IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Proof of the area—angular momentum-charge inequality for axisymmetric black holes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2013 Class. Quantum Grav. 30 065017
(http://iopscience.iop.org/0264-9381/30/6/065017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 200.16.16.13
The article was downloaded on 25/07/2013 at 18:40

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0264-9381/30/6
http://iopscience.iop.org/0264-9381
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 30 (2013) 065017 (29pp) doi:10.1088/0264-9381/30/6/065017

Proof of the area—angular momentum—charge
inequality for axisymmetric black holes

Maria E Gabach Clement, José Luis Jaramillo and Martin Reiris

Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Miihlenberg 1,
D-14476 Golm, Germany

E-mail: gabach@aei.mpg.de, Jose-Luis.Jaramillo@aei.mpg.de and martin.reiris @aei.mpg.de

Received 28 August 2012, in final form 4 February 2013
Published 1 March 2013
Online at stacks.iop.org/CQG/30/065017

Abstract

We give a comprehensive discussion, including a detailed proof, of the
area—angular momentum—charge inequality for axisymmetric black holes. We
analyze the inequality from several viewpoints, in particular including aspects
with a theoretical interest well beyond the Einstein-Maxwell theory.

PACS numbers: 04.70.Bw, 04.40.Nr, 04.20.Cv

1. Introduction

The main result of this paper is the following theorem.

Theorem 1.1. Let S be either

1. a smooth stable axisymmetric marginally outer trapped surface (MOTS) embedded in a
spacetime, satisfying the dominant energy condition, with the non-negative cosmological
constant A, angular momentum J, charges Qg and Qw and area A, or,

2. a smooth stable axisymmetric minimal surface in a maximal data set, with non-negative
scalar curvature, with angular momentum J, charges Qg and Qv and area A and non-
negative A.

Then,
A2 > 167747 + (0% + 0% (1)
Moreover, the equality in (1) is achieved if and only if the surface is the extreme Kerr—Newman

sphere (see section 3.2).

This type of relation among physical parameters of black holes plays a relevant role in the
context of the standard picture of classical gravitational collapse [41]. In this sense, the works
of Penrose (see the review [37] on Penrose inequality) offer a paradigmatic example with the
proposal of a lower bound for the total mass in terms of the size (area) of the black hole in
the form m? > A/167. The efforts to formulate similar geometrical inequalities incorporating
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the angular momentum of the black hole have led to two different lines of research. The first
one, started in [19] (see also [18]), followed in [16, 17] and recently extended and improved
in [45], is of global nature and provides a lower bound to the total mass in terms of the angular
momentum and charges in a vacuum black hole spacetime
P2
>+ O+ O3 @)
The second line of research leads to inequality (1), which presents a quasilocal character in

the sense that only the geometry on a closed surface is involved in the analysis.

The first explicit lower bounds for the area solely in terms of black hole physical
parameters, including the angular momentum, were given in [30, 31, 5] (see also [6]) in
stationary black holes, and later in [1, 20, 34] within dynamical scenarios (see also [24, 21,
46, 33, 25, 35] and the review article [22] on the subject).

In the recent article [25], a first straightforward approach to prove inequality (1) in the
dynamical case was presented. It consists in matching the variational problem discussed in
[31] for the stationary axisymmetric case with the dynamical quasilocal treatment in [34] (see
also [15, 38] for further clarification on the relation between the stationary and the dynamical
quasilocal approaches). More specifically, as shown in [25], the proof of the strict case in point
1 of theorem 1.1 with vanishing magnetic charge Oy = O follows directly from the proof in
[31] under the assumption of strict stability. We note that the rigidity result is lacking in [25].
We would like to mention that as this paper was written, we have learned that the inclusion of
the marginally stable case may also be done [14] following the same procedure as in [31], and
whose resolution would lead to the full inequality (1).

Itis remarkable that both inequalities (1) and (2) can be obtained via a variational principle
involving energy flux functionals [35]. Although both procedures can be carried over without
reference to one another, the similarity between the functionals suggests a deeper relation
between them, and ultimately, a possible relation between the inequalities themselves.

In this paper, we pursue three goals. The first one is to establish and give a detailed proof of
the AJQ inequality, completing and extending the analysis in [25]. This is relevant for several
reasons, namely it gives information about the allowed values of the physical parameters
for black holes. In particular, it shows that, even in non-vacuum dynamical scenarios, the
relations between these basic parameters remain simple. Also, it puts in evidence the special
role of extreme Kerr—Newman black hole, a fact that might shed light on the stability of black
holes. Finally, the relevance of this type of inequalities in the study of multiple black hole
configurations and as a powerful tool to probe known solutions was made clear in the work of
Neugebauer and Hennig [40] (see also [15]), where they strongly use the uncharged version
of (1) to prove by contradiction that two rotating black holes do not exist in equilibrium.

The second goal of this paper is to gain insights into the underlying mechanisms leading
to such an inequality as (1). In this respect, we expose two different approaches to the AJQ
inequality. One of them relaxes to certain extent the axial symmetry assumption and makes
use of harmonic maps between the surface and the complex hyperbolic space Hé. The second
approach makes use of geodesics in Hé. Both approaches implement a minimization procedure
which leads to theorem 1.1, a procedure which seems to be needed due to the presence of the
angular momentum (cf [21, 46], where an inequality between area and electric and magnetic
charges is obtained without axial symmetry and where no variational problem is formulated).

The third goal of this paper is to show how stable MOTSs and stable minimal surfaces
over maximal surfaces can be treated on the same footing in the study of these quasilocal
inequalities. Since the global characterization of a black hole in terms of notions such as the
event horizon is of little practical use in the present quasilocal context, we must resort to
quasilocal objects to represent black holes [28, 10, 11, 27]. Both MOTSs and minimal surfaces
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have been extensively studied and used in the literature as signatures of the presence of a black
hole region, at least in strongly predictable spacetimes [29], and more precisely, in the study of
quasilocal inequalities, but, as far as we know, no link was established between the two types
of surfaces in this context. Although in the generic case there are fundamental differences
between minimal surfaces and MOTS [2], in this paper, we point out that their respective
notions of stability crucially lead (in axisymmetry) to the same integral characterization and
ultimately to the same inequality.

Although much has been done in the last few years in the field of geometrical inequalities
for black holes, there are still many open questions to be studied. One of them is the possible
explicit inclusion of the cosmological constant into the inequalities in the presence of angular
momentum (the area-charge case has already been addressed in [46]). We emphasize that our
result, theorem 1.1, allows the spacetime to have a non-negative A, but this quantity does
not enter into the inequality (1). So we wonder how is inequality (1) modified by its explicit
introduction, and moreover, what happens with the negative Lambda case. Results in [46]
provide a first step in this direction.

Another issue that must be better understood is the connection between the two types of
inequalities mentioned above, i.e. (1) and (2). We give some insights into this paper (see the
appendix), but there are many issues that are not entirely clear yet. This is not an easy problem
since it involves linking global and quasilocal viewpoints. It would be, however, very desirable
since its full resolution would give a concrete probe to compare with the Penrose inequality.

Finally, we want to mention that this type of quasilocal inequalities has been discussed
in a broader context lately, mainly by Dain [22, 23], and we are forced to wonder about the
universal validity of such a relation. Within the context of electrovacuum black holes, in this
paper, we give a first step by studying the case of general surfaces within maximal initial data
(that is, surfaces that are not necessarily minimal), and prove its validity. We understand that
there is much work to do in order to generalize the results presented here to ordinary objects.
Nevertheless, due to the rigidity statement in theorem 1.1 and the special properties of black
holes in nature, one might expect that the extreme Kerr—Newman sphere should play a key
role also in the general setting. We believe that this will be an active field of research in the
coming years.

This paper is organized as follows. In section 2, we introduce the basic elements needed
for the statement of our main result. This includes the formal definitions of angular momentum
and charges of a surface within the Einstein-Maxwell-matter theory and an outline of stable
axially symmetric MOTSs and stable axially symmetric minimal surfaces over maximal slices.
In particular, as we mentioned above, we will show that the stability condition for both surfaces
leads to the same integral characterization. Finally but crucially, we identify a set of suitable
potentials to describe the gravitational and electromagnetic fields which proves to be useful
for handling the variational problem needed to establish inequality (1).

In section 3, we present the main partial results leading to theorem 1.1, which are written
up in the form of three lemmas, i.e. 3.1, 3.2 and 3.4 and give, respectively, a lower bound to
the area in terms of a functional on the 2-sphere, an absolute lower bound to this functional
and the rigidity statement. Moreover, in section 3.1, we present an interesting application to
black hole initial data which intends to study the general validity of the AJQ inequality for
black hole spacetimes. In section 3.2, we study the so-called extreme Kerr—Newman sphere,
pointing out the MOTS and minimal surface viewpoints and its connection. We also give an
interesting geometric description of the extreme Kerr—Newman horizon geometry in terms of
semicircles in the complex hyperbolic space.

In section 4, we present the proof of theorem 3.2. We do so by following two approaches
and highlighting different aspects of the underlying structure. The first one, in section 4.1,
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makes contact with harmonic maps, and the second one, in section 4.2, solves the minimization
problem by identifying the minimizers with geodesics in the complex hyperbolic space.

We also include an appendix where we discuss the possible relation between quasilocal
and global inequalities.

2. Settings

In this section, we introduce the objects that will be used as the black hole signatures, namely
stable MOTSs and stable minimal surfaces. We will expose their main properties and, more
importantly, show how, under the axisymmetry hypothesis, the stability notions for both types
of surfaces lead to a single inequality from which (1) is obtained. In order to do so, we begin
with a brief outline of closed surfaces embedded in a spacetime, their intrinsic and extrinsic
geometry and the physical quantities one can associate with them.

Let (V, gu») be a spacetime satisfying the Einstein equations

Gab =8 (THI;;M + TQAZ) - Agab, (3)

where G, := Ry, — %Rgab is the Einstein tensor, g, and V, are the spacetime metric and
its Levi-Civita connection, respectively, A > 0 is a non-negative cosmological constant and
we have decomposed the stress—energy tensor Ty, into its electromagnetic 5 and non-
electromagnetic 7 components. We assume that the latter satisfies the dominant energy
condition.

