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Abstract

This thesis focuses on Earth albedo modeling when applying Sun sensors in spacecraft
attitude determination. Since the recent development of the CubeSat pico-satellite con-
cept, numerous universities have initiated student satellite projects. The minimal size
of the CubeSats limits the hardware configuration, which, for an attitude determination
point-of-view, only allows simple attitude sensors with limited accuracy. This motivates
the development of advanced algorithms capable of improving the estimation results
through enhanced models of the space environment.

The main contribution of this thesis is the development of anEarth albedo model,
based on measurements of the Earth reflectivity by the Total Ozone Mapping Spectrom-
eter instruments on-board NASA’s Earth Probe satellite. The Earth albedo model may
be used to calculate the amount of Earth albedo on a satellitegiven a Sun, Earth, and
spacecraft constellation. The model results are verified using telemetry data from the
Danish Ørsted satellite.

The secondary contribution of the thesis is an investigation in attitude determina-
tion algorithms, where the Earth albedo model is applied. A single-point Q-Method
algorithm, which uses magnetometer and Sun sensor data, is derived. The Sun sen-
sor data is Earth albedo corrected using the Earth albedo model. In order to improve
the performance of the attitude determination, an ExtendedKalman Filter is developed.
The Extended Kalman Filter includes knowledge of the spacecraft dynamics by apply-
ing non-linear models of the attitude propagation. The Extended Kalman Filter also
enables attitude determination during eclipse, during which Sun sensor measurements
are invalid. Due to the highly non-linear behavior of the Sunsensor measurements,
an Unscented Kalman Filter is developed, and the results arecompared to those of the
Extended Kalman Filter. Additionally the possibilty of non-linear measurement descrip-
tion in the Unscented Kalman Filter enables three-axis attitude determination from Sun
sensors only.

The Earth albedo modeling software is distributed as a SIMULINK toolbox for the
MATLAB software from Mathworks. In addition to improving attitudedetermination



vi Abstract

accuracy and spacecraft environment simulation, the Earthalbedo model is also useful
for investigating the the total power generated by the solarpanels. Accurate knowledge
of the excess power from Earth albedo irradiance, extends the usability of the pico-
satellites.



Synopsis - Danish Abstract

Projekttitel:Retningsbestemmelse af rumfartøjer med jordalbedokorrigerede solsensor-
målinger

Denne ph.d.-afhandling har fokus på modellering af Jordensalbedo, når solsensorer
anvendes i retningsbestemmelse af rumfartøjer. Efter den nye udvikling af CubeSat pico-
satellitkonceptet har flere universiteter iværksat studentersatellitprojekter. Den mini-
male størrelse af CubeSats begrænser hardwarekonfigurationen, som, set fra et retnings-
bestemmelsessynspunkt, kun tillader brugen af simple retningssensorer med begrænset
præcision. Dette motiverer udviklingen af avancerede algoritmer, som er i stand til at
forbedre estimeringens resultater gennem bedre modeller af omgivelserne i rummet.

Hovedbidraget af denne ph.d.-afhandling er udviklingen afen jordalbedomodel,
baseret på målinger af jordens reflektivitet foretaget af Total Ozon Kortlægningsspek-
trometerets instrumenter ombord på NASA’s Earth Probe satellit. Jordalbedomodellen
kan bruges til at beregne størrelsen af jordalbedo på en satellit ud fra en given Sol-Jord-
rumfartøj konstellation. Modellens resultater verificeres ved brug af telemetridata fra
den danske Ørsted-satellit.

Ph.d.-afhandlingens sekundære bidrag er en undersøgelse af retningsbestem-
melsesalgoritmer, hvor jordalbedomodellen anvendes. En enkeltpunkts-Q-Metode-
algoritme, som gør brug af magnetometer- og solsensordata,udvikles. Disse solsensor-
data korrigeres for jordalbedo ved brug af jordalbedomodellen. For at forbedre ydelsen
af retningsbestemmelsen udvikles et Udvidet Kalman Filter. Det Udvidede Kalman
Filter inkluderer kendskab til rumfartøjets dynamik ved brug af ulineære modeller af
retningsfremskrivningen. Det Udvidede Kalman Filter muliggør også retningsbestem-
melse under solformørkelser, hvor solsensormålinger er uanvendelige. På grund af de
højt ulineære egenskaber af solsensormålingerne, udvikles et Uparfumeret Kalman Fil-
ter, og resultaterne sammenlignes med det Udvidede Kalman Filter. Derudover gør den
ulineær målingsbeskrivelse i det Uparfumerede Kalman Filter det muligt at foretage tre-
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akses-retningsbestemmelse udelukkende fra solsensorer.
Jordalbedomodelsoftwaren distribueres som en SIMULINK toolbox til MATLAB

softwaren fra Mathworks. Udover at forbedre nøjagtighedenaf retningsbestemmelsen
og simuleringen af rumfartøjsomgivelserne, kan jordalbedomodellen også bruges til at
undersøge den totale strøm, der genereres af solpanelerne.Præcis information om over-
skudsstrøm fra jordalbedoirradiansen udvider anvendeligheden af pico-satellitter.



Nominclature

The following definitions are used in the report.

Parenthesis(·) are used to enclose function parameters or dependancies asf (x, t).
Vectors are denoted with lower case boldv.
Thei’th element of vectorv is denoted asvi.
The line-of-sight of vectorv is represented by the parallel unit vector denoted asv̂.
v̂1.
The two-norm of vectorv is denoted as||v||.
The estimate of vectorv is denoted as The value of an estimatex̂ at timetk+1, based
on measurements up to timetk, is denoted aŝx (tk+1|tk).
The nominal value of vectorv is denoted as̄v.
The small signal value of vectorv is denoted as̃v.
The set point of vectorv is denoted as̄v.
The small signal of vectorv is denoted as̃v.
Vectorv in frameb is denoted asvb.
The time derivative of a vectorv in frameb, given in frames is denoted as

(

v̇b
)s

.

Functions resulting in a vector are denoted with lower case bold acos(v).
Matrices are denoted with uppercase boldM .
Thei’th column of matrixM is denoted as{M}i.
The element of thei’th column andj’th row of matrixM is denoted asMi,j .
The transposed of a matrixM is denoted with a superscript TMT.
Thei by i identity matrix is denoted as1i×i.
Thei by j zero matrix is denoted as0i×j .
Cross product matrices are denoted asS(v).

1Theˆoperator is used for both unit vector and estimates to maintain notational agreement. The function
of the operator should be clear by the context.
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The rotation from frameI to frameB is represented by a rotation matrix asAB
I .

The scalar part of a quaternionq is denoted asq.
The vector/complex part of a quaternionq is denoted asp.
The complex conjugated ofq is denoted with an asteriskq∗.
Functions returning a matrix values are denoted in upper case boldS(v).
The attitude matrix representing the rotationq is denoted asA (q).
The time at discrete sample numberk is denoted astk.
The trace function of matrixM is denoted as tr(M).
The expected value function of a random variablew is denoted asE (w).
Dirac’s delta function is dentoted asδ (·).
Kronecker’s delta function is dentoed as∆(·).



List of Symbols

The following symbols are used in the report.

0 Zero matrix.
1 Identity matrix.
A Frame and area.
A Attitude matrix (or direct cosine).
Ac Cell area.
a Limit.
a Acceleration vector.
αc Incident angle of irradiance on a cell.

αirad Angle of incident irradiance onto a Sun sensor.
αsat Angle of a satellite line-of-sight.
αSun Angle of a Sun line-of-sight vector.
B Frame and body fixed frame.
B Matrix of weighed reference and body fixed vectors.
b Limit.

bEarth Earth magnetic field vector.
C Frame.
C Matrix of weighed reference and body fixed vectors.
c Velocity of light in vacuum.
χ Set of sigma points.
D Set of grid points coordinates.
∆φ Angle of rotation.
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∆φg Angular resolution of grid point latitude coordinates.
∆qsat Satellite attitude quaternion between time steps.
∆θg Angular resolution of grid point longitude coordinates.
d Distance.

dS->E Sun Earth distance.
E Irradiance.
Ea Total Earth albedo irradiance.

EAM0 Solar irradiance at1A.U..
Ebb Black body irradiance.
Ec Cell irradiance.
Ecal Irradiance used for calibrating Sun sensors.
Edd Direct and diffuse irradiance reaching a reflecting surface.
Edd0 Atmospheric scattered irradiance reaching a satellite.
Eirad Incident irradiance onto a Sun sensor.
Emeas Measured irradiance.
Er Irradiance reflected by reflecting surface.
EE Black body irradiance of Earth.

ESun Black body irradiance of the Sun.
Esat Albedo irradiance at satellite from reflected by a cell.
e Base of the natural logarithm.
ê Vector of rotation.
ǫ Small error.
F Linear system matrix.

F red Linear system matrix of reduced system state.
f Fraction of reflected irradiance reaching a satellite.
G Linear control matrix.
H Linear output matrix.
h Planck’s constant and altitude.
I Reference frame.
i Multi-purpose index variable and imaginary constant.

imax Maximum current output of a Sun sensor when illuminated withconstant irra-
diance.

j Multi-purpose index variable and imaginary constant.
J Inertia tensor.
K Kalman gain matrix.
k Imaginary constant, constant terms,discrete sample number, and Boltzmann’s

constant.
κ Tuning parameter.



List of Symbols xiii

l Angular momentum.
lE Earth irradiance vector.
lg Grid point irradiance vector.

lSun Sun irradiance vector.
λ Wavelength.
n Number of vector observations, discrete sample number, number of states, and

multi-purpose index variable.
nctrl Control torque.
nd Disturbance torques.
next External torques.
M Matrix.
m Mass.
n̂c Cell normal.

n̂SSi Sun sensor SSi normal.
Ω Angular velocity quaternion product matrix.

ωsat Satellite angular velocity.
P Point.
Pc Incident radiant flux onto a cell.

P cross Cross correlation matrix.
P est State estimate error covariance.

P meas Measurement error covariance.
Pr Reflected radiant flux.
π Half the ratio between the unit circle circumference and area.
Φ Set of latitude grid points and discrete linear system matrix.

Φred Discrete linear system matrix of reduced state.
p Quaternion vector part.

psat Satellite attitude quaternion vector part.
φ Elevation and polar angle.
φg Latitude coordinate of grid point.
Q Process noise covariance matrix.
q Quaternion scalar part.

qsat Satellite attitude quaternion scalar part.
q Quaternion.
qω Quaternion formed from angular velocity with zero scalar part.
qsat Satellite attitude quaternion.
R Measurement noise.
R Euclidean space.
r Radius.
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r Position vector..
rE Earth mean radius.
rSun Sun mean radius.
r̂g Grid point line-of-sight vector.
r̂s Source line-of-sight vector.
rsat Position vector of a satellite.
rSun Position vector of the Sun.

r̂SunEst Estimated Sun line-of-sight vector.
ρ Reflectivity of reflecting surface and angular distance.
S Stokes reflectivity.
S Matrix of weighed reference vectors.
s Weighed reference vector.
T Temperature.
TE Earth surface mean temperature.

TSun Sun surface temperature.
T Matrix of weighed body fixed vectors.
Θ Set of longitude grid point coordinates.
t Time.
t Weighed body fixed vector.
θ Azimuth.
θg Longitude coordinate of grid point.
U Matrix of weighed reference and body fixed vectors.
u Control signal.

V sat Set of grid points visible from a satellite.
V Sun Set of visible grid points from the Sun.

v Vector and vector of random variables representing measurement noise and
velocity vector.

w Weight factor.
w Vector of random variables representing process noise.
x Variable.
x System state.

xred Reduced system state where the quaternion scalar is omitted.
x̂ Unit vector defining frame and state estimate.

xECEF Axis defining the Earth centered Earth fixed frame.
xECI Axis defining the Earth centered inertial frame.
xSCB Axis defining the spacecraft body frame.
xSCN Axis defining the spacecraft nominal body frame.
xSIM Axis defining the star imager fixed frame.
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ξ Lagrange multiplier.
y Variable.
ŷ Unit vector defining frame.

yECEF Axis defining the Earth centered Earth fixed frame.
yECI Axis defining the Earth centered inertial frame.
ySCB Axis defining the spacecraft body frame.
ySCN Axis defining the spacecraft nominal body frame.
ySIM Axis defining the star imager fixed frame.
z Measurement vector.
ẑ Unit vector defining frame and estimated measurement.

zECEF Axis defining the Earth centered Earth fixed frame.
zECI Axis defining the Earth centered inertial frame.
zSCB Axis defining the spacecraft body frame.
zSCN Axis defining the spacecraft nominal body frame.
zSIM Axis defining the star imager fixed frame.
ζ Set of sigma point observations.
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List of Acronyms

The following acronyms are used in the report.

ACS Attitude Control System

ADC Attitude Determination and Control

ADCS Attitude Determination and Control System

ADS Attitude Determination System

BOL Beginning-of-Life

CoM Center of Mass

CSC Compact Spherical Coil

ECEF Earth Centered Earth Fixed

ECI Earth Centered Inertial

EKF Extended Kalman Filter

EPS Electrical Power System

FIR Finite Impulse Response

FOAM Fast Optimal Attitude Matrix

FOV Field of View

IGRF International Geomagnetic Reference Field

IEKF Iterated Extended Kalman Filter
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LEO Low Earth Orbit

LOS Line-of-Sight

NASA National Aeronautics and Space Administration

NL Non-Linear

PF Particle Filters

QUEST Quaternion Estimator

REQUEST Recursive Quaternion Estimator

RMS Root-Mean-Square

SCB Spacecraft Body

SCN Spacecraft Body Nominal

SGP4 Special General Perturbation Model of Fourth Order

SIM Star Imager

SSE Summarized Sun and Earth

SVD Singular Value Decomposition

TOMS Total Ozone Mapping Spectrometer

UKF Unscented Kalman Filter

UT Unscented Transformation
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Chapter 1
Introduction

The work in this thesis is in the field of satellite Attitude Determination and Control
System (ADCS). A field which has been thoroughly researched since the dawn of the
space age. However, the literature is limited in the analysis of the sunlight reflected off
the Earth’s surface and atmosphere, known as Earth albedo. Earth albedo is relevant
for practically all Earth orbiting satellites. The amount of solar radiation reflected by
the Earth towards a satellite, influences the power generated by solar panels, generates
radiation torques, affects the thermal design, and is measured by horizon sensors to
estimate satellite attitude [Harris and Lyle, 1969], [Wertz, 1978], [Wertz, 2001]. The
Earth albedo is especially important for satellites in Low Earth Orbit (LEO) and has
impact in two major design areas of the satellite:

• The ADCS often implements Sun sensors in order to measure thedirection to-
wards the Sun. These sensors generate power which is scaled with the incident
angle of the sunlight, and based on multiple measurements the direction to the Sun
is estimated. The Earth albedo generates additional currents in the sensors which
distort the Sun estimation, and thereby degrades the accuracy of the ADCS.

• The Electrical Power System (EPS) makes detailed budgets ofthe power gener-
ation and consumption on-board the satellite. The power on-board a satellite is
typically generated from solar cells, and the Earth albedo will add to the total
generated power.

The goal of this Ph.D. thesis is to develop a model of the Earthalbedo for simu-
lation, and incorporate the model of the Earth albedo into the algorithms for attitude
determination in order to increase the accuracy when using Sun sensors, and potentially
allow three-axis attitude determination by Sun sensors only. The model of the Earth
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albedo is designed for use with the AAUSAT-II satellite, which is a student satellite de-
veloped at Aalborg University. The AAUSAT-II satellite is aCubeSat, which is a1kg,
10cm×10cm×10cm satellite, limiting the amount of hardware and power consumption
considerably.

In order for the Earth albedo model to be widely applicable, the model must support
the engineering software tools typically applied by ADCS designers. One such tool is
MATLAB from The Mathworks, [The Mathworks, 2005]. MATLAB is used in numerous
institutions and space agencies and companies. The SIMULINK interface for MATLAB

gives the ADCS designers a graphical interface to the simulation platform, and is well
suited for implementing easy-to-use simulation toolboxes.

An Earth albedo model has multiple applications and motivations in the ADCS de-
sign, especially for pico-satellites. In general, the Attitude Determination System (ADS)
design pre-phase includes analysis of the space environment, specific for the mission.
For LEO satellites, the effects of Earth albedo are significant, both for disturbances in
the satellite motion and Sun sensor measurements. Additionally the ADCS is typically
tested in computer simulations of the space environment andsatellite models. The Earth
albedo model facilitates both analysis and simulation of the Earth albedo. As mentioned
above, the analysis of the space environment is also interesting from an EPS point of
view, because of the excess energy in the Earth albedo irradiance.

In the case of pico-satellites, the limited size, mass, and typically also budgets, re-
quire the use of simple sensor hardware. As opposed to complicated hardware, advanced
models and algorithms can improve the overall performance of the ADCS. Even if the
resulting algorithms are computationally heavy, which make them unapplicable for on-
board implementations, post-processing of down-linked telemetry data is feasible. This
enables the use of pico-satellites in science missions where accurate attitude informa-
tion is required for the interpretation of the science data,and hence may be processed
on-ground.

1.1 Background and Motivation

The motivation for developing space environment models, including an Earth albedo
model, comes from more than 10 years experience in satellitedesign at Aalborg Uni-
versity. Aalborg University has been involved in satelliteprojects since 1993, when the
preliminary design phase of the Ørsted satellite was initiated. Aalborg University was
selected to design and implement the ADCS for Ørsted. The Ørsted satellite was the first
nationally funded and built satellite in Denmark, and was launched on February 23rd,
1999. The satellite has been operated successfully for morethan six years since then,
and it is still active in measuring the Earth’s magnetic field.

Following the internationally recognized work on the Ørsted satellite, a second na-
tional satellite project was initiated under the name Rømer. The Rømer project was ini-
tiated in the year 2000. Aalborg University was once again chosen to deliver the ADCS
design. The Rømer satellite has yet to be completed, and the project is on standby until
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funding has been acquired.
Recent developments in the satellite industry and education community has changed

the limitations of satellites from high cost, highly complex to simpler and cheaper de-
signs, allowing new concepts and low cost development and launch costs. A knew type
of satellites, known as CubeSats, have brought down launch costs to a level, which has
made it possible for universities to launch satellites intospace.

1.1.1 The CubeSat Concept

The CubeSat concept was conceived jointly by Prof. Robert Twiggs, Stanford Univer-
sity and Prof. Jordi Puig-Suari and Prof. Clarke Turner, California Polytechnic State
University. The effort at California Polytechnic State University is concentrated around
the deployer and the interface with the launcher. The deployer is known as the P-Pod,
which is an abbreviation of Poly Pico-satellite Orbital Deployer. Stanford University is
responsible for the CubeSat satellite itself.

The CubeSat standard defines the physical requirements as a10cm× 10cm× 10cm
cubical structure with a mass of1kg, [Puig-Suari et al., 2001]. A P-Pod can accom-
modate three of these CubeSats, and is launched as a piggy-bag ride on an unspecified
launcher. The number of P-Pods is only limited by the launch provider.

AAU CubeSat

Aalborg University initiated its first CubeSat project in 2000, which was a student satel-
lite project. The satellite is called AAU CubeSat, and it waslaunched on June 30, 2003,
which was the first time CubeSats were launched into space. A total of six CubeSats
were launched:

• AAU CubeSat, Aalborg University, Denmark.

• DTUsat, Danish Technical University, Denmark.

• Can X-1, University of Toronto, Canada.

• CUTE-1, Tokyo Institute of Technology, Japan.

• CubeSat XI, University of Tokyo, Japan.

• QuakeSat, Stanford University, U.S.

Figure 1.1 shows a picture of the AAU CubeSat flight model, taken before integration
into the P-Pod launcher interface.

AAU CubeSat had problems with the communication system, which was solved
by upgrading the ground station. This upgrade took approximately three months, and
following the successful download of telemetry from the satellite, the batteries on the
satellite lost capacity. End-of-life was declared on September 22, 2003.
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Figure 1.1: The flight model of AAU CubeSat.

AAUSAT-II

Students at Aalborg University are currently working on a second CubeSat called
AAUSAT-II. As its main payload, AAUSAT-II will be flying a gamma-ray burst detec-
tor. Gamma-ray bursts are massive extra-galactic energy discharges. They are hundreds
of times larger than supernovas, which are caused by exploding stars.

The AAUSAT-II satellite is equipped with six Sun sensors, a magnetometer, and
three gyros, for attitude determination. The ADCS on AAUSAT-II is purely experimen-
tal, and is a demonstration of full three-axis active control on a pico-satellite. AAUSAT-
II carries magnetorquers and momentum wheels for actuation, hence it is the most ad-
vanced control system ever developed for a satellite of its class.

The Earth albedo model is developed for use in the ADCS designfor the AAUSAT-II
satellite. The model is used for simulating the environmentof the satellite in LEO. The
attitude algorithm will also be used during operations as anoff-line algorithm for im-
proved attitude estimation. Simple Earth albedo compensations, based on the developed
Earth albedo model, will be used in the on-board algorithms.The AAUSAT-II satellite is
expected to be launched in the first half of 2006. Figure 1.2 shows an artist’s impression
of the AAUSAT-II satellite.

The Earth albedo model is validated by using telemetry data from the Ørsted satellite.
Since the ADCS for the Ørsted satellite is designed at Aalborg University, telemetry
data is readily available. The Ørsted satellite is equippedwith eight Sun sensors and a
magnetometer, and but also flies a star imager, for high precision attitude determination.
The star imager measures the attitude of the Ørsted satellite with a precision better than
an5 − 20arcsec, and is well suited for comparing the results of the algorithms based on
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Figure 1.2: Artist’s impression of the AAUSAT-II satellite. The algorithms developed in
this thesis are being implemented for use for AAUSAT-II, andthe satellite is
planned for launch in the first half of 2006.

Sun sensor and magnetometer data.
The Ørsted telemetry data and configuration of attitude sensors, gives unique con-

ditions for performing an analysis and validation of Earth albedo. Aalborg University
is continuously developing student satellites. The Earth albedo model derived in this
thesis will assist the ADCS engineers in the design and test of attitude determination
and control algorithms for future satellite missions.

