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Abstract

Pleiotrophin (PTN), a developmentally-regulated trophic factor, is over-expressed in the striatum of parkinsonian rats. Because striatal
PTN can provide trophic support to dopamine neurons, we identified the cellular types containing PTN in the striatum of adult rats. By means
of fluorescent double-immunolabeling, we found PTN to co-localize with a neuronal nuclei marker but not with glial fibrillary acidic protein.
The number, distribution, and morphology of the PTN-immunolabeled cells suggested that they were interneurons. Further double-
immunolabeling studies ruled out PTN localization to calretinin- and parvalbumin-containing interneurons. Instead, ~40% of the PTN-
immunolabeled neurons contained nitric oxide synthase or somatostatin and ~60% expressed the vesicular acetylcholine transporter,
supporting that they were GABAergic nitric oxide synthase/somatostatin-containing and cholinergic interneurons. Further work is necessary

to determine if PTN from striatal interneurons can provide trophic support to dopamine neurons.

© 2005 Elsevier B.V. All rights reserved.
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Pleiotrophin (PTN) is a neurite outgrowth-promoting
factor [20] and a mitogen isolated from bovine uterus [15]
which is highly expressed in the nervous system and non-
neural tissues during embryonic and early postnatal
development [23]. PTN expression in the adult central
nervous system is very low, but it can be induced in an
activity-dependent manner [24] and after ischemic insults
[22].
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Recent studies revealed that PTN mRNA is increased in
the striatum after nigrostriatal lesions [9] and chronic
levodopa therapy [8]. As PTN promotes differentiation
[9,16] of dopamine neurons in vitro, and increases the
differentiation of embryonic stem cells to dopamine neurons
[10], PTN might play an important role in nigrostriatal
system development and in the compensatory mechanisms
that take place in Parkinson’s disease [4,17,25]. Therefore,
it is important to determine what cellular elements express
PTN in the basal ganglia. We have previously shown that
unidentified cellular elements express PTN mRNA in the
striatum [8]. Here, we performed Western blots and
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double-immunofluorescence on tissue sections to charac-
terize PTN protein localization in the rat striatum.
Experiments were carried out on tissue samples from
female Wistar rats (220—250 g) in compliance with the
European Directive No.: 86/609/EEC. To obtain protein
extracts for Western blot, the rats were anesthetized with
ketamine and xylazine (40 mg/kg and 2 mg/kg ip.,
respectively) and decapitated. The brain was removed and
placed on a cold surface where the cerebral cortex and
striatum were dissected out. The tissues were then placed
in Tris 50 mM pH 7.4/NaCl 2 M containing a cocktail of
protease inhibitors (Aprotinin 1 pg/ml, Leupeptins 1 pg/
ml, Pepstatin A 1 pg/ml, PMSF 1 mM, EDTA 1 mM)
and homogenized. Total protein concentration of the
samples was measured using the BCA Protein Assay
Kit (Pierce Biotechnology, USA). Western blots were
performed on crude protein extracts (50 pg of total
protein; Fig. la) and on a fraction of these extracts
enriched in heparin-binding molecules (Fig. 1b). To
concentrate the heparin-binding molecules, 200 pg of
total protein (in 1 ml of Tris 50 mM pH 7.4/NaCl 0.5 M)
was incubated at 4 °C overnight with 80 ul of heparin-
conjugated Sepharose beads (10%, Amersham Bioscien-
ces, France), washed 3 times with 500 ul of Tris 50 mM
pH 7.4/NaCl 0.5 M, then with Tris 50 mM pH 7.4. This
procedure provided a very strong evidence that the
antiserum has no cross-reactivity with other closely-
related heparin-binding growth factors. The eluted pro-
teins were electrophoresed on a 15% polyacrylamide gel
and electrotransferred to an Immobilon-P membrane [16].
The membrane was incubated with the anti-PTN antise-
rum (rabbit polyclonal antibody directed against the
amino acids 94—168 mapping at the carboxyl terminus
of recombinant human PTN (thPTN), 1:100, Santa Cruz
Biotechnology, USA), a horseradish peroxidase-conjugat-
ed anti-immunoglobulin, and developed with standard
chemiluminescent procedures. In order to test antiserum
specificity, we exposed 3 ml of it (dilution 1:100) for 2
days to an Immobilon-P membrane containing 320 pg of
rthPTN. Then, we eluted the specific anti-PTN antibodies
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which were used to demonstrate the presence of PTN in
protein extracts (Fig. 1b).