Consider a space-like surface S embedded in the spacetime, with induced metric g,
and Levi-Civita connection D,. Let £ and k“ be future-oriented null vectors normal to

S such that £,k = —1 and £¢¢ is outward pointing. Regarding the extrinsic curvature
elements, we introduce the expansion associated with €4, 0© := ¢V,L,, the shear tensor
ol = gVt — 16 g, and the normal fundamental form Q{" := —k‘¢?, VL. Tt is

important to remark that the normalization condition on the null normals £¢, k* leaves a boost
rescaling freedom: ¢ = f¢, k' = f~'k* under which 0“) and Q' transform, respectively,
as ) = f0© and Q) = Q¥ + D, In f.

Although the main inequality can be understood more naturally in the context of globally
axisymmetric black hole spacetimes, it is remarkable that in fact, only very little quasilocal
(rather than global) axisymmetry is necessary for its validity. For this reason, we give here the
most basic notion of axisymmetry under which (1) is valid.

We say that the closed surface S is axisymmetric if there exists a Killing vector field “ on
S, i.e. L,qa = 0, with closed integral curves and normalized so that its integral curves have
an affine length of 277, and such that

;C,]Q((IZ) — LnH(Aa) = E,]EL = ‘Cr]BL = 0. (4)

Above A, is the electromagnetic potential given by F,, = V, A, — VA, Fyp is the
electromagnetic field tensor, I1(A,) is the pullback of the form A, to the tangent space of
Sand E; and B, are the electric and magnetic fluxes across S, given by

E| = tk’Fyp, B, = k", ©)

where *F;, is the dual of F;,. Note that £, and B, are independent of a conformal rescaling of
the null normals.

If S is axisymmetric, then we define the projection of ) along the Killing vector n,
QM = Q" n,/n, where n := nn,. Crucially, 2% is then divergence-free and therefore
invariant under null normal rescalings preserving the axisymmetry.
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2.1. Angular momentum and electromagnetic charges

We now introduce three physical quantities' associated with a surface S in the context of
Einstein-Maxwell-matter theory, namely the charges and the angular momentum.
Following [9], we write the electric and magnetic charges of the surface S, respectively, as

1 1
Or = 05(8) =~ / ELdS.  Ow=0um(S) = —— / B.dS, (6
T Js 4r S

where dS is the area element of S. By integrating Maxwell’s equations j* = V,F" and
0 = V,2*F, where J¢ is the electric charge current, we have the conservation law

Qe(dX) = /j“nadV, Om(%) =0, (7

where X is a spatial 3-slice with boundary 8%, n” is the unit normal vector to ¥ and dV is
the volume element in X. In particular, this shows that in the absence of matter between two
surfaces S, §', the charges are conserved, i.e. Q(S) = Q(S").

If the surface S is axially symmetric with the axial Killing vector n“, then one can
define [7, 12] a canonical angular momentum of S given, within the Einstein-Maxwell-matter
context, by

1 1
J=J(S):=—— / QOpads — — / A.n°E, dS. 8)
8 Jg 4 Js

If the axial vector n“ is the restriction of a global spacetime axisymmetric vector, J can be
expressed as [13]

1 1
J(S) = —— / VonedS,, — — / AnE L dS, 9)
]67T S 47T Ky

with dS,, = 2€[,kydS. Note that, as given by (9), J(S) is well defined for an arbitrary non-
necessarily axisymmetric surface S. The first term is the so-called Komar angular momentum

Jg,1e. Jg = —# s V’12dS,,. Moreover, we also have [13, 26]

JOAZ) = — / TMnnPdv — / n%Aq jpntdv. (10)
) )

Therefore, in the absence of matter between surfaces S and S, the angular momentum (9) is
conserved, J(S) = J(5).

2.2. Stable MOTSs and stable minimal surfaces

We recall here the definitions of stable MOTSs in a given spacetime and stable minimal
surfaces over maximal slices, which are the main two types of surfaces we are interested in
this paper.

We say that S is a MOTS if #Y = 0. Moreover, we say that it is stable (or more
precisely, spacetime stably outermost, according to the definition in [34]; see also [3, 4, 28,
42]) if there exists an outgoing vector X¢ = y£¢ — ¢¥k“, with functions y > 0, ¢ > 0, such
that 8x6© > 0. Here, 8y denotes the deformation operator on S [3, 4, 12] that controls the
infinitesimal variations of geometric objects defined on S under an infinitesimal deformation
of the surface along the vector X¢. S is a stable axisymmetric MOTS if S is axisymmetric and
stable with axisymmetric y, . Given a stable axisymmetric MOTS § with the axial Killing
vector n?, the stability condition for S is translated into the inequality (see [34, 36] for details)

R
f [|Da|§ + TSaz] ds > / (1272 + 10 2ap + Guat! @k + p£")]dS (11)
S S

! Note that the sign convention in this paper is consistent with that in [9, 50] and opposite to that in [25, 12]. This
does not affect the inequality (1) that involves only quadratic expressions.
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valid for all axisymmetric functions « on §. Here, | - |, is the norm with respect to the 2-metric
qap ON S, Ry is the scalar curvature on S and § := «ay /¢. Use the Einstein equations (3) and
insert the expression SNTaiM 0k = Ef_ + Bﬁ_ (see [12, 21]) in (11) to obtain the inequality
(see [25])

R
f[u)oqf, + 73012} ds > /[|Q<">|§ +E2 + B2 ]a?dS. (12)
S N

To pass from the stability condition (11) to inequality (12), we have also discarded the non-
negative shear term, the non-electromagnetic matter contribution (due to the energy condition)
and the non-negative cosmological constant.

We now introduce the second type of surfaces we are interested in this paper, namely
stable axisymmetric minimal surfaces over maximal slices. Consider maximal initial data
(2, hap, Kap, Eq, B,) for the Einstein—-Maxwell-matter system, where A, K, are the first
and second fundamental forms of X, respectively, and E, := o, B, 1= *Fpn® are the
electromagnetic fields on . As the datum is maximal, we have 2’K,, = 0. Suppose that
S C X is a minimal surface, namely one whose mean curvature (inside X) is zero. The surface
S is stable if the second variation of the area is non-negative, 62 elA > 0 for all functions «.
Suppose now that S is an axisymmetric surface in the sense introduced before where £ = n+-e,
k = n— e and where 7 is the spacetime normal to ¥ and e; is one of the two normals to S in X.
Then, the axisymmetric surface S is stable if the second variation of the area is non-negative,
331@114 > 0 for all axisymmetric functions «. It is worth noting, to conciliate the stability
definition for minimal surfaces and MOTS, that if for an axisymmetric minimal surface there
is y > Osuch that §,.,6 > 0 (where 6 are the mean curvatures in X), then the surface is stable
in the sense before.

Given a stable axisymmetric minimal surface S in a maximal slice, the stability condition
is translated into the standard

R 1 .
f|:|Da|2 + —Sa2i| ds > /—[R + 162024, (13)
¢ 2 2

where © is the trace-less part of the second fundamental form ® and R is the scalar curvature
of the slice. Using the energy constraint R = |K|* + 2(|E|* + |B|*) + 162 T n“n" and that
QWn* = —K(n, e1), we obtain after discarding some non-negative quadratic terms (in |[K 2
and |E|? 4 |B|?) and the non-negative term in Ta",/f nn®, exactly the same inequality (12) which
was obtained for stable MOTSs.

2.3. The quasilocal potentials

In this section, we write the relevant components of the intrinsic and extrinsic geometry of S,
together with the electromagnetic field in terms of a set of potentials D = (o, w, ¥, x) which
are appropriate for applying the variational procedure which proves inequality (1).

Let S be either an axisymmetric stable MOTS or an axisymmetric stable minimal surface
(in a maximal slice). We assume that over S either J, Qg or Qy is non-zero; otherwise, there
is nothing to prove and the inequality (1) is trivial. Choosing @ = 1 in (12), and applying the
Gauss—Bonnet theorem, it follows that the Euler characteristic of S is positive and therefore
S is topologically a sphere. Thus, the metric over S can be written uniquely in the form (see
(8,20])

ds? = %77 d0? + ¢sin’6 dg?, (14)

where c is a constant. With this choice of coordinate system, the area element and area of S
are given, respectively, by dS = e“dS, with dSy = sinfdfdy, and A = 4me. Moreover, the

6
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regularity of the metric at the poles requires o |99, = c. In addition, the squared norm 7, of
the axial Killing vector n“ is given by 7 = 7 sin’f.

Regarding the 1-form QY, we write its Hodge decomposition in divergence-free and
exact parts (see [34, 35])

QY = eD"@ + Dy, (15)

for some regular functions @ and A on S. From the axisymmetry of S, it follows that this
divergence-free part is given by Q. Explicitly,

Q" =o, QU = —e"“sind &, (16)

where the prime denotes derivative with respect to the variable 6. Next, let i, x, » be regular
functions of 6 defined through the following expressions:

Y = —FE esinb, x' = —B e sinb, (17)

o =2 —2xv" + 2y x’. (18)

It is remarkable that with this choice of potentials, the charges and angular momentum are
given by the boundary values of ¥, x and w. To see this, use (6) and (17) to obtain

0= YD VO 2 2O (19)
and use (8) and (18) to find

J= M. (20)
Moreover, since the potentials ¥, x, @ are defined up to an additive constant, we assume,
without loss of generality, that ¥ (7)) = —¢¥(0) = Qg, x(r) = —x(0) = Om and

o) =—-w0) =4J.
Finally, note that the function wx defined through wj = 2n®’ provides a potential for the
Komar angular momentum Jx (cf [34]): wg (m) = —wg (0) = 4Jk.

3. Discussion of the main results

We present here the main results leading to the AJQ inequality, a discussion about its more
general validity and a detailed study of the unique minimizer for the area, namely the extreme
Kerr—Newman sphere.