1.2 Overview of Previous and Related Work

This section investigates previous and related publications within the field of Earth
albedo modeling and attitude determination algorithms. Attitude determination has been
researched thoroughly over the last 30 years. The Earth albedo is one out of a number
of environmental disturbances in the ADS, and is the focus ofthis thesis.

1.2.1 Earth Albedo

Earth Albedo is only one of several external disturbance forces. Other sources if dis-
turbance include magnetic residual, solar pressure, gravity gradient, and atmospheric
drag. These disturbances are naturally very dependent on the type of orbit of the space-
craft. A study of the external disturbances, excluding the Earth albedo, is published in
[Bryson, Jr., 1994].
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Earth albedo is typically treated as noise to the ADS. The albedo distur-
bance is either filtered out statistically in Kalman algorithms [Psiaki et al., 1990],
[van Beusekom and Lisowski, 2003], which is possible when used with magnetome-
ters, or it can be measured using albedo sensors [Fisher et al., 1993]. Digital sun sen-
sors are also available, which are mostly insensitive to albedo light by implement-
ing an active pixel array instead of solar cells [Hales and Pedersen, 2001]. SOme
configurations result in errors in the least significant bitsof the digital Sun sensors,
[Brasoveanu and Sedlak, 1998]. Some algorithms simply relyon protection of stray
light in the sensor hardware [Humphreys, 2002].

A significant research effort in Earth albedo has been conducted in the geophys-
ical and meteorological research communities (see e.g. [Herman and Celarier, 1997],
[Koelemeijer and Stammes, 1998], [Snyder and Wan, 1998]). The results of these stud-
ies are mainly focused on spectral distributions of absorbance and reflectivity of the at-
mosphere and different Earth surface scenarios. Investigation in Earth albedo modeling
has also been conducted by National Aeronautics and Space Administration (NASA)
in [Flatley and Moore, 1994], however information of the Earth reflectivity is not in-
cluded in derived model. Earth observations by satellites and high altitude aircrafts
and balloons, have been used to acquire data of the Earth reflectance and radiance
[Harris and Lyle, 1969], [Lyle et al., 1971]. These data are more than 30 years old, and
more accurate satellite observations may be used to developnew and accurate models of
the Earth albedo.

Since July 25, 1996, the Earth Probe satellite has been measuring the
Earth’s reflectivity for the Total Ozone Mapping Spectrometer (TOMS) project
[McPeters et al., 1998]. The detailed reflectivity recordings are in this thesis used to
calculate the Earth albedo, given a geometrical constellation of the Sun, Earth, and
spacecraft. The Earth albedo model, may be utilized to remove the Earth albedo dis-
turbance from Sun sensor measurements. In addition, the development of the Unscented
Kalman Filter (UKF) yields a new algorithm for using the Earth albedo as a source for
navigation. This allows for three-axis attitude determination using Sun sensors alone.
Attitude determination algorithms can be split into two common groups: 1) the single-
point algorithms and 2) filters, which utilize multi-point information to calculate the
attitude.

1.2.2 Single-Point Algorithms

Single-point algorithms sample the attitude hardware once, and provides an estimate
of the attitude at the time of sampling. Filters continuously sample the sensors, and
incorporate dynamic models of the attitude in order to give an attitude estimate based on
a weighed average of the predicted measurement and sensor data.

The single-point algorithms are based on the Least Square’sproblem published in
1965 by Wahba, [Wahba, 1965]. The problem formulation is known as Wahba’s prob-
lem, and the optimal solution is the attitude which minimizes Wahba’s cost function. The
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principle of attitude determination by Wahba’s problem formulation is based on vector
observations. It requires that two or more vectors can be measured in a spacecraft fixed
frame. The same vectors must be known in a reference frame as well. By comparing the
vector observations in reference and body fixed frames, the attitude of the satellite may
be estimated.

Since Wahba formalized the problem in 1965, numerous solutions to Wahba’s prob-
lem have been published. The TRIAD algorithm, [Lerner, 1978], is a simple solution to
Wahba’s problem based on two vector observations. In [Bar-Itzhack and Harman, 1997]
the TRIAD algorithm has been extended. The estimated attitude is based on a weighed
average of two TRIAD solutions, which is guaranteed to be better than the two results
separately. The simplicity of the TRIAD algorithm makes it attractive still, for on-board
implementations [Flatley et al., 1990].

Davenport’s Q-Method algorithm uses the quaternion attitude representation to
parameterize Wahba’s problem, which is formulated as an eigenvector problem
[Lerner, 1978]. The Quaternion Estimator (QUEST) algorithm is an extension to Dav-
enport’s Q-Method algorithm, [Shuster and Oh, 1981], whichavoids solving the eigen-
value problem, and instead formulates Wahba’s problem as a characteristic equation.

In 1988, Markeley published an algorithm which solves Wahba’s problem, in its
original formulation using the attitude matrix (or direct cosine), using the Singular Value
Decomposition (SVD) Method, [Markley, 1988]. This algorithm evolved into the Fast
Optimal Attitude Matrix (FOAM) algorithm, published in [Markley, 1993], and is com-
parable to the QUEST algorithm in computational speed.

1.2.3 Filtering Algorithms

Several extensions of the single-point algorithms exist, which make use of multi-
ple sensor samples in order to improve the attitude estimates. The Filter QUEST
[Shuster, 1989] and Recursive Quaternion Estimator (REQUEST) [Bar-Itzhack, 1996]
include past measurements, that require accurate knowledge of the angular velocity in
order to propagate the attitude between sample times. A number of publications have
looked into the the use of multiple samples in order to compensate for lacking vector
observation, i.e. a single vector measurement [Psiaki et al., 1990], [Challa et al., 1997].
Batch estimators and smoothers, which use future measurements to improve attitude
estimates, also exist, [Crassidis and Markley, 1997a].

A filtering algorithm, which include multiple samples and dynamical descriptions
of the system, was presented by Rudolph E. Kalman in 1960 [Kalman, 1960]. From a
statistical description of the system dynamics and measurements, the Kalman filter pro-
duces an optimal estimate of the state of the system. However, some extension to the
Kalman filter is necessary in order to apply the filter in attitude determination. The prob-
lem is that the general used attitude parameters, the attitude matrix and the quaternion,
are constrained parameters, which must be taken into account when calculating esti-
mates [Lefferts et al., 1982a]. In [Bar-Itzhack and Oshman,1985] an Extended Kalman
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Filter (EKF) is derived which assumes an additive correction. The EKF linearizes a
non-linear system around the current estimate of the systemstate, and applies the linear
Kalman filter equations on the linearized system.

As it is the case with the single-point algorithms, numerousperturbations
of the EKF exist, which handle star trackers [Gai et al., 1985], gyro-less config-
urations [Challa, 1993], [Crassidis and Markley, 1997b], single vector observations
[Psiaki et al., 1990], and a Kalman filter, which assumes quaternion measurements by
incorporating the QUEST algorithm, [Fisher et al., 1989].

Over the recent years a new algorithm has been published, known as the UKF,
[Julier and Uhlmann, 1997], [Wan and van der Merwe, 2000]. This algorithm is gain-
ing recognition throughout the attitude determination research community, even though
the EKF has been the preferred ADCS algorithm for more than two decades. The
EKF may experience problems with non-convergence, due to first order approxima-
tions of the system linearization. This problem has been documented in several publica-
tions, [Kalman and Bucy, 1961], [Bucy, 1965], [Athans et al., 1968], [Bass et al., 1966],
[Kushner, 1967b], [Kushner, 1967a]. Second order filters, improving the approxima-
tion of the system dynamics, may be applied to remedy the convergence problems,
[Maybeck, 1982], however the issue has resulted in investigations in other filtering al-
gorithms.

The improvement of the EKF has been branched in two direction, the Iterated Ex-
tended Kalman Filter (IEKF) and the UKF, [Lefebvre et al., 2004]. The IEKF uses mul-
tiple iterations of the EKF in order to ensure convergence. The UKF uses a set of sigma
points to approximate the distribution of the modeling errors, and these sigma points are
inserted in the system model, in order to approximate the noise distributions and cross-
correlations of the system at subsequent time-steps. This is known as the Unscented
Transformation (UT), [Julier and Uhlmann, 1994]. The UKF has been adapted to at-
titude determination. These algorithms are published in [Crassidis and Markley, 2003]
and [Lai et al., 2003].

The advantage of the UKF over the EKF is the fact that calculation of the first order
Jacobians of the non-linear system models are avoided. Thisis necessary if the Earth
albedo results of this thesis are to be incorporated correctly into the attitude determi-
nation algorithm. Alternately, a single-point algorithm must be used to pre-process the
Sun sensor data before it is passed to the EKF, in order to acquire a Sun vector. Both
solutions are presented and compared in this thesis.

The UKF is in fact a special case of the general Particle Filters (PF). A PF uses
approximations of the system noise distributions by mapping any number of points in the
state space, and observing the transformed distribution ofpoints. Recently, PF have been
suggested for attitude determination, [Cheng and Crassidis, 2004], which use a large
number of state space points, which are able to represent thecurrent and transformed
distribution of the state and observations using Monte-Carlo simulation. However, due
to the complexity of the Earth albedo modeling, it is inconvenient to apply the system
models to several hundreds of points, rather than strategically selected sigma-points.
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In this thesis an Earth albedo model, based on the TOMS reflectivity data, is derived.
Novel methods for incorporating the Earth albedo model in existing attitude algorithms
is presented, and the performances of the algorithms are compared, with reference to
computational complexity. Inclusion of enhanced modelingof Sun sensors results in an
algorithm based on the UKF, enabling attitude determination from Sun sensors only.

1.3 Contributions

The Earth albedo modeling is the main focus of this thesis, and is published in
[Bhanderi, 2005b]. The motivation of the Earth albedo modelanalysis spawns from
experience in ADCS design, [Bak et al., 2002], and management of student satellite
projects, [Nielsen et al., 2005], [Alminde et al., 2005]. The implementation of simula-
tion modules assist the ADCS design significantly, and is a necessary procedure, regard-
less of the satellite complexity, [Amini et al., 2005].

The major contributions of the Ph.D. work are

• Advanced modeling of Earth albedo. Using reflectivity data from the Earth Probe
satellite, an Earth albedo model of high accuracy is derived. The model may be
utilized in environment simulations and ADCS design and test.

• The Earth albedo model is implemented as a toolbox for MATLAB with
SIMULINK interface, enabling easy integration in existing MATLAB simulations.
The toolbox is available on-line at [Bhanderi, 2005a].

• Accurate Sun sensor vector estimation. Calibrating measurements from solar cells
with the albedo model, enhances the performance of the algorithm for Sun sensor
vector estimation.

• Novel methods for incorporating the Earth albedo model in existing attitude de-
termination algorithms, and the results of the algorithms are compared.

• Three-axis attitude determination using only solar cells.Using solar cells for
estimating the Sun vector, and in addition the nadir, allowsfor coarse three-axis
attitude determination, using simple hardware, or even using the solar panels, used
for collecting power. This allows for three-axis attitude determination on very
small satellites like the CubeSats without consuming poweror mass, at the cost
of higher data flow. It can also be used as a safe mode algorithmon large scale
satellites.

1.4 Thesis Outline

The thesis is organized as follows.
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Chapter 2. Earth Albedo Modeling This chapter derives the Earth albedo model.
The input reflectivity data is described and statistical data is calculated. The Earth
albedo model principle is described and the equations for calculating diffuse di-
rectional Earth albedo are given.

Chapter 3. Sun Sensor Current Modeling Given the Earth albedo model, the stan-
dard Sun sensor current model is expanded to include the diffuse irradiance from
Earth albedo.

Chapter 4. Sun Sensor Vector ObservationsThis chapter describes the algorithms
for forming a Line-of-Sight (LOS) vector from Sun sensor currents. Three algo-
rithms are presented, in order to compare the impact of advanced Earth albedo
modeling. The standard algorithm disregards Earth albedo completely. The Max
Currents algorithm uses Sun sensors with highest current output. The Summarized
Sun and Earth (SSE) algorithm incorporates the Earth albedomodel in forming
vector observation pairs.

Chapter 5. Attitude Parameters This chapter provides an introduction to the attitude
parameters used in this thesis. The attitude matrix and attitude quaternion is pre-
sented, and some useful properties of their algebra is given.

Chapter 6. Single-Point Algorithms This chapter presents Wahba’s problem which
expresses attitude determination as minimizing the error of vector observation
pairs by estimating the attitude parameter. The single-point Q-Method algorithm
is presented as a solution which gives the optimal attitude quaternion from the
vector observations.

Chapter 7. Kalman Filters This chapter presents the equations of the EKF and UKF
filtering algorithms. The attitude determination is performed using a system and
measurement models. The Kalman Filters use the models to predict the measure-
ments at each time step. Calculations of the estimation error covariance allows for
statistical optimal fusion of the predicted and sensor measurements.

Chapter 8. Estimator Designs System specific models and tweaking of the Kalman
Filters are described. The equations of satellite motions are presented. Lineariza-
tion of the system and vector observation models are performed, as required by
the EKF. The use of quaternions in the system state requires modifications specific
to quaternion algebra.

Chapter 9. Validation of the Earth Albedo Model The Earth albedo model is vali-
dated by applying the Earth albedo and Sun sensor current model on the Ørsted
satellite configuration. The results of the current simulation is compared to Ørsted
telemetry data.

Chapter 10. Earth Albedo Model Results The Earth albedo model is utilized in dif-
ferent scenarios, and the resulting of the Earth albedo is discussed. Impacts of
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longitude and altitude variation are investigated, and thetotal Earth albedo of the
Ørsted satellite’s noon-midnight orbit is presented. Due to the computational com-
plexity of the Earth albedo model, impacts of reducing the input/output resolution
is investigated.

Chapter 11. Simulated Attitude Determination Results The attitude determination
algorithms are simulated and the performance of the algorithms compared. The Q-
Method, EKF, and UKF are simulated with vector pair inputs from magnetometer
and Sun sensors. The UKF is additionally simulated using thenon-linear Sun
sensor current model, with and without magnetometer vectorobservation.

Chapter 12. Application of the Earth Albedo Model on Ørsted Data The Q-
Method is applied to the Ørsted satellite telemetry data, using the Sun vector
observation algorithms. The performance of the Sun sensor vector observation
algorithms are compared, and the results of the attitude determination presented.

Chapter 13. Conclusion Summary of the thesis with concluding remarks and recom-
mendations for future work.
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Chapter 2
Earth Albedo Modeling

Earth albedo is relevant for practically all Earth orbitingsatellites. The amount of so-
lar irradiance reflected by the Earth towards a satellite, influences the power generated
by solar panels, generates torques, affects the thermal design, and may be measured
by horizon sensors to estimate satellite attitude [Harris and Lyle, 1969], [Wertz, 1978],
[Wertz, 2001]. Albedo is typically treated as noise in the ADS. By modeling the Earth
albedo, this disturbance may be incorporated into the ADS and potentially allow the
Earth albedo to be used as navigation reference.

Due to the geometry of the Earth, the Earth albedo irradianceis multi-directional,
unlike the solar irradiance which may be assumed to be anti-parallel to the Sun LOS
vector. This assumption holds because the distance to the Sun is large relative to the
Sun radius for Earth orbiting satellites. Since the Earth albedo is significant only in the
vicinity of Earth, the Earth albedo model must include information of the directional
incidence of the Earth albedo irradiance. The model of the Earth albedo is based on
reflectivity data from the Earth Probe satellite, which is part of the TOMS project. The
data resolution partitions the Earth surface into a number of cells. The incident irradi-
ance on each cell is used to calculate the total radiant flux reflected from the cell. From
the radiant flux from each cell, the irradiance at the satellite is calculated. The out-
put is an array of Earth albedo contribution from each cell inthe partition. Directional
information is maintained by the LOS vector to each cell.

2.1 Satellite Data

A significant research effort in Earth albedo has been conducted in the geophysi-
cal and meteorological research communities (see e.g. [Herman and Celarier, 1997],
[Koelemeijer and Stammes, 1998], [Snyder and Wan, 1998]). The results of these stud-
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ies are mainly focused on spectral distributions of absorbance and reflectivity of the
atmosphere and different Earth surface scenarios. These results can be applied in the
calculation of Earth albedo received by a satellite in the vicinity of Earth.

The modeling of the Earth albedo is based on the reflectivity data, measured by the
Earth Probe Satellite of the TOMS project, and the data is available online at the TOMS
website, [National Aeronautics and Space Administration,2005]. The Earth Probe re-
flectivity data is available daily from July 25, 1996 to present, with minor periods of
outage. The orbit altitude was changed from515km to 740km on July 5, 1997. The
reflectivity data fluctuates because of changes in cloud and ice coverage and seasonal
changes. The satellite data is given in a resolution of∆φg = 1 deg latitude times
∆θg = 1.25 deg longitude, i.e.180 × 288 data points. The two-dimensional data space
D is defined as a grid of data pointsΦ× Θ, where

Φ = {0, ∆φg, 2∆φg, ..., 179∆φg} , (2.1)

Θ = {0, ∆θg, 2∆θg, ..., 287∆θg} . (2.2)

To each data point(φg, θg) ∈ D, the mean reflectance of a cell,φg ± ∆φg/2 andθg ±
∆θg/2, on the Earth surface is available in the TOMS data product.

The reflectivity of a cell in the TOMS data, is calculated by measuring the irradiance
receivedEmeasby the satellite, which is matched by adjusting a single parameterρ in the
model of the measured irradiance. The irradiance measurement Emeasis model by

Emeas=
ρf

1 − Sρ
Edd + Edd0, (2.3)

whereρ is the reflectivity of the reflecting surface,f is the fraction of reflected irradi-
ance reaching the satellite,S is the fraction of reflected irradiance scattered back to the
reflecting surface, known as Stokes reflections,Edd is the amount of direct and diffuse
irradiance reaching the reflecting surface, andEdd0 is the amount of atmospheric scat-
tered irradiance reaching the satellite, [Herman et al., 2001]. Figure 2.1 illustrates the
reflectivity model used in the reflectivity estimation.

In Figure 2.1, it is seen that the incident irradianceEAM0 reaches the reflecting sur-
face as partial direct and Rayleigh scattered diffuse irradianceEdd. The total irradiance
reaching the surface is the sum ofEdd and the infinite sum of irradiance reflected be-
tween the atmosphere and the surface, hence the reflected irradiance is expressed as

Er = ρEdd
(

1 + Sρ + S2ρ2 + ... + Snρn + ...
)

=
ρEdd

1 − fρ
. (2.4)

Due to atmospheric scattering and absorption only a fractionf of the reflected irradiance
reaches the satellite. Adding the atmospheric backscatterEdd0 yields the reflectivity
model in Equation (2.3).
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Figure 2.1: Reflectivity model used for estimating the surface reflectivity in the TOMS
data product.

A plot of a single day’s measurements by the Earth probe satellite, is shown in Figure
2.2. Note that the satellite does not cover the entire Earth surface in the duration of 24
hours. Figure 2.2 reveals that the Earth Probe satellite didnot record measurements at
latitudes higher than60 deg on December 31, 2001.

2.2 Data Statistics

Figure 2.2 shows that a single day’s measurement is incomplete. The orbit of the Earth
Probe satellite is configured such that all latitudes are covered over a period of approx-
imately four months. Mean reflectivity and standard deviation of the data for the year
2001 are calculated. The result is shown in Figure 2.3. The standard deviation of the
data is shown in Figure 2.4. Note that the scale of the color map is different in the two
figures. The plots show that there is high reflectivity over the poles, which can be ex-
pected due to the polar ice caps, and low reflectivity around the Equator. The standard
deviation is high around40 deg to60 deg latitude, North and South, due to changing
cloud coverage. Over the poles, the icy surface ensures highreflectivity regardless of
cloud coverage. The data suggests an average Earth reflectivity of 30.40%, which is con-
sistent with the literature, [Lyle et al., 1971], [Wertz, 2001]. The average is calculated
by weighting each reflectivity measurement with respect to the area of the associated
cell at the measurement grid point.
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Figure 2.2: Plot of TOMS reflectivity data recorded on December 31, 2001.

Figure 2.3: Plot of mean TOMS reflectivity data recorded from January 1 toDecember
31, 2001.
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Figure 2.4: Plot of standard deviation of the TOMS reflectivity data recorded from Jan-
uary 1 to December 31, 2001.

The Earth albedo model calculations are based on the input reflectivity data. Uti-
lizing daily reflectivity data is more accurate than mean values. However, for on-board
algorithms the daily reflectivity is likely to be unavailable in real-time, and the annual
mean may be applied. In off-line calculations on ground, thedaily reflectivity data may
be used. Since the daily reflectivity data does not provide full coverage, as shown in
Figure 2.2, the annual mean data is substituted for missing data.

2.3 Modeling

The principle of the modeling scheme is outlined in Figure 2.5. The incident solar
irradianceEAM0 reaches the cell at grid point(φg, θg), at an incident angle ofαc to the
cell normaln̂c. The angle of incidence defines density of the incident irradiance on
the cell. The amount of radiant flux reflected by the cell is given by the irradiance and
the area of the cell,Ac (φg). The Earth albedo contribution of the cell,Ec, reaches the
satellite, and the density of the radiant flux is dependent onthe angleαsat. The modeling
approach is described in detail in the following sections, following the path of the solar
irradiance in Figure 2.5.
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nss1
αsun

αsat

n̂c
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Ac (φg)

EAM0

(φg, θg)

Figure 2.5: Earth albedo modeling principle. The incoming solar AM0 irradiance is
reflected by a cell.
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2.3.1 Reflection of Incident Irradiance

The incident solar irradiance hits a cell on the Earth’s surface. The incident irradiance is
modeled as a black body source, and the total irradiance is the sum of irradiances in the
black body spectrum. The modeling of the solar irradiance isdescribed in Appendix B.
The AM0 irradiance is found to beEAM0 = 1367W/m2.

