the analysis of other variables u, r and ψ are developed as
follows.

The proof of convergence to zero of the tracking errors is
started with a variable u. By replacing the control action Tu(n),
given by (24) in (12), the following expression is found:

uez(n+1) − u(n+1)︸ ︷︷ ︸
eu(n+1)

= ku
(
uez(n) − u(n)

)
︸ ︷︷ ︸

eu(n)

. (A.1)

Then
eu(n+1) = kueu(n) (A.2)

where 0 < ku < 1, then eu(n) → 0, n → ∞.
Using a similar procedure as above, the analysis of variable

er(n) is developed below. Then, considering (21) and (23) and
replacing in (12)

rez(n+1) − r(n+1)︸ ︷︷ ︸
er(n+1)

= kr
(
rez(n) − r(n)

)
︸ ︷︷ ︸

er(n)

. (A.3)

Then
er(n+1) = kr er(n) (A.4)

where 0 < kr < 1, then er(n), n → ∞.
The same analysis applies to variable ψ . From (12) and

(A.3)
ψ(n+1) = ψ(n) + T0

(
rez(n) − er(n)

)
︸ ︷︷ ︸

r(n)

. (A.5)

From (21) and (A.5)

ψ(n+1) = ψ(n) + T0

(
ψez(n+1) − kψ

(
ψez(n) − ψ(n)

)− ψ(n)

T0

−er(n)

)
. (A.6)

Operating

ψez(n+1)−ψ(n+1) = kψ
(
ψez(n) − ψ(n)

)
ψ(n)− T0er(n). (A.7)

Then
eψ(n+1) = kψeψ(n) + T0er(n). (A.8)

Finally, how 0 < kψ < 1 and er(n) → 0 when n → ∞, the
guidance error eψn tend to 0 when n → ∞.

Now, the convergence analysis of ex and ey is developed
below.

From the corresponding equation of (12)

x(n+1) = x(n) + T0
(
u(n) cos(ψ(n))− v(n) sin(ψ(n))

)
. (A.9)

Considering eu(n) from (A.1) and replacing in (A.9)

x(n+1) = x(n) + T0
(
uez(n) cos(ψ(n))− v(n) sin(ψ(n))

)

−T0eu(n) cos(ψ(n)). (A.10)
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The Taylor approximation of cos(ψ(n)) in the desired value
ψez(n) is

cos(ψ(n)) = cos(ψez(n))− sin
(
ψez(n)

+ζ (ψ(n) − ψez(n)
)) (
ψ(n) − ψez(n)

)

0 < ζ < 1. (A.11)

Defining eψ(n) = ψez(n) − ψ(n) as the error in ψ

cos(ψ(n)) = cos(ψez(n))+ sin
(
ψez(n) − ζ eψ(n)

)
eψ(n)

0 < ζ < 1. (A.12)

By replacing (A.12) in (A.10)

x(n+1) = x(n) + T0
(
uez(n) cos(ψez(n))− v(n) sin(ψ(n))

)

−T0(eu(n) cos(ψ(n))

−uez(n)eψ(n) sin(ψez(n) − ζ eψ(n))). (A.13)

By defining

f(n) = −T0(eu(n) cos(ψ(n))

−uez(n)eψ(n) sin(ψez(n) − ζ eψ(n))). (A.14)

Then, considering (A.14) and uez(n) from (20), and replac-
ing in (A.13)

x(n+1) = x(n) + T0

(((
yref(n+1) − ky(yref(n) − y(n))− y(n)

T0

−v(n) cos(ψ(n))

)
sin(ψez(n))+ · · ·

+
(

xref(n+1) − kx(xref(n) − x(n))− x(n)
T0

+v(n) sin(ψ(n))

)
cos(ψez(n))

)

× cos(ψez(n))− v(n) sin(ψ(n))

)
+ f(n).

(A.15)

From (18)

yref(n+1) − ky(yref(n) − y(n))− y(n) − v(n) cos(ψ(n))

= (xref(n+1) − kx(xref(n) − x(n))− x(n) + v(n) sin(ψ(n))
)

× sin(ψez(n))

cos(ψez(n))
. (A.16)

Then, replacing (A.16) in (A.15)

x(n+1) = x(n) + T0((xref(n+1) − kx(xref(n) − x(n))− x(n)
+v(n) sin(ψ(n)))

× sin2(ψez(n))+ · · ·
+(xref(n+1) − kx(xref(n) − x(n))− x(n)

+v(n) sin(ψ(n))) cos2(ψez(n))

−v(n) sin(ψ(n)))+ f(n). (A.17)

Then

x(n+1)= x(n) + T0
(
xref(n+1)−kx(xref(n)−x(n))−x(n)

)+ f(n).

