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Multi-locus sequence typing (MLST) is a frequently used genotyping method whose goal is the unambig-
uous assignment of microorganisms to genetic clusters. MLST typically involves analysis of DNA sequence
results generated from several house-keeping gene loci. MLST remains the gold standard for molecular
typing of many bacterial pathogens. Eukaryotic pathogens have also been the subject of MLST, however,
few tools are available to deal with diploid sequence data. Here we present novel software for MLST data
analysis tailored towards diploid Eukaryotes: MLSTest. This software meets various methods used in
MLST and introduces some novel methodologies for the evaluation of the data set. In addition to con-
struction of allelic profiles and basic clustering analysis, the MLSTest looks for network structures that
suggest genetic exchange in BURST graphs. Additionally, it uses several simple methods for tree construc-
tion with the advantage of managing heterozygous or three-state sites. Additionally, the software anal-
yses whether concatenation of fragments from different genes is suitable for the data set using
different tests (bionj-incongruence length difference test, Templeton test). It evaluates how the incongru-
ence is distributed across the tree using a variation of the localized incongruence length difference test
based on a modified neighbour joining algorithm. We tested the last method in simulated datasets.
We showed that is conservative (adequate type I error rate) and moderately to highly powerful as well
as useful to localize incongruences in two bacterial and two eukaryotic MLST datasets. MLSTest was also
designed for developing MLST schemes. It thus has tools to optimize locus combinations and to reduce
the number of targets required for typing. MLSTest also analyses whether the discriminatory power of
the typing scheme is increased by including more loci. We evaluated the software over simulated and real
datasets from bacterial and eukaryotic microorganisms. The software is freely available at http://www.i-
pe.unsa.edu.ar/software.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Multi-locus Sequence Typing (MLST)(Maiden et al., 1998) is a
method originally developed for the analysis of bacterial popula-
tion genetic diversity (Dingle et al., 2001; Enright et al., 2000;
Nallapareddy et al., 2002), and later used for typing diploid organ-
isms such as Candida spp. (Bougnoux et al., 2002; Odds, 2010;
Robles et al., 2004), Aspergillus fumigatus (Bain et al., 2007), the
Fusarium solani species complex (Debourgogne et al., 2010), Leish-
mania spp. (Mauricio et al., 2006) and Trypanosoma cruzi (Yeo et al.,
2011; Lauthier et al., 2012), among others. MLST evaluates genetic
variation at internal fragments of housekeeping genes. Different
sequences at each locus are considered as distinct alleles. The com-
bination of alleles of several loci generates an allelic profile for each
strain (also called Sequence type or ST). Analyses based on allelic
profiles have the advantage of buffering the effect of recombina-
tion observed in many micro-organism species. This is because
multiple differences between two strains at a single locus may
be due to a single recombination event and not due to multiple
mutations. Consequently, there is no weighting to reflect the num-
ber of differences between different alleles. Once defined, identity
between allelic profiles can be represented in a distance matrix and
analysed by classic agglomerative methods of clustering like UP-
GMA or neighbour Joining. Another method widely used for Bacte-
rial MLST is BURST (Based Upon Related Sequence Types) and its
derivatives, eBURST (Feil et al., 2004) and goeBURST (Francisco
et al., 2009) (which not only determine clonal complexes but they
also infer the relationships between strains within these clusters).
These methods are fast and suitable to analyse large population
datasets relevant in a clinical/epidemiological context.

MLST does not necessarily require a phylogenetic component.
Indeed, the purpose of MLST is to provide a system of strain
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identification easily interoperable between centres within a sim-
ple, cluster-based, analytical framework. Deeper phylogenetic
analyses: Bayesian methods; coalescent and maximum likelihood
tests; can also be addressed with raw sequence data. However,
the real usefulness of MLST – to provide rapid, robust and easily
databased strain information to health professionals – requires
more accessible tools.

Most classical tools used in MLST were developed for haploid
organisms (e.g. bacteria). The application of these same tools to
diploid or even aneuploid organisms is often problematic. A signif-
icant component of such error arises from the common practice of
ignoring heterozygous or multi-state sites, which are considered as
ambiguous information. However analytical difficulties associated
with MLST are several-fold and not all associated with ploidy: first,
allelic profiles summarize multiple changes in a sequence as a sin-
gle difference, which results in loss of resolution. For example, in
Candida albicans (Tavanti et al., 2005a) approximately 45% of the
strains could not be assigned to any cluster by eBURST analysis.
Second, congruence is not usually evaluated when MLST data are
analysed. Congruence among loci means an agreement between
phylogenetic information from different loci. This agreement is
achieved when different loci have a shared history. Incongruence
implies that loci have different evolutionary histories, which is
mainly caused by genetic exchange. This is important because arte-
factual clusters may be obtained in MLST analyses if there is incon-
gruence between loci. Third, during the development of an MLST
scheme loci numbers are required to be optimally small to save
on cost and labour (Bougnoux et al., 2003; Lauthier et al., 2012).
Similarly, optimal consensus MLST schemes need to be objectively
derived when P2 are present for the same organism (Lauthier
et al., 2012; Yeo et al., 2011; Bougnoux et al.; 2003; Debourgogne
et al., 2012; Ahmed et al., 2011; Boonsilp et al., 2013).