The antiserum revealed, both in cortical and striatal
samples, an 18 kDa molecular weight band that matched the
molecular weight of thPTN, and additional bands of about
36, 15, and 12 kDa, which were not observed in the lane
loaded with thPTN. Preadsorption of the anti-PTN antise-
rum abolished all staining, while incubation of the blotted
membranes with purified anti-PTN antibodies revealed the
presence of the 18 kDa band and to some extent the other
bands only in the brain protein samples (Fig. 1b). These
results suggest that the 36 kDa band is a PTN dimer and the
low molecular weight bands represent truncated forms of
PTN produced in vivo [2,6,14].

To obtain tissue for immunohistochemistry, 7 rats were
anesthetized and transcardially perfused with 4% parafor-
maldehyde in 0.1 M phosphate-buffered saline (PBS, pH
7.4). The brain was postfixed for 2 h, cryoprotected in
solutions with increasing sucrose concentration, and serially
cut in 40-pm-thick coronal sections. The free-floating
sections were incubated for 48 h at 4°C with the anti-PTN
antiserum (1:100), rinsed in PBS, and incubated for 2 h at
room temperature with a biotin-labeled anti-rabbit IgG
antiserum (1:250; Vector Laboratories, USA). The primary
antibody was visualized by means of an avidin—biotin
peroxidase complex and 3,3’-diaminobenzidine [17]. Two
control conditions were tested to determine the specificity of
PTN labeling in brain sections. First, the primary antiserum
was omitted from the experimental protocol leading to no
tissue labeling (not shown). Second, the primary antiserum
was exposed to membranes containing rthPTN (see above),
then the antiserum, devoid of the anti-PTN antibodies, was
used to label brain sections. Overall, PTN was present in
145 + 29 cells (mean = S.D, n = 7) per section per
hemisphere (coronal plane 0.24 mm anterior from bregma,
[19]) which were distributed throughout the striatum and
had different neuron-like morphologies (Figs. 2a, b, c, d).
Preadsorption of anti-PTN antibodies almost abolished the
staining (Fig. 2f). Consistent with previous findings
[5,21,23,24], PTN-immunoreactive neurons were found in
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Fig. 1. Pattern of labeling produced by the anti-PTN antiserum in Western blot. Lanes contained crude proteins (a), extracted from cerebral cortex (Cx), striatum
(St), or recombinant human pleiotrophin (rPTN, 50 ng). The antiserum weakly labeled an 18 kDa band corresponding to the PTN molecular weight. A similar
blot, performed on extracts enriched in heparin-binding molecules (b), revealed some additional bands (left lanes). The pattern of labeling was almost abolished
when the membrane was developed with an antiserum that was neutralized by previous incubation with rPTN (central lanes), and was reproduced by incubation
with purified anti-PTN antibodies (right lanes). The arrows indicate weakly labeled bands.
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Fig. 2. The morphology and low density of striatal neurons labeled with the anti-PTN antiserum (a—d) suggested that they were interneurons. Some of them
had a large rounded or polygonal soma from which few thick non-spiny dendrites emerged (a, d). The other PTN-immunoreactive neurons had smaller somata
from which two or more non-spiny and long processes could be followed for a hundred micrometers or more from the soma emerged (b, c). To verify the
specificity of tissue labeling, adjacent striatal sections were incubated with the anti-PTN antiserum (e) or with an aliquot of antiserum that was previously
exposed to membranes blotted with thPTN with the purpose of removing the specific anti-PTN antibodies from it (f). The procedure resulted in an almost
complete disappearance of labeling. Double immunofluorescence for PTN (red) and the NeuN (green), or GFAP (green), in striatal sections showed that PTN
was co-localized with NeuN (g) but not with GFAP (h). Scale bar: 20 um (a—d); 100 um (e, f); 20 pm (g); 50 pm (h).

the cerebral cortex and hippocampus and in glia-like cells in
white matter tracts (not shown).