The amount of energy reflected by a cell, at grid point(φg, θg) ∈ D, depends on the
cell areaAc (φg), which is found using Surface of Revolutions, described in Appendix
C. Given the polar angle of the grid centerφg, the grid area is given by

Ac (φg) = θgr
2
E ×

(

cos

(

φg −
∆φg

2

)

− cos

(

φg +
∆φg

2

))

, (2.5)

whererE is the Earth mean radius.
The incident irradiance on the cell, is equal to the solar AM0irradiance multiplied

by a cosine term dependent on the incident angleαSun, which is the angle between the
cell normaln̂c and the Sun LOS vector from the grid point,r̂Sun. The intensity of the
incoming irradiance decreases as the angle of incidence increases. This is equivalent to
the observed cell area as seen from the Sun. The incident radiant flux densityPc (φg, θg)
on a single cell at grid point(φg, θg), is given by

Pc (φg, θg) = EAM0Ac (φg)
{

r̂T
Sunn̂c

}∞

0
, (2.6)

where{·}b
a denotes saturation of the argument, with lower limita and upper limitb.

Note that the vectorŝrSun andn̂c are functions of the data grid point(φg, θg). This is not
included in the notation, to preserve readability. This includes the satellite LOS vector,
r̂sat, introduced below.

The reflection on the Earth surface is assumed to be Lambertian. Lambertian equiv-
alent reflecting surfaces have a diffuse reflection, which isindependent on the incident
angle of the incoming irradiance, and look evenly illuminated regardless of the view-
ing angle, [Ryer, 1997]. The reflected radiant flux densityPr (φg, θg), also known as
the radiant exitance, is calculated as a fractionρ (φg, θg) of the incoming radiant flux in
Equation (2.6)

Pr (φg, θg) = ρ (φg, θg)Pc (φg, θg) , (2.7)

whereρ (φg, θg) is the reflectivity of the grid point.

2.3.2 Earth Albedo at Satellite

The amount of Earth albedo from a single cell, seen from the satellite, depends on the
distance to the satellite and the angle between the cell normal and the satellite LOS
vector from the grid point,̂rsat. The irradianceEr (φg, θg) of the cell, when assuming
Lambertian reflectivity, is related to the radiant exitanceby, [Ryer, 1997]

Er (φg, θg) =
Pr (φg, θg)

π
. (2.8)
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The Inverse Square Law states that the intensity of the irradiance decreases with the
square of the distance from the grid point to the satellite, which is written as

Esat(φg, θg) =
Er (φg, θg)

||r̂sat||2
. (2.9)

Finally the irradiance at the satellite depends of the visible area of the cell surface seen
from the satellite. The visible area is related toαsat by the cosine function. This rela-
tionship, combined with equations (2.8) and (2.9), resultsin an expression of the Earth
albedo irradianceEc (φg, θg) from a single cell, given by

Ec (φg, θg) =
Pr (φg, θg)

{

r̂T
satn̂c

}∞

0

π ||r̂sat||2
. (2.10)

The full Earth albedo model is expressed as

Ec (φg, θg) =

{

ρ(φg,θg)EAM0Ac(φg)r̂
T
Sunn̂cr̂

T
satn̂c

π||r̂sat||
2 if (φg, θg) ∈ V Sun∩ V sat

0 else
. (2.11)

The setsV Sun⊂ D andV sat⊂ D are the grid points visible from the Sun and satellite,
respectively, i.e.V Sun ∩ V sat is the set of sunlit grid points visible from the satellite,
which are necessary conditions for a cell to reflect solar irradiance to the satellite. The
inequality defining the setsV sat andV Sun is derived in Appendix D.

The total Earth albedo irradianceEa at the satellite position may be calculated as the
sum of irradiances from all cells

Ea =
∑

V Sun∩V sat

Ec (φg, θg) . (2.12)

The output of the Earth albedo model,Ec (φg, θg), is the irradiance received from the
cells at all grid points, i.e. a180 × 288 matrix. This result allows for incident angular
dependency, when calculating Earth albedo effects on solarcells. This is useful, since
the irradiance on solar cells decreases when the angle between the solar panel normal
and the incident irradiance increases. The albedo model maybe used to derive advanced
Sun sensor current models, which takes the directional Earth albedo output into account.
Improved models should facilitate improved vector observations and attitude determina-
tion.



Chapter 3
Sun Sensor Current Modeling

The Sun sensor current model is used to calculate the output currents of the Sun sensors.
It is derived from the configuration of sensors on the satellite. Different types of Sun
sensors exist. A very simple analogue Sun sensor simply consist of a small solar cell in
short circuit mode. Sun sensors of this type are very cheap and small, compared to more
advanced sensors, and are suitable for CubeSat applications. Driving the Sun sensors in
short circuit mode ensures that the current output is dependent mainly on the incoming
irradiance only. The solar cells used for charging batteries on a satellite, can experience
change in current output as a result of high loads. Consequently using these solar cells
requires modeling of the entire electrical system in the satellite, which is very complex.
The model derived in this chapter applies for simple Sun sensors with solar cells in short
circuit mode.

The angle of the incident irradiance is clearly dependent onthe angle of the incident
irradiance, since the density of the radiant flux on the solarcell surface in the Sun sensor
changes with this parameter. From the density of the radiantflux on the Sun sensor,
the output current may be calculated from the area and efficiency of the solar cell. Typ-
ically, the Sun sensor is calibrated on-ground, by illuminating the Sun sensors with a
known irradiance, denotedEcal, and measuring the current output,imax, when the angle
of incidence is zero, i.e. the irradiance is perpendicular on the solar cell plane. The mea-
sured current from an ideal Sun sensori, as a function of the angle of incidenceαirad,i is
expressed as

imeas,i = imax,icos
(

{αirad,i}π/2
−∞

)

. (3.1)

The angleαirad,i is measured as the angle between the normal vector to the Sun sensor
solar cell plane,̂nSSi, and the LOS vector to the irradiance source, illustrated inFigure
3.1. The notation{αirad,i}π/2

−∞ indicates that the angle of the incident irradiance saturates
atπ/2. When the angle of incidence exceeds90 deg the Sun sensor is illuminated from
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the back, hence no current is generated. The saturation gives the Sun sensor output a
highly non-linear behavior.

n̂SS1

αirad,1

r̂s

Figure 3.1: Definition of the angle of incidenceαirad,i, illustrated by Sun sensor SS1 on
the Ørsted satellite.

The parameterimax,i may be assumed to scale linearly with the amount of incident
irradiance. Hence the output generated from the solar irradiance is given by

imeas,i =
Eiradimax,i

Ecal
cos
(

{αirad,i}π/2
−∞

)

, (3.2)

whereEirad is the incident irradiance from an angleαirad,i of incidence. Equation (3.2)
can be expressed in terms of the Sun sensor normal vectorn̂SSi and the LOS vector to
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the sourcêrs, as

imeas,i =
Eiradimax,i

Ecal

{

n̂T
SSir̂s

}∞

0
. (3.3)

Equation (3.3) is often used for estimating the output when disregarding the Earth
albedo. In this case the incident irradiance isEAM0 . In the following, the output equa-
tion is extended to include the output of the Earth albedo model, Ec (φg, θg), derived in
Chapter 2.

3.1 Incorporating the Earth Albedo Model

The total generated current in the Sun sensors is a sum of currents generated from the
Sun irradiance, Earth albedo irradiance, and other faintersources which are assumed to
be negligible. Recall from Equation (2.11), that the outputof the Earth albedo model is
an array of albedo contributions from each cell in the partitioning of the Earth surface.
This allows the Sun sensor output equation to include directional dependence to each
cell, when calculating the current generated from Earth albedo.

n̂c

αsat

Ec

Ac (φg)

Figure 3.2: Albedo contributions in the Earth albedo model output. Eachvalue in the
albedo array is a irradiance contribution from a cell on the Earth surface.

The interpretation of the Earth albedo array is illustratedin Figure 3.2. The Earth
albedo of a cellEc (φg, θg), specified by the grid point(φg, θg), is a irradiance contri-
bution from the direction from the satellite to the grid point. The Sun sensor output
equation must calculate the contribution of each cell on theSun sensor. The total gener-
ated current is calculated by summarizing the solar inducedcurrent and the contributions
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from each grid point. The resulting Sun sensor output equation becomes

imeas,i = imax,i

({

EAM0n̂T
SSir̂Sun

Ecal

}∞

0

+
∑

V Sun∩V sat

{

Ec (φg, θg) n̂T
SSir̂g

Ecal

}∞

0

)

. (3.4)

The r̂g vector is the LOS vector from the satellite to the grid point(φg, θg). Irradiance
vectorslSun andlg are introduced, and defined as

lSun = EAM0 r̂Sun, lg = Ec (φg, θg) r̂g, (3.5)

which represent vectors to the sources of irradiance, with norms equal to the magnitude
of the source irradiances. Inserted into Equation (3.4), yields

imeas,i = imax,i

({

n̂T
SSilSun

Ecal

}∞

0

+
∑

V Sun∩V sat

{

n̂T
SSilg

Ecal

}∞

0

)

. (3.6)

Equation (3.6) is a non-linear model of the current output ofa Sun sensor. The
attitude of the satellite, and consequently the Sun sensor,naturally influences the Sun
sensor output. This dependency is included in the model, since the normal vector of the
Sun sensor,̂nSSi, changes as the satellite rotates. The model incorporates the output of
the Earth albedo model, which includes irradiance contributions from each cell of the
partitioned Earth surface. This includes directional dependency of each cell irradiance.
The Sun sensor model potentially allows improved Sun sensorvector observations and
current simulation.



Chapter 4
Sun Sensor Vector Observations

This chapter describes the algorithms for estimating a vector from Sun sensor measure-
ments. An algorithm which includes the results of the Earth albedo model in Chapter 2
is derived.

Sun sensors convert radiant flux to electrical power, and canbe used to estimate the
angle between the normal vector to the sensor plane and the Sun LOS vector, by measur-
ing the intensity per area on the sensor’s solar cell surface, which is related to the angle
of incident irradiance. Sun sensors are typically mounted such that measurements are
available in six directions, which are opposite facing in pairs, such that the observations
span all ofR3. Typically a minimum of six Sun sensors are used, looking in the positive
and negative directions of each axis in the spacecraft reference frame, as it is the case on
the Ørsted satellite [Blanke et al., 1994]. In the followingit is assumed that six Sun sen-
sor measurements are available and that the Sun sensors are mounted looking in pairs in
opposite directions, along orthogonal axes. If this is not the case, the measurements can
be projected onto orthogonal axes, and the results will still apply. The Sun sensors de-
scribed in this thesis are simple sensors, which work by measuring the current output of
a solar cell in short circuit mode. Digital Sun sensors are more complicated, and are not
significantly affected by albedo [Brasoveanu and Sedlak, 1998]. The improved accuracy
of digital Sun sensors is at the expense of higher price, mass, and power consumption.

Figure 4.1 shows the geometry of the Sun LOS vectorr̂Sun in a configuration, where
six sun sensors are mounted in pairs in opposite directions and along three orthogonal
axes. The Sun sensors are represented by the normal vectorsn̂SSi of each sensor SS1
through SS6. In the following section a standard algorithm of obtaining the Sun LOS
vector is presented.
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Figure 4.1: Projections of the Sun LOS vector measured by Sun sensors mounted in op-
posite looking directions along three orthogonal axes.
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4.1 Standard Algorithm

Applying the cosine model of the Sun sensor current and normalizing the measured
currentimeas,i with respect to the maximum generated currentimax,i, i.e. when the inci-
dent light hits the Sun sensor orthogonally onto the solar cells, the measurement can be
written as

imeas,i

imax,i
= cos

(

{αirad,i}pi/2
−∞

)

, (4.1)

which is the projection of̂rSun onton̂SSi. This is a simplified equation compared to the
measurement model derived in Chapter 3, since it assumes a single constant irradiance
source. However, this is the typical assumption used, sincethe solar irradiance may be
assumed constant over time periods which are small when compared to the 11 year solar
cycle. The Earth albedo is disregarded completely.

If the Sun sensor is looking in the negative direction of an axis, then Equation (4.1)
is the projection onto the associated axis in negative direction. The elements of the
estimated Sun LOS vector,r̂SunEst, may be written as

EAM0

Ecal
r̂SunEst=







imeas,1

imax,1
− imeas,2

imax,2
imeas,3

imax,3
− imeas,4

imax,4
imeas,5

imax,5
− imeas,6

imax,6






. (4.2)

Note that the resulting vector is scaled by the ratio betweenthe incident irradiance and
the calibrated irradiance. If the Sun sensor parameterimax,i is calibrated usingEAM0 a
unit vector is formed. The above equation is the standard algorithm for constructing a
Sun LOS vector. This algorithm is error-prone when the Earthalbedo induces currents
in the Sun sensors. When observing a Sun sensor pair of opposite facing Sun sensors,
the Earth albedo will either increase or decrease the estimate of the associated element
of ther̂SunEstvector. If the solar irradiance and the Earth albedo illuminate the same Sun
sensor, the estimated element will be too large. If oppositeSun sensors in the sensor
pair are illuminated, the estimated element will be decreased, due to the subtraction of
the currents in Equation (4.2).

In order to compensate the Earth albedo induced errors, the full equation of the
output current of the Sun sensors, derived in Chapter 3, mustbe taken into consideration.

Two different algorithms are considered in order to compensate for the Earth albedo
induced currents. One algorithm simply uses the maximum currents of the Sun sensor
pairs to estimate the Sun LOS vector. This algorithm does notuse the Earth albedo
model. The other uses the standard algorithm and argues thatthe resulting vector is an
approximation of Sun and Earth irradiance vectors. The algorithms are presented in the
following.
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4.2 Max Currents Algorithm

A simple way of compensating the Earth albedo, is to compare aSun sensor pair, and
only utilize the measurement from the Sun sensor which generates the highest current.
Thus assuming that this Sun sensor is illuminated by solar irradiance only. The Max
Currents algorithm can be formulated as

EAM0

Ecal
r̂SunEst,1 =

{

imeas,1

imax,1
if imeas,1

imax,1
>

imeas,2

imax,2

− imeas,2

imax,2
else

, (4.3)

EAM0

Ecal
r̂SunEst,2 =

{

imeas,3

imax,3
if imeas,3

imax,3
>

imeas,4

imax,4

− imeas,4

imax,4
else

, (4.4)

EAM0

Ecal
r̂SunEst,3 =

{

imeas,5

imax,5
if imeas,5

imax,5
>

imeas,6

imax,6

− imeas,6

imax,6
else

. (4.5)

The algorithm is particularly effective for Earth pointingsatellites, since the Earth albedo
is concentrated on Earth pointing Sun sensors, and the opposite facing Sun sensors are
looking towards the Sun, hence the Earth albedo is filtered very effectively. The algo-
rithm will in this case mostly fail near the terminator, coming out of, and going into
eclipse.

4.3 Summarized Sun and Earth Algorithm

The SSE algorithm incorporates a simplification of the Earthalbedo in the Sun sensor
output equation in Equation (3.6). The Earth albedo is approximated by a single vector,
as opposed to contributions from each data point(φg, θg) ∈ V Sun ∩ V sat. The total
albedoEa, calculated in Equation (2.12), is assumed to reach the satellite anti-parallel
to the Earth direction. This results in an Earth irradiance vectorlE, given by

lE = Ear̂E, (4.6)

wherer̂E is the Nadir vector. Utilizing the Earth irradiance vector,the output equation
of the Sun sensors can be approximated by

imeas,i = imax,i

({

n̂T
SSilSun

Ecal

}∞

0

+

{

n̂T
SSilE

Ecal

}∞

0

)

. (4.7)

With the above approximation and applying the standard Sun LOS vector algorithm
in Section 4.1, the resulting estimated vector is actually the sum of the Sun and Earth
irradiance vectors, i.e.

EAM0 + Ea

Ecal

lSun+ lE

||lSun+ lE||
=







imeas,1

imax,1
− imeas,2

imax,2
imeas,3

imax,3
− imeas,4

imax,4
imeas,5

imax,5
− imeas,6

imax,6






. (4.8)
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The SSE vector is shown in Figure 4.2. The SSE vector is an improved estimate of the
vector projected onto the axes spanned by the Sun sensors, asopposed to the Sun LOS
vector of the Standard algorithm, shown in Figure 4.1.

x

y

z

n̂SS1

n̂SS2

n̂SS3

n̂SS4

n̂SS5

n̂SS6

lSun

lE

lSun + lE

Figure 4.2: Projections of the SSE vector measured by Sun sensors mounted in opposite
looking directions along three orthogonal axes.

The proof of Equation (4.8) is given for the first element of the vector. An expression
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of the first element can be found by inserting Equation (4.7) into Equation (4.8)

imeas,1

imax,1
− imeas,2

imax,2
=

{

n̂T
SS1lSun

Ecal

}∞

0

+

{

n̂T
SS1lE

Ecal

}∞

0

−
{

n̂T
SS2lSun

Ecal

}∞

0

−
{

n̂T
SS2lE

Ecal

}∞

0

. (4.9)

Since the Sun sensor pair SS1 and SS2 are facing opposite directions it holds that

n̂SS1 = −n̂SS2. (4.10)

As a result the saturation function on the Sun irradiance vector can be eliminated by

{

n̂T
SS1lSun

Ecal

}∞

0

−
{

n̂T
SS2lSun

Ecal

}∞

0

=

{

n̂T
SS1lSun

Ecal

}∞

0

+

{

n̂T
SS1lSun

Ecal

}0

−∞

(4.11)

=
n̂T

SS1lSun

Ecal
. (4.12)

The same applies for the Earth irradiance vector. Insertinginto Equation (4.9), yields

imeas,1

imax,1
− imeas,2

imax,2
=

n̂T
SS1lSun

Ecal
+

n̂T
SS1lE

Ecal
, (4.13)

or equivalently
imeas,1

imax,1
− imeas,2

imax,2
=

n̂T
SS1

Ecal
(lSun+ lE) , (4.14)

which is the first element of the SSE irradiance vector, sincen̂SS1 is aligned with thex
axis, illustrated in Figure 4.2.

The SSE algorithm is proven to estimate the SSE irradiance LOS vector, by approx-
imating the Sun sensor output equation. It does not directlyutilize the Earth albedo
model. However, when the estimated SSE vector is applied in the attitude determination
algorithms, the SSE vector must be calculated in the reference frame, in order to obtain
an attitude from reference to Spacecraft Body (SCB) frame. When calculating the SSE
vector in a reference frame, the Earth albedo model must be included in the ephemeris
models, in order to estimate the correct ratio between the Sun and Earth irradiance vec-
tors.
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Chapter 5
Attitude Parameters

This chapter gives a short overview of the mathematical representations of attitude used
in this thesis. The purpose of ADS is to determine the orientation of an object relative
to a reference frame. This is done by defining a body fixed frame, which rotates with
the object. See Appendix A for definitions of the frames used in this thesis. Figure 5.1
shows an object which is rotated. The reference frame is defined by thêxA, ŷA, andẑA

unit vectors, and the body fixed frame byx̂B, ŷB, andẑB.

x̂A

ŷA

ẑA

x̂B

ŷB

ẑB

Figure 5.1: Rotation of an object with body fixed frame, relative to a reference frame.

In order for the framesA andB to be orthogonal right-hand frames, it must hold
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that
ẑi = x̂i × ŷi , i ∈ {A, B} . (5.1)

5.1 Attitude Matrices

Several attitude parameter formulations exist for representing the attitude of the body
frame with respect to the reference frame. A complete description of the parameters is
available in several books on mechanics and attitude control, see e.g. [Wertz, 1978] or
[Hughes, 1986]. Clearly, specifyinĝxB , ŷB, andẑB axes in thêxA, ŷA, andẑA frame,
gives a full parameterization of the attitude. Figure 5.2 shows the projection of thêzB

axis onto thêxA, ŷA, andẑA axes. ThêzB projected onto thêxA, ŷA, andẑA vectors
is ẑB given in the reference frame, which is denotedẑA

B. The superscript specifies that
theẑB is given in frameB.

x̂A

ŷA

ẑA

ẑB

Figure 5.2: TheẑB projected onto thêxA, ŷA, andẑA vectors.

A total of nine parameters are required to parameterize the body fixed axes in the
reference frame, which are represented in a3 × 3 attitude matrix, given by

A =













(

x̂A
B

)T

(

ŷA
B

)T

(

ẑA
B

)T













. (5.2)

The matrixA is a mapping of vectors from the reference frame to the body frame. This
can be indicated by sub- and superscripts,AB

A . Given a vectorvA in the reference frame,
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the representation in the body frame is found by

AB
AvA =





x̂A
B · vA

ŷA
B · vA

ẑA
B · vA



 = vB. (5.3)

Since the vectors of the two frames are unit vectors and mutually orthogonal, it holds
that

AAT = 1, (5.4)

which means thatA is an orthonormal matrix. It follows from equations (5.3) and (5.4)
that

AA
B =

(

AB
A

)T
. (5.5)

Consecutive rotations is found as the product of attitude mappings

AC
A = AC

BAB
A , (5.6)

whereAC
A represents a rotation from frameA to B followed by a rotation from frame

B to C.
The attitude matrix is widely used due to its algebraic mapping. It is published in

[Stuelpnagel, 1964] that the parameterization of attitudehas three degrees of freedom,
and that no three-dimensional parameter can be both global and non-singular. Hence
a minimum of three parameters are required. The direct cosine matrices contain nine
parameters with three degrees of freedom. Due to this redundancy, numerous ways of
representing the satellite attitude with a minimum set of parameters have been devel-
oped. Euler angles describe the rotation around the principal axes and use therefore
only three parameters. However some singularities arise for some rotations, which is
why Euler angles are commonly used when the attitude of the object involved, is known
to be within a certain margin [Wertz, 1978]. An investigation of attitude parameters is
given in [Shuster, 1993].

Quaternions use four parameters with a single constraint, to represent attitude, and
are subject to no singularities. This is useful when considering that the attitude of a satel-
lite is usually unknown after the release from the launcher.For this reason quaternions
are commonly used in space applications. In this thesis the quaternion representation is
used, because it is a global four parameter representation.