In this manuscript we introduce MLSTest: novel software to as-
sist with the development and analysis of MLST schemes. Our aim
is to improve the efficiency and efficacy of these schemes, espe-
cially in the context of diploid or non-haploid organisms, while
adhering to the straightforward clustering-based approach that
underpins the success of MLST as a pathogen typing strategy.
Fig. 1. Examples of different methods for calculating distance between sequences
containing heterozygous sites. Polymorphic sites are highlighted. D, distance; a,
invariable sites are deleted; b, polymorphic sites are duplicated; c, double
heterozygous bases are resolved.
2. Software description

2.1. A general overview of MLSTest

Sequence manipulations: Multiple FASTA sequences can be
loaded simultaneously. The user can view the alignment/polymor-
phic sites/codons and/or amino acids interchangeably. Multiple
options to modify, concatenate and export alignments into differ-
ent file formats are available.

Allele calling: The software can assign alleles, determine allelic
profiles and calculate associated measures like typing efficiency,
discriminatory power with its confidence interval (Severiano
et al., 2011). MLSTest also has two options to handle heterozygous
sites (described in Section 2.2).

Clustering: MLSTest implements UPGMA, Neighbour-Joining
(NJ), BIO-Neighbour Joining (BIONJ), with different node support
measures. MLSTest calculates consensus trees summarizing the
information of individual fragment trees (consensus trees are
based on branch frequency into individual loci trees). Multidimen-
sional scaling plots can also be created from pairwise distance
matrices. MLSTest is able to make basic clustering using allelic pro-
files with the BURST algorithm.

Congruence: MLSTest implements tools to analyse congruence
between genetic loci, including the Incongruence length difference
test (implemented using BIONJ) (Zelwer and Daubin, 2004) and the
CADM test (Congruence Among Distance Matrices test) (Campbell
et al., 2011) and different measures of localized incongruence,
which allows identifying nodes affected by incongruence into the
concatenation based tree (described in Section 2.3). Additionally,
the level of congruence among different fragments is useful to ana-
lyse the genetic structure degree of populations. In this regard,
datasets with strong congruence among fragments implies a strong
genetic structure. In addition, MLSTest can generate a BURST mod-
ified diagram that represents all recombination events within a
dataset (described in Section 2.4).

MLST scheme development: The software includes several tools
to screen different combinations of loci in order to: 1-determine
the minimum number of fragments required for obtaining the
maximum discriminatory power (described in Section 2.5.1) and
2-the best combination of fragments according different criteria
as discriminatory power, identification of certain predefined
groups and cluster supports (described in Section 2.5.1). Finally,
MLSTest had a graph viewer that allows viewing trees and BURST
diagrams, to edit and export them in different formats.

Environment: MLSTest is written in Visual Basic and runs in
Microsoft Windows.
2.2. Managing diploid sequences

MLSTest has two options for managing heterozygous sites in the
analyses:

Average States: The distance between two bases is calculated as
the mean of distances among all possible resolutions of the hetero-
zygosis (see example in Fig. 1). Three-state bases are also allowed.

SNP duplication and heterozygosis resolution (Tavanti et al,
2005b): Invariable sites are removed from the alignment. Then,
polymorphic sites are duplicated and heterozygosities are resolved
(see example in Fig. 1).
2.3. Testing for incongruence

2.3.1. Overall incongruence and localized incongruence
Several tests to detect significant incongruence between genetic

loci in a dataset have been proposed (Planet, 2006). The classical
Incongruence Length Difference (ILD) test implementing the max-
imum parsimony method (Farris et al., 1994; 1995) is frequently
used (Planet, 2006). MLSTest implements a variant of the ILD test
called BIONJ-ILD (Zelwer and Daubin, 2004) which is a variant.
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The BIONJ-ILD test uses BIO-neighbour Joining method instead of
parsimony. The null hypothesis assumes congruent branching pat-
terns between different genetic loci. BIONJ-ILD analyses whether
contradictory phylogenetic signals are distributed at random
among different gene fragments (random homoplasy) or whether
they are concentrated in certain fragments (incongruent loci). ILD
is calculated as the sum of the branch lengths in the tree based
on concatenation minus the sum of the branch lengths of all trees
of individual fragments. When there is full congruence, the ILD = 0.
However, when there is incongruence, ILD > 0. Statistical signifi-
cance of the ILD value is evaluated using a permutation test.
P < 0.05 suggests that at least one locus is incongruent but does
not indicate how this incongruence is distributed through the tree.
Sometimes, incongruence is located in a few branches and it would
be not necessary to doubt about the reliability of the entire tree.
Furthermore, MLSTest is able to show the number of individual
trees that are topologically incompatible with a certain node into
the concatenated tree. In this way incongruence can be localized
to clades in the tree.
2.3.2. Localized incongruence length difference
In order to identify the branches in the concatenated sequence

tree that have a locus or loci with statistically significant incongru-
ence, we developed a novel algorithm based on the localized incon-
gruence length difference (LILD) for parsimony (Thornton and
DeSalle, 2000). We implement LILD using a neighbour joining
method. First, we enforce a node x (a node in the tree based on con-
catenation) in the tree specific for each locus as described into the
appendix, Section 5.1.1. Second, the sum of the length differences
between constrained and optimal topology for each locus is calcu-
lated. This value represents the nj-Localized Incongruence Length
Difference (nj-LILD). nj-LILD suggests the incongruence level for
the analysed branch but does not indicate the statistical signifi-
cance of the value. Statistical significance may be evaluated using
two different methods, a permutation test or a modified templeton
test (see appendix, Section 5.1.2). The null hypothesis for the
former is the random distribution – across all loci – of phylogenetic
signals that contradicts the branch under analysis. A significant
p value means at least one fragment is incongruent with the
clustering proposed by the analysed branch. By contrast, for a cer-
tain branch into the tree based on concatenation, the templeton
test says whether phylogenetic signals of loci that are topologically
incompatible with it are statistically well supported.
2.4. Testing for BURST suitability