We begin by stating three lemmas which, together, prove theorem 1.1. Lemma 3.1
establishes a lower bound for the area in terms of a bounded functional M. This result
comes up simply by rewriting the stability condition (12) for the surface S in terms of the set
D. The second statement, lemma 3.2, gives an explicit sharp bound for the functional M in
terms of the angular momentum and charges. These two lemmas prove the AJQ inequality.
The final statement, lemma 3.4, proves that the AJQ inequality is saturated by a unique set Dy
called the extreme Kerr—Newman sphere. We will discuss this special set in section 3.2.

Consider the stability condition (12) valid for axisymmetric MOTSs and minimal surfaces
(over maximal slices). Since it holds for any axisymmetric function «, we take, as in
[21, 34, 25], the probe function

o =eT2, (21)

Some insights into the reason for this choice of « are provided in section 3.2. Then, rewrite
(12) in terms of the potentials (17)—(18) and use A = 4me“ to arrive, following [20, 34, 25], at
a fundamental inequality which is summarized in the following lemma [25].
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Lemma 3.1. Let S be an axisymmetric stable MOTS or an axisymmetric stable minimal surface
in a maximal slice. Then,

A dme v, (22)
where M is given by
1 Dw +2xDy — 2yDyx|? Dy 1>+ |Dx|?
M::—/ 4o + Dol 4 DT 2DY Z2WDXE VI DX g s
27 n’ U
and the norm | - | is taken with respect to the standard round metric on S°.

A fundamental sharp lower bound for the functional M is stated in the following lemma.

Lemma 3.2. Let D = (o, w, ¥, x) be a regular set on S2 with fixed values of J, Qg and Qw.
Then,

™ > 42+ 0%, (24)
with Q* = Q3 + 0%
The proof of this result involves a minimization problem and can be approached in
different ways, that will be discussed in full detail in section 4.
We want to emphasize that lemma 3.2 does not assume axisymmetry on the set
D = (o,w, V¥, x). One of the proofs will deal with these non-necessarily axisymmetric

sets (see section 4.1). Finally, we give the precise definition of regular set mentioned in the
lemma.

Definition 3.3. The set D = (o, w, ¥, x) on S? is a regular set if the functions o, w, ¥ and x
are C*® on S?, and moreover, we have the following behavior near the poles:

(i) w = +41J] + O(sin®0), ¥ = £0g + O(sin’0), x = £0m + O(sin>H),
where the signs +, — refer to the values at 0 = m, 0, respectively.
(ii) |Dw 4+ 2xDyr — 2¢Dx| = O(sin’ 6).

We remark that if the functions w, ¥, x arise from a smooth set of axisymmetric fields
Qf,"), E,, B, via equations (16)—(18), then they satisfy items (i) and (ii) of definition 3.3
automatically.

It is also important to stress that lemma 3.2 is also valid for smooth functions o, w, ¥, x
such that they satisfy condition (i) in the above definition and M is finite, condition (ii) being
no longer necessary. We will come back to this point in section 4.1.

The final result we present concerns the uniqueness of a regular set saturating
inequality (1).

Lemma 3.4. There exists a unique regular set D saturating the AJQ inequality (1), with

A = 4me’ | 0—0. and it is the extreme Kerr—Newman sphere set Dy = (09, wo, Yo, Xo0) given
by
242 + Q2 :
oo = In ﬁ’ (25)
)
2 2 + 2
oo = 47202 o, (26)
20
Ok (2a3 + Q%) cos 6 — Qwao,/a + 0?sin 6
Vo = — , 27)

%o
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Om(2a2 + Q%) cos 0 + Qrao,/ak + 0?sin* 6

2o

Xo=— (28)

with

24 /4)2 4
J = agmg = ap\Jag + 0%, mo = u, (29)

2
%o = Q% + a%(1 + cos®0). (30)

In section 3.2, we will discuss the properties of the minimizer set Dy and show that this
special datum appears in two non-equivalent important and concrete contexts:

O1. on a MOTS in the horizon of the extreme Kerr—Newman solution, and,
02. on a minimal sphere in the extreme Kerr—Newman throat, which is a maximal initial
datum.

3.1. On the general validity of the AJQ inequality

Case 2 in theorem 1.1 allows to show that, in some situations, the AJQ-inequality (1) is valid
for any surface and not just for stable minimal axisymmetric surfaces over a maximal slice.
The particular situations in consideration will be those of ‘trumpet’ and ‘doubly asymptotically
flat (AF)’ axisymmetric initial data.

This result is interesting in the light of the conjecture that the foliation by maximal slices,
whose leaves are all of the same type (trumpet or doubly AF), is believed to cover the whole
domain of outer communication of the black holes. For this type of solutions, one expects the
inequality to hold over a large variety of surfaces in the whole domain of outer communication.
It is worth stressing that one does not expect the equality in (1) to be achieved at any surface
in the trumpet or doubly AF maximal slice [43].

To define axisymmetric ‘trumpet’ initial data sets, we follow [48] and refer the reader to
this paper for more details. A ‘trumpet’ initial data set for the Einstein—-Maxwell equations is a
maximal and axisymmetric electrovacuum initial datum (X; 4, K; E, B), with ¥ =~ R3\ {0} and
¥ /vy & [0, 1] x R (in particular with an axis having two connected components) and with
particular asymptotics at the origin and at infinity. Precisely, let x' be the standard coordinates
on R?, we require asymptotic flatness at infinity (of R?), and at the origin (of R?) requiring
h to approach a cylindrical metric in the following sense: there exists a diffeomorphism &
between, say, B> \ {0} and (T, o0) x $? so that (Q*iz)ij — izij = o(1) as t — o0, where h
denotes the cylindrical metric of the form h = f2d® + ¢, with g being a Riemannian metric on
S2. We refer to the origin as a cylindrical end. ‘Doubly AF’ initial data are defined in exactly
the same way but now with two AF ends, at infinity and at the origin of R3. We prove below
the following proposition.

Proposition 3.5. Consider either an axisymmetric ‘doubly AF’ or a ‘trumpet’ maximal initial
datum (Z; (g, K); (E, B)) for the electrovacuum system, with total angular momentum and
charges J, Qg and Q. Then for any oriented, non-necessarily axisymmetric embedded
surface S of arbitrary topology, its angular momentum and charges are given by one of the
following two possibilities:

J=0, QEZO, QMZO, or (31)

J=J, Og =9, On = 9Qum. (32)
Moreover, the AJQ-inequality (1) holds.
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Proof. To better visualize the proof, let us assume that we choose a diffeomorphism between
R*\ {0} and ¥ in such a way that the orbits of the Killing field, as seen in R? \ {0}, are exactly
those circles which are the rotations of points around the z-axis. In this way, the two components
of the axis are given by {(x, y,z),x =y =0,z > 0} and {(x, y,z),x =y =0,z < 0}.

Let S be an oriented surface. As a surface in R? \ {0} C R3, it divides R? into two
connected components. If the unbounded component contains the origin {0}, then S encloses
(including §) a compact region in R3\ {0} and therefore (by Gauss theorem) J, Qg and Qy are
zero, namely their values are as in (31). In this case, (1) is trivial. We assume therefore that it
is the bounded component that contains the origin. In this case, the values of J, O and Qy
are (by Gauss theorem again) those of the end, namely as in (32).

Now, in order to prove that the AJQ inequality (1) is satisfied, assume by contradiction that
(1) does not hold. Following [39], there are surfaces” (possibly repeated) Sy, ..., S, realizing
the infimum of the areas A(S ) where Sis isotopic to S, namely Y A(S;) = 1nf{A (S),S ~ S},
where S ~ S means that S is isotopic to S (one can see that the infimum is non-zero).
Moreover, the surfaces are non-contractible (to a point) in R* \ {0} and are also embedded.
It follows that they are orientable (otherwise are contractible) and stable. As the manifold
(X, g) is axisymmetric (complete) and non-compact, every S;, i = 1, ..., m is known to be
axisymmetric. So each of them is either an axisymmetric sphere or an axisymmetric torus (there
are no axisymmetric surfaces of higher genus). But, any axisymmetric torus is contractible to
a point in R? \ {0}, which is not possible. Therefore, all S’s are axisymmetric spheres and as
they are non-contractible (to a point) in R3 \ {0}, they all must enclose the origin. Thus, the
angular momentum and charges of, say, Sy, are the given 7, Qg and Q. Therefore, we have

A(S) = AX(S1) > 1672477 + (Q + O%)’] = 167°[4% + (0} + 0%)’] (33)

as desired. O

3.2. A discussion on the extreme Kerr—Newman sphere

We have seen above that the set Dy given by equations (25)—(28) plays a crucial role in
bounding the area of an axisymmetric MOTS or minimal surface (over a maximal slice), and
moreover, due to proposition 3.5, in bounding the area of any surface in axially symmetric
electrovacuum initial data. We show here how this set is related to extreme Kerr—Newman
solution, from where it takes the name extreme Kerr—Newman sphere set.

It is well known that the Kerr—Newman solution is parametrized by four quantities:
the mass m, the angular momentum J and the electromagnetic charges Qg, Oym. Of these
parameters, let J, O, Oy be fixed and decrease the remaining parameter m as m |, my. If we
denote by D,, the set on the bifurcating sphere (for each m), then the limit lim,,, |, D, = Do
is attained. In other words, we take the limit of D,, as the black holes become extremal to
obtain Dy in (25)-(28). As we discuss below, this way of finding D, allows one to see how
this particular kind of datum arises in the contexts O1 and O2 mentioned in section 3.

The spacetime metrics for the Kerr—Newman solutions, in the usual Boyer—Lindquist
coordinates, are given by (see [13])

2 2 .2
g = — 27 “;m O 2 S;n O d - Ay dide
(2 + a®)? — Ad*sin® 6
+ )y

by
sin® 0d¢? + Kdrz + ¥do?, (34)

2 The conclusion is direct for ‘doubly AF’ initial data. For ‘trumpet’ data, it requires a little more effort but feasible
by taking into account that the ‘asymptotic spheres’ over the cylindrical end satisfy (1).