5.2 Attitude Quaternions

Quaternions is one of many ways to represent attitude. The quaternion has the advantage
of being without singularities for all attitudes.
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A quaternionq is defined by its four vector elementsq1, q2, q3 andq4, as

q = q4 + iq1 + jq2 + kq3 =









q1

q2

q3

q4









. (5.7)

wherei, j andk are hyper imaginary numbers satisfying

i2 = j2 = k2 = −1, (5.8)

ij = −ji = k, (5.9)

jk = −kj = i, (5.10)

ki = −ik = j. (5.11)

The fourth element of a quaternion is named the scalar element and is also denoted by
q. The 1st, 2nd, and 3rd are complex elements. The complex partof the quaternion is
denotedp, hence a quaternion may be written

q =

[

p
q

]

. (5.12)

A rotation∆φ around a unit vector̂e, is represented by the attitude quaternion

q =





êsin
(

∆φ
2

)

cos
(

∆φ
2

)

.



 (5.13)

The definition of the attitude quaternion parameters is illustrated in Figure 5.3. The
four parameters of the attitude quaternion are subject to the constraint

q2
1 + q2

2 + q2
3 + q2

4 = 1, (5.14)

which means that the quaternion has three degrees of freedom, corresponding to the
minimum set of parameters needed for attitude representation.

The product of two quaternionsq andq′ is defined in matrix form as

q′′ = q′q =









q′4 q′3 −q′2 q′1
−q′3 q′4 q′1 q′2
q′2 −q′1 q′4 q′3
−q′1 −q′2 −q′3 q′4

















q1

q2

q3

q4









. (5.15)

Note that the multiplication of quaternions is not commutative, which is also the case
for attitude matrices. The complex conjugate of the quaternion is defined as

q∗ = q4 − iq1 − jq2 − kq3 =

[

−p
q

]

. (5.16)
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x̂A

ŷA

ẑA

ê

∆φ

Figure 5.3: Definition of the quaternion attitude parameter as a rotation ∆φ around the
unit vectorê.

It follows from equations (5.13) and (5.16) that

qA
B =

(

qB
A

)∗
. (5.17)

Note that

qq∗ =









0
0
0
1









, (5.18)

which is the unit quaternion representing the zero rotation, i.e. no rotation.
Representing the attitude quaternionq by the attitude matrixA (q), the rotation

calculation of Equation 5.15, can be written in terms of the associated attitude matrices,
as

A (q′′) = A (q′)A (q) , (5.19)

whereA (q) is given by

A (q) =





q2
1 − q2

2 − q2
3 + q2

4 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q2

1 + q2
2 − q2

3 + q2
4 2(q2q3 + q1q4

2(q1q3 + q2q4) 2(q3q3 − q1q4) −q2
1 − q2

2 + q2
3 + q2

4



 (5.20)

=
(

q2 − ||p||2
)

13×3 + 2ppT − 2qS(p) , (5.21)
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where the cross-product matrix function is defined as

S(v) =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 (5.22)

for an arbitrary vectorv.
The attitude parameters and their algebra have been presented in this chapter. In the

following chapters the algorithms for estimating the attitude parameters of a satellite are
presented.



Chapter 6
Single-Point Algorithms

In this chapter attitude estimation from a single sample of sensor hardware is described.
As opposed to filtering algorithms, the single-point algorithms solely use samples from
a single time instant, to estimate attitude. Common for mostsingle-point algorithms is
the use of vector observations to estimate the attitude of anobject. Given a set ofn ≥ 2
vector observations, a loss function is formulated, known as Wahba’s problem given by

L
(

AB
I

)

=
1

2

n
∑

j=1

wj

∣

∣

∣

∣

∣

∣v̂
B
j − AB

I v̂I
j

∣

∣

∣

∣

∣

∣

2

, (6.1)

wherewj is the weight of thej’th vector observation,̂vI
j is the LOS vector in the

reference frame andAB
I is the orthonormal rotation matrix, representing the rotation

from reference to body frame, which is sought, [Wahba, 1965]. The loss function is a
weighted sum squared of the difference between the measuredand the reference LOS
vectors in the body frame. By minimizing the loss function, given in Equation (6.1), an
optimal attitude may be estimated.

One solution to Wahba’s problem is the Q-Method, which directly estimates an opti-
mal attitude quaternion minimizing Wahba’ problem. The Q-Method was developed by
Davenport in 1968 and is based on earlier work done by Wahba [Lerner, 1978]. A num-
ber of alternative algorithms have been derived from the Q-Method, e.g. the QUEST
algorithm, [Shuster and Oh, 1981]. These algorithms are fundamentally similar to the
Q-Method, but optimize the calculations with respect to computation efficiency and
on-board implementation. Algorithms exist that result in alternate attitude parameters.
Since the attitude quaternion is used to parameterize satellite attitude in this thesis, the
Q-Method is presented in the following.
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6.1 The Q-Method

To simplify Wahba’s problem it is necessary to expand it to

L
(

AB
I

)

=

1

2

n
∑

j=1

wj

(

(

v̂B
j

)T
v̂B

j +
(

v̂I
j

)T (

AB
I

)T
AB

I v̂I
j − 2

(

v̂B
j

)T
AB

I v̂I
j

)

, (6.2)

where
(

v̂B
j

)T
v̂B

j is constant and
(

AB
I

)T
AB

I is the identity matrix. The loss function,

L
(

AB
I

)

, may then be written as

L
(

AB
I

)

= −
n
∑

j=1

tT
j AB

I sj + k, (6.3)

wherek denotes the constant terms. The unnormalized vectorstj andsj are defined as

tj =
√

wj v̂
B
j , (6.4)

sj =
√

wj v̂
I
j . (6.5)

The loss function is at a minimum, when the gain function

g
(

AB
I

)

=

n
∑

j=1

tT
j AB

I sj = tr
(

T TAB
I S
)

(6.6)

is at maximum. The matricesT andS are defined as

T =
[

t1 t2 · · · tn

]

, (6.7)

S =
[

s1 s2 · · · sn

]

. (6.8)

and tr(·) is the trace function. The maximization ofg
(

AB
I

)

is complicated since the

nine elements ofAB
I are subject to six constraints, [Shuster and Oh, 1981]. It isthere-

fore convenient to expressAB
I in terms of a quaternionq. According to Chapter 5, the

rotation matrixAB
I is defined in terms of quaternions as

AB
I (q) =

(

q2 − ||p||2
)

13×3 + 2ppT − 2qS(p) . (6.9)

Substituting Equation (6.9) into Equation (6.6), gives themodified expression for the
gain function

g (q) = qTCq, (6.10)
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whereC is defined as

C =

[

U − σ13×3 c
cT σ

]

. (6.11)

The above values are defined as

U = BT + B, (6.12)

c =





B2,3 − B3,2

B3,1 − B1,3

B1,2 − B2,1



 , (6.13)

σ = tr (B) , (6.14)

where
B = TST. (6.15)

The problem of determining the optimal attitude has been reduced to finding the
quaternion that maximizes Equation (6.10). The normalization constraint,qTq = 1, can
be taken into account by using Lagrange multipliers, [Wertz, 1978]. A new function
g′ (q) is defined

g′ (q) = qTCq − ξqTq, (6.16)

whereξ is the Lagrange multiplier. The gain functiong′ (q) is maximized without con-
straints andξ is chosen to satisfy the normalization constraint. Taking the derivative
of Equation (6.16) with respect toq and setting the result equal to zero, an eigenvector
equation is obtained [Shuster and Oh, 1981]

Cq = ξq. (6.17)

The optimal quaternion which determines the optimal attitude matrix, in accordance
with Equation (6.9), is an eigenvector ofC. Substitution of Equation (6.17) into Equa-
tion (6.10) gives

g (q) = qTCq = qTξq = ξ, (6.18)

thusg (q) will be maximized if the optimal quaternion is chosen to be the eigenvector
of C belonging to the largest eigenvalue.
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Chapter 7
Kalman Filters

Kalman filters are algorithms for calculating estimation ofstates using a model descrip-
tion of the system. The Kalman filter was introduced by R. Kalman in [Kalman, 1960].
Kalman filters are preferred, since they can incorporate noise information, to produce
statistically optimal estimates.

In order to estimate the state vector from the noise inflictedmeasurements, an EKF
and an UKF is designed. The Kalman filters propagate a previous estimation of the
states, using the state space equations, and corrects the propagation using measurements.
The Kalman Filters use a non-linear system description for the propagation of the state.
The propagation of the covariance of the state error in the EKF is calculated using Ja-
cobian matrices, which are calculated at each time step, using the current estimate as
the nominal value. The UKF uses approximations of the noise distributions, which are
mapped through the non-linear system equations.

7.1 Extended Kalman Filter

When a system is described by a non-linear model equation, the EKF requires the equa-
tions to be linearized around a nominal state. If the nominalstate is constant, the equa-
tions resembles that of the linearized Kalman filter. In somecases, however, a lineariza-
tion around a single trajectory is inadequate, especially if it is not guaranteed that the
state of the system is always close to the nominal values. In these situations an EKF filter
is applied, which re-linearizes the system around the current estimate. The description
of the EKF is based on inspired by [Grewal and Andrews, 1993] and [Maybeck, 1982].
In the following the equations of the EKF are presented. The filter linearizes the system
equations around the current estimatex̂ (tk|tk) and control inputu (tk) at all time steps.
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The non-linear system, is described by the generic differential equation

ẋ (t) = f (x (t) , u (t) , t) + w (t) , (7.1)

wherew (t) is a vector of random variables, representing process noise. The continuous
Gaussian white process noise has the statistics

E (w (t)) = 0, (7.2)

E
(

w (t) wT (t + τ)
)

= Q (t) δ (τ) , (7.3)

whereE (·) is the expected value function,δ (·) is Dirac’s Delta Function, andQ (t) is
the covariance of the process noise.

The non-linear output equation is given by

z (tk) = h (x (tk) , tk) + v (tk) , (7.4)

wherev (tk) is a vector of random variables, representing measurement noise. Note that
it is assumed that there is no direct dependency on the control input. This has been left
out, since it is uncommon in dynamical systems. The measurement noise is assumed to
be Gaussian white noise with statistics

E (v (tk)) = 0, (7.5)

E
(

v (tk)vT (tk+n)
)

= R (tk)∆ (n) , (7.6)

where∆(·) is Kronecker’s Delta Function andR (tk) is the covariance of the measure-
ment noise.

Using a Taylor expansion of Equation (7.1) around a nominal trajectoryx̄ (t) and a
nominal inputū (t), yields

ẋ (t) =f (x̄ (t) , ū (t) , tk)

+
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

(x (t) − x̄ (t))

+
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

(u (t) − ū (t))

+ h.o.t.+ w (t) , (7.7)

where h.o.t. are the higher order terms. Considering the perturbation of the state from
the nominal trajectory, denoted̃x (t) = x (t) − x̄ (t) and a perturbed input̃u (t) =
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u (t) − ū (t), Equation (7.7) is written

˙̃x (t) =
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

x̃ (t)

+
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̄(t)
u(t)=ū(t)

t=tk

ũ (t)

+ w (t) . (7.8)

It is assumed that the higher order terms are negligible. Consequently, the covariance of
the process noise should be scaled accordingly.

Choosing the current estimatêx (tk|tk) as the nominal trajectory at each time step,
an approximated linearized system equation of the state perturbation are expressed as

˙̃x (t) =

F (x̂ (tk|tk) , u (tk) , tk) x̃ (t) + G (x̂ (tk|tk) , u (tk) , tk) ũ (t) + w (t) , (7.9)

where F (x̂ (tk|tk) , u (tk) , tk) and G (x̂ (tk|tk) , u (tk) , tk) are the Jacobians of
f (x (t) , u (t) , t) with respect to the state and the input, given by

F (x̂ (tk|tk) , u (tk) , tk) =
∂f (x (t) , u (t) , t)

∂x (t)

∣

∣

∣

∣
x(t)=x̂(tk|tk)
u(t)=u(tk)

t=tk

, (7.10)

G (x̂ (tk|tk) , u (tk) , tk) =
∂f (x (t) , u (t) , t)

∂u (t)

∣

∣

∣

∣
x(t)=x̂(tk|tk)
u(t)=u(tk)

t=tk

. (7.11)

In a similar manner, a linear expression of the output equation in Equation (7.4) is found
to be

z̃ (tk) = H (x̂ (tk|tk) , tk) x̃ (tk) + v (tk) , (7.12)

whereH (x̂ (tk|tk) , tk, t) is the Jacobian ofh (x (t) , t), given by

H (x̂ (tk|tk) , tk) =
∂h (x (t) , t)

∂x (t)

∣

∣

∣

∣

x(t)=x̂(tk|tk),tk

t=tk

. (7.13)

Starting with an estimate at timetk−1, denoted̂x (tk−1|tk−1), the predictor of the
filter calculates an a priori estimate using Equation (7.1).Although the system is lin-
earized, the Jacobians are only required in the update of theestimate covariance, hence
the non-linear system is applied in propagation and measurement estimates. The propa-
gated estimate, denoted̂x (tk|tk−1), is an estimate of the state at timetk, based only on
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the dynamics described by the non-linear model of the system, corrected by measure-
ments up to timetk−1. Given the measurement at timetk, z (tk), the a priori estimate
can be corrected into the a posteriori estimate at timetk, denoted̂x (tk|tk). The correc-
tor equation is given by

ˆ̃x (tk) = K (tk) (z (tk) − ẑ (tk|tk−1)) , (7.14)

whereẑ (tk|tk−1) is the estimated measurement, given by

ẑ (tk|tk−1) = h (x̂ (tk|tk−1) , tk) , (7.15)

andK (tk) is the Kalman gain. The Kalman gain is calculated using

K (tk) = P est(tk|tk−1)HT (x̂ (tk|tk−1) , tk)

×
(

H (x̂ (tk|tk−1) , tk)P est(tk|tk−1)HT (x̂ (tk|tk−1) , tk) + R (tk)
)−1

. (7.16)

The estimate of the state at timetk is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + ˆ̃x (tk) . (7.17)

The covariance matrices of the a priori and a posteriori estimation errors at timetk,
are defined as

P est(tk|tk−1) = E
(

(x (tk) − x̂ (tk|tk−1)) (x (tk) − x̂ (tk|tk−1))
T
)

, (7.18)

P est(tk|tk) = E
(

(x (tk) − x̂ (tk|tk)) (x (tk) − x̂ (tk|tk))T
)

. (7.19)

The a priori estimateP est(tk|tk−1) of P est(tk|tk) is calculated using the equation

P est(tk|tk−1) =

Φ (x̂ (tk−1|tk−1) , u (tk−1) , tk−1)P est(tk−1|tk−1)

× Φ
T (x̂ (tk−1|tk−1) , u (tk−1) , tk−1) + Q (tk−1) , (7.20)

where Φ (x̂ (tk−1|tk−1) , u (tk−1) , tk−1) is the discrete equivalent of
F (x̂ (tk−1|tk−1) , u (tk−1) , tk−1), calculated using e.g. zero-order-hold.. As
with the state estimate, the a posteriori covariance matrixP est(tk|tk) is obtained by
correcting the a priori covariance matrixP est(tk|tk−1). The corrector equation for the
covariance matrix is

P est(tk|tk) = P est(tk|tk−1) − K (tk)H (x̂ (tk|tk−1) , tk)P est(tk|tk−1) , (7.21)

whereK (tk) is the Kalman gain in Equation (7.16). An alternate equationof the cor-
rector, which is numerically more stable, is given in [Maybeck, 1982] as

P est(tk|tk) = (1− K (tk)H (x̂ (tk|tk−1) , tk))P est(tk|tk−1)

× (1− K (tk)H (x̂ (tk|tk−1) , tk))
T

+ K (tk) R (tk)KT (tk) . (7.22)
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It is important to note from Equation (7.14), that the Kalmangain is a weight factor,
which weighs error in the measurement against the predictedstate. From Equation (7.16)
it is seen that ifR (tk) approaches zero, the Kalman gain will increase. This results in
a large update in Equation (7.14), which means that the new measurements are weighed
higher than the predicted state. IfP est(tk|tk) approaches zero, the Kalman gain will de-
crease, and the predicted state is weighed higher. WhenR (tk) andP est(tk|tk) increase,
they will have the opposite effects on the Kalman gain. Theseeffects are in agreement
with the expected, when considering the interpretation ofR (tk) andP est(tk|tk).

7.2 Unscented Kalman Filter

The UKF follows the same overall structure as the EKF. The UKFis fundamentally
different in the way it estimates the noise distributions ofthe filter. As opposed to
approximating the non-linear transformation of the noise distributions, the UKF ap-
proximates the transformation by applying the non-linear transformation to a num-
ber of selected points in the state space. These points are called sigma points, and
are calculated from the covariances of the estimation error. Figure 7.1 illustrates the
approximation of the non-linear process noise covariance transformation. The sigma
points, circled points in the figure, are selected such that they describe the distribution
of the estimation error. The transformed sigma points are then used to calculate the
approximation of the transformed distribution. This is known as the UT published in
[Julier and Uhlmann, 1994]. The UKF is published in [Julier and Uhlmann, 1997] and
[Wan and van der Merwe, 2000]. In the following, the equations of the UKF are pre-
sented.

The estimation error covarianceP est(tk−1|tk−1) is approximated by2n + 1 sigma
points, wheren is the dimension of the state vector. The sigma points are given by

χ0 (tk−1|tk−1) = x̂ (tk−1|tk−1) , (7.23)

χi (tk−1|tk−1) = x̂ (tk−1|tk−1) +
{

√

(n + κ)P est(tk−1|tk−1)
}

i
, (7.24)

χn+i (tk−1|tk−1) = x̂ (tk−1|tk−1) −
{

√

(n + κ)P est(tk−1|tk−1)
}

i
, (7.25)

wherei = 1, 2, ..., n andκ is a tuning parameter. Ifx (t) can be assumed Gaussian,κ
is selected such thatn + κ = 3. The notation{M}i denotes thei’th column ofM .
It should be noted that for non-zero-mean process noise, thesystem state vector is aug-
mented with the process and measurement noise vectors, and the covariance augmented
with the associated covariance matrices. Each sigma point has an associated weight.
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Covariance

Mean
ẋ (t) = f (x (t) , u (t) , t)

Figure 7.1: Illustration of the UT. The transformed distribution is based on the non-
linear transformation of selected sigma points, marked as circled points in
the figure.

The weights are given by

w0 =
κ

n + κ
, (7.26)

wi =
1

2 (n + κ)
, (7.27)

wn+i =
1

2 (n + κ)
. (7.28)

The set of sigma pointsχ (tk−1|tk−1) is propagated one time step toχ (tk|tk−1),
using the non-linear system equation. The transformed sigma points are used to calculate
the statistics of the propagated state. The estimated propagated state is the weighted
mean of the sigma points

x̂ (tk|tk−1) =

2n
∑

j=0

wjχj (tk|tk−1) , (7.29)

and the covariance of the estimate is given by

P est(tk|tk−1) = Q (tk)

+

2n
∑

j=0

wj

(

χj (tk|tk−1) − x̂ (tk|tk−1)
) (

χj (tk|tk−1) − x̂ (tk|tk−1)
)T

. (7.30)
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An observation is estimated at each sigma point

ζj (tk|tk−1) = h
(

χj (tk|tk−1) , tk
)

, (7.31)

wherej = 0, 1, ..., 2n. The predicted measurement is the weighted mean of the obser-
vation set

ẑ (tk|tk−1) =
2n
∑

j=0

wjζj (tk|tk−1) . (7.32)

The covariance of the predicted measurement is expressed, in terms of the covariance of
the predicted sigma points and the measurement covariance,as

P meas(tk|tk−1) = R (tk)

+

2n
∑

j=0

wj

(

ζj (tk|tk−1) − ẑ (tk|tk−1)
) (

ζj (tk|tk−1) − ẑ (tk|tk−1)
)T

. (7.33)

Equations (7.30) and (7.33) hold if the process and measurement noise are additive and
independent.

Given the sets of sigma points and their observations, the cross correlation matrix is
given by

P cross(tk|tk−1) =

2n
∑

j=0

wj

(

χj (tk|tk−1) − x̂ (tk|tk−1)
) (

ζj (tk|tk−1) − ẑ (tk|tk−1)
)T

. (7.34)

The Kalman gain is expressed in terms of the above matrices as

K (tk) = P cross(tk|tk−1)P−1
meas(tk|tk−1) . (7.35)

The update of the estimate is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + K (tk) (z (tk) − ẑ (tk|tk−1)) , (7.36)

and the update of the estimate covariance is expressed as

P est(tk|tk) = P est(tk|tk−1) − K (tk)P meas(tk|tk−1)KT (tk) . (7.37)

The EKF and UKF have now been presented. The main difference between the
filters is the approximation of the estimation error covariance. Where the EKF uses
a first-order linearized system description, the UKF uses sigma points transformed by
the non-linear system description for calculating statistics. The equations presented are
generic, and the following chapter presents the design of the estimators, specific for
attitude determination of satellites.
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Chapter 8
Estimator Designs

This chapter describes the estimators designed for Ørsted,based on the Kalman filters
described in Chapter 7 and the Earth Albedo model described in Chapter 2. The system
and measurement models are derived. The system model is based on the general equa-
tions of satellite motion. The measurement model is based onthe Sun sensor current
model and vector observations derived in chapters 3 and 4. Inaddition, some specific
alternation to the theory is necessary, due to the use of quaternions in the state and the
non-differentiable measurement equation.

8.1 System Model

This section presents the derivation the equations used formodeling the kinematics and
dynamics of satellite motion. A detailed description of thesatellite motion can be found
in [Wertz, 1978]. The modeling of a satellite’s rotation is split into the kinematic equa-
tion and the dynamic equation. The kinematic equation describes the change in the
attitude parameters of the satellite, regardless of the forces acting on it. The dynamic
equation describes the time dependent parameters as functions of external forces.