(A.18)

Operating

xref(n+1) − x(n+1)︸ ︷︷ ︸
ex(n+1)

= kx(xref(n) − x(n)︸ ︷︷ ︸
ex(n)

)+ f(n). (A.19)

From (A.19)

ex(n+1) − kxex(n) + f(n) = 0. (A.20)

Finally, discuss ey in the same way as the previous case.
From the corresponding equation of (12)

y(n+1) = y(n) + T0
(
u(n) sin(ψ(n)) − v(n) cos(ψ(n))

)
. (A.21)

Considering eu(n) from (A.1) and replacing in (A.21)

y(n+1) = y(n) + T0
(
uez(n) sin(ψ(n)) + v(n) cos(ψ(n))

)

−T0eu(n) sin(ψ(n)). (A.22)

The Taylor approximation of sin(ψ(n)) in the desired value
ψez(n) is

sin(ψ(n)) = sin(ψez(n))+ cos
(
ψez(n) + θ

(
ψ(n) − ψez(n)

))

× (ψ(n) − ψez(n)
)

0 < θ < 1. (A.23)

Considering eψ(n)

sin(ψ(n)) = sin(ψez(n))+ cos
(
ψez(n) + θeψ(n)

)
eψ(n)

0 < θ < 1. (A.24)

By replacing (A.24) in (A.22)

y(n+1) = y(n) + T0
(
uez(n) sin(ψez(n))+ v(n) cos(ψ(n))

)

−T0(eu(n) sin(ψ(n))− uez(n)eψ(n)
× cos(ψez(n) − θeψ(n))). (A.25)

By defining

g(n) = −T0(eu(n) sin(ψ(n))

−uez(n)eψ(n) cos(ψez(n) − θeψ(n))). (A.26)

Then, considering (A.26) and uez(n) from (20), and replac-
ing in (A.25)

y(n+1) = y(n) + T0

(((
yref(n+1) − ky(yref(n) − y(n))− y(n)

T0

−v(n) cos(ψ(n))

)
sin(ψez(n))+ · · ·

+
(

xref(n+1) − kx(xref(n) − x(n))− x(n)
T0

+v(n) sin(ψ(n))

)
cos(ψez(n))

)
sin(ψez(n))

+v(n) sin(ψ(n))

)
+ g(n).

(A.27)

Considering (18)

xref(n+1) − kx(xref(n) − x(n))− x(n) + v(n) sin(ψ(n))

= (yref(n+1) − ky(yref(n) − y(n))− y(n) − v(n) cos(ψ(n))
)

×cos(ψez(n))

sin(ψez(n))
. (A.28)
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Replace (A.28) in (A.27)

y(n+1) = y(n) + T0((yref(n+1) − ky(yref(n) − y(n))− y(n)
−v(n) cos(ψ(n))) cos2(ψez(n))+ · · ·

+(yref(n+1) − ky(yref(n) − y(n))− y(n)
−v(n) cos(ψ(n))) sin2(ψez(n))

+v(n) sin(ψ(n)))+ g(n). (A.29)

Operating

y(n+1) = y(n)+T0
(
yref(n+1) − ky(yref(n) − y(n))− y(n)

)+g(n).
(A.30)

From (A.30)

yref(n+1) − y(n+1)︸ ︷︷ ︸
ey(n+1)

= ky(yref(n) − y(n)︸ ︷︷ ︸
ey(n)

)+ g(n). (A.31)

Finally, we get

ey(n+1) − kyey(n) + g(n) = 0. (A.32)

Considering (A.14), (A.20), (A.26), and (A.32), we get
[

ex(n+1)
ey(n+1)

]
=
[

kx 0
0 ky

] [
ex(n)

ey(n)

]

︸ ︷︷ ︸
Linear System

+T0

[ −uez(n) sin
(
ψez(n) − ζ eψ(n)

)
cos(ψ(n))

−uez(n) cos
(
ψez(n) − θeψ(n)

)
sin
(
ψ(n)

)
] [

eψ(n)
eu(n)

]

︸ ︷︷ ︸
Nonlinearity

.

(A.33)

Equation (A.33) represents a linear system and a nonlin-
earity, if 0 < kx , ky < 1, then (A.33) tends to zero because
eψ(n) and eu(n) → 0 when n → 0. Finally, because eψ(n)
and eu(n) → 0 when n → 0 is demonstrated that ex(n) and
ey(n) → 0 when n → 0, and the tracking error tends to 0.
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