10
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Figure 1. Penrose diagram of the Kerr-Newman solution and its {t = 0} slice. Below, the Penrose
diagram of the extreme Kerr—Newman solution and its {t = 0} slice displaying the cylindrical end
and the AF end.

where

¥ =1+ a®cos? 6, A=r+d+ Q2 — 2mr. 35)

The parameter a = J/m is the angular momentum per unit mass and again Q> = Q% + Qﬁ,l. The

electromagnetic part of the solution is encoded in the potential A, which is given explicitly by
(see [13])

Ogr

Ay = [(df), — asin® 0(dg).] +

Owm cos b
T X

[a(dt), — (F + a*)(dg)l. (36)

. . 244204
The subextremal Kerr—Newman black holes are those solutions with m? > u.

2
The extreme Kerr—Newman black holes are those solutions with m?> = Fryaro! ‘;ﬂ@. Let us
concentrate on non-extreme Kerr—Newman black holes. Let 7y be the greatest root of A = 0
(corresponding to the event horizon), explicitly ry = m + /m? — a?> — Q2. The range of
coordinates {r > ry} (t € R,0 € [0,7), ¢ € [0, 27) arbitrary) covers exactly the whole
domain of outer communication and its boundary {r = ry} consists of a bifurcating sphere,
a black hole horizon and a white hole horizon (respectively, BHH and WHH, see figure 1).
The bifurcation surface is located at {r = ry} over the maximal slice { = 0}. It has a dual
character: it is at the same time a strictly stable minimal surface over the (doubling of the)
maximal slice {t = 0} and a strictly stable MOTS on the spacetime. The area of the bifurcating
sphere is easily calculated (use that A (rgy) = 0) as

ASy) =4 (rfy + a°) > 4w 4I? + 04, (37)

11
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and we have

A(Sy) | 4 /472 + 04, (38)

as m |, my.
We make now some claims, crucial to link the MOTS and minimal surface perspectives
and show why the limit D,, — D, allows us to see the set D as in O1 and O2.

1. The set D,, over Sy is the same as the set on any axisymmetric sphere S embedded in the
black (white) hole horizon. This can be seen as follows. The past (future) spacetime flow
generated by the stationary Killing field pushes any surface S over the black (white) hole
toward Sy and the convergence is smooth. As the flow by the Killing vector field is an
isometry (also leaving F,;, invariant) and the components (o, w, V¥, x) of the set on the
surface § are intrinsic to the surface, it follows by this and continuity that the set over Sy
or over any axisymmetric sphere S must be the same.

2. The black (white) hole horizon of the extreme Kerr—Newman solution is the limit of the
black (white) hole horizon of the Kerr—Newman black hole solutions as m | myg. To see
this, just take the point-wise limit of expression (34). In this limit, the horizons {r = ry}

approach the extreme horizon {r = my = ,/0? + a(z)}.

3. For every m, consider the initial data over ¥ = {tr = 0}, (X, hn, Kin; Em, By) where we
put a subindex m to emphasize that the initial datum is parametrized by m. ‘Following’
the initial data around Sy as m | mg, a smooth limit initial datum is obtained (see below
for details on how to perform the limit). It is the so-called extreme Kerr—Newman throat,
which is a maximal electrovacuum initial datum on R x §? with the explicit form

47> + 04
hr = Sodi? + £ do% + G+ 0) g de?, (39)
0
, SN0 -
Kr = —J((J/a0)* + ay) —— (dF dr + dr dF), (40)
g
i
Er = _[QE(Q2 + ag sin® 0) — Qu2J cos 9} —i 41)
%
d‘:
B, — —|:QM(Q2 Tl sin0) + QEycose] " “2)
EE
0

The solution is independent of 7 (the coordinate in the R factor; see below), which implies
that 95 is a Killing field. For this reason, the initial datum has the same form if we replace
F by 7 + ¢, where ¢ is a constant. In particular, the coordinate can be chosen in such a
way that the bifurcating sphere Sy (for given m) converges (as m | myp) to the minimal
sphere So = {77 = 0} that we define as an extreme Kerr—Newman throat sphere and which
because of (38) satisfies (1). Of course, any other sphere with constant 7* has the same set
of potentials Dy.

We emphasize that the calculations leading to the extreme Kerr—Newman throat initial
datum (39)—(42) are long but straightforward if one follows a simple procedure. From
(34)—(36), obtain the explicit expressions of 4, K, E and B, over {t = 0} in the coordinates
{r, 0, ¢} (r = ry). Then, make the change of the radial coordinate r to 7 as

U |

7(r) =/ — dr. (43)
m N AT)

Of course, 7(ry) = 0. Express &, K, E, B whose components were given in terms of

{(r,0,¢)} in the coordinates {(#, 8, ¢)}. Note that now the range of the coordinates

12
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{(7,0,¢9)} is [0, 00) x [0, ) x [0, 27). Then in this domain take the point-wise limit
m | mg of each component of the fields (in the {(7, 8, ¢)} coordinates). The result is
(39)-(42).

Summarizing, from 1, 2 and 3, one obtains that the set Dy = lim,,,,, D), verifying (1) can
be achieved as the set on a MOTS inside a spacetime (more precisely on an axisymmetric
surface over the horizon of the extreme Kerr—Newman solution), or as the set endowed on
stable minimal surfaces over maximal slices (more precisely over the extreme Kerr throat
initial datum).

To see that Dy is given by (25)—(28), proceed as follows. Making 7 = 0 in (39), one
obtains the 2-metric of the extreme Kerr—Newman sphere to be

2 4
ds> = £ do* + w sin” 6 dg?. (44)
0

From the definition of ¢ in (14), one obtains (25). To obtain (27) and (28), use (41)
and (42) and the definitions (17). We discuss now how to obtain (26). Over any 2-sphere
{r =ry > ry,t = 0} on a Kerr—-Newman black hole, one uses the null vectors [47]

= (" +a) ()" + a(dy) + AD,)° (45)
2+ a* a 1
k= 0;)% + ——(04)* — —(9,)7, 46
<2AE>(I)+2AE(¢) 22() (46)
normalized such that £k, = —1 to calculate Qy). Taking the limit 7| — ry and then the limit
m |, mg, one obtains a limit form over the extreme Kerr throat, which can be calculated to be
1
QO = — TR (2a§ 2o sin(20)d6 + 4ag,/aZ + 0*(2a; + Q7) sin®(0)de). 47)
0

From (15) and axial symmetry?, by solving dg& = Qéf) and A = fo), and taking into
account ), = 2n@,, we obtain

2@ + 0%)°0 0 20} + Q)
aO(aO+Q ) a%—}—QZ ‘/a%—‘rQZCloEo
1(0) = 1n[/2%0]. (48)
Moreover, we verify wgo(@ = 0) = —wgo(@ = m) = —4Jg, where Jx is the Komar

contribution to the total angular momentum

(245 + Q2)2 2 2 %
=———————"'_|ap/a’+ Q*— Q" arctan | ——— . (49)
T g (@ + 0) i+ Ja+o

Using expression (48), together with (27) and (28) into (18), we obtain wy in (26), and thus,
complete the derivation of the set Dy.
Finally, we present two remarks concerning the extreme Kerr—Newman sphere:

e Dyin Hé. There is an interesting description of the geometry of the extreme Kerr—Newman
sphere with vanishing magnetic charge (Qy = 0), which shows the underlying connection
with the complex hyperbolic space. This connection will be exposed in section 4.2 and
arises when one studies the critical point of the functional M. What we want to show
here is that the set Dy can be visualized as two arcs of circles in Hé (cf figure 2). In order

3 More generally, one can fix @ and A by solving the second-order system: D“D,& = — f, D*D A = D“SZ,(,Z), where
(dQ©) 4 = feap.
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Figure 2. D, as arcs of circles.

to describe these arcs, we consider, instead of the quadruple (o, w, ¥, x), the two pairs
(¢, w) and (¥, x) where

c=—m+yvi+x7). (50)

Then, whether by working with the Euler—Lagrange equations of M (as done in section
4.2, precisely, the form of the rhs of (51) comes from the last two equations of (112),
while the form of lhs comes from the first equation of (112) and (119)) or with the
explicit expression for the potentials, equations (25)—(28), we find the following remarkable
relations:

¢ +io =Rl +B, X +iY = Ree’ + By, (51)
where the angle to the center f is given by (see (101))

/4 2 _ 2
f = 2arctan (W cos 0) (52)

and R| = —2\/472 + 04, B| = Q% , Ry = — £ ./A12 + 0%, B, = 0°/2J.

This shows that the first arc, in the (¢, w) plane, starts at (—QZ, —4\J |) and ends at
(—QZ, 41J |) (this can be obtained by evaluating the pair at the values 0, 7, respectively).
The center of the circle to which the arc belongs lies on the { = 0 axis and its radius is R;.
The arc in the (¢, x) plane starts at (—Q, 0) and ends at (Q, 0). The center of the circle
to which the arc belongs lies on the ¥ = 0 axis and its radius is R,.

On the choice of the probe function o.. Here, we want to give some insights into the choice
of the function ¢, equation (21), entering in the stability condition (12). In particular, it
has the nature of a rescaling factor between null normals and we show that it is related
to the minimizing set Dy. From the transformation properties of (" under a rescaling of
the null normals €¢, k¢, we note that the null vector £ = et - 0%, with A given by the
expression in (48), is such that the associated fundamental form fo”) is divergence-free,
i.e. DQ%) = 0. This provides a natural quasilocal normalization for the outgoing null
vector on S. On the other hand, evaluating « in (21) with the expressions in (25), we can
check af$ = const - E“Kming, where Eil(illing = (0;)* — 0, is the only null vector on § (up
to constant) that extends as a Killing vector in a spacetime neighborhood of S (here, €2 is
the constant horizon angular velocity). In other words, our choice of « in (21) provides
precisely the rescaling from the canonical quasilocal choice £4 on S, with a divergence-free



Class. Quantum Grav. 30 (2013) 065017 M E Gabach Clement et al

fundamental form, to the globally defined Killing vector of the Kerr—Newman spacetime
that becomes null on the horizon. This remark is explained by the rigidity results in [36]
(see also the analysis in [38]).