BURST methods are based on a simple model of clonal bacterial
evolution at which an ST increases in frequency and then diversify.
Clusters or clonal complexes are identified by these algorithms
based on an arbitrary group definition. Every ST within a group
has an arbitrary minimum number of identical alleles in common
with at least one other ST in the group. Usually, the group defini-
tion is at least n-1 shared alleles (where n is the number of loci).
Other group definitions are possible (i.e., n-2 or n-3). MLSTest in-
cludes two useful functions to assess BURST analysis suitability.
First, a BURST over all group definitions will allow the user to ob-
serve the number of clusters and singletons conformed under all
possible group definitions. In addition, a dendrogram is con-
structed showing the relationships among groups over all group
definitions. The algorithm for the dendrogram involves hierarchi-
cal clustering from stringent (n-1) to more relaxed (e.g. n-7) group
definitions. The procedure is repeated until all STs are joined to the
tree. The goal of the dendrogram is to show the distribution of
groups in a range of group definitions from 0 (root) to n (leaves)
shared alleles.
Additionally, the relationships among STs in a BURST group
(which was defined by n-1 shared alleles) may be represented as
a set of connections among STs (these connection are also termed
Single Locus Variants or SLVs). The eBURST (Feil et al., 2004) and
goe BURST graphs (Francisco et al., 2009) display only connections
following certain criteria around an assumption of predominantly
clonal evolution. However, eukaryotic organisms may not always
fit a criterion of clonal evolution. In fact, genetic exchange may
be observed by SLV connections that form networks (not repre-
sented in standard eBURST or goeBURST graphs) without internal
SLV connections. MLSTest is able to identify network structures
in BURST groups to assist with the identification of recombinant
strains.

2.5. Selecting an optimal typing scheme

MLSTest includes several options to optimize MLST schemes.
That is, to reduce the number of loci used for typing whilst maxi-
mising discriminatory power.

2.5.1. Optimum number of loci
Genotypic diversity (GD) which is defined here in a simple way

as the number of different genotypes is estimated for every possi-
ble combination of 2 to n-1 loci. The results are presented in a table
showing the number of loci, the number of possible combinations
and the minimum, mean and maximum Genotypic Diversity (GD).
Maximum GD assists with the selection of the minimum locus
number. Mean GD can inform the researcher whether adding a fur-
ther locus to the full scheme will increase the observed GD. When
mean GD reaches an asymptote, adding further loci is sub-optimal
(Arnaud-Haond et al., 2005).

2.5.2. Testing all possible combinations
For a determined number of loci (selected by the user), all pos-

sible combinations may be evaluated by concatenation and NJ
method. The number of possible combinations is determined by
the combinatory formula:

Ncombðn; xÞ ¼ n!=½x!ðn� xÞ!� ð1Þ

where n is the number of loci into the dataset and x is the number of
loci in the reduced scheme. Three criteria for scheme selection are
considered under this option. First, the software determines ob-
served genotypic diversity (GD) to select those schemes with best
discriminatory power. Second, cluster/typing unit monophyly is
evaluated based on the selected markers. Monophyly indicates
whether the selected loci combination is able to identify predefined
groups (i.e., known clades identified by genome sequencing/other
markers). Third, bootstrap cluster support is evaluated in order to
select combinations of loci that result in robust cluster assignment.
The software gives flexibility in criteria implementation and several
options are available for the user. Bootstrapping and alternative
branch support methods (fast-bootstrapping and clade significance)
are detailed in appendix (Section 5.1.3).
3. Results and discussion

We evaluated several features of MLSTest on real or simulated
datasets. First, we analysed the results of different ways of manag-
ing diploid sequences in a real dataset of Leishmania donovani com-
plex. Second, we evaluated the performance of the novel nj-LILD
test to detect incongruence and recombination. Two bacterial
and two eukaryotic MLST datasets are analysed as examples. In
addition, we analysed a dataset of Aspergillus fumigatus as an exam-
ple of network structures in a BURST diagram. Lastly, we evaluated
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alternative methods of bootstrap in order to calculate branch sup-
port when multiple combinations of loci are analysed.

3.1. Managing diploid sequences in the Leishmania donovani complex

In the past single nucleotide polymorphism (SNP) duplication
has been proposed and used in order to resolve ambiguous bases
in alignments (Chen et al., 2006; Odds et al., 2007; Tavanti et al.,
2005a; Tavanti et al., 2005b; Yeo et al., 2011), however this strat-
egy has a key flaw: the resolution of two different heterozygoses
in the same position for two different samples may still be ambig-
uous. For example, the distance between heterozygoses Y and K
has two possible resolutions: Y/K = TC/TG, distance = 1 or Y/
K = CT/TG, distance = 2, which are not currently accounted for.
The same ambiguous resolution occurs with other pairs of hetero-
zygous sites: W/M, W/R, W/Y, W/K, M/R, M/Y, M/S, R/K, R/S and Y/S
(see Cornish-Bowden (1985) for further detail about heterozygosis
coding letters). Additionally, bootstrap values are sometimes dif-
ferent to those obtained by using average states method (See Sec-
tion 2.2). Differences arise because SNP duplication deletes
constant sites (which are not informative for tree topology but they
are for bootstrap significance), thus bootstrap value are unusually
high in datasets with few polymorphic sites. To evaluate the differ-
ent approaches to diploid data treatment we assessed support for
22 branches in a tree of L. donovani complex (see appendix Sec-
tion 5.3 for further details of the dataset). We observed signifi-
cantly lower bootstrap values using the average states method
when compared to the bootstrap values obtained by SNP duplica-
tion (p < 0.0001 for a Wilcoxon sum rank test, data not shown). Dif-
ferences between bootstrap values obtained by the two methods
were inflated by P10 percentage points in 40% of the branches
for 1000 bootstrap replications, and we propose the average states
method as the superior methodology.