8.1.1 Kinematic Equation

Let the attitudes of a satellite at timest andt + ∆t be denotedqsat(t) andqsat(t + ∆t).
If the rotation of the satellite in the time period∆t is denoted∆qsat(t), the propagation
of the attitude fromt to t + ∆t can be written

qsat(t + ∆t) = ∆qsat(t) qsat(t) . (8.1)
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Writing ∆qsat(t) in terms of rotation angle∆φ (t) around the vector̂e (t) in time
∆t, yields

∆qsat(t) =

















ê1 (t) sin
(

∆φ(t)
2

)

ê2 (t) sin
(

∆φ(t)
2

)

ê3 (t) sin
(

∆φ(t)
2

)

cos
(

∆φ(t)
2

)

















. (8.2)

Assuming that̂e (t) and∆φ (t) are constant over the time∆t, and using the defini-
tion of the quaternion product, Equation (8.1) is written

qsat(t + ∆t) =








cos

(

∆φ (t)

2

)

14×4 + sin

(

∆φ (t)

2

)









0 ê3 (t) −ê2 (t) ê1 (t)
−ê3 (t) 0 ê1 (t) ê2 (t)
ê2 (t) −ê1 (t) 0 ê3 (t)
−ê1 (t) −ê2 (t) −ê3 (t) 0

















× qsat(t) , (8.3)

where14×4 is the 4 by 4 identity matrix. For infinite small time steps,∆φ (t) can be
approximated by

∆φ (t) = ||ωsat(t)||∆t, (8.4)

whereωsat(t) is the instantaneous angular velocity of the satellite. Using small angle
approximations of the sine and cosine functions, Equation (8.3) can be expressed as

qsat(t + ∆t) =

(

14×4 +
∆t

2
Ω (t)

)

qsat(t) , (8.5)

where

Ω (t) = ||ωsat(t)||









0 ê3 (t) −ê2 (t) ê1 (t)
−ê3 (t) 0 ê1 (t) ê2 (t)
ê2 (t) −ê1 (t) 0 ê3 (t)
−ê1 (t) −ê2 (t) −ê3 (t) 0









. (8.6)

Realizing that̂e (t) = ω̂sat(t), Equation 8.6 can be written

Ω (t) =









0 ω3 (t) −ω2 (t) ω1 (t)
−ω3 (t) 0 ω1 (t) ω2 (t)
ω2 (t) −ω1 (t) 0 ω3 (t)
−ω1 (t) −ω2 (t) −ω3 (t) 0









. (8.7)
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The differential equation ofqsat(t) is defined as

q̇sat(t) = lim
∆t→0

qsat(t + ∆t) − qsat(t)

∆t
. (8.8)

Inserting Equation (8.5) yields the sought kinematic differential equation

q̇sat(t) =
1

2
Ω (t) qsat(t) (8.9)

8.1.2 Dynamic Equation

The dynamic equation of motion is derived from the change in angular momentum of the
satellite. An expression for the change in angular velocity, as a function of the applied
torques is sought. The angular momentuml (t), is given by

l (t) =

k
∑

i=1

li (t)

=

k
∑

i=1

ri (t) × mivi (t) , (8.10)

whereri (t) is the position of thei’th particle with massmi and velocityvi (t). Taking
the time derivative of Equation 8.10, yields

l̇ (t) =

k
∑

i=1

(vi (t) × mivi (t) + ri (t) × miai (t)) , (8.11)

ai (t) being the acceleration of thei’th particle. The first term under the summation of
Equation (8.11) is a cross-product of two parallel vectors,which is zero. Realizing that
miai (t) is the force acting on thei’th particle, yields

l̇ (t) = next (t) , (8.12)

wherenext is the sum of external torques acting on the satellite. Equation (8.12) only
holds if the internal torques sum up to zero. An expression ofthe derivative of the
angular momentum in terms of the satellite’s angular velocity is sought, in order to
obtain the dynamic equation.

In the Earth Centered Inertial (ECI) frame, denotedI, the angular momentum of the
satellite can be expressed as a function of the angular velocity of the SCB frame relative
to the ECI frame,ωsat(t), and the moment of inertia matrixJ (t) of the satellite, by

lI (t) = JI (t)ωI
sat(t) . (8.13)

The moment of inertia is more conveniently expressed in the SCB frame, which has
it axes aligned with the principal axes of the satellite, denotedB. The attitude matrix
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AB
I (t), represents the rotation from the inertial frame to the bodyframe, which is used

to represent the angular momentum in the body frame, yielding

lB (t) = AB
I (t) lI (t) . (8.14)

The derivative oflB (t) is given by

l̇
B

(t) =
d

dt

(

AB
I (t) lI (t)

)

(8.15)

= Ȧ
B

I (t) lI (t) + AB
I (t) l̇

I
(t) . (8.16)

In order to obtain an expression forȦ
B

I (t), consider the kinematic equation for the
derivative of a vector described in a rotating frame of reference, which for the angular
momentum vectorl (t) is

(

l̇
I
(t)
)B

= l̇
B

(t) + ωB
sat(t) × lB (t) (8.17)

m

l̇
B

(t) =
(

l̇
I
(t)
)B

− ωB
sat(t) × lB (t) . (8.18)

Since
(

l̇
I
(t)
)B

= AB
I (t) l̇

I
(t), combining Equations 8.15 and 8.17, gives

Ȧ
B

I (t) lI (t) = −ωB
sat(t) × lB (t)

= −ωB
sat(t) ×

(

AB
I (t) lI (t)

)

. (8.19)

Introducing the cross-product matrix, Equation (8.19) is written as

Ȧ
B

I (t) lI (t) = −S
(

ωB
sat(t)

)

AB
I (t) lI (t) . (8.20)

Since Equation (8.20) holds for alllI (t), the sought expression for the derivative of the
attitude matrix is

Ȧ
B

I (t) = −S
(

ωB
sat(t)

)

AB
I (t) . (8.21)

Inserting Equation (8.21) into Equation (8.15), gives

l̇
B

(t) = −S
(

ωB
sat(t)

)

AB
I (t) lI (t) + AB

I (t) l̇
I
(t) . (8.22)

Recalling, from Equation (8.12), that the derivative of theangular momentum is the
external torques and applying the attitude matrix rotations in Equation (8.22), yields

l̇
B

(t) = −S
(

ωB
sat(t)

)

lB (t) + nB
ext (t) . (8.23)
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Finally the angular momentum is expressed in terms of the moment of inertia and
the angular velocity, as given in Equation 8.13. Solving with respect toω̇sat(t), gives
the sought nonlinear differential equation, written in theform

ω̇sat(t) = J−1 (next (t) − ωsat(t) × Jωsat(t)) , (8.24)

where the superscript of frame is left out, since all vectorsand matrices are given in the
SCB frame. The external torque is the sum of disturbance torquesnd (t) and the control
torquenctrl (t)

next (t) = nctrl (t) + nd (t) . (8.25)

The control torque is calculated by the Attitude Control System (ACS) of the satellite.
The disturbance torque is the sum of torques generated from gravity gradient, magnetic
residual, solar pressure, aerodynamic drag, and Earth albedo.

8.1.3 Non-Linear System Model

Combining the kinematic equation of Equation (8.9) and the dynamic equation of Equa-
tion (8.24), yields the non-linear differential equation

ẋ (t) = f (x (t) , u (t)) (8.26)

=

[

1
2Ω (t) qsat(t)

J−1 (nctrl (t) + nd (t) − ωsat(t) × Jωsat(t))

]

, (8.27)

where

x (t) =

[

qsat(t)
ωsat(t)

]

, (8.28)

and
u (t) = nctrl (t) (8.29)

defines the control torques as the input to the system. The model derived in Equation
(8.26) is a non-linear differential equation, which can be numerically integrated,in order
to predict the state of a satellite, from initial conditions. The non-linear system model is
applied in the Kalman Filters, when estimating the propagated state. However, the prop-
agation of the estimation error covariance, presented in Chapter 7, require linearization
of the system model at a given nominal set point. The linearization of the system model
is given in the following.

8.2 Linearization of System Model

In this section the attitude dynamic and kinematic equations are linearized around a set
point of the state. As a consequence of linearization, the system state is replaced with
the small signals of the full state. The linear description of the system is utilized in the
estimation algorithms, for propagating the noise distribution of the system state estimate.
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The non-linear system matrixf (x (t) , u (t) , t) is linearized, and a linear expres-
sion, of the form

ẋ (t) = F (t)x (t) + G (t)u (t) , (8.30)

is sought. The kinematic and dynamic equations are linearized separately in the follow-
ing.

8.2.1 Linear Kinematic Equation

For the linearization of the kinematic equation, the attitude quaternion of the satellite
qsat is written, in terms of a set point̄qsat(t) and small signal̃qsat(t), as

qsat(t) = q̃sat(t) q̄sat(t) (8.31)

m
q̃sat(t) = qsat(t) q̄∗

sat(t) , (8.32)

whereq̄∗
sat(t) is the complex conjugate of̄qsat(t). Recalling the definition ofΩ (t) in

Equation (8.6) and the definition of quaternion products, the kinematic equation can be
written in terms of a quaternion product, as

q̇sat(t) =
1

2
qω (t) qsat(t) , (8.33)

where the quaternionqω (t) is defined by

qω (t) =

[

ωsat(t)
0

]

. (8.34)

Using the chain rule and Equation (8.33), the derivative of the small signal attitude
quaternion of Equation (8.31) can be expressed as

˙̃qsat(t) = qsat(t) ˙̄q∗
sat(t) + q̇sat(t) q̄∗

sat(t) (8.35)

=
1

2

(

qsat(t) (qω̄ (t) q̄sat(t))
∗

+ qω (t) qsat(t) q̄∗
sat(t)

)

(8.36)

=
1

2
(−qsat(t) q̄∗

sat(t) qω̄ (t) + qω (t) qsat(t) q̄∗
sat(t)) (8.37)

=
1

2
(−q̃sat(t) qω̄ (t) + qω (t) q̃sat(t)) , (8.38)

whereqω̄ (t) is defined as in Equation (8.34) and the set point of the angular velocity
ω̄sat(t), defined below, is inserted. Note that the complex conjugateof a quaternion
represents the opposite rotation. Hence the reverse rotation defined by a sequence of
rotations, is the reverse sequence of each rotation complexconjugated. The complex
conjugate ofqω̄ (t) is simply−qω̄ (t), since the scalar part is zero.
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The angular velocity is defined, in terms of a set pointω̄sat(t) and small signal
ω̃sat(t), as

ωsat(t) = ω̄sat(t) + ω̃sat(t) . (8.39)

Henceqω (t) can be written

qω (t) =

[

ω̄sat(t) + ω̃sat(t)
0

]

(8.40)

= qω̄ (t) + qω̃ (t) . (8.41)

Inserting Equation (8.40) in Equation (8.38), and recognizing that the associative rule
applies for quaternions, yields

˙̃qsat(t) =
1

2
(−q̃sat(t) qω̄ (t) + qω̄ (t) q̃sat(t) + qω̃ (t) q̃sat(t)) . (8.42)

A quaternion can be expressed, in terms of a scalar part and a complex vector part,
as

q =

[

p
q

]

, (8.43)

as described in Chapter 5. Ifq̃sat(t) is a small rotation,̃qsat(t) is close to one and̃psat(t)
close to zero. Hence the quaternion product of the last term in Equation (8.42) can be
approximated by

qω̃ (t) q̃sat(t) =

[−S(ω̃sat(t)) ω̃sat(t)

−ω̃T
sat(t) 0

] [

p̃sat(t)
q̃sat(t)

]

(8.44)

=

[−S(ω̃sat(t)) p̃sat(t) + ω̃sat(t) q̃sat(t)

−ω̃T
sat(t) p̃sat(t)

]

(8.45)

≈ qω̃ (t) , (8.46)

whereS(ω̃sat(t)) is the cross-product matrix function, applied onω̃sat(t). The terms
q̃sat(t) qω̄ (t) andqω̄ (t) q̃sat(t), of Equation 8.42, can be expressed as

q̃sat(t) qω̄ (t) =

[−S(p̃sat(t)) + q̃sat(t)13×3 p̃sat(t)

−p̃T
sat(t) q̃sat(t)

] [

ω̄sat(t)
0

]

(8.47)

=

[

−S(p̃sat(t)) ω̄sat(t) + q̃sat(t) ω̄sat(t)
−p̃T

sat(t) ω̄sat(t)

]

(8.48)

and

qω̄ (t) q̃sat(t) =

[

−S(ω̄sat(t)) ω̄sat(t)
−ω̄T

sat(t) 0

] [

p̃sat(t)
q̃sat(t)

]

(8.49)

=

[

−S(ω̄sat(t)) p̃sat(t) + ω̄sat(t) q̃sat(t)
−ω̄T

sat(t) p̃sat(t)

]

. (8.50)
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Inserting the approximation of Equation (8.46) and the results of equations (8.50)
and (8.48) in Equation (8.42), yields

˙̃qsat(t) =

[

−S(ω̄sat(t)) 03×1

01×3 0

]

q̃sat(t) +
1

2
qω̃ (t) , (8.51)

which is the sought linearized kinematic equation in terms of the small signal of the
state.

8.2.2 Linear Dynamic Equation

The dynamic equation is linearized using first order Taylor expansion around the set
point ω̄sat(t). The control and disturbance torques are disregarded in thelinearization,
as they are already linear terms.

The derivative of the small signal angular velocity describes the linearized dynamics
of the system, and can be expressed as in terms of the Jacobianas

˙̃ωsat(t) ≈ −J−1 d (ωsat(t) × Jωsat(t))

dωsat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t) . (8.52)

Utilizing the chain rule, the above equation is expressed as

J ˙̃ωsat(t) ≈− d

dωsat(t)
S(ωsat)Jωsat

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t) (8.53)

= − d

dωsat(t)
S(ωsat(t))

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

Jω̄sat(t) ω̃sat(t)

− S(ω̄sat(t))J
d

dωsat(t)
ωsat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t) . (8.54)

The constant factors can be moved inside the differential expressions, and the cross-
products are interchanged with opposite sign, which yields

J ˙̃ωsat(t) ≈− d

dωsat(t)
S(ωsat(t))Jω̄sat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t)

− d

dωsat(t)
S(ω̄sat(t))Jωsat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t) (8.55)

=
d

dωsat(t)
S(Jω̄sat(t))ωsat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t)

− d

dωsat(t)
S(ω̄sat(t))Jωsat(t)

∣

∣

∣

∣

ωsat(t)=ω̄sat(t)

ω̃sat(t) (8.56)

= (S(Jω̄sat(t)) − S(ω̄sat(t)) J) ω̃sat(t) . (8.57)
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8.2.3 Linear System Model

The linearized system model can now be written as a linear system in the form˙̃x (t) =
F x̃ (t) + Gũ (t), given by

˙̃x (t) =




−S(ω̄sat(t)) 03×1
1
213×3

01×3 0 01×3

03×3 03×1 J−1 (S(Jω̄sat(t)) − S(ω̄sat(t))J)



 x̃ (t)

+

[

04×3

J−1

]

ũ (t) +

[

04×1

J−1nd (t)

]

, (8.58)

where the last term is a noise term, given by the disturbance torques.

8.3 Measurement Model

The Ørsted satellite is configured with eight Sun sensors anda magnetometer. The EKF
requires that the measurement equation can be linearized byTaylor expansion, which
is not the case for the Sun sensor output equation, due to saturation. Consequently, the
output of the Sun sensors cannot be utilized directly in the EKF filter. A solution is to
utilize the Sun sensor vector algorithms, described in Chapter 4, and express the mea-
surement of the body frame vectors as a function of referencevectors and the satellite
state. The measurement vector can be expressed as

z (tk) =

[

r̂B
Sun(tk)

bB
Earth(tk) ,

]

(8.59)

which is a6 × 1 vector, wherebEarth denotes the Earth magnetic field vector. The mea-
surement equation is expressed in terms of the system state as

z (tk) =

[

A (qsat(tk)) r̂I
Sun(tk)

A (qsat(tk)) bI
Earth(tk)

]

. (8.60)

The linearization of the measurement equation follows the method described in
[Gebre-Egziabher et al., 2000]. A linear measurement equation is obtained by express-
ing Equation (8.60) in terms of the state set pointx̄ (tk) and small signal̃x (t), as

z (tk) =

[

A (q̃sat(tk))A (q̄sat(tk)) r̂I
Sun(tk)

A (q̃sat(tk))A (q̄sat(tk)) bI
Earth(tk)

]

. (8.61)

Equation (5.21) expresses the attitude matrix as a functionof the quaternion elements.
For the small signal attitude quaternion, a first order approximation yields

A (q̃sat(tk)) ≈ 13×3 − 2S(p̃sat(tk)) . (8.62)
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Inserting into Equation (8.61), the vector observation of the Earth magnetic field can be
expressed as

bB
Earth = A (q̄sat(tk)) (13×3 − 2S(p̃sat)) bI

Earth. (8.63)

The measurementbEarth(tk) can be expressed in terms of the set point and small signal

bEarth(tk) = b̄Earth(tk) + b̃Earth(tk) , (8.64)

where the set point is expressed in terms of the inertial reference vector

b̄
B
Earth(tk) = A (q̄sat(tk)) b̄

I
Earth(tk) . (8.65)

Inserting into Equation (8.63) can be written as

b̃
B

Earth(tk) = 2S
(

b̄
B
Earth(tk)

)

p̃sat(tk) . (8.66)

Applying the same method to the Sun LOS vector in Equation (8.61), yields the
expression of the measurement small signal

z̃ (tk) =

[

2S
(

¯̂rB
Sun(tk)

)

2S
(

b̄
B
Earth(tk)

)

]

p̃sat. (8.67)

Equation (8.67) is a linear expression in the form of Equation (7.12). The noise
term in Equation (7.12) represents errors in the International Geomagnetic Reference
Field (IGRF) model and sensor errors. The linear output matrix of the reduced state
EKF becomes

H (tk) =

[

2S
(

¯̂rB
Sun(tk)

)

03×3

2S
(

b̄
B
Earth(tk)

)

03×3

]

. (8.68)

When applying the Earth albedo model to the EKF, the Sun LOS vector is replaced
with the SSE vector, and the SSE algorithm is applied to the Sun sensor currents. Uti-
lizing the Sun LOS vector the Standard and Max Currents algorithms are applied.

The UKF approximates the noise matrices by non-linear mapping of a number of
sigma points, hence the Jacobian of the measurement equation is not required. The
Earth albedo model is utilized in the non-linear output equation, and the Earth magnetic
field observation is described by Equation (8.60).

8.4 Quaternion Algebra Modifications

The use of quaternions as attitude parameter in the Kalman filter leads to two problems
which need to be considered. Both are related to the unity constraint of the quaternion.
The unity constraint of the quaternion in the state vector leads to a singular state er-
ror covariance, [Lefferts et al., 1982b]. In addition, the quaternion unity norm must be
ensured since the filter updates the estimate regardless with no attention to constraints.
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8.4.1 Covariance Singularity

As a solution to the problem of singularities in the state estimation error covariance
matrix, the state vector of the filter is reduced by one dimension in the corrector, by
leaving out the scalar element of the attitude quaternion

x̂red(tk|tk) =

[

p̂ (tk|tk)
ω̂sat(tk|tk)

]

, (8.69)

wherep̂sat(t) is the complex3 × 1 vector part of the quaternion̂qsat(t). The reduced
state vector is a6× 1 vector. As a consequence, the covariance matrixP est(tk) reduces
to a 6 × 6 matrix. The reduced dimension of the state error covariancerequires that
all equations involvingP est(tk) are adapted accordingly. The Kalman gainK (t) thus
reduces to a6 × 6 matrix. The updatễxred(tk|tk) to the a priori state estimate is given
by

ˆ̃xred(tk|tk) = K (tk) (z (tk) − ẑ (tk|tk−1)) . (8.70)

Note that the reduction of the state vector and consequentlythe covariance and Kalman
gain matrices, results in a reduced state correction vector. The a priori update vector
ˆ̃xred(tk|tk) is expanded to the full 7 states, before updating the a prioriestimate, such
that small rotation approximations apply to the quaternionreduced state.

The quaternion part of the state vector is expanded from three states to four states
by setting the value of the fourth element, such that a unit quaternion is formed. This is
done under the assumption that the correction termˆ̃xred(tk|tk) is small. The expansion
of the correction vector is written as

ˆ̃x (tk|tk) =









ˆ̃psat(tk|tk)
√

1 −
∣

∣

∣

∣

∣

∣

ˆ̃psat(tk|tk)
∣

∣

∣

∣

∣

∣

2

ˆ̃ωsat(tk|tk)









. (8.71)

The a posteriori estimatêx (tk|tk) is given by

x̂ (tk|tk) = x̂ (tk|tk−1) + ˆ̃x (tk|tk) , (8.72)

which is a full state vector, and used in the non-linear system equations, when propagat-
ing to the a priori value at timetk+1. A block diagram of the Kalman filter is given in
Figure 8.1, showing the propagator and the corrector using the reduced state.