4., Different avenues to prove the AJQ inequality

The AJQ inequality (1) is obtained from two ingredients, namely from the stability condition,
leading to lemma 3.1, and from the resolution of the naturally associated minimizing problem,
leading to lemma 3.2. In this section, we show two different ways to approach the variational
principle.

It is also worth mentioning here that an interesting approach to the AJQ inequality might
be inspired by the recent work of Schoen and Zhou [45]. In that article, the mass-angular
momentum inequalities for black hole initial data within the context of Einstein—-Maxwell
theory are proven. Moreover, via a careful study of the asymptotic conditions on the data, they
obtain a lower bound on the gap between the general data and the extreme Kerr—Newman
data. This gives not only a stronger control on the geometry of the initial data, but also a
characterization of the Kerr—Newman solution as a border case, a very important issue that
was lacking in [16, 17]. Since the reduced harmonic energy on initial data studied by Schoen
and Zhou is on a similar footing as the functional M,(23), on potentials on the 2-surface
(see the appendix for a discussion on the link between the functional M and an analogous
functional on initial data potentials), it is very likely that a similar bound on the difference
between general potentials and the extreme Kerr—Newman sphere potentials can be found.
This would imply a refinement and improvement of the AJQ inequality. Works along this line
are under current research and will be presented elsewhere.

Before addressing these points, a remark on the implications of the analysis of the AJQ
inequality in the stationary case is in order. In [30, 31, 5], the strict version of inequality (1),
with vanishing magnetic charge, is proved for Killing horizons in axisymmetric spacetimes.
The scheme of that proof shares the two ingredients of the analysis in this section: first, use of a
stability condition in the form of a horizon (outer) subextremal assumption [28, 12] from which
an integral stability condition for axisymmetric Killing horizons is derived; second, definition
of a variational problem from such an integral stability condition, whose resolution leads to the
strict (1). Remarkably, in [25], it is explicitly shown that the first ingredient, namely the integral
stability condition, can be derived directly from the quasilocal (strict) stability of axisymmetric
MOTS, in particular from the strict version of inequality (11). Further geometrical insight into
the relation between the stationary axisymmetric black hole condition and the quasilocal
MOTS stability is provided in [15, 38]. As a consequence, the variational analysis in [30, 31,
5] can be exactly applied to strictly stable axisymmetric MOTS, so that the proof in [30, 31, 5]
of the strict inequality (1) with Oy = 0 extends straightforwardly from the stationary setting
to the dynamical case with arbitrary standard matter [25] (namely the strict version of item 1
in theorem 1.1). The extension of the variational problem in [30, 31, 5] to include the equality
case and the rigidity analysis is under research [14].

Following a different rationale, the two approaches to the variational problem discussed
in this section aim at enriching the understanding of the geometric structure underlying
theorem 1.1. We believe that each of the perspectives presented here gives important insights
into this problem.

The first approach, in section 4.1, deals with non-necessarily axisymmetric sets of
potentials D and its associated functional M. Although the main result, theorem 1.1, holds in
the physical scenario of axisymmetric surfaces S, the fact that the variational problem can be
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stated and solved outside axisymmetry shows that the extreme Kerr—Newman sphere plays a
special role among a wider class of sets D. Inspired by this generalization, one is tempted to
think about the possibility of extending inequality (1) to other non-necessarily axisymmetric
physical situations. This, however, is not an easy task, mainly because it is not clear how to give
a satisfactory canonical definition of angular momentum outside axial symmetry. Nevertheless,
if such a statement can be made, the functional M and its properties studied here might be of
relevance.

The second approach, in section 4.2, is restricted to axisymmetry and therefore, when
solving the minimization problem for M, the Euler—Lagrange equations reduce to a system of
ordinary differential equations which can be solved explicitly. Then, a remarkable point that
comes up when studying these equations is that the boundary conditions J, Qg and Qy for the
minimizer of M determine uniquely the boundary conditions for the remaining potential .
This is the key fact under the sharpness of inequality (1). Actually, an important consequence
of this is that we can prove uniqueness for the minimizer of M with given values of J, Qg, Om
without any reference to the boundary values of o. This is a difference to what we do in the
non-axisymmetric case, where the boundary values of ¢ are prescribed from A = 4mwe?|y—¢.

4.1. Proof from harmonic maps

In this section, we prove lemmas 3.2 and 3.4 by exploiting the connection between M and
harmonic energy for maps from the sphere into the complex hyperbolic space. The first lemma
follows closely the arguments given by Acena et al [1]. To prove the rigidity in inequality (1),
we use certain properties of the distance between harmonic maps in the complex hyperbolic
space.

Proof. (Lemma 3.2)
To prove our claim, we follow the lines and arguments of [1] and refer to that article for
more details. The key points in the argument are the following:

1. The extreme Kerr—Newman sphere, i.e. the set D, satisfies the Euler—Lagrange equations
for the functional M:

(Do + 2xDy — 2y Dy)*> 2
Ao —2=— -

(DY)* + (DxH)*,  (53)

n? n
D¢ 2x D% — 24y D?
Da( w+2x ;// 14 X):O (54)
n
Dy 1
Da< p >—?Daw(mwmxmw—zwm:o (55)
Daw 1 a a a
D, + —zDax(D w~+2xDr — 2y D) =0, (56)
n n

where indices are moved with the standard round metrig on SZ.

2. The functional M is related to the harmonic energy Mg for maps (n, w, x, ¥) from a
subset Q@ C §%\ {# = 0, 7} into the complex hyperbolic space Hé which is equipped
with the metric

dn?  (dw+2xdy —2¢dy)?  dy?+dy?
8H = ra + 7 +4 ” ; (57)
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and is given by

- 1 Dnl?  |Dw+2xDy —2¥Dyx|>  |Dx|?+ |Dv|?
Mo, In|+|w+x1ﬂ YDy +4| X'“‘”'dso.

= — 58
2 Jo n? n* n o

Now restrict the integral in the definition of M, (23) to compact regions with the smooth

boundary  C §?\ {# = 0, 7} and denote the resulting functional as Mg. We have

. 31nsin 0
Mg = Mg +4/1nsin9d5+y§ (4o +1nsin9)%dz, (59)
Q R n

where 7 is the exterior unit normal to the boundary 9€2 of €2 and d/ is the measure element
on d€2. Since the difference between Mg and Mg, is a constant plus a boundary term,
both functionals have the same Euler—Lagrange equations.

3. A result of Hildebrandt et al [32] states that if the domain for the map is compact, is
connected, with a non-void boundary and the target manifold has a negative sectional
curvature, then a minimizer of the harmonic energy with Dirichlet boundary conditions
exists, is unique, is smooth and satisfies the associated Euler-Lagrange equations. That
is, harmonic maps are minimizers of the harmonic energy for given Dirichlet boundary
conditions.

With the above comments, the proof goes as follows: divide the sphere into three regions
as indicated in equations (60). Use a partition function to interpolate the potentials between
extreme Kerr—Newman solution in region 21 and a general solution in region Q. This gives
a Dirichlet problem in region Qy = Qq U Q, which implies, by point 3. above, that the
mass functional for extreme Kerr—Newman is less than or equal to the mass functional for
the auxiliary interpolating map in the whole sphere. Finally, we take the limit as Q2 covers
the whole sphere and show that the mass functional for the auxiliary maps converges to the
mass functional for the original general set.

After giving this general discussion about the proof, we begin with the splitting of the
sphere according to

Q = {sin0 < e 1) Q= e T Cginh <€), Q= le <sindl, (60)

where 0 < € < 1. We also define the region Qv = Qp U Q.
Let f:R—> R eC®R),0< f < 1, be the partition function defined as

d
f(y=1 for <1, f()=0 for 2<z¢, d—{ <1 (6D
and f. be
_ _ log(—logp)
Je(p) = ft(p)), te(p) = ———7—1, p < 1. (62)
log(—loge)
Therefore, we have
fo(p)=0 for p<e e’ fep)=1 for p>e (63)
and
o0
111% / 18, f.1>pdp = 0. (64)
€—> 0

Now we define the interpolating functions. Let u represent any of the variables o, w, x, ¥ and
uq represent any of the variables o, wy, xo, Yo corresponding to the extreme Kerr—Newman
sphere set with the same angular momentum and charges. We define u, to be

e = fe(sin@) u+ (1 — fe(sin®)) up = (u — uo) fe (sin6) + uo. (65)
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This gives uc|o, = uolg, and uc|q, = ulg,,.- We also define
M = M(oc, wc, Ve, Xe)s (66)

and correspondingly Mg, and /\;l§2 when the domain of integration is restricted to some region
Q. We also denote by a superscript ‘0’ these quantities calculated for u.

We have all the ingredients needed to make use of the result in [32]. For this, let us
consider now a fixed value of €, and the functions (o, w, x, ¥) on the set Qrv. By [32], we
know that there exists one and only one set of functions that minimizes M on Qv for given
boundary data, and that this function satisfies the Euler—Lagrange equations of M on Q. By
construction of u., we have that u. and u( have the same boundary values on Qyy,

Ueloqy = Uolaqy - (67)

As we already know that uq is a solution of the Euler-Lagrange equations of M, and thus
of M there, then 1y is the only minimizer of M on Qv with these boundary conditions.
This means that J\;IEZW > M%W. Both M and M are well defined on Qv, and by (59) their
difference is just a constant. Therefore, we also have ./\/lgw = M%W.