The morphology and distribution of labeled elements
suggested that they were striatal interneurons. The main
classes of striatal interneurons are the large cholinergic
interneurons and GABAergic interneurons, the latter can in
turn be sub-classified into parvalbumin-containing, nitric
oxide synthase (NOS)/somatostatin (SST)/neuropeptide Y-
containing, and calretinin-containing interneurons ([11]). To
establish that the labeled cells were interneurons and further
determine which ones were PTN-immunoreactive, we
performed double-fluorescent immunolabeling for PTN plus
an interneuronal marker in striatal sections adjacent to those
stained with 3,3’-diaminobenzidine. We first ran the
incubation with the anti-PTN antiserum, rinsed in PBS,
and then incubated for 48 h at 4 °C with the second primary
antiserum. PTN was visualized with biotin-labeled anti-
rabbit IgG antiserum (Vector) and streptavidin-Cy3 (Sigma,

USA), the other antigens with Alexa® 488 labeled anti-
bodies (Molecular Probes, USA). The second primary
antiserums were: (i) mouse anti-neuronal nuclei marker
(NeuN, Chemicon, USA, 1:100); (ii) mouse anti-glial
fibrillary acidic protein (GFAP, Sigma, 1:4000); (iii) goat
anti-vesicular acetylcholine transporter (VAChT, Chemicon,
1:500); (iv) goat anti-SST (Santa Cruz, 1:500); (v) mouse
anti-neuronal NOS (BD Transduction Laboratories, USA,
1:500); (vi) mouse anti-parvalbumin (Swant, Switzerland,
1:1000); and (vii) goat anti-calretinin (Chemicon, 1:500). As
expected, all the PTN-immunoreactive cells contained
NeuN (Fig. 2g) but not GFAP (Fig. 2h). Double immuno-
labeling (Fig. 3) further confirmed that they were interneu-
rons. The PTN-immunoreactive neurons contained SST
(range 33-45%), NOS (range 37—-53%), or VAChT (range
60-63%) (Fig. 4a), but not calretinin or parvalbumin.
Conversely, most VAChT-immunoreactive neurons (range
72—76%) and a minority of either SST- (range 15-20%) or

Fig. 3. Double immunofluorescence for PTN (red) and the interneuron markers (green) in striatal sections. PTN was co-localized with NOS (a), SST (b), and
VAChT (c) but not with parvalbumin (d) and calretinin (e). Double-labeled neurons are yellow. Scale bar: 20 pum.
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Fig. 4. Bar graphs showing the distribution of interneuron markers by PTN-
immunoreactive striatal neurons (a) and of PTN within each striatal
interneuron subpopulations (b). The proportion of labeled cells was
estimated from direct counts performed on 10 non-overlaying 250x
microscopic fields distributed along a single striatal section per rat (0.20
mm anterior from bregma, [19]; Mean + SD; n = 3 rats).

NOS-positive neurons (range 12—18%) showed PTN
immunoreactivity (Fig. 4b).

Since the discovery of PTN in 1989 [15,20], a body of
work was devoted to describe its distribution in the embryo
and neonate and to disclose its function during develop-
ment, in the central nervous system as well as in many
other tissues. However, very little is known about the
localization and function of PTN in the adult brain. To our
knowledge, this is the first report concerning the cellular
localization of PTN in the rat striatum. The main finding
was that PTN is present in two major classes of striatal
interneurons, the cholinergic, and SST/NOS-containing
GABAergic interneurons.

Two main neuronal types are present in the rat striatum,
the output neurons with densely spiny dendrites, and the
aspiny interneurons which represent less than 10% of all
striatal neurons [11]. Striatal interneuron functions are
poorly understood. The cholinergic interneurons are thought
to correspond to the “tonically-active neurons” that have
been implicated in learning mechanisms in the basal ganglia
[1], while the GABAergic interneurons mediate feed-
forward inhibition from the cortex to large networks of
spiny projection neurons [12]. Very little is known about the

effects of other putative interneuron neurotransmitters like
SST, nitric oxide, and neuropeptide Y. Nitric oxide,
acetylcholine, and GABA interact with dopamine to
regulate long-term synaptic plasticity of corticostriatal
connections [7]. Interestingly, PTN was reported to inhibit
long-term potentiation in the hippocampus [18]. Given that
PTN receptors are expressed in the adult striatum [9], it
would be important to determine if striatal interneurons,
through the release of PTN, can further modulate cortico-
striatal long-term plasticity.

Two recent studies found increased expression of PTN
mRNA in the striatum of 6-hydroxydopamine-lesioned rats
(a widely used experimental model of parkinsonism) [8,9],
where spontaneous and levodopa-induced partial recovery
of dopamine innervation takes place [4,17]. Furthermore,
PTN induces elongation and differentiation of dopamine
neurites [9,16]. Together with the fact that cholinergic and
GABAergic striatal interneurons express other neurotrophic
factors, notably glial-derived neurotrophic factor [3], which
has a powerful effect on dopamine neurons [13], it is
tempting to speculate that striatal interneurons can stimulate
the remodeling of dopamine innervation in physiological
and pathological conditions.
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