8.4.2 Preserving Quaternion Unity Norm

Equation (8.72) reveals the second problem of using the quaternion as attitude parameter
in the Kalman filters. Due to the use of quaternions in the state, quaternion multiplication
is used for the first four elements of the state. The attitude estimateq̂sat(tk|tk) is given
by the a priori attitude estimatêqsat(tk|tk−1) and a correction̂̃qsat(tk|tk), expressed as

q̂sat(tk|tk) = ˆ̃qsat(tk|tk) q̂sat(tk|tk−1) , (8.73)
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Figure 8.1: Structure of the Kalman filter algorithm state update with state reduction
and expansion.

given by quaternion multiplication. Hence the a posterioriestimate is given by

x̂ (tk|tk) =

[

ˆ̃qsat(tk|tk) q̂sat(tk|tk−1)

ω̂sat(tk|tk−1) + ˆ̃ωsat(tk|tk)

]

. (8.74)

8.5 Covariance Equations

The covariance of the EKF is calculated using the linearizedsystem matrix, given by

F red(x̂ (tk|tk) , u (tk)) =
[

−S(ω̂sat(tk|tk)) 1
213×3

03×3 J−1 (S(Jω̂sat(tk|tk) − S(ω̂sat(tk|tk))J))

]

(8.75)

and

G =

[

03×3

J−1

]

, (8.76)

which is the linearized system model for the reduced state. The system is linearized
around the current estimate, and is used in the discrete zero-order hold equivalent, de-
notedΦred(x̂ (tk|tk) , u (tk) , tk). This matrix is used in the covariance propagation
equation in Equation (7.20), and the correction ofP est(tk|tk) is done using Equation
7.22. No changes apply, due the use of quaternions, except for the reduction from seven
to six states, causingP est(tk|tk) to be a6 × 6 matrix.
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Chapter 9
Validation of the Earth Albedo
Model

In this chapter the Earth albedo model is compared with telemetry data from the Danish
Ørsted satellite. The ACS of the Ørsted satellite has been designed and implemented by
the Department of Control Engineering, Aalborg University, which means all the Ørsted
telemetry is readily available. The simulations are done inSIMULINK , which is a graph-
ical user interface to MATLAB . The Earth albedo model is implemented in MATLAB

with a SIMULINK interface. The implementation is released as a Albedo Toolbox, and
can be freely downloaded at the author webesite [Bhanderi, 2005a].

The Ørsted satellite is equipped with Sun sensors, and sincethe orbit and attitude
of the satellite is known, the Earth albedo model can be applied in order to estimate
the currents from the Sun sensors. These estimates are then compared to the sampled
currents in the telemetry data, in order to validate the Earth albedo modeling algorithm.

The errors observed in the validation are a product of a number of factors. Clearly
errors are introduced due to sensor noise and model discrepancies. However some biases
are due to calibration errors, both geometrical and temporal. A known problem with the
Ørsted boom deployment, causes an unknown orientation of the gondola, containing the
star tracker and magnetometer, relative to the spacecraft body. Temporal data calibration
is also possible observing the magnitude of the magnetic field. The time shift between
the observed and modeled magnetic field amplitudes, is mainly caused by orbit propa-
gation errors in the Special General Perturbation Model of Fourth Order (SGP4) model.
In addition, the solar cells in the Sun sensors are expected to have a degraded efficiency
compared to the Beginning-of-Life (BOL) efficiencies.

Due to these expected discrepancies of the data and reference models, a number of
calibration procedures have been conducted, in order to ensure data integrity. The fol-
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lowing sections describe the Ørsted satellite sensor configuration and telemetry layout,
and describes the calibration procedures. Finally the Earth albedo model is validated
based on these data.

9.1 The Ørsted Satellite

The Danish Ørsted satellite was launched on February 23, 1999 into a LEO orbit. The
main scientific mission is a precise global mapping of the Earth’s magnetic field. The
Ørsted satellite is equipped with two magnetometers, the Compact Spherical Coil (CSC)
flux-gate and Overhauser magnetometers, for measuring the magnetic field magnitude
and direction. The Ørsted satellite is characterized by itseight meter boom, at the end of
which the CSC flux-gate magnetometer is placed, in order to minimize electro-magnetic
disturbances from the on-board electronics. Also on the boom, at a distance of six meters
from the main body of the satellite, a star imager is mounted.This allows for attitude
measurements with an accuracy of5 − 20arcsec, [Liebe, 1995], [Jørgensen, 1995]. An
illustration of the Ørsted satellite is shown in Figure 9.1.

Figure 9.1: Illustration of the Ørsted satellite.

The Ørsted satellite is a micro satellite of60.7kg with dimensions45×34×68 cm3.
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The satellite is in a LEO with an inclination of96.1 deg and an altitude of850km at
apogee and650km at perigee. The orbit period is 100 minutes. The inertia matrix of the
Ørsted satellite in the SCB frame, after boom deployment, is

JSCB =





219 0 0
0 219 0
0 0 1.529



 kgm2. (9.1)

The satellite is three axes stabilized. Passively gravity gradient stabilized and ac-
tively using magnetorquers. The reference attitude is suchthat the boom points in the
direction of zenith and the rotation around the boom axis is optimized with respect to
the star imager. The optimal orientation of the star imager is such that the Sun, Earth,
and Moon are not within its Field of View (FOV).

9.2 Telemetry Data Packages

The Ørsted satellite telemetry data is down-linked when thesatellite is above the ground
station in Copenhagen, Denmark. The down-linked telemetryis assembled in packages
which are numbered consecutively, and each package may contain data from one or
more orbits.

The telemetry consists of three major components:

• Housekeeping data

• Science data

• Diagnostics data

Sun sensor measurements are available in housekeeping datapackets, in addition to Sun
sensor temperatures, three axes magnetometer measurements, magnetorquers currents,
etc. The housekeeping data is available at1/60Hz. The science packet contains the
star imager data, which is considered science, since it is used together with the science
magnetometer readings in order to estimate the Earth magnetic field. The science in-
struments are sampled at up to100Hz. Finally the diagnostics data is data explicitly
requested, which can be changed through up-link, in case a subsystem needs to be mon-
itored closely.

The data packet utilized in the validation is from May 21, 2001, which is telemetry
data packet 5200. The total time of which data from the Star Imager and ACS house
keeping data are available is 3:52:03.707 PM to 10:10:16.469 PM.

The telemetry data is used in conjunction with reference models implemented in
SIMULINK . The magnetic field is modeled through an IGRF model and the ephemeris
models are based on a SGP4 orbital propagator. The time-stamp of the on-board data
and the reference vectors is calibrated in order to improve the accuracy of the vector
observations. This is described in the following section.
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9.2.1 Sun Sensors

The Ørsted satellite is equipped with eight Sun sensors, twothree axis and two single
axis. Figure 9.2 shows the placement of the sensors in the SCBframe. It is seen from
the figure that since the boom is pointing away from the Earth at all times, the Earth
albedo currents are expected to be apparent on Sun sensors SS3 and SS6. These two
Sun sensors ideally point in the direction of the Nadir vector at all times.

xSCB

ySCB

zSCB

n̂SS1

n̂SS2

n̂SS3

n̂SS4
n̂SS5

(a) Top View

xSCB

ySCB
n̂SS3

n̂SS4

n̂SS5

n̂SS6

n̂SS7

n̂SS8

(b) Bottom View

Figure 9.2: Placement of the Ørsted Sun sensors in the spacecraft reference frame. The
boom extends in the positivezSCBdirection.

The solar cells in the Sun sensors operate in short-circuit mode, such that voltage
drops, affecting the generated current, are avoided.

9.2.2 Sun Sensor Calibration

The Sun sensor circuits are designed such that they ideally generate1.5mA of current
when illuminated by1353W/m2 perpendicular to the solar cell plane. Pre-flight calibra-
tion is performed in order to measure the actual generated current at1353W/m2. Table
9.1 lists the results of the pre-flight calibration.

The Sun sensor model is configured such that the generated current is matched when
the Sun sensors are illuminated with an irradiance of1353W/m2. This requires that
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Sun Sensor Current @ 1353W/m2 Calibrated Efficiency
SS1 1.15mA 18.4%
SS2 1.53mA 20.7%
SS3 1.54mA 20.7%
SS4 1.56mA 19.6%
SS5 1.54mA 19.1%
SS6 1.39mA 24.2%
SS7 1.53mA 23.0%
SS8 1.58mA 16.8%

Table 9.1: Current generated by the Sun sensor, when illuminted by1353W/m2 and re-
sulting calibrated effeciencies.

the simulated current is scaled linearly with the fraction of incoming irradiance to the
calibration irradiance.

The efficiencies of the solar cells in the Sun sensors are calibrated from the telemetry
data. A BOL efficiency of around23% is expected since the solar cells in the Sun sen-
sors are single-junction GaAs cells, [Blanke et al., 1994].The efficiency of solar cells
degrades over time, which requires that the efficiencies arecalibrated post-launch. The
simulated currents using an efficiency of23% is shown in Figure 9.3 in addition to the
measured currents from telemetry data package 5200. Telemetry data package contains
data recorded May 21, 2001, which is approximately 27 monthsafter launch. The simu-
lated currents are higher than the measured currents, whichis due to the degradation of
the solar cells in the Sun sensors.

From the data in Figure 9.3 the efficiencies of each Sun sensoris calibrated, which
results in the calibrated efficiencies listed in Table 9.1. The results of the calibrated
current simulation is shown in Figure 9.4. The simulated currents are calculated from
the solar irradiance only, which is why additional currentsare seen on a number of the
Sun sensors. These currents are generated by the Earth albedo.

Clearly there are still discrepancies in the Sun sensor simulations, especially in Sun
sensors SS1 and SS7. These types of discrepancies are typically caused by shadow
effect. It is expected that the boom will cast a shadow on a number of the Sun sen-
sors, causing a decrease in current output. Temperature compensation has also been
investigated, and has been included in the modeling of Sun sensors. The influence of
the temperature variation on the solar cell efficiencies in the Sun sensors has negligible
impact on the output accuracy, hence it is not presented.

9.2.3 Star Imager

The data from the star imager is used as reference for the satellite attitude. The star
imager computes its inertial attitude based on the star pattern in the FOV, which is com-
pared to an on-board star catalogue. The output of the star imager is a quaternion which
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Figure 9.3: Currents on all eight solar cells on Ørsted. The estimated values do not
include the Earth albedo model. The Sun currents are used to calibrate
the degraded efficiencies of the solar cells in the Sun sensors. The current
measurements are from telemetry data package 5200.



9.2 Telemetry Data Packages 73

Figure 9.4: Measured and estimated currents on all six solar cells, after calibration of
the solar cell efficiencies. The current measurements are from telemetry data
package 5200.
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represents the attitude of the star imager frame with respect to the ECI frame. Figure 9.5
shows the mounting of the star imager in the gondola housing.

xSCN ySCN

zSCN

xSIM

ySIM

zSIM

αx

Gondola

Figure 9.5: Placement of the Ørsted star imager and star imager housing,known as the
gondola.

Data Fallouts

The star imager uses a number of stars in its FOV to determine an attitude. An initial
attitude is obtained by comparing the stars in the FOV with a star catalogue. Once the
initial attitude is found, the stars in the FOV are tracked. This tracking imposes some
requirements to the angular velocity of the satellite. Whenthe angular velocity exceeds a
certain limit, the star imager is unable to track the satellite attitude, and must re-acquire
the initial attitude. These fallouts are identified in Figure 9.6, which show the time-
stamp of the star imager data as a function of the sample number. Jumps in the graph
reveals missing data, and four major fallouts are identified. The fallouts occur at times
660s,6660s,12660s, and18660s. The period is of the fallouts are identical to the orbit
period. Following a fallout, approximately1000s is needed until star tracking is stable.
The periods of fallouts are disregarded when applying the star imager data as attitude
reference.

Instrument Alignment

It is necessary to calculate the attitude of the SCB frame with respect to the inertial
frame, since the attitude of the Sun sensors are know with respect to this frame and
the ephemeris data is given in the ECI frame. In order to calibrate the star imager
misalignment, the designed orientation of the Star Imager (SIM) frame is described
relative to a nominal SCB frame, denoted the Spacecraft BodyNominal (SCN) frame.
The attitude quaternion of the SCN frame,qSCN

ECI (t) is calculated from the star imager
output, which is the rotation of the SIM frame wrt. the ECI frame, qSIM

ECI (t), and the
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Figure 9.6: Time-stamps of the star imager data in telemetry data package 5200. The
data is available at1Hz with fallouts for a duration of up to1100s.

attitude of the SIM frame wrt. the SCN frame,qSCN
SIM , with the following relation

qSCN
ECI (t) = qSCN

SIM qSIM
ECI (t) . (9.2)

The attitude quaternionqSCN
SIM is known prior to launch, dependent only on the mounting

of the star imager and the mounting of the star imager housing, known as the gondola.
However, the boom is non-rigid, because it has to be folded into the main body of the
satellite during launch. Problems with boom deployment causes an unknown rotation
of the boom. As a consequence, the attitude of the star imagerwith respect to the true
SCB frame must be estimated. This is done by estimating the discrepancy between the
SCB frame and the SCN frame. The SCB frame is aligned with the SCN frame when
the boom is fully deployed. Hence, Equation (9.2) becomes

qSCB
ECI (t) = qSCB

SCN(t) qSCN
SIM qSIM

ECI (t) , (9.3)

whereqSCB
SCN(t) is the attitude of the nominal SCB frame wrt. true SCB frame.

The attitude of the star imager wrt. the SCN frame is constant, and calibrated prior to
launch. The attitude of the SCN frame wrt. the SCB frame is calculated using MATLAB .
This is discussed below.

9.3 Boom Deployment Calibration

The 8m boom on the Ørsted satellite is constructed in such a way, that it folds into
spacecraft’s main body during launch. After the satellite is released from the launcher,
the boom is deployed. The boom rotates as it folds out from thespacecraft body, and
it has been detected that the boom did not fully deploy. Hencethere is also rotation
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error between the boom fixed frames and the SCB frame. This error has been estimated
and is uploaded to the on-board software. The boom rotation error does not influence
the science measurements, since the star tracker and the magnetometer are aligned in the
optical bench. Consequently the boom error is uploaded veryseldom, i.e. approximately
three times during currently six years life time. It is assumed that the boom rotation error
is constant in the time frame between updates, which is not the case. The boom rotation
error is estimated on ground for the current data package, and the error between the
on-board compensation and the off-line estimation is addedto the telemetry data.

The boom error rotation is found by estimating the Sun vectorin all parts of the orbit
where the satellite is not in eclipse. Using the star trackerand the nominal rotation from
the SIM frame to the SCB frame, the direction to the Sun in bodyframe is found using
the ephemeris model. These vector pairs are used in Wahba’s problem in Equation (6.1),
and the optimal solution that minimizes the cost function isthe estimate of the boom
rotation error. The Earth albedo model derived in Chapter 2 is used in order to improve
the Sun vector estimation. Figure 9.7 shows the measured andreference Sun vectors.
Large discrepancies occur during periods of eclipse. The data in eclipse is left out when
estimating the rotation error between the two Sun vectors.

By applying Wahba’s loss function to the data in Figure 9.7, the following quaternion
is found to minimize the error between the measured and reference Sun vectors

qSCB
SCN(t) =









0.0309
−0.0642
−0.0203
0.9973









. (9.4)

The quaternionqSCB
SCN(t) is a representation of the rotation of the boom, and rotates from

the SCN frame to the SCB frame. The calibration suggests a boom rotation error of
8.5 deg, mainly around thez axis. However, there is also a rotation around the other
axes due to the non-rigidness of the boom, i.e. the boom has a minor bend. Figure
9.8 shows the Sun vector estimation and reference after calibration of the boom rotation
error.

9.4 Temporal Calibration

The temporal calibration of the telemetry data is done by comparing the on-board mag-
netic field amplitude with the IGRF model. The on-board magnetic field measurements
is available in the house keeping data package. The amplitude of the magnetic field is
independent of the boom deployment induced error. Figure 9.9 shows the magnetic field
amplitude from the on-board measurements and the IGRF reference model.

By inspection it is found that the reference model is ahead intime by 66 seconds.
Figure 9.10 shows the resulting magnetic field strength comparison, when applying a
temporal calibration of 66 seconds.
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Figure 9.7: Sun LOS vector comparison for boom rotation error estimation. The rotation
error between the estimated Sun vector and the reference Sunvector, from
the ephemeris model, is used to estimate the rotation error of the boom.
Disregarding periods in eclipse, the data suggests a boom rotation error of
8.5 deg, mainly around the boom axis.
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Figure 9.8: Sun LOS vector comparison when applying boom rotation errorcalibration.
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Figure 9.9: Magnetic field amplitude comparisons for temporal calibration. The IGRF
reference model is shifted approximately 66 seconds forward in time.

Figure 9.10: Magnetic field amplitude comparisons for temporal calibration. The IGRF
reference model has been calibrated by 66 seconds.
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9.5 Earth Albedo Model Validation

The Earth albedo model is implemented in MATLAB with a SIMULINK interface, and the
calculated Earth albedo irradiance is fed to the Sun sensor models. The resulting currents
are compared to the measured currents. The data flow of the validation is illustrated in
Figure 9.11, whereǫ is the error of the simulated Sun sensor currents.
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Figure 9.11: Structure of the data flow in the validation calculations. The white boxes
are models used to estimate the Sun sensor currents. The greyed boxes
are satellite data. The reflectivity data is telemetry data from the TOMS
Earth Probe satellite and the star imager and Sun sensor dataare Ørsted
telemetry.

The simulated currents in Figure 9.4, used for calibration of the Sun sensors, devi-
ate from the measured on-board currents. These deviations are primarily caused by the
Earth albedo, since the figures only show the currents induced by the solar energy flux.
Figure 9.12 shows the calibrated currents including the Earth albedo induced currents,
calculated using the Earth albedo model. It can be seen from the plots, that the Earth
albedo model and sensor simulation is able to estimate the additional Earth albedo in-
duced currents. It is seen that even though the Sun sensors SS4, SS5, SS7, and SS8
are perpendicular to the Nadir vector, the simulation is able to estimate Earth albedo
currents on these panels also.

Since Sun sensors SS3 and SS6 are the Nadir pointing Sun sensors, the albedo cur-
rents are most apparent on these sensors. The measured and estimated currents on solar
cell SS3 is shown in Figure 9.13. It is clearly seen that the Earth albedo model can be
used to calculate the irradiance on the solar cells from the Earth albedo.

Although the albedo model is added to the simulation, and theresults show good es-
timation of the Earth albedo currents, Figure 9.13 reveals that residual discrepancies still
exist between the measured and estimated currents. This is due to a number of factors.
Some physical elements are disregarded in the model, such asvariation in the atmo-
spheric pressure over the reflecting surface. The variationin pressure affects how much
of the irradiance is absorbed, and how the light is diffused.The surface is assumed Lam-
bertian, however, specular effects occur over some surfaces like ice and water, which
distributes the reflected irradiance more in certain directions, and not uniformly, as it
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Figure 9.12: Plot of the telemetry data of all Sun sensors in data package number 5200
together with the simulated current using the albedo model and daily re-
flectivity data.
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Figure 9.13: Plot of the telemetry data of Sun sensor SS3 in data package number 5200
together with the simulated current using the albedo model and daily re-
flectivity data.

is the case with Lambertian equivalent reflective surfaces.The daily TOMS reflectivity
data is incomplete (see Figure 2.2), which means that annually averaged values are sub-
stituted into the source data, where daily data is unavailable. This will give errors over
areas where the cloud coverage deviates from the norm. In addition, the reflectivity data
is recorded at a specific time of the day, which is likely to differ from the time the Ørsted
satellite appeared over the same area. Since the cloud coverage is not constant over a
day, this will also lead incorrect Earth albedo calculations. Finally, the Moon albedo
also contributes to the total irradiance on the Sun sensors.

The significance of using the Earth albedo model in the Sun sensor output equation is
shown in Figure 9.14 and Table 9.2. Figure 9.14 shows the errors between the estimated
currents and the Ørsted telemetry, with and without albedo compensation. There is no
improvent in Sun sensors SS1 and SS2 since they are constantly facing away from the
Earth, hence no albedo reaches these sensors. The improvement is apparent on the Earth
facing Sun sensors, SS3 and SS6, where the Root-Mean-Square(RMS) error is reduced
from approximately0.18mA to 0.06mA. The Earth albedo is often assumed to reach
the satellite only from the direction to Earth. This would result in no estimated albedo
currents on Sun sensors SS4, SS5, SS7, and SS8. The Earth albedo model enables the
estimation of the currents generated on these Sun sensors, as a result of the Earth albedo
contributions from all grid points. The RMS errors are reduced significantly, e.g. from
0.041mA to 0.020mA on Sun sensor SS5. The RMS error is reduced from0.11mA to
0.074mA average., which is an improvement of33%.
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Figure 9.14: Error of the estimated currents on the Sun sensors, with and without Earth
albedo compensation.
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Sun Sensor
RMS Error [mA] RMS Error [mA]

wo. Albedo Comp. w. Albedo Comp.
SS1 0.193 0.193
SS2 0.062 0.062
SS3 0.175 0.060
SS4 0.063 0.058
SS5 0.041 0.020
SS6 0.184 0.053
SS7 0.121 0.105
SS8 0.043 0.039

Table 9.2: RMS errors of the Sun sensor current estimation, with and without using the
Earth albedo model.

It is concluded from the results above, that the Earth albedomodel is able to predict
the Earth albedo with an accuracy that has not been preceded in the literature. In the
following section the Earth albedo model is applied to investigate the properties of the
Earth albedo.



Chapter 10
Earth Albedo Model Results

In this chapter the results of the Earth albedo model are presented. First an example of
the model output is presented and a total coverage calculation is done. Secondly model
outputs for multiple calculations are presented to show dependency on longitude and
altitude. The Earth albedo of an Ørsted orbit is presented. Finally the possibility to
reduce the resolution of the Earth albedo model is presented. This allows for decreasing
the computation time of the algorithm.

The results in this chapter are based on the annual mean of TOMS reflectivity data
from 2001, except for the Ørsted simulation which uses dailyreflectivity data. The
annual mean reflectivity data of 2001 is shown in Figure 2.3. All vectors in this chapter
are given in the Earth Centered Earth Fixed (ECEF) frame.

10.1 Earth Albedo

Figure 10.1 shows the conditions for the Earth albedo calculations. The plot (a) shows
the satellite’s FOV. The coordinates of the satellite are

rsat =





−π/2
π/3

7171km



 , (10.1)

which is equivalent to90 deg West and30 deg North at an altitude of800km. The Sun’s
coordinates are

rSun =





0rad
1.17rad
1A.U.



 , (10.2)
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(a) Satellite FOV

(b) Solar FOV

(c) Sunlit satellite FOV

Figure 10.1: Parameters to the albedo calculation. a) shows the satellite FOV,V sat,
b) shows the Sun’s FOV,V Sun, and c) shows the intersection of the two,
V sat∩ V Sun. It is seen that the satellite is over North America at dawn.
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which is at the Greenwich Meridian and23 deg North, shown in plot (b). Plot (c) in
Figure 10.1 shows the intersection of (a) and (b), which is the sunlit part of the satellite
FOV. This means that the satellite is at an altitude of800km over the state of Louisiana
at dawn in mid-summer. The albedo algorithm returns an arrayof same resolution as the
Earth Probe reflectivity data. Each element in the array, represents the albedo contribu-
tion from a single cell. The result is shown in Figure 10.2.