As we have already noted, ue|q, = uolg,, and therefore Mg = M(S)h' This together with
the inequality in Qv found above and the fact that S = Q; U Qv give

M= MO (68)
Only the last step of the proof is lacking, that is, to show

Eli_r)r(l) ME =M. (69)
We write

M= My + MG, + MG, = My + MG + Mg, (70)

Using the dominated convergence theorem, it is not hard to see that the first integral in (70)
vanishes in the limit ¢ — 0 since the domain reduces to the poles and we know that M, is
finite. Also, the third term in (70) tends to M as Qy; extends to cover the whole sphere.

To show that the second term in (70) vanishes in the limit € — 0, we consider its different
parts separately. We have

1 D(I)e+2 eD 5_2 GD 62
. / [|DU€|2+4U€+I XeDye — 29D x|
Q

Qn = A ;
T2 e20c sin* 0

DY |2 + |Dx.|?
4DVl + D +|2 el }dso. 1)
€% sin” 0
Using the definition of u, (65), we compute
Du. = (u — ug)D fe + (Du — Duy) fe + Duy. (72)
We see that
o <C (73)

because o and oy are finite on S, and f. < 1. Here, and in what follows, we denote by C, C;
constants independent of €. Also, because of the regularity of ¢ and oy, we have

IDoc|> < 3IDfe|*(0 — 09)* +3|Do — Doy|* +3|Doy| < CiIDfe|* +Ca. (74)
Then, from (73) and (74) and using strongly the property (64) to bound the integral of |Df, |2,
we conclude that the first two terms in Mg, ; go to zero as € — 0.

Now we work with the term

/ [Dwe + 2x.Dre — ZWGDXePd
— So-
QH €2% sin* 9

(75)
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Using the fact that f, is bounded, and o, oy are regular, we have

[Dwe + 2xDre — zweDXeF |Df|2 (w0 — wo + 21/’0)( - 2)(01//)
e20¢ sin* 9 S sin* 6
|Dw + 2X0D1ﬁ 240D x |2 |Dwo + 2X0D1lf0 — 2D xol?
sin* 0 sin*
D _ 2 D 2 _ 2 _ 2 Dv — D 2
iC | Yol? (X X0) +C5| Xol (1/2 o) LCe (X — xo) | 41/f Yol
sin* 0 sin™ 6 sin™ 0
Dy —D 2
| x —Dxol* (¥ — Iﬂo) (76)
sin* 0

The term accompanying the constant Cj is also point-wise bounded in €21y because the extreme
Kerr—Newman sphere satisfies the regularity item (ii) in definition 3.3.

In virtue of definition 3.3, we find that the remaining terms in (76) are uniformly bounded
in Qy. Altogether we derive

/ [Dwe +2xDYe — 29D |2
Qn 20 sin* 0
It is important to remark that the lhs in the above inequality is bounded when the potentials
w, ¥, x are smooth functions on S? satisfying condition (i) in definition 3.3 and are such that
M is finite, that is, condition (ii) is no longer necessary.

In the limit € — O, this integral vanishes by property (64).

Finally, we look at the term

/ IDxe|* + [De|?
Qn

€% sin’

dSo < / CiIDS. |2 + CadSo. (77)
Qi

dSp. (78)

We have, as in (74),

Dy.|? D — x0) 2+ |Dx — Dxol* + |Dxol?
| )(I2 <C | FIP(x = x0)* +1 x xol” + 1D xol <CIIDEP 4G, (79)
€% sin” 0 sin 6

where, in the first inequality, we have used the boundedness of o, 0y. A similar behavior is
found for the second term in (78). Therefore, taking into account the property (64), the limit
€ — 0 of (78) gives zero.

We have shown

hm ./\/lQII (80)
and thus the 11m1t (69). This, together with (68), completes the proof of the lemma. O

Now we present the proof of lemma 3.4 stating the uniqueness of the minimizer for
the area in inequality (1). This is done by exploiting the properties of the distance between
harmonic maps in the complex hyperbolic space.

Proof. (Lemma 3.4)

We follow the lines of Weinstein [49] and Dain [19]. By contradiction, assume that there
exists another regular set D! which saturates (1). Denote with a superscript 1 the quantities
referred to this set (and with a subscript O the quantities referred to Dy). Then, we have

A = dme ¥ = A, (81)

Then, using A > 4me = and (81), we find M| = M. This means that D; is also a critical
point of the functional M, i.e. it is a harmonic map.

By hypothesis, the second solution has the same values of the angular momentum and
charges. Let I be the poles on S2, so

oilr = wolr = £4J,  xilr = xolr = £0m, V¥1lr = Yolr = £0.  (82)
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But also, in virtue of equation (81), we conclude that oy | = op|r = In(Ap/4m) (recall that the
area is determined solely by the value of o on the poles, through the expression A = 4e’©).

In what follows, we will prove that the distance between these two solutions is in fact
zero, and thus that the solutions are identical.

Let (1, @1, x1, ¥1) and (g, wo, X0, ¥o) be two harmonic maps S \ I' — HZ, and
consider, for each (6, ¢), the corresponding points in Hé equipped with the hyperbolic metric
introduced above in equation (57). The distance d between these two points is given by (see
(49D

coshd =1+, (83)
where
5= (wo — w1 + 2x0¥1 — 2x1%0)* + ((xo — x1)* + (Yo — ¥1)H))?
2mino
1 1 — 2
+(—+—>[(X0—X1)2+(¢0—¢1)2]+M- (84)
no o 20110

Therefore, since the functions w, x, ¥, o are regular on S2. d defines a function d : §? — R.
We use the results of Schoen and Yau [44] to deduce that the square distance between harmonic
maps is a subharmonic function on S, that is

Ad* >0, (85)
and, since 8 is a convex function of d2, then
AS > 0. (86)

Let us see now that the distance between the two solutions at I is zero. Begin with the first
term in (84), from item (ii) in definition 3.3, the following behavior is deduced:

(950 +2x059 — 2y 95 x)|. =0 (87)

(note that if the functions w, V¥, x satisfy condition (i) in definition 3.3 and M is finite, then
the solutions of the Euler—-Lagrange equations of M necessarily have the above behavior near
the poles).

Then, (87) together with the boundary conditions give near the poles

wo — w1 + 2x0%1 — 2x1%0 = O(sin’ 9), (88)
which implies
— 2 -2 2
(wo — @1 + 2x0%1 — 2x1%0) _o. (89)
2771770 r

We look now at the second and third terms in (84). Since by hypothesis dp ¥ |r = dp x|r = 0,
we find

Yo — Y1 = xo— x1 = O(sin®6). (90)
Therefore, we obtain

_ 2 _ 23712 1 1
|:[(X0 x1) 2+ (Yo — ¥1)7)] n (_ n _) (o — x0)% + (Yo — wl)g]]
nino m 1o

The last term we must investigate in (84) is the one involving (179 — 7). We write it as

=0. (9
r

(o —m)?

= cosh(oy —o1) — 1, (92)
2nom
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but taking into account the boundary conditions o} |r = op|r, we find

2
(o —m)”| _ 0. 93)
2770771 r
With conditions (89), (91) and (93), one verifies that
8lr =0. %94)

Then, since § is continuous (and smooth on S? \ {0}) and non-negative, & | r= 0,and A§ > Oon
52\ {0}, we can use the standard maximum principle to conclude that § = 0 in S?. Therefore,
d = 0 and the two maps are identical. This completes the proof of the lemma. ]

4.2. Proof from geodesics in H%

We prove now lemmas 3.2 and 3.4 in the axially symmetric case, with zero magnetic charge,
namely Oy = 0. We make Q = QOg. The case when magnetic charge is present can be easily
obtained by rotating along the (x, 1) plane, noting that rotations along the (x, ¥) plane leave
the functional M, (23) invariant. We assume that either J or Q is non-zero; otherwise, there is
nothing to prove.

The fundamental fact allowing to prove lemmas 3.2-3.4 only in terms of geodesics in the
complex hyperbolic plane H?C is the following identity (see equation (59)):
6, 6,

~ 2 %
My 1, = Mp, 6, +40 cosb +4lntan§ , (95)
0 0,
where t = lntan% and
0> ' r_n N2 ” 7
M, 4, :=/ (a/2+4o+(w+ XV 20X GVt >sin9d9, (96)
0 n n
- t ) w42 '_2 2\2 '2+'2
Mt],tz ::f <% + ( Xiz WX) +4X 7 w )df (97)
n

Equation (95) shows that for fixed Dirichlet boundary conditions, critical points of My, 4, are
critical points of M,, ,, and vice versa. Now, consider y (t) = (n, w, ¥, x)(¢) in Hé with
metric gy given by (57). Then, we have the remarkable relation

5]
M, 1, :/ gu(y,y)d, (98)

1
which shows that critical points of the latter functional are geodesics in the complex hyperbolic
plane up to an affine transformation, namely y (¢) = &(at + B) with £(s) being a geodesic
parametrized by the arc length s. Moreover, because

length%% ) distﬂzﬂzp v1, v2)
> c
ty — 1 h—1
global minimizers are exactly those critical points y (t) = & (et + B) for which £ is a length
minimizing geodesic between y (¢;) and y ().

The following lemma, which is constructed on the previous observation, is central to
prove lemmas 3.2-3.4. The proofs are given afterward.

My n(y) = (99)

Lemma 4.1.