3.2. nj-LILD test error rates in simulated datasets

Analysing congruence among loci is a first step to determine
whether concatenation is a reliable option to define relationships
among strains or isolates. Additionally this approach can define
the level of recombination in a dataset. Table 1 shows the results
of the nj-LILD test with a permutation test and nj-LILD with a
Templeton test for simulated congruent data sets (based on identi-
cal tree topologies showed in Fig. 2A) in different evolutionary
conditions (see appendix, Section 5.2). The probability of rejecting
the true hypothesis (H0) of congruence (type I error rate) was thus
evaluated. To be acceptable, the type I error rate should be lower or
around the level of significance used in the test (in this case
alpha = 5%). The two tests reject the congruence hypothesis less
or around 5% of cases. Consequently, the type I error rates were
within the acceptable range irrespective of topological symmetry,
Table 1
Type I error rate for nj-LILD tests in simulated datasets.

Substitution
rate

ASYM SYM

CER VER CER VER 4xCER + 3xVER

0.01 4.4/3.4 6.4/4.3 3.8/
<0.1

5.1/1.3 6.5/0.5

0.002 2.1/
<0.1

<0.1/
<0.1

2.3/
<0.1

1.7/
<0.1

2.4/<0.1

The values represent the percentage of the 1000 simulations for which the true
hypothesis of congruence is rejected for nj-LILD using permutation test (before
slash) and templeton test (after slash). Results are given in relation to the tree
topologies (ASYM, asymmetric, SYM, symmetric), to the substitution rate, to the
variability of evolutionary rates between branches (CER, constant evolutionary rate;
VER, variable evolutionary rate).
rate variation between branches and substitution rates. Type I
error rates were also acceptable for a complex tree based on
simulations of C. glabrata FSK gene tree (data not shown).

We additionally evaluated the power of the test (probability of
correctly rejecting null hypothesis). Table 2 shows power of the
test for 1000 simulated datasets of seven loci where 1 or 2 loci
had evolved with an event of horizontal gene transfer (which gen-
erates incongruence) as is showed in Fig. 2. We observed that the
permutation test is powerful for substitution rates of 0.01 changes
per site per branch, consistent with evolutionary rates at house-
keeping loci in Neisseria meningitidis or Haemophilus influenzae
datasets (data not shown). Power was moderate to low at lower
substitution rates and correlated with the number of incongruent
loci. Additionally, the power was variable for different branches.
We observed that the test was more powerful in branches that
contain the donor strain in the lateral gen transfer event than in
the receptor branch (data not shown).

In our approach, multiple branches are tested per tree. Thus, a
statistical correction for multiple comparisons (like the Bonferroni
correction) is required in order to avoid an increase in type I error
rate. However, by decreasing the alpha cut-off, Bonferroni correc-
tion reduces the power. To test Bonferroni’s impact on power, we
simulated a complex phylogeny based on the FSK locus for 20
STs of C. glabrata dataset. We randomly shuffled the sequences cor-
responding to a determined clade of 8 STs and then analysed
whether nj-LILD tests were able to detect significant incongruence
within the clade after a Bonferroni correction. Even with a Bonfer-
roni correction, we were still able to detect within clade incongru-
ence in 72% of simulations, using permutations to evaluate nj-LILD
value. By comparison to permutation test, the Templeton test had
lower power in almost all cases. We did not test the full range of
parameters in simulations used to evaluate bionj-ILD test (like
gamma distribution parameters) (Zelwer and Daubin, 2004) but
we consider that the range of used parameters is according to com-
mon MLST datasets (datasets were simulated using likelihood
parameters of real datasets).

3.3. Analysing genetic structure and recombination within natural
datasets

We applied different tests to two prokaryotic (N. meningitidis
and H. influenzae) and two eukaryotic datasets (Candida glabrata
and Trypanosoma cruzi) (see appendix, Section 5.3) in order to eval-
uate population genetic structure. A summary of levels of incon-
gruence for different datasets is detailed in Table 3.

N. meningitidis: The N. meningitidis tree showed significant over-
all incongruence based on bionj-ILD test (p < 0.001). We also ob-
served high topological incongruence. Permutation and
Templeton based nj-LILD tests were highly significant after Bonfer-
roni correction for those branches with high topological incongru-
ence (Table 3). As such, we detected high incongruence between
trees based on concatenated and individual loci. Bootstrap values
were >80% in 53% (9/17) of the branches despite the incongruence
among loci, suggesting that this support measure alone is not suf-
ficient to define clusters in a multilocus analysis. Additionally, an
extended-majority rule consensus tree of single locus topologies
was distinct to that derived from concatenated loci, as one would
expect in a frequently recombining population. Overall our analy-
sis is consistent previous work, i.e., that the population of N. men-
ingitidis is a diverse and freely recombining group of different
genotypes, from which emerge certain well-defined clusters (Feil
et al., 2000; 2001; Perez-Losada et al., 2006).