Figure 10.2: Result of albedo calculation given the conditions in Figure10.1.

The total albedo at the satellite, is calculated by summing up all elements in the
array. This indicates an albedo of73.5W/m2. This is equivalent to5.4% of the incident
solar irradiance. For comparison, the same albedo has been calculated for an altitude of
500km, which yields a total albedo of82.5W/m2 or 6.0%. The albedo is expected to
be low, since the FOV of the satellite is partially on the night side of Earth, and over an
area of generally low reflectivity.

Given specific time, the position of the Sun is constant, and the total albedo at every
satellite position at a single altitude, may be calculated.The position of the Sun is

rSun =





0
1.17rad
1A.U.



 , (10.3)

which gives the Earth visibility shown in Figure 10.3. The result of the Earth albedo
model, given a satellite altitude of800km, is shown in Figure 10.4. The data suggests
that the albedo near the North Pole is21%, and decreases moving away from the pole,
and of course moving towards the shadow side of the Earth.
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Figure 10.3: Solar FOV of total albedo calculation at all satellite positions.

Figure 10.4: Total albedo at all satellite positions at an altitude of800km, given a solar
FOV shown in Figure 10.3.
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It is often assumed that the maximum albedo is observed over the poles, due to the
constant ice coverage. This has been investigated using theEarth albedo model. Due of
the high angle to the Sun, the albedo is33.8% directly over the South Pole and36.7%
over the North Pole, during local summer. From Figure 10.4, the maximum albedo of
approximately49% is observed over Greenland during local summer at noon. Thisis due
to Greenland’s large ice coverage, which has a low angle to the Sun during summertime,
compared to the polar regions. The Earth albedo at local winter over Greenland at noon
is 36.7%.

10.2 Longitude Dependency

It is known that the reflectivity data is strongly dependent on the latitude. It is sometimes
assumed that the longitude dependency can be disregarded. This is investigated below.

The albedos of two sub-solar satellite positions have been calculated. The positions
are equal in latitude and separated by90 deg longitude. The input parameters of the first
albedo calculation are

rsat =





−π/2
1.17rad
6871km



 rSun =





−π/2
1.17rad
1A.U.



 , (10.4)

which are equivalent to90 deg West and23 deg North. The satellite is at an altitude of
500km, with the Sun directly above. The Earth albedo is in this casecalculated to be
356W/m2 or 26.1%. The input parameters of the second albedo calculation are

rsat =





0rad
1.17rad
6871km



 rSun =





0rad
1.17rad
1A.U.



 , (10.5)

which are the same as above except at the Greenwich Meridian,i.e. 90 deg East of the
satellite and Sun positions of the first calculation. The albedo in this case is187W/m2 or
13.7%, which is almost half the albedo at90 deg W. This shows a significant dependency
on longitude in the Earth albedo.

10.3 Altitude Dependency

The Earth albedo is expected to decrease with satellite altitude. In order to show this, the
albedo is calculated with constant Sun and satellite directions, and varying the altitude
of the satellite between200km and2000km. The Sun position is constant at

rSun =





0
1.17rad
1A.U.



 (10.6)
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and the satellite position is sub-solar. The result of 50 albedo calculations at altitudes
between200km and2000km is shown in Figure 10.5. The calculations indicate that the
albedo decreases from15.3% at200km to10.5% at2000km.

Figure 10.5: Total Earth albedo at constant sub-solar satellite position at altitudes from
200km to2000km at Greenwich Meridian and23 deg North.

10.4 Ørsted Orbit

The Earth albedo model has been applied to the Ørsted satellite simulation. The Ørsted
satellite is in a LEO orbit with an altitude of approximately850km at apogee and650km
at perigee. The inclination of the orbit is96.1 deg. Figure 10.7 shows the Ørsted orbit,
where the position of the satellite is shown at each telemetry sample point.

The Earth albedo model uses daily reflectivity data based on the time of the simu-
lation, which is May 21, 2001. Since daily reflectivity data is incomplete, see Chapter
2, the mean reflectivity data of 2001 is used when daily data isunavailable. Figure 10.6
shows the input reflectivity data to the Earth albedo model, where the mean data is used
to complete the data set.

The total Earth albedo at the satellite, calculated from theEarth albedo model is
shown in Figure 10.8. The albedo is at maximum when the Sun is at Zenith. The
maximum albedo is649W/m2 or 47.5%. The mean albedo is10.1% during an entire
orbit, or15.3% when periods of eclipse are omitted.
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Figure 10.6: Reflectivity data used for the Ørsted albedo simulation.

Figure 10.7: Ørsted orbit telemetry sample points. The rotation of the Earth is indicated
by a moving shadow on the reflectivity data.
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Figure 10.8: Simulated Earth albedo during Ørsted orbit.

10.5 Resolution of the Earth Albedo Model

Due to the computational load of the Earth albedo model, an option to reduce the reso-
lution of the input data is implemented. As a consequence, the output data resolution is
reduced, as it is equal to the resolution of the input data. The reduction of the resolution
is done by setting a reduction factor. The resolutions alonglatitude and longitude are
divided by this factor. A reduction factor of one, results inno reduction, and the resolu-
tion of the TOMS reflectivity data is the default resolution,i.e.180× 288 data points in
latitude and longitude, respectively. This is an angular resoution of1 deg× 1.25 deg. A
reduction factor of two will result in a resolution of90 × 144 and an angular resolution
of 2 deg×2.5 deg. Any real number larger than one may be used as the reduction factor.

The TOMS reflectivity input data to the Earth albedo model is reduced in resolution
by applying a low pass Finite Impulse Response (FIR) filter and linear interpolation.
Table 10.1 shows the result of a number of reduction factors,when calculating 379 orbit
points on a 2.8 GHz Pentium 4 processor.

Figure 10.9 shows that the simulation time drops dramatically when setting the re-
duction factor to a integer greater than one. A reduction factor of two, makes the simu-
lation four times faster. This is expected, since a reduction factor of two, results in four
times fewer grid points.

Figure 10.10 shows the RMS error of the simulated Sun sensor SS3 current. The
figure shows that the error increases noticeably when using areduction factor of five
compared to a factor of four. There is noticable increase in the RMS error when changing
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Reduction Data Simulation SS3 RMS
Factor Points Time [s] Error [mA]

1 180 × 288 2454 0.0609
2 90 × 144 597 0.0622
3 60 × 96 271 0.0600
4 45 × 72 160 0.0609
5 36 × 57 103 0.0662
6 30 × 48 75 0.0658
7 25 × 41 54 0.0660
8 22 × 36 43 0.0680
12 15 × 24 23 0.1029
16 11 × 18 16 0.1257

Table 10.1: Impact of the reduction factor on the simulation time and current simulation
accuracy.

Figure 10.9: Simulation time of the Earth albedo model as a function of thereduction
factor for 379 samples.
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from a reduction factor of seven to eight. Table 10.1 additionally shows the error and
simulation times for a reduction factor of 12 and 16.

Figure 10.10: RMS error of the Sun sensor SS3 current as a function of the reduction
factor.

Based on the impact of the reduction factor, it is recommended that a reduction fac-
tor of four is used. This value reduces the computation time with a factor of 15 without
adding significant errors to the simulated Sun sensor current. To illustrate the reduced
resolution of the Earth albedo model Figure 10.11 shows the mean reflectivity data of
2001, reduced by a factor four. This data should be compared to the mean TOMS re-
flectivity data of 2001 shown in Figure 2.3. The data also suggests that reduction factors
higher than four, can be used with moderate errors in the Earth albedo model accuracy.
This would make the Earth albedo model applicable for on-board implementation.
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Figure 10.11: Plot of TOMS mean reflectivity data recorded from January 1 toDecember
31, 2001. The reflectivity data has been reduced by a factor offour along
both latitude and longitude.
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Chapter 11
Simulated Attitude Determination
Results

This chapter presents the simulation results of the different attitude determination algo-
rithms included in this thesis. A simulation of the Ørsted satellite is the basis of the
simulations. The results of the Q-Method, EKF, and UKF attitude determination algo-
rithms are presented. The algorithms are simulated using the Standard, Max Currents,
and SSE algorithms, and the results are compared. Additionally, the UKF algorithm has
been utilized without use of magnetometer data, in order to show the results of applying
the Earth albedo model, in order to obtain three-axis attitude determination using Sun
sensor measurements alone.

Initially the simulation conditions are presented, since these are common for all
simulation in this Chapter.

11.1 Simulation Conditions

The simulation time matches those of telemetry data package5200, which is also used
in Chapter 9 for the validation of the Earth albedo model. Thesimulation time is thus
3:52 PM to 10:10 PM on May 21, 2001, which is a total simulationtime of 6 hours and
18 minutes. This is equivalent to approximately three orbits. The sample time is60s,
which is equivalent 379 samples.

The simulated attitude and angular velocity of the satellite are calculated solving the
non-linear differential equations of the attitude dynamics and kinematics, presented in
Chapter 8. The initial conditions of the are shown in Table 11.1. The satellite is initially
aligned with the ECI frame with a angular velocity around thez axis of0.001rad/s.
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State Initial Value

qsat(t0)
[

0 0 0 1
]T

ωsat(t0)
[

0 0 0.001
]T

rad/s

Table 11.1: Initial conditions of the simulated satellite state.

In order to simulate the environment disturbances, noted inChapter 8, an external
torque is added as a white noise process, which has a standarddeviation of10−6Nm.
The magnitude of the disturbance torque is found by investigating the control signal of
the Ørsted satellite. The controller calculates a magneticmoment, which is generated by
the magnetorquers on the satellite. The controller calculates this actuation signal based
on the external disturbances, hence the control torque indicates the magnitude of the
external torques. It should be noted that the external disturbances are not modeled in
the simulation, hence the satellite is not Earth pointing, since there is no gravitational
gradient torque. This is because the Max Current algorithm is particularly effective in
this case, and thus does not produce general comparable results. This is discussed in
Chapter 12.

Given the initial condition of the satellite and the external torques, the simulated true
sates of the satellite,qsat(t) andωsat(t), evolves as shown in figures 11.1 and 11.2.

Figure 11.1: Simulated attitude,qsat(t), of the Ørsted satellite.

In the simulation, the satellite position is model by an SGP4propagator. The Earth
magnetic field is modeled by a 10th order IGRF model readily available for SIMULINK .
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Figure 11.2: Simulated angular velocity,ωsat(t), of the Ørsted satellite.

Sun position, ECEF rotation, and eclipses are calculated using the Spacecraft Control
Toolbox from Princeton Satellite Systems, [Princeton Satellite Systems, 2005]. In order
to simulate the model discrepancies and sensor noise, whitenoise is added to the mea-
surements, i.e. Sun sensor currents and the Earth magnetic field vector. The noise on the
magnetic field vector has a standard deviation of2500nT, which results in an angular
error on the magnetic field vector of approximately0.5 deg. This error is consistent
with [Bak, 1999]. The noise on the Sun sensor currents has a magnitude of53µamps,
which is the observed standard deviation of the error in the Ørsted Sun sensor telemetry
after calibration of the data. The calibration of the Ørstedtelemetry data is described in
Chapter 9.

Figure 11.3 shows the angular error of the simulated reference and measured Earth
magnetic field vectors. The data validates that the standarddeviation of the angular error
is 0.5 deg.

Figure 11.4 shows the error in the simulated Sun sensor currents with measurement
noise. The Sun sensor naming SS1 to SS8 represents the Ørstedsatellite Sun sensor
configuration illustrated in Figure 9.2. Note that SS1 and SS3 are omitted since SS1 and
SS6 are mounted in the similar directions.

The following section investigates the errors in the Sun sensor vector pairs using the
Standard, Max Currents, and SSE algorithms.
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Figure 11.3: Simulated angular error of the simulated reference and measured Earth
magnetic field vectors.

11.2 Sun Sensor Vector Observations

The Sun sensor vector pairs are formed using the algorithms described in Chapter 4.
The Earth albedo model used in the simulation of the true albedo uses reflectivity data
of the simulation date, i.e. May 21, 2001. The Earth albedo model utilized in the SSE
algorithm is based on the mean reflectivity data of 2001 described in Chapter 2, in order
to include model discrepancies in the Earth albedo estimation.

Figure 11.5 shows the angular errors of the Sun LOS vector pairs, using the Standard
and Max currents algorithms, and the SSE vector pair. Periods of eclipse are omitted
from the plot, as the Sun sensor output is invalid when not illuminated. The results
of the Sun sensor vector algorithms is shown in Table 11.2. The results show that the
SSE vector pair is significantly more accurate than Max Currents algorithm. This indi-
cates that the Earth albedo model derived in Chapter 2 can be utilized to improve errors
induced by the Earth albedo.

Algorithm RMS Error [deg]
Standard 8.86
Max Currents 5.28
SSE 3.71

Table 11.2: Simulated accuracy of the Sun sensor vector pairs using the Standard, Max
Currents, and SSE algorithms.
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Figure 11.4: Simulated Sun sensor currents with measurement noise.
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Figure 11.5: Angular error of the simulated reference and measured Sun sensor vector
pairs. Periods of eclipse are omitted.

11.3 Q-Method Algorithm

This section presents the results of the Q-Method algorithm. The Q-Method algorithm
vector pairs are based on the Earth magnetic field and the Sun sensor vectors described
in Chapter 4. The weights of the vector pairs are scaled according to the variance of the
angular separation of the vectors from reference and measurements, respectively.

Figure 11.6 shows the attitude error quaternion of the Q-Method algorithm using
the Max Currents algorithm for Sun LOS vector estimation andthe SSE algorithm for
estimating the SSE irradiance vector. The error is large during periods of eclipse, which
is expected.

Figure 11.7 shows the angular error of the algorithms, whereperiods of eclipse have
been omitted. The RMS error is5.9 deg for the Max Currents algorithm and3.8 deg for
the SSE algorithm. The Standard algorithm has an angular RMSerror6.6 deg. Both the
Max Currents and SSE algorithms reduce the RMS error, but theSSE algorithm proves
to be superior to the Max Currents algorithm. The simulationresults are shown in Table
11.3. The results of the algorithms are consistent with the performance of the Sun sensor
vector observations presented in Table 11.2.
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Figure 11.6: Attitude error quaternions of the Q-Method algorithm usingthe Max Cur-
rents algorithm for Sun LOS vector estimation and the Earth albedo model
for the SSE vector pair.
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Figure 11.7: Angular error of the Q-Method algorithm using the Max Currents algo-
rithm for Sun LOS vector estimation and the Earth albedo model for the
SSE vector pair.

Algorithm RMS Error [deg]
Standard 6.57
Max Currents 5.91
SSE 3.82

Table 11.3: Simulation performance of the Q-Method attitude determination algorithm.
The algorithm uses Sun sensor vector pairs formed by the Standard, Max
Currents, and SSE algorithms.

11.4 Extended Kalman Filter

The EKF algorithm uses the model of the satellite motion, which allows estimation of
not only the satellite attitude, but also the satellite angular velocity. The model of the
satellite states in the filter requires an estimate of the initial state. A single run of the
Q-Method algorithm produces an output which can be used to initialize the EKF. The
initial attitude error of the EKF is set to22.5 deg around they axis. The angular velocity
is initialized to zero around all axes. Table 11.4 shows the initial parameters of the EKF.

An initial value of the the estimation error covariance,P est(t0), is also needed. The
value ofP est(t0) reflect the initial values of the states.

The covariance matrix of the measurement noise,R (t), is calculated based on the
Sun sensor vector errors. The covariance of the measurementnoise is calculated sepa-
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State Initial Value

q̂sat(t0)
[

0 0.20 0 0.98
]T

ω̂sat(t0)
[

0 0 0
]T

rad/s

Table 11.4: Initial conditions of the EKF.

rately in and out of eclipse, and also for total measurements. Since the error between
the Sun sensor vector pairs is strongly biased, the mean error on each axis is added to
the diagonal elements of the Sun sensor vector variances. This increases the variance
significantly, and is bound to decrease the effect of Earth albedo compensation.

The process noise covariance matrix,Q (t), describes the errors in the kinematic
and dynamic differential equations of the satellite. The covariance of the dynamics is
set to the external disturbance standard deviation. The model noise of the kinematics are
added, to compensate for numerical errors in the 5th order Runge-Kutta algorithm, used
to solve the non-linear differential equation. The error isexpected to be insignificant,
and the covariance is set to10−14. The value is required by the EKF to be non-zero in
order to prevent singularities in the estimation error covariance matrixP est. The process
noise covariance is assumed to have zeros in the off-diagonal elements.

Figure 11.8 shows the EKF quaternion estimation error. Figure 11.9 shows the result
of the angular velocity estimation error. The figures show that the filter uses approxi-
mately2500s to converge. The convergence time and filter performance are similar, re-
gardless of Sun sensor vector algorithm. Figure 11.8 shows that due to the non-whiteness
of the input noise of the Sun sensors, the estimation error isbiased.

Figure 11.10 shows the angular error of the EKF algorithm using all three Sun sensor
vector algorithms. Table 11.5 shows the RMS angular error ofthe attitude estimation,
and the mean RMS error of the angular velocity estimates. TheRMS values are calcu-
lated from time3000s and forward, such that the the estimation error does not include
initial errors. It should be noted that the RMS values include periods of eclipse, unlike
the results from the Q-Method algorithm. The results are compared directly, since the
Q-Method algorithm is used out of eclipse only, and the Kalman filters are typically
applied during the entire orbit.

The results show that the algorithms perform equally, even without Earth albedo
compensation. This is a result of the high covariance of the Sun sensors due to peri-
ods of eclipse. Using time dependent measurements noise, thus using appropriate Sun
Sensor vector error covariances in and out of eclipse, does not improve the estimation
results. It is concluded that although the Sun sensors do improve the convergence of the
filter significantly, the vector pairs formed using the Sun sensors do not have significant
impact on the accuracy of the estimation.
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Figure 11.8: Attitude estimation error quaternions of the EKF algorithmusing the Max
Currents algorithm for Sun LOS vector estimation and the Earth albedo
model for the SSE vector pair.
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Figure 11.9: Angular velocity estimation error of the EKF algorithm using the Max Cur-
rents algorithm for Sun LOS vector estimation and the Earth albedo model
for the SSE vector pair.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean
RMS Error [deg] RMS Error [rad /s]

Standard 3.43 1.00 · 10−5

Max Currents 3.34 1.07 · 10−5

SSE 3.47 1.09 · 10−5

Table 11.5: Simulation performance of the EKF attitude determination algorithm. The
algorithm uses Sun sensor vector pairs formed by the Standard, Max Cur-
rents, and SSE algorithms.
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Figure 11.10: Angular estimation error of the EKF algorithm using the Max Currents
algorithm for Sun LOS vector estimation and the Earth albedomodel for
the SSE vector pair.

11.5 Unscented Kalman Filter

The UKF is simulated using the same parameters and measurement inputs as the EKF
described in the previous Section. This allows for a direct comparison of the two al-
gorithms. The angular estimation error is shown in Figure 11.11. The RMS errors are
presented in Table 11.6.

The results show that the overall performance of the UKF is identical to the EKF. The
UKF, however, requires more computation time, which is approximately 18 times higher
for the Standard and Max Currents algorithms. Even though the EKF algorithm requires
the calculation of the Jacobians of the process and measurement models at each time
step, the EKF requires non-linear propagation and measurement simulation of 41 sigma
points. Since the output equation requires the utilizationof SGP4 and IGRF models,
the approximation of the noise distributions by sigma points, is computationally heavy.
Using the Earth albedo model adds significantly to the computation times. The UKF is
37 times slower than the EKF algorithm when the SSE algorithmis used.

The advantage of the UKF is not fully utilized in the simulations shown in Figure
11.11. Since the UKF filter approximates the noise distributions of the process and
measurement models, the need to construct a vector pair fromthe Sun sensor currents
is not required. The non-linear measurement equation described in Chapter 3 may be
implemented directly into the filter. This means that the filter estimates the Sun sensor
currents directly, as opposed to estimating a LOS vector. The UKF with Non-Linear
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Figure 11.11: Angular estimation error of the UKF algorithm using the Standard and
Max Currents algorithm for Sun LOS vector estimation and theEarth
albedo model for the SSE vector pair.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean
RMS Error [deg] RMS Error [rad /s]

Standard 3.41 1.00 · 10−5

Max Currents 3.32 1.11 · 10−5

SSE 3.45 1.15 · 10−5

Table 11.6: Simulation performance of the UKF attitude determination algorithm. The
algorithm uses Sun sensor vector pairs formed by the Standard, Max Cur-
rents, and SSE algorithms.

(NL) output equation is simply denoted NL. The result of the NL algorithm is shown
in Figure 11.12. The result is compared to the performance ofthe UKF using the Max
Currents algorithm. The angular RMS error is3.4 deg, as seen in Table 11.7. The results
are similar to those of the UKF with Sun sensor vector observations as measurement
input.

The measurement error covariance matrix in the NL algorithmis time variant. The
variance of the measurement error is calculated from the simulation input. Two covari-
ance matrices are calculated from data in and out of eclipse,respectively. The covariance
of the measurement errors in eclipse renders the Sun sensor measurements useless, as it
should, since the output of the Sun sensors during eclipse isundefined.

EKF using magnetometer vector observations have been developed previously,
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Figure 11.12: Angular estimation error of the UKF using the NL algorithm with magne-
tometer measurements and Sun sensor currents.

[Bak, 1999]. The linearized output equation is not observable, however, due to the vari-
ation of the Earth magnetic field, the algorithm will still converge given enough time.
The Ørsted attitude determination algorithm converges from initial errors30 deg within
half an orbit at0.1Hz, i.e. 500 samples. The Sun LOS vector varies a meager0.0003 deg
for a satellite in800km LEO. Hence the Sun LOS vector varies with the Earth’s orbit
around the Sun. For this reason, three-axis attitude determination based solely on Sun
sensors has not previously been implemented. However, due to the accurate modeling of
the Earth albedo current on the Sun sensors, the system is observable using Sun sensors
only.