(1) There exists a unique smooth minimizer D = (o, w, ¥, x) for the functional My, ¢, with
given Dirichlet boundary conditions D(0;), D(0,). Moreover y (t) = (n, w, ¥, x) () =
E(at + B), where £(s) is a geodesic of Hé parametrized by the arc length s.
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(2) The general expression for the unique minimizer of /\;l,m:_,l with centered boundary
data (n, w, ¥, Ol = 0, =0, =¥, =X lp=—, x (1) = 0, w(11) # 0, is given by

Ly, Vs 4 -
n= Ecs + 3 4ct + c5 coshat , (100)
Jad+ =2

o c
X + iy = cqe + —3, with f = —2arctan
1 2cy

ot
tanh — | . (101)

o acs
‘0:_2_61\/1 _6%772_45%0421’7—2111%(4‘?1//, (102)

where ¢ # 0, ¢3, ¢4 and c5 = 2ccq4 are constants uniquely determined by the boundary
conditions at t| and —t;.
(3) For any positive sequence 0' — 0 and sequence {(o}, @\, X, ¥1)}, such that

limo| =0 # 00, lime) =—4J, limyi =—0Q:=—Qf and, (103)
xi=0, o #0, foralli, (104)
the unique minimizer D'(9) = (o', &', ', ¥') of Myi »_g with boundary data

DO = (of, o}, 1. ¥}), D'(r —0") = (of, =0}, —x{, —V¥}) (105)
has

o'(6) = —In[L(c5)*sin> 6 + 11/4(c})” + (cf)* sin” 6 cosh a't], (106)

for constants c|, c5, o' and where, as before, t = Intan %. Moreover as 0' — 0

_Q . i J

limo' = 2, lim CZS = m, lim ¢ = m, (107)
and if we write

o1 =3 In(Q* +47°) + T, (108)
then

. ai72
91
lim (E) =e. (109)
Proof.

(1) As they differ by a constant, a global minimizer for My, 4, is a global minimizer for ./\;l,l 1o
Moreover, as explained above, the latter is of the form y (1) = & (at 4+ B) with £ (s) being
a geodesic parametrized by the arc length s and realizing the distance distyp (v (1), v (£2))
between y (t;) and y (). If E(s = 0) = y(t;) and &(s = distHzC) = y(t,) (which can
always be chosen by redefining s if necessary), then « and § are unique and determined
by #1, t, and distHé (y (1), y (t2)). But because Hé has a negative sectional curvature and
is simply connected, then between two different points y (¢;) and y (¢,), there is always
a unique minimizing geodesic & (s), with £(0) = y(#;) and & (distiz (¥ (11), ¥ (12))) =
y (t2). It follows that the global minimizer of My, 4, exists, is unique and has the desired
form.

22



Class. Quantum Grav. 30 (2013) 065017 M E Gabach Clement et al

(2) We describe how to obtain a general expression for the unique minimizers of /\;l,m:_,l
whose boundary data satisfy

(o(t1), w(tr), ¥ (t1), x (1)) = (0(r2), —w(t2), =¥ (f2), —x (12)), x(11) =0, (110)

with w(#;) # 0. The Euler-Lagrange equations for /\;l,],,z are integrable and the first
integrals can be obtained as conserved quantities of the form gy (X, y) which arise from
Killing fields X“ for gy. The Killing fields we will use are

X| = 0y, Xy = =2v0, + 0y, X3 =2)0, + 0y. (111)
The corresponding conserved quantities can be combined to give
. 2 ; _ 2 . .
wzacl, ozcuﬂ—ﬁzozcz, acl)(+£=oz63, (112)
n n n

where ¢y, ¢; and c3 are constants and we have inserted explicitly the (positive) constant
o (introduced in item 1 before). Note that ¢; # 0 for if ¢; = 0, then (110) and (112)
imply o identically zero which contradicts w(#;) # 0. To obtain the equation for n (or
equivalently, for o), we use gy (7, ¥) = « and thus

(04 2% =29 X)) | K+ YE
=+ > =a.

n n n
Equations (112) and (113) are indeed equivalent to the equations of motion obtained from
the variation of (96), cf (53)—(56). These equations can_be further simplified by using an
important property of the variables (¥, x). By making ¢ = ¥ —c¢,/ciand x = x —c3/c1,
the second and third equations in (112) reduce to

+4 (113)

acllﬁ—%zo, ozcl)Z—i—%:O. (114)

Multiplying these two equations, respectively, by x and ¥ and subtracting one from
another, we obtain x x 4+ ¥ = 0 which implies 32 + > = ci, where c4 is a constant.
We write

X+ i = cse, with f=—cian. (115)
Now, since ¥ = x and 1& =, then

X2+ v =i’ (116)
We use equations (112) and (116) to rewrite (113) as

%)

% +a?cn? +da’cicin = o’ 117)

We now solve equation (117) for  and use n(¢;) = n(t;), t; = —t, and find (100) with
¢t =43
5 - 1€4-
Now we solve for ¢, x . Note thatin order to have x (1) = x (f2) = Oand ¢ (1) = —V (12)
and at the same time ¥/? + x? = ¢3, the only possibility is to have ¢, = 0 and therefore
. irf | €3
X +iY = cqe’ + —. (118)
C1
We obtain f by integrating the second equation in line (115), using (100) and f(#;) =
—f(t), to find (101). To find ¢ and x, use (118) where c3 is adjusted from cy, cs, & to
have x (1) = x(t2) = 0. To find @ on the other hand, one could use the expression for @
in (112) and integrate. However, a direct and simple expression for w arises when using
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the conserved quantity associated with the Killing field X4 = 210, +2wd,, + x 0, + ¥ dy.
Explicitly,

e XX VY

e (Xa, ) = % + 9%+ c. (119)

2
Noting that the above expression is antisymmetric in ¢ around ¢ = 0, we deduce that the
constant ¢ is zero. Then, from (119), one obtains a direct expression for w. The expressions
that one obtains for w, ¥, x in this form are somehow crude but serve well to the purposes
of the proof of (3). Summarizing, given ¢ #, cs, o, 6; one can associate, following the
construction above, a unique solution y (¢) satisfying (110) with —#, = #; = Intan %‘
(3) A priori, to prove item 3, one could calculate the constants (i, ck, ') from the
prescribed boundary data at ', m — 6' and prove from them, by a direct calculation,
the conclusions (107) and (109). Unfortunately, such a procedure is a computational
nuisance. For this reason, we follow an alternative argument. Given 6; > 0, consider
the map Fy, : R®\ {y = 0} — R3 that to (I, ¢y, ¢s5) associates the boundary values
(o (61), w(6y), ¥ (6))) of the solution (o, w, ¥, x) found from the constants (c1, ¢s, o, 0;)
where « is given by
r
Ing, /2"
Then, if we let 6; — 0, from (100) and the limit limg, o sin® 6; cosh(eIn %) = 2, we
obtain limo (6,) =T — %ln(4c% + c‘s‘). Next, using that ¥ (6;) = c4sin () and that
f(61) — arctan2c;/c2, we find limy (6)) = —= Finally, from (119), (113) and the

=2+

(120)

expression )
a4 . ¢t
I = —cloec2 sin fcos f| — - (121)
4 2 4
n g, 01 4ei + g

: : — 74(;1
we obtain limw(6;) = proavd

compact set to a map Fy given by

1 4cy Cs
Fo(T,c1,c5) = [T — = In (4¢? + %), — , ) 122
oI, €1, ¢5) ( 2 (4ef +¢5) 4¢ + ¢t 4c%+c‘5‘> (122)

This shows that the maps Fy, converge uniformly on any

Moreover, the map F; extends to a diffeomorphism from R \ ({y = 0} N {z = 0}) into
R3\ ({y = 0} N {z = 0}). A close inspection of the limits above shows that the maps F; do
extend smoothly too. We note now that given the values (o7, J, O = Q, 0) (with either J
or Q non-zero), if we take

1 J —
(T, ¢, ) = (01 5l 40, o \/zuziw)’ (123)
then Fo(I'°, ¢{°, ¢°) = (07, J, Q). Itfollows therefore from the above argument that given
(07,J, Q) (with either J or Q non-zero) and sequences {#' — 0} and {(¢', @', ¥, x")}
as in the hypothesis of (3), there is a sequence {(I'!, ¢, ¢5)} with limit (I, ¢§°, ¢°)
such that, F(I'!, ¢}, ¢5) = (o', @', ¥') and therefore the unique minimi;er pf Me;’,n—ef
with boundary data (105) is the unique solution constructed out of (c}, c5, &', }), where
ol =24 1n27 Expressions (106), (107) and (109) are readily checked. This finishes (3)
and the proof of the lemma. O

Proof. (Lemma 3.2) Consider any sequence {0{ J 0}. Now, we divide the interval (0, 7) in
three parts, and write, for the set D

M(D) = Mg + My_gi 7 + Mgi 2 pi- (124)
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Then, we recall the relation between /\;19{!”,9{ and Me;’,nfef which is

70!

+4cos0

i
=0

) (125)

70!

M g () = Mgi 141 (D) + 40 cos 6

41Intan —
+ 2

o o o
where of course y represents the same data as D. Using this, we would like to obtain a sharp
estimation from below to /\/l(,;'yn,@f. For this, we proceed as follows. For every i, consider two

points in HZ2, denoted by Yoi» Vu—oi and given by
Vo = (n(6]), =47, —Qp. —Om = 0), 75 g1 = (1(67), +4/, +Qk. +Oum = 0) (126)

if J # 0, while if / = 0, then we replace 4J in the above expressions by &)’1 tending to zero
sufficiently fast (see below). This is because below we will need to use lemma 4.1 (item 3), for
the minimizers with boundary data y,: and ¥, _,:, but lemma 4.1 requires non-zero boundary
values for w. From the regularity at the poles, one easily deduces that (if J # 0, or if &)‘1
goes to zero sufficiently fast) distHzC (?g;, y(0})) — 0 (see expression (83)) and similarly for
diste (Vr—gi» v (7 = 61)). Consider now any another sequence {6 |, 0}, such that 6] < 6] for
every i and

dist?, (v (01), 7 dist?, (v (w — 61), ¥, _4i
lim Hﬁ,( 1) ,- %) = lim i ( l),- w) —0, (127)
1(65) —1(6}) 1(65) —1(6})
lim#(6]) —1(63) =0, (128)

with, again, #(f) = Intan %. Finally, consider the curve in Hé, denoted by 77i, starting at )70;-
and ending at y,,_,: defined as
1. the minimizer of M;(@é‘),z(@;‘)’ with boundary data 7, y ), if t € [1(63), (O],
2.y () ifr € [t(6]), 1(x — O],
3. the minimizer of M,(n_gi-),,(n_gg), with boundary data y (1(x — 6})), Va—oi» if 1 €
[t(r —0)),t(w — 03)].
By (99), we can write

v —i i i 0
Moy iop (@) = ] (1(r — 63) — 1(63)) = 27 Intan 32 (129)

where «; is the constant associated with the minimizer of /\;l[(g;’)’[(ﬂ_gg) with boundary data
Vois Vxoi»as inlemma 4.1. By (99), (127) and (128), we have ) )

lm M, o0, o) (7)) = B M, (g1 ey (7)) = 0 (130)
and finally, of course,
/\;lz(eg),z(nfeg)(l_/i) = Mf(é)ﬁ),z(é){)(f/i) + MI(T[fG{),t(nfGé)()_/i) + MZ(G{),I(T[—G{)()/)' (131)
Collecting (131) and (125) together with the information (128)—(130), we obtain
i 0]

0
lim My; (D) > lim [ —2(ef —4) Intan 5‘ — 40 cos 6

+8:|. (132)

o
But as 0(6]) — o, = 3In(4J* + 0*) + I with lim(@{/Z)o‘rz’4 = el', we obtain, after a
cancellation,

M(D) =lim My ;g > 4In(Q* +4J%) + 8 = M°. (133)

]
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We present now the proof of lemma 3.4. This is achieved by making use of the explicit
expression for the minimizers of the functional M with given boundary conditions found
above.