H. influenzae: The H. influenzae dataset also had a significant
bionj-ILD test (p < 0.001). However, the mean topological incon-
gruence and the proportion of branches with high topological
incongruence were lower than N. meningitidis (Table 3). All



Fig. 2. Topologies along which the nucleotide sequences were evolved in order to evaluate nj-LILD tests. These trees follow a molecular clock (Constant evolutionary rate).
Topologies with Variable Evolutionary Rate among branches were made based on these and alternating short and long branch lengths with a length ratio of three as is
described in Zelwer and Daubin (2004). Topology B represents a recent lateral gene transfer involving taxa 4 and 5 (showed by an arrow in topology A). Highlighted in red are
showed branches incongruent between the two topologies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Power of nj-LILD tests in simulated datasets.

Substitution rate 6xTopology A + 1xTopology B 5xTopology A + 2xTopology B

CER VER CER VER

0.01 96.4/71.8 92.1/72.1 99.5/99.7 98.5/97.4
0.002 42.7 (18–59)1/6.6 (0–19) 42.6 (18–59)/6.6 (0-19) 62.5 (33–82)/16.2 (1–51) 57.9 (33–82)/15.5 (1–48)

The values represent the percentage of the 1000 simulations for which the false hypothesis of congruence is rejected for nj-LILD using permutation test (before slash) and
templeton test (after slash). Results are given in relation to the number of incongruent trees, to the substitution rate, to the variability of evolutionary rates between branches
(CER, constant evolutionary rate; VER, variable evolutionary rate).

1 Represent the range of power for different branches.

Table 3
Different measures of localized incongruence for Neisseria meningitidis, Haemophilus
influenzae, Candida glabrata and Trypanosoma cruzi.

Dataset na Branchesb SMTIc (95%CI)d % high TIe % nj-LILDf

N. meningitidis 7 17 5.67 (4.69–6.37) 88.2 94.1
H. influenzae 7 17 2.80 (2.03–3.64) 11.8 82.3
C. glabrata 6 56 3.57 (2.87–4.20) 48.2 34
T. cruzi 10 20 1.96 (1.26–2.87) 10 5

a Number of loci in the MLST scheme.
b Number of analysed branches.
c SMTI: Standardised Mean Topological Incongruence. In order to make com-

parisons among datasets, the value represents the standardised number of loci that
are topologically incongruent per branch in a 7 loci scheme.

d Confidence interval of SMTI using 500 bootstrap replications.
e %high TI: Percentage of branches with high topological incongruence. Topo-

logical incongruence for a branch in the concatenated loci tree was arbitrarily
considered as high when the proportion of incongruent loci with it was P 0.66.

f Percentage of branches with significant p value after Bonferroni correction. The
p value was calculated with 500 permutations.
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branches with high topological incongruence were significant after
Bonferroni correction for nj-LILD using Templeton and permuta-
tion tests. Seven branches (41%) had lower topological incongru-
ence (2 or less trees) but permutation nj-LILD test was still
significant for 6 out of these branches. Here, it is important to note
that statistically significant incongruence does not always mean
incorrect clustering (Hipp et al., 2004). In this case it may mean
that at least one locus probably had different evolutionary history
from the rest. Then, it is important to analyse after nj-LILD test how
many and which loci are implicated. We used here encapsulated
strains of H. influenzae which are classified in different serotypes.
Our results for this reduced dataset are in concordance with the
serotype classification with the exception of one ST of the serotype
a which clustered outside of the group as the observed by Meats
(2003) who detected paraphyly for serotypes a and b. Although clo-
nal structure of H. influenzae is still debated (Feil et al., 2001; Meats
et al., 2003; Perez-Losada et al., 2006) and is suggested that recom-
bination is higher in non-encapsulated strains (Meats et al., 2003),
our results suggests significant lower levels of recombination in
relation to N. meningitidis for encapsulated strains.

C. glabrata: The C. glabrata tree showed several branches (27 out
of 56) with high topological incongruence (at least 4/6 loci with
topological incongruence). Twenty-one of these branches were
significant after Bonferroni correction for Templeton or nj-LILD
permutation tests. Furthermore, we observed poor correspon-
dence between the tree based on concatenation and the
extended-majority rule tree with the exception of six clades (all
of them had non-significant nj-LILD). Although no sexual or
parasexual cycle is known for C. glabrata, recombination has been
suggested (Dodgson et al., 2005). Thus our results are consistent
with previous data and a level of recombination enough to
generate substantial incongruence among loci.

T. cruzi: T. cruzi tree showed low to moderate topological incon-
gruence (Table 3) with significant inconsistency in three branches;
just one (5%) remained significant after Bonferroni correction for
nj-LILD permutation test. The incongruence is produced by one
strain (TEP6) that belong to cluster TcVI but is showed as an outlier
in the tree due to an apparent Loss of Heterozygosis (LOH) in one
locus as has been previously described (Lauthier et al., 2012).

In combination our data show that nj-LILD is useful to detect
incongruence and to analyse uncertain clustering when is com-
bined with other measures of incongruence; for example the num-
ber of individual gene fragments that are topologically
incongruent. The combination of both measures gives outcomes
for a branch:

1. Low topological incongruence with non-significant nj-LILD. If
branch bootstrap support is low, it is likely that low level of
polymorphic sites to define the branch.

2. Low topological incongruence with significant nj-LILD. This
incongruence is produced by a single or few loci. Clustering is
still evident, bust some genetic exchange has occurred.

3. High topological incongruence with not significant nj-LILD.
Topological incongruence is not statistically significant, perhaps
due to low number of polymorphic sites to define the cluster.
Little confidence may be placed in clustering.



Fig. 3. Network structure observed in a BURST diagram of Aspergillus fumigatus
dataset. Just connections that implicated in the network are showed. Red branches
show SLVs not represented in classical eBURST graph. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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4. High topological incongruence with significant nj-LILD. It is
probably due to incongruences among all loci or a wrong clus-
tering due to just one or two well-supported loci which are
strongly incongruent with the others. Clustering should be also
carefully analysed here.

Finally, although nj-LILD implementing Templeton test had low
power in simulated datasets with single point incongruences, it
was useful for real datasets where incongruences are generally
generated by several loci at time. Additionally, Templeton test is
faster than permutation test and we propose implementation of
Templeton test when larger datasets are analysed, in order to ob-
tain an overall view and as a first step to detect branches with high
levels of incongruences.

3.4. Detection of network structures in a BURST graph of Aspergillus
fumigatus

With the previous methods we evaluated suitability of a bifurcat-
ing tree diagram to represent the relationships among strains based
on alignments when there is genetic exchange. Although eBURST
methods based on STs attempt to reduce erroneous clustering due
to recombination events, it remains a bifurcating tree and could fail
to represent relationships among STs if genetic exchange is rela-
tively frequent. MLSTest is able to show ST relationships that do
not fit the bifurcating tree model. As an example, we analysed the
A. fumigatus dataset to look for network structures in BURST
diagrams. Network structures represent direct events of recombina-
tion. Fig. 3 shows observed network structures and the correspond-
ing eBURST graph. Fifteen out of twenty-three (65%) STs from the
first eBURST group were conforming network structures. Genetic ex-
change may be relatively frequent for this dataset and a tree-like
graph should not be useful to represent all the relationships among
STs. Recombination mediated by a sexual cycle has been proposed
for this organism (Paoletti et al., 2005) and it may have a certain
importance in natural populations (reviewed in Varga and Toth,
Fig. 4. Correlation between bootstrap and fast-bootstrap values (upper graphs); and dist
resulting of all combinations of three loci for T. cruzi and C. glabrata datasets.
2003) and could be the cause of the observed network. Finally,
although analysing network structures in diploid organisms do not
directly indicate genetic exchange, it suggests that the implicated
strains cannot be well represented in tree-like graphs.

3.5. Alternative supporting measures for combinatorial analysis

Once we have determined clusters in a dataset and these clus-
ters are supported and they are not artefacts due to incongruence,
we may want to reduce the typing scheme in order to use the min-
imum number of loci to determine clusters or STs. As a large
ribution of the difference between both values (lower graphs) for branches in trees



Table 4
Correlation among bootstrap probability and 1-neighbour joining based clade
significance in different real and simulated datasets.

T. cruzi A.
fumigatus

C.
glabrata

C. glabrata
simulateda

Spearman (p value) 0.92
(0.000062)

0.75
(0.00033)

0.51
(0.00016)

0.7
(0.0000002)

Branches 20 24 53 56
Mean bootstrap

probability
0.816 0.434 0.475 0.581

Mean 1-njCS 0.794 0.637 0.509 0.619

a The NJ tree of C. glabrata was used to simulate a dataset with 6 loci evolved
under congruence hypothesis. Branches with length zero were discarded from the
analysis.
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number of combinations of loci are possible (see Eq. (1)), we pro-
pose two different alternative methods in order to obtain faster
support measures for these combinations. First, a modified boot-
strap algorithm (fast-bootstrap) was developed (see appendix, Sec-
tion 5.1.3). We analysed the correlation between bootstrap value
and the fast-bootstrap value on T. cruzi and C. glabrata datasets.
We analysed all possible combinations of three loci for the seven
loci dataset of T. cruzi and for the 6 loci dataset of C. glabrata. We
observed a high correlation between the two measures in both
datasets for 500 replications (Fig. 4, rspearman = 0.99, p < 0.01 for
both datasets). Ninety per cent of the branches had a difference
lower than 5% and 7% between the two measures for T. cruzi and
C. glabrata, respectively (Fig. 4).

In theory, since resampling probability of a site in fast-boot-
strapping is different to the used by classical bootstrap, some dif-
ferences could appear for branches that have no uniform support
distribution among loci. For example, if a branch is supported just
by one locus, but not for others, the bootstrap value could differ
from the fast-bootstrap value. Additionally, some differences could
be obtained if the sequence length strongly varies among loci. In
this sense, and for multiple loci analyses, the fast-bootstrapping
has more biological sense than classical bootstrap because sites
are resampled within each locus.