Proof. (Lemma 3.4). We know that any critical point of M is represented in terms of a geodesic
y =M, o, ¥, x)of Hé. Regularity implies limn’/n = 2 as 6 tends to O or . This implies
from (117) that @ = 2. On the other hand, the boundary data imply

J —0

=0, 5 = ———. 134
LT ot+an N (39
Then, manipulating (101) while using these values for c¢; and cs, one obtains
) 2ccosf
f = arctan (135)

1 —c2cos?26’

with ¢ = 2J/(y/4J? + Q* + Q?). Plugging this expression in ‘the law of the two arcs’ (51)
gives (26)—(28) with Qy = 0. Equation (25) is obtained from (100). U
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Appendix. Linking global and quasilocal axisymmetric inequalities

In this somehow more informal appendix, we want to show that there might exist a link
between the AJQ and MJQ inequalities (see equations (1) and (2)). The MJQ inequality (2)
is a global manifestation of the constraints (in the maximal spatial gauge) and in this sense
itis a global inequality requiring knowledge of the system as a whole. The AJQ inequality (1)
is instead of a quasilocal nature and does not require global information. Despite the different
realms in which they manifest, they seem to be closely related. The link that we shall establish
could be of help to prove quasilocal inequalities in systems other than Einstein-Maxwell, for
which a global three-dimensional mass functional is shown to exist. More concretely, we will
point out a relation among (1) and (2) by linking the two-dimensional energy functional M
given in (23) and a three-dimensional energy functional given in [16, 17] (see below) , and
whose minimization properties lead to the AJQ and MJQ inequalities, respectively.

Let us first put in parallel how one obtains the MJQ and AJQ inequalities from suitable
functionals.

The inequality (2) has been established in [16, 17] following a similar argument as in
[19]. The black hole configuration on which (2) has been proved is that of an initial datum
with two asymptotically flat ends, where m, J, Qg, Owm in the inequality (2) refers to the mass,
angular momentum and charges of a selected end. The rationale behind the proof of (2) is the
following. One introduces a three-dimensional functional M, defined on such configurations
and bounding the mass (of the selected end) from below, i.e. m > M. Moreover, one has
M > My, where M is the infimum of M among those configurations having (for the selected
end) J, Qg and Qu fixed. Moreover, M is achieved by the extreme Kerr—Newman solution.
The inequalities m > M and M > M, together with the explicit expression for M, give (2).

On the other hand, the rationale behind (1) that we have developed in the previous
sections was the following. We introduced a functional M defined on a certain surface (i.e.
stable MOTS or stable minimal surface over a maximal slice) and bounding its area from
below, more precisely by A > 4we~8/8 Then, we showed that the extreme Kerr—Newman
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sphere realizes the absolute minimum of M among all configurations having J, Qg and Owm
fixed. Denoting by M, the value of M at the extreme Kerr—Newman sphere, we obtain
A > 4meMo=8/8 which gives (1).

It is clear that the two procedures described above are formally similar and we will see
that although both can be carried out without any reference to one another, they are indeed
remarkably related. More precisely, we state that the inequality m > M > M, implies that the
extreme Kerr—Newman sphere is a critical point of M (even more, it can be shown from this
that the extreme Kerr—Newman sphere is a local minimum for M). However, we do not know
at the moment whether the fact that the extreme Kerr—Newman sphere is a global minimizer of
M can be established solely from the inequality m > M > M. This gives a partial connection
in the form MJQ = AJQ. In the other direction, namely AJQ = MJQ, we note that with the
help of the Penrose inequality A < 167rm?, one obtains for outermost minimal surfaces

2 4
2> i > M,

167 4
which is an inequality slightly worse than (2). Despite these interesting relations, many issues
onto the link between the inequalities still remain in shadows.

In order to see how the first implication shows up, we begin by defining the
three-dimensional potentials D = (6,d, Y, x) over maximal electrovacuum initial data
(X, h, K, F) and then introduce the functional M together with a crucial minimizing property.
We follow [17] on this construction.

We write the spatial metric on the maximal initial datum in the form

m (A.1)

- (di? _
h= et <L2 + d92> + ¢ sin20(dg + v dF + vy d6)?, (A.2)
r

where v;, vy are functions of 7,0, which spans over R? \ {0} and defines &. For the
electromagnetic fields, we have the relations

E,= Fabnba B, = *Fabnb’ (A.3)

daX = Fan’, 3.V = Fan’”, (A4)

where n“ is the unit normal to ¥. These expressions define the potentials v+, x. Finally, a
potential @ is defined through

D@ +2XDayr = 2U Dy = 2€anc K. (A5)

Observe that because the norm of the axial Killing vector ¢ is null over the axis, the differential
of the potentials (@, 1/;, X ) at the axis is zero and therefore their values remain constant all
along them. As they are defined up to a constant, one can take them to be ‘centered’, namely
Olg=r = —®lo=0, Y'lo=r = —V¥lp=0 and Xlo=r = — X lo=0- _

It is interesting and illustrative to see the relation between the potentials Dy =
(69, Wy, gﬁo, Xo) corresponding to the extreme Kerr—Newman solution over, say, the slice
{t = 0}, and the potentials Dy = (00, wg, Yo, xo) defining the extreme Kerr—Newman sphere
(25)—(28). The explicit form of the three-dimensional potentials Dy can be found in [13] (see
pp 197-204) and we have

(7 — Q% + 2my (i + my))? — ial sin” 6
n 9

5o =1 5 (A.6)

2(Go + Go) = In[(F — Q% + 2my (7 + my))* — Pag sin® 0], (A7)
where 7 = r — ry = r — mp. From this, we obtain

lim 60 (7, 0, ¢) = 00 (6, ¢), (A.8)
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2

A
1im 2(6o (7, 6, @) + Go (7, 0, 9)) =In4J> + 0* = In -
r—0 167‘[2

where oy is given by (25) and (as before) A = 4me‘. Together with (A.2), this shows that the
{(6, ¢)} coordinates on the spheres {r = 7|} become, as 7; — 0, the unique ones for which
the induced metric (over {7 = r;}) is expressed in the form (14). Moreover from (A.3) and
(A.4), it is deduced that over any sphere {7/ = r}, it holds

o= S0 (A10)

sin 0 sin

As explained in section 3.2, £, and B, converge as 7/; — 0 to those given by (41) and (42),
respectively, that is those of the extreme Kerr—-Newman sphere. From this, (17) and (A.9), we
deduce that the limit of the potentials ¥ and j over the spheres {r = 7} converges to (27) and
(28), respectively, that is

2¢, (A.9)

}i_r)%xﬁ(f, 0, 9) =00, ), im (7, 0. ¢) = x0(9. ¢). (A.11)
The same property is also obtained for wy
lim & (7, 6, ) = wo (8, ¢). (A.12)

Given the set of three-dimensional potentials D, we define, as done in [17], the energy
functional M on D

e |DoJ2+ gDy —yDx | & -

e > + F(IDXI + DY )) dvp,  (A.13)
where e = e~ 2Ui2, AV, = i sin 0drdfde, D is the Euclidean differential and the norms are
Euclidean norms.

Although in principle the functional M was introduced on axisymmetric maximal initial
data with two asymptotically flat ends, we will consider it acting on more general sets of
functions @(6, w, lﬁ, x ) with fixed J, Qg and Qu, not necessarily arising from the potentials
of an initial state. In this setup, a key property of M, which is deduced from the arguments
in [17], is the following. Let D= (@,0, %, 1,5) be a set that is the extreme Kerr—Newman set
outside a compact set in R* \ {0}. Then, M (D) = M (D), where Dy is the set for the extreme
Kerr—Newman solution. In other words, the extreme Kerr—Newman set is a minimum of M
under variations of D, of compact support.

We are ready to explain how to deduce that D is a critical point for M from the properties
of M. Let D = (o, w, ¥, x) be a set on the sphere 52 and D, be the extreme Kerr—Newman
sphere set, both with the same angular momentum and charges J, Qg and Qy;. Define the set
for the functional M

D, = (D — Dy). (A.14)

Let £ (x) be a real function equal to 1 for x < 0, equal to —x + 1 for x € [0, 1] and equal to
0 for x > 1. For every € > 0, define & () = —1/7 + 1/€. Finally, consider the data for the
functional M

M= 4<|DU|2+
R3

Dy.e(7. 60, 9) = Do(7. 0, ¢) + D (6, ). (A.15)
A long but otherwise straightforward calculation shows
dM(D 1dM(D
M( )\-) = lim - ( )»,6) (A16)

di =0 e—>0 € dxr )L=()'

Now, since M (25) > M (150), the right-hand side is zero for every € > 0; therefore, the
left-hand side is zero and, because D was arbitrary, we conclude that Dy is a critical point of

M.
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