Second, we implemented a Templeton derived method (neigh-
bour joining Clade significance, njCS) to evaluate branch support.
We compared the bootstrap support with the njCS in three publicly
available datasets (Table 4). The Spearman coefficient was signifi-
cant but variable among datasets. The lower value was obtained
for C. glabrata. High levels of incongruence (bionj-ILD, topological
incongruence, nj-LILD) and low bootstrap values for most branches
were observed for this dataset. Additionally, njCS was generally
more conservative (Branch support was lower) than bootstrap in
this dataset. Simulating the tree of C. glabrata under congruence,
a twofold increase into the Spearman coefficient was observed
although bootstrap values were still low. This requires further eval-
uation and njCS should be considered carefully (or even avoided at
all) in highly incongruent or poorly supported datasets. Despite
this, njCS is really faster than bootstrap in several situations, partic-
ularly when the number of groups to test is lower than the number
of replications of bootstrap. So, njCS would be useful as first ap-
proach in order to reduce the combinations to be analysed by boot-
strapping in datasets that show low levels of character conflict.
4. Concluding remarks

MLSTest is new user friendly software which brings together a
set of both new and pre-existing tools for multi-locus analyses
(particularly for MLST approach) of haploid, and especially diploid
microorganisms. This new software was designed to develop and
to optimize MLST schemes and cluster assignment. It is also useful
to evaluate the current methods used for clustering (eBURST and
trees based on concatenation of alignments) and to analyse popu-
lation structure. We also developed several novel tools to localize
incongruences and to approximate branch support faster than
bootstrapping. We think that MLSTest will fulfil many of the
requirements of scientists who use multi-locus sequence data for
molecular epidemiology of pathogenic microorganisms.
5. Appendix

5.1. Detailed methods

5.1.1. A modified neighbour-joining algorithm for constrain trees
Constrained trees are useful for statistical comparison of tree

topologies (the shape of the tree) at branch level. For example, con-
straining a branch in a tree is useful to evaluate whether topologies
with a certain branch are or not significantly better than others
without the branch. In this sense, the method is useful to evaluate
node support or significance of topological incongruence for a cer-
tain branch when multiple loci are considered.

A constrained tree is defined here for two cases: first, as a tree
where a suboptimal node for the dataset is imposed to appear in
the tree; or second, as a tree where an optimal node is constrained
not to appear. In the context of maximum parsimony or minimum
evolution criteria, the constrained tree is defined as the shortest
tree with or without the node under evaluation. As the neigh-
bour-joining method is a greedy algorithm that approximates to
minimum evolution tree, we implemented here a modified algo-
rithm in order to constrain trees in a fast way. The NJ method is
an agglomerative algorithm. At each cycle, the OTU (operational
taxonomic unit) pair to be agglomerated is selected based on a
least-square approach. First, the NJ algorithm is modified in order
to impose a suboptimal node x (a node that not exist in the NJ-tree)
to appear. Instead of selecting the pair that minimize the least
square equation among all possible pairs, it is selected among
the pairs that are topologically congruent with node x. This proce-
dure creates a suboptimal tree that is topologically congruent with
the node x. Second, a similar procedure is used in order to constrain
a node, i.e., avoiding the occurrence of this node in the NJ-tree. In
each agglomerative cycle the pair that minimizes the least square
equation is selected among all pairs except for the pair that forms
the node under test.

Algorithm to impose a branch in a tree:

Define NodeToTest as the node to be imposed to the tree

Step 1:
 Load n sequences

Step 2:
 Calculate Dm as a Distance matrix of size n � n

Initialize the number of OTUs as n r

Step 3:
 Calculates TDm as a Transformed Distance matrix⁄
Step 4:
 Select the pair TDmxy with minimum value in TDm

Step 5:
 check if the pair is topologically compatible with

NodeToTest

(If True then go to step 6

Else delete TDmxy and go to step 4)
Step 6:
 Join the selected OTUs as a node

Step 7:
 Reduce the distance matrix⁄
Step 8:
 decrease r (r r�1)

Step 9:
 Return to step 3 while r is greater than 3

⁄(for details of step 3 or step 7 see Saitou and Nei (1987))

To constrain a branch avoiding their occurrence into the tree,

the step 3a is replaced by:
Step 5b:
 Check if the pair forms the same bipartition than
NodeToTest

(If True then delete TDmxy and go to step 3

Else go to step 4)
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5.1.2. Testing significance of localized incongruence
In order to test significance for nj-LILD value we implemented
two different methods.
Permutation test: The method uses a permutation of characters

among different loci as was previously proposed for the traditional
LILD test by Thornton and DeSalle (2000). At each replication, the
alignments for each locus are rebuilt based on a random selection
(without reposition) of sites of the concatenated alignment. Then,
the nj-LILD is calculated for this replica (nj-LILDp). Finally, the pro-
portion of times that nj-LILDp is higher or equal to the nj-LILD is
the probability that a so high nj-LILD may be produced just by
random.

Templeton test: Once we have optimal and constrained topolo-
gies for each locus, we can use the Templeton test in order to deter-
mine as overall whether optimal topologies are significantly better
supported than constrained topologies enforcing the node x. This
test identifies the sites in the alignment that support one topology
over the other, arranges these sites in rank order of their degree of
support for one topology over the other, and assesses whether this
rank order is significantly different from random under the Wilco-
xon rank-sum test. In order to determine whether a site into the
alignment support one topology over the alternative, we imple-
mented the Pauplin Formula for tree length (Pauplin, 2000). With
this formula we are able to calculate tree length for a single site
and determine whether one topology is or not shorter than the
other one for such site. Finally, the length differences over each site
are tested with Wilcoxon rank-sum test. A significant p value indi-
cates that those loci which trees are topologically incongruent with
the node x are significantly supported. In other words, a p value <
alpha means that topological incongruence is significant.

5.1.3. Branch support for multiple combination analyses
Bootstrap: Proposed by Felsenstein (1985) to evaluate branch

support. This method remakes the alignment selecting sites at
random from the original alignment. Then, the tree is made based
on this resampled alignment. The procedure is repeated a user-
defined number of times. Then, the proportion of times that a
branch appears in the replications is the bootstrap value for that
branch. This method is really time-consuming for analysing all
possible combinations of certain number of loci. Because of this,
we included into the software several options to reduce the num-
ber of combinations that needs to be evaluated by bootstrapping.

Fast-bootstrap: In the bootstrapping procedure, most of the
computational time is invested in tree reconstruction in every rep-
lication; however a considerable time is required to make the
resampling of sites. Fast-bootstrap is proposed here to resample
when multiple combinations are analysed. It is based on the fact
that when all combinations of loci are bootstrapped, every locus
is resampled several times more than the number of replications.
For example, the number of possible combinations of 5 loci in a
data set of 10 loci is 252. From these, 126 have the locus x, so this
locus is bootstrapped 126�R times in the analysis of all combina-
tions, where R is the number of replications defined by the user.
The fast bootstrapping method reduces to 1�R the times that a
locus is resampled. The algorithm makes this in two steps
(Supplementary pseudocode). First, characters for each locus are
resampled for R replications, and distance matrices are made for
each replication and stored in memory. In the second step, the tree
for each combination is made and the branch support for R replica-
tions is calculated. In order to do the last, at each replication, one
stored distance matrix of the first step is selected by random for
each locus into the combination. Then, the selected matrices are
summed. Finally, the bootstrapped tree is made based on the
new matrix and evaluated. In classical bootstrapping the total
number of resampled sites for all combinations of loci is propor-
tional to the number of combinations multiplied by the number
of loci to select. Instead, the total number of resampling sites in
fast-bootstrapping is proportional just to the number of loci in
the dataset. This method requires more memory to store distance
matrices but is twice to ten times faster than bootstrapping when
number of combination and size of combinations is high.

Neighbour Joining based Clade significance (njCS): This method is
similar to clade significance proposed for parsimony (Lee, 2000)
which is based on the Bremer support (Bremer and K.r., 1994).
MLSTest calculates clade significance using the modified temple-
ton test (described in Section 5.1.2) to evaluate whether the opti-
mal tree with a clade x is significantly better than the tree with
the clade x constrained not to appear. Clade significance is pro-
posed here as a fast method to discard combinations with low sup-
ported clusters to reduce the number of combinations to be
analysed by bootstrapping in order to find a good combination.

5.2. Simulations

In order to assess the rate of type I error in nj-LILD tests, 1000
simulated datasets of 7 loci were evolved along the topologies
showed in Fig. 2 (Asymmetric and Symmetric topology A) under
the congruence hypothesis using Seq-Gen v1.3.2 (Rambaut and
Grassly, 1997). In order to evaluate variable evolutionary rate
among branches, the topologies in Fig. 2 were modified alternating
short and long branches with a length ratio of three as is described
in Zelwer and Daubin (2004). Type I error rate was measured as the
percentage of times that congruence is rejected by the test in these
datasets. Additionally, in order to evaluate type II error rate, 1000
datasets of six or five loci evolved along the topology showed in
Fig. 2 (topology A) plus one or two locus evolved along the topol-
ogy showed in Fig. 2 (topology B) were simulated representing a
recent lateral gene transfer among strains 4 and 5. Type II error
rate was determined as the percentage of times that the hypothesis
of congruence is accepted in these datasets. The results were
showed as power of the test (100 – type II error rate). The branch
lengths for simulations were established in an average of 0.01 or
0.002 changes per site, the length of the simulated alignments
was set to 500 nucleotides. The evolutionary model was set to Kim-
ura two-parameters with a proportion of invariable sites of 0.66.
The model was selected based on the best model that fit the T. cruzi
dataset published by Lauthier et al. (2012) using jMODELTEST
(Posada, 2009). A complex topology was also evaluated for type I
error rate, 1000 simulated datasets of seven loci were generated
under the congruence hypothesis based on a tree of 20 random
STs of the FSK locus for C. glabrata dataset. In order to analyse
the power of the tests, shuffling of sequences in a FSK tree clade
of 8 STs was made in order to simulate incongruence. The percent-
age of trees that had branches with significant p value within the
shuffled clade was calculated.

5.3. Datasets and data analysis

C. glabrata dataset using the MLST scheme proposed by Dodg-
son et al. (2003) and A. fumigatus using the MLST scheme proposed
by Bain et al. (2007) were downloaded from MLST.net (http://
cglabrata.mlst.net/) and pubmlst (http://pubmlst.org/afumigatus/)
databases, respectively. Twenty random STs for Neisseria meningitides
were downloaded from pubmlst (http://pubmlst.org/neisseria/) and
twenty representative STs of different serotypes (encapsulated
strains) of H. influenzae were downloaded from mlst.net (http://
haemophilus.mlst.net/). T. cruzi and L. donovani complex datasets
was based on sequences published by Lauthier et al. (2012) and
Mauricio et al. (2006), respectively. Correlation between bootstrap
and fast-bootstrap p values and between bootstrap and 1-njCS was
estimated with spearman correlation coefficient using INFOSTAT
(InfoStat, 2009).

http://cglabrata.mlst.net/
http://cglabrata.mlst.net/
http://pubmlst.org/afumigatus/
http://pubmlst.org/neisseria/
http://haemophilus.mlst.net/
http://haemophilus.mlst.net/
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