The NL algorithm has been simulated without magnetometer measurements, and
the result is shown in figures 11.13 and 11.14. It is seen from the figures, that the filter
is able to converge within a couple of samples. Since only Sunsensors are utilized,
the filter has no measurements at all during eclipse, hence the filter diverges in these
periods. The simulation includes four periods of eclipse, which can be identified in the
plot of the simulated Sun sensor currents in Figure 11.4. It is seen from the figures, that
the estimated standard deviation of the estimation error isincorrect. However, the filter
performs surprisingly well in the simulation, when considering that no measurements
are available during eclipses. In real-life implementations the NL algorithm without
magnetometer measurement cannot be expected to work duringeclipse, since it would
require accurate modeling of all disturbances. However, the filter is well suited for
CubeSats in periods out of eclipse, when magnetometer measurements are unavailable.

The angular error of the estimation is shown in Figure 11.15.The performance is
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Figure 11.13: Attitude estimation error quaternion of the NL algorithm without magne-
tometer measurements.
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Figure 11.14: Angular velocity estimation error of the NL algorithm without magne-
tometer measurements.
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compared to the results of the UKF using the Max Currents algorithm. It is seen that the
accuracy of the attitude estimation is decreased, althoughthe filter converges fastest of
all the algorithms. The RMS errors of the UKF using the NL algorithm with and without
magnetometer is shown in Table 11.7. The NL algorithm is ableto estimate the attitude
in three-axis with an RMS error of6.8 deg, which is a decrease in performance when
compared to the previous algorithms. The performance decrease is expected, since the
filter relies on propagation of the estimated state of the satellite during eclipse.

Figure 11.15: Angular estimation error of the UKF using the NL algorithm with Sun
sensor currents only.

Algorithm
q̂sat (tk) Angular ω̂sat (tk) Mean
RMS Error [deg] RMS Error [rad /s]

NL w. magnetometer 3.37 1.53 · 10−5

NL wo. magnetometer 6.78 8.46 · 10−5

Table 11.7: Simulation performance of the UKF using the NL algorithm. The UKF is
implemented with and without magnetometer measurements.

11.6 Discussion

Simulations of the different attitude determination algorithms has been performed. The
results are based on accurate noise models in the Kalman filters, hence the presented per-
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formance of the filters are only valid for ideal situation. The performance will decrease,
as uncertainties in the noise models increase.

The simulation results show that compared to the Standard algorithm, the Q-Method
algorithm is improved by0.7 deg RMS, when using the Max Currents algorithm, and by
2.8 deg RMS when the SSE algorithm is utilized. This shows that the Earth albedo model
may be utilized to improve the performance of single-point algorithms significantly.

The results of the EKF and UKF are similar, and result in an improved performance
in attitude estimation of0.5 deg RMS at best, compared to the Q-Method with SSE vec-
tors. Considering the complexity of the algorithms0.5 deg RMS is a small performance
improvement, when compared to the Q-Method using the SSE algorithm. Although the
performance in attitude estimation is small, the EKF and UKFestimate the angular ve-
locity of the satellite, in addition to the attitude quaternion. In addition the attitude esti-
mate is maintained during periods of eclipse. It must also benoted that the performance
of the multi-point algorithms is due to the lack of gyros in the sensor configuration.
The EKF and UKF utilize dynamical models of the system to improve estimation per-
formance, and are capable of merging gyro measurements withattitude measurements
effectively, ideally optimal. Without direct measurements of the dynamical behavior of
the system, the resulting increase in accuracy is limited. Instead, the dynamical model
allows for estimation of the angular velocity in the absenceof gyros.

Based on the simulation results in this chapter, it can be concluded that the Earth
albedo model improve the attitude estimation performance of the Q-Method results to a
level close to those of the multi-point algorithms. Due to the simplicity of the Q-Method
algorithm, and thus computational requirements, it is preferred to the EKF and UKF.
In case estimates of the angular velocity is sought, it is concluded that the Sun sensor
measurements improve convergence only, and that Earth albedo compensation has no
influence on the general performance of the filter. Finally itis shown that including
the non-linear Sun sensor output equation in the UKF makes the system observable in
the presence of albedo, and thus allows for three-axis attitude determination from Sun
sensors alone. Although the accuracy is decreased, the algorithm may be considered
as backup in the case of magnetometer failure, or utilized inconjunction with gyros.
The result of three-axis attitude and angular velocity estimation from Sun sensors only,
definitely puts new perspective in the field of satellite navigation.



Chapter 12
Application of the Earth Albedo
Model on Ørsted Data

This chapter presents the results of applying the Earth albedo model on Ørsted telemetry
data. The results of the SSE algorithm is compared to the Standard and Max Currents
algorithm, and the vector pairs are utilized in the Q-Methodalgorithm. The telemetry
data package and calibration procedures follow the description in Chapter 9.

12.1 Errors in Ørsted Vector Observations

This section describes the errors on the vector observations from the Ørsted satellite
telemetry data, compared to the reference models. The vector observations are the input
to the estimation algorithms, and therefore the precision of these measurements directly
influence the performance of the algorithms.

In order to compare the Ørsted vector observations with the reference models, the
star tracker telemetry is used to obtain the reference vectors in the SCB frame. The
magnetic field measurement is compared with the 10th order IGRF model. The Sun
sensor currents are processed in order to obtain the Sun LOS and SSE irradiance vectors,
using the algorithms described in Chapter 4, which are compared with the reference
vectors from the ephemeris models.

12.1.1 Magnetic Vector Observation

The attitude determination algorithms have the possibility to weigh the measurements
between each other. For this reason the error of the measurements relative to the refer-
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ence models are investigated. Figure 12.1 show the RMS errors in the components of the
magnetic field measurements and IGRF reference model. Theseerrors are expressions
of the total error in sensors and IGRF model inaccuracies. The vector pair is compared
after normalization of the vectors, since it is the normalized vectors which are input into
the Q-Method algorithm.

Figure 12.1: Magnetic LOS vector error between the IGRF reference model and cali-
brated on-board measurements.

From the data in Figure 12.1 the angular error between the measured Earth magnetic
field vector and the IGRF reference vector is calculated. Figure 12.2 shows the angular
separation between the two vectors. The RMS angular error is1.59 deg. This error is
three times higher than in the simulations in Chapter 11. Thereason for this increased
error is caused by poor performance of the IGRF model, which is based on parameters
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from 1995. It is expected that the increased error in the Earth magnetic field vector pair,
will impact the performance of the attitude estimation.

Figure 12.2: Angular separation between magnetic LOS vector error from IGRF refer-
ence model and calibrated on-board measurements.

12.1.2 Sun Vector Observation

Albedo is handled in two different ways, as described in Chapter 4. When the albedo
model is applied, the vector pair used is the SSE irradiance vector. Without the Earth
albedo model, a Sun vector LOS vector is formed by using the Standard and Max Current
algorithms. Figure 12.3 shows the error of the three vector pairs, when comparing the
measurements with the ephemeris reference model. Periods of eclipse and star imager
fallouts have been removed from the plots.

Figure 12.4 shows the angular separation between the vectorpairs, and Table 12.1
shows the resulting RMS errors. The RMS angular separation using Max Currents Sun
LOS vector is8.1 deg, whereas the RMS separation between the SSE vectors is6.9 deg.
The RMS angular separation of the Standard algorithm vectorpair is11 deg.

It is clear from Figure 12.4 that albedo compensation improves the vector obser-
vation. However, the improvement in RMS error when using theSSE algorithms as
opposed to the Max Currents algorithm, is not as apparent as in the simulations. The
error in the estimation of the Sun LOS vector using the Max Current algorithm is sig-
nificant when the satellite crosses the terminator. The SSE vector pair has errors due
to Earth albedo modeling inaccuracies. Additional errors are introduced, since it is as-
sumed in this algorithm, that the Earth albedo can be described as an energy flux from a
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Figure 12.3: LOS vector errors between the ephemeris reference model andcalibrated
on-board measurements. The Sun sensor currents are pre-processed to
form two different vector pairs: 1) a Sun LOS vector using theMax Cur-
rents algorithm 2) the summarized Sun and Earth irradiance vector using
the SSE algorithm. Periods of eclipse and star imager fallouts have been
removed from the plots.
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Figure 12.4: Angular separation between the Sun sensor LOS vector pairs compared
with the Sun LOS vector observation without albedo compensation. The
top plot shows the Max Currents algorithm and the bottom plotshows the
SSE algorithm.

Algorithm RMS Error [deg]
Standard 11.2

Max Currents 8.13
SSE 6.93

Table 12.1: Statistics of the Sun sensor vector pairs, using the Max Currents algorithm
and the SSE algorithm. The LOS vectors are formed using on-board cal-
ibrated measurements and are compared to the ephemeris reference LOS
vectors.
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single direction.

Figure 12.5: Direction of incident irradiances during a pass over the sunlit part of Earth.

The improved performance of the Max Current algorithm is investigated. Figure
12.5 shows the Ørsted satellite in its path over the sunlit part of Earth, where the Sun
sensors are illuminated by the Sun and Earth albedo. The advantage of the Max Current
algorithm is when the Sun and Earth albedo energy fluxes reachthe satellite from oppo-
site sides. In this case the Sun sensor pairs facing oppositedirections will have one Sun
sensor with solar induced current, and another with Earth albedo induced current. Since
the Sun sensor with maximum current is used to form the Sun LOSvector, the albedo
is effectively filtered completely. When the satellite is Earth pointing this becomes even
more effective, since the majority of the Earth albedo constantly reaches only the Earth
pointing sensors. Once the the incidence of the solar irradiance causes the current from
the zenith pointing Sun sensors to exceed the Earth pointingSun sensors, most of the
Earth albedo is filtered from the sensors.

The general performance of the SSE algorithm is expected to be consistent with
the simulation results i.e. approximately2.1 deg RMS better than the Max Current
algorithm. For Earth pointing satellites the improvement is expected to be1.2 deg RMS,
which was the result of the Ørsted case.

It can be concluded that although the Ørsted satellite is ideal for verifying the Earth
albedo model, because Sun sensors SS3 and SS6 are constantlyfacing the Earth, the
improvement in vector observation and consequently attitude determination, is less ap-
parent when applying the Earth albedo model, for the same reason.
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12.2 Q-Method Algorithm

The simulation results in Chapter 11 recommends applying the Q-Method algorithm
with the SSE algorithm. In this section the results of the Q-Method algorithm are pre-
sented. The Sun sensor vector algorithms are applied in forming a vector pair to be used
in conjunction with the magnetometer data. The vector pairsare weighted according
to the RMS errors found in the previous section. The error quaternion of the attitude
estimation error is shown in Figure 12.6. The resulting angular error of the estimated
attitude are shown in Figure 12.7 and Table 12.6.

Algorithm RMS Error [deg]
Standard 5.60
Max Currents 4.70
SSE 4.90

Table 12.2: Performance of the Q-Method algorithm applied to Ørsted telemetry data.
The algorithm uses Sun sensor vector pairs formed by the Standard, Max
Currents, and SSE algorithms.

The result show that the algorithm accuracy is decreased compared to the simulation
results. This is due to the non-whiteness of the measurementnoise. The actual noise of
the vector pairs, due to reference model errors, is expectedto be biased, which creates
unpredictable performance of the results. A surprising result is the performance of the
Q-Method algorithm with the Max Currents vector pair, whichgives a better result than
the SSE vector pair with the current data set. The angular error of the SSE vector pair
was found to be superior to the Max Current vector pair in the previous section, hence
the Q-Method algorithm is expected to have better performance using the SSE vector
pair. This is a result of the bias in the vector pair errors, since the direction of the errors
in the input vector pairs, has impact on the estimation performance.

It is concluded based on the results of the Ørsted attitude estimation, that the Max
Currents algorithm, due to its simplicity, is recommended for Earth pointing satellites.
This is due to the results of the estimation and the argument presented in the previous
section. In general, the Q-Method algorithm using the SSE vector pair produces estima-
tion results, which are at worst, similar to the Max Currentsalgorithm, and is shown to
be superior for inertial stabilized satellites in Chapter 11.
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Figure 12.6: Quaternion error of the Q-Method algorithm applied to Ørsted telemetry
data, using the Max Currents algorithm for Sun LOS vector estimation and
the Earth albedo model for the SSE vector pair.
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Figure 12.7: Angular error of the Q-Method algorithm applied to Ørsted telemetry data,
using the Max Currents algorithm for Sun LOS vector estimation and the
Earth albedo model for the SSE vector pair.
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Chapter 13
Conclusion

In this thesis the Earth albedo has been analyzed and a model has been implemented and
verified. The Earth albedo model has been incorporated in three attitude determination
algorithms through enhanced Sun sensor modeling, and the results have been compared.

An Earth albedo model, based on the TOMS reflectivity data, was derived. The
resolution of the TOMS reflectivity data defines a partitioning of the Earth surface, and
the reflectivity of each cell is given. From the area of the cell, and the angle to the
Sun, the amount of radiant flux reflected from each cell was calculated. From the angle
and distance from the satellite to each cell, the amount of albedo reaching the satellite
was derived. The directional information of the Earth albedo contribution from each
cell was maintained, thus allowing information of diffuse Earth albedo irradiance to be
incorporated into the Sun sensor modeling.

The Earth albedo model was used to develop enhanced Sun sensor modeling. The
directional information of the Earth albedo was utilized, and the Earth albedo and Sun
sensor model were implemented as MATLAB toolboxes. The Earth albedo and enhanced
Sun sensor models were verified using the Ørsted telemetry. Data from the Sun sensors
was compared to the simulation results, and the error was reduced from approximately
0.18mA to 0.055mA RMS on the Earth pointing Sun sensors. This is a significant
improvement of the Sun sensor current simulation, which is useful for designing and
testing ADCS algorithms for future space missions.

The enhanced Sun sensor model allowed for improved Sun sensor vector observa-
tions. The improved vector observation algorithm was compared to existing algorithms,
and the results showed that the incorporation of the Earth albedo model in the Sun sensor
model produced superior results. Compared to the referencevector, the angular sepa-
ration was reduced from5.9 deg to3.82 deg RMS. The error in the vector observation
directly influences the Q-Method single-point algorithm and the EKF since these use
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vector observations as input.
An investigation of attitude determination algorithms wasperformed. Three algo-

rithms were presented, the Q-Method, the EKF, and the UKF. The Earth albedo model
was incorporated in the Q-Method and EKF through the improved vector observations.
The UKF facilitated the use of the enhanced Sun sensor model directly. The Kalman
Filter performances were similar with an accuracy of3.4 deg RMS. The simulation re-
sults revealed that the accuracy of the Q-Method with improved Sun vector observation
was reduced to a level which was comparable to the more complex Kalman filters. The
Q-Method with Earth albedo corrected Sun vector observations increased the attitude
determination accuracy from5.9 deg to3.8 deg RMS. Compared to the performance of
the Kalman Filters, the Q-Method was recommended due to its simplicity.

The Kalman Filters, although marginally more accurate, enable estimation of not
only the satellite attitude, but also the satellite angularvelocity. In addition, the Kalman
filters maintain attitude estimation during periods of eclipse. Due to the computation
requirements of the measurement model, the EKF was recommended over the UKF.
However, the UKF proved capable of estimating the attitude and angular velocity of the
satellite from Sun sensors only, when the enhanced Sun sensor models with Earth albedo
modeling, was applied. This proved that the modeling of the Earth albedo ensures ob-
servability of the system, and enables three-axis attitudedetermination from Sun sensors
only.

From a CubeSat perspective, the results allow improved attitude determination satel-
lites,from simple sensor configuration, since sensors suchas star trackers are unavailable
for pico-satellites. Previously, magnetometers have beenapplied for three-axis attitude
determination in the absence of Sun sensor measurements, which is possible due to the
variation in the Earth magnetic field as the satellite orbitsthe Earth. The use of Earth
albedo modeling for Sun sensor three-axis attitude determination, allows the ADS de-
signers to apply the algorithm in case of magnetometer failure, or omit magnetometers
from the sensor configuration completely.

The improved Sun sensor vector observation algorithm was applied on the Ørsted
telemetry data, and showed the angular error relative to thereference vector was re-
duced from8.1 deg to6.9 deg RMS. The Q-Method was applied to the Sun sensor
and magnetometer data from the Ørsted telemetry data, and the result compared to the
output of the star imager used for high accuracy attitude measurements on-board the
Ørsted satellite. The performance of the algorithms was discussed, and the resulting
accuracy was4.9 deg RMS. Very simple CubeSat satellites exist, that only fly passive
attitude control, and no attitude sensors. However all CubeSats must fly solar panels. By
sampling the output of the solar panels, currents and voltages, the results of this thesis
may be applied to obtain three-axis attitude determination. This is implemented in the
AAUSAT-II satellite ADS design as an on-ground feasibilty study.

The contributions of the thesis are:

• A high accuracy Earth albedo model of as been derived, which maintains direc-
tional information of the incident albedo irradiance.



13.1 Future Work 129

• Enhanced Sun sensor current modeling incorporating directional Earth albedo ir-
radiance.

• Improved methods for Sun sensor vector observation by applying the Earth albedo
model and enhanced Sun sensor current model.

• Novel methods for incorporating the Earth albedo model in a number of widely
used attitude determination algorithms, and comparison ofthe results.

• Three-axis attitude determination from Sun sensors only, by applying the Earth
albedo model and enhanced Sun sensor current model directlyinto the UKF.

• Implementation of Earth albedo model and Sun sensor currentmodel in MATLAB ,
including SIMULINK interface, released as an albedo toolbox.

Overall, the modeling of the Earth albedo was proven to be applicable in attitude
determination simulation, design, and test. The accuracy of the Earth albedo model en-
ables improved simulations of the space environment for analysis and testing of ADCS.
Applied in the Sun sensor modeling, the Earth albedo model allows for improved vector
observations and consequently improved attitude determination.

13.1 Future Work

Based on the research in this thesis, a number of open questions arise, and are interesting
for future investigations.

The SSE algorithm assumes that the Earth albedo is single directional, anti-parallel
to the Nadir. Since the Kalman Filters use statistical information of the measurement
model accuracy, effects of the assumption should be analyzed and described by a co-
variance matrix. The error effect may be calculated by comparison to the full Earth
albedo model output.

Further simplification of the Earth albedo model could also be investigated, and is
on-going work on the AAUSAT-II ADCS design, due to limited computational resources
on the on-board computer and real-time requirements. Reduction of code complexity
also have important benefits of reducing memory usage and improved testing. The Earth
albedo model may be reduced further by parameterizing the Earth albedo by the angle
of the Sun and satellite in the ECEF frame only. This saves calculation of Earth albedo
of each cell, and instead calculates the entire FOV in a single instance. Directional
information of the Earth albedo is lost, at the benefit of reduced computation. The errors
in the simplification must be investigated, by comparison tothe full Earth albedo model.

Finally, the Sun sensor current modeling could be extended to include a number
of non-linear properties, such as dark current and low-angle reflection. Including such
terms in the modeling, improves the accuracy of the Sun vector observations further.
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Appendix A
Frames

This appendix defines two reference frames and a body fixed used in this thesis. The
ECI frame is an inertial frame which is fixed with the stars. The ECEF frame is fixed
with the Earth, and thus rotates with the same angular velocity as the Earth.

A.1 Earth Centered Inertial Frame

The ECI frame is fixed with the stars. The frame is shown in Figure A.1.

xECI
yECI

zECI

Vernal Equinox

Earth Center
Equator

Figure A.1: Definition of the ECI frame.
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The ECI frame has its origin in the Earth Center of Mass (CoM),and is defined by
thexECI, yECI, andzECI axes. The plane spanned byxECI andyECI is aligned with the
Earth equatorial plane, and thezECI is normal to the thexECIyECI plane in the direction
of the North Pole. ThexECI is in the direction of Vernal Equinox. Vernal Equinox is
the direction to the Sun from the Earth center, when the Sun crosses the Earth equatorial
plane from South to North. Since the Vernal Equinox direction moves slightly, due to
the nutation of the Earth’s spin axis, the Vernal Equinox of epoch J2000 is used, i.e. the
direction of the Vernal Equinox in 2000. TheyECI axis forms a right-handed orthogonal
frame, and is given by

yECI = zECI × xECI. (A.1)

A.2 Earth Centered Earth Fixed Frame

The ECEF frame is an Earth fixed frame, i.e. it rotates relative the ECI frame with the
angular velocity of the Earth. The frame is shown in Figure A.2.

xECEF
yECEF

zECEF

Greenwich Meridian

Earth Center
Equator

Figure A.2: Definition of the ECEF frame.

The ECEF frame has its origin in the Earth CoM, and is defined bythexECEF, yECEF,
andzECEF axes. The plane spanned byxECEF andyECEF is aligned with the Earth equa-
torial plane, and thezECEF is normal to the thexECEFyECEF plane in the direction of the
North Pole. ThexECEF is in the direction of Greenwich Prime Meridian. TheyECEFaxis
forms a right-handed orthogonal frame, and is given by

yECEF = zECEF× xECEF. (A.2)
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A.3 Spacecraft Body Frame

The SCB frame is a body fixed frame, which has its origin in the CoM of satellite. The
axes are defined by the principal axes of the satellite, with thezSCB axis aligned with the
principal axis of smallest inertia. The frame is right-handed and orthogonal. The frame
is fixed on the satellite body.
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Appendix B
Sun and Earth Black Body Spectra

In this Appendix the model of the Sun and Earth spectra are presented. The Sun spec-
trum is used to calculate the incident irradiance at the top of Earth’s atmosphere from the
Sun. It is a fraction of this irradiance reflected back into space, which defines the Earth
albedo. The remaining energy is absorbed by Earth and is radiated back into space as
thermal energy mainly in the infrared spectrum. The analysis in this Appendix is needed
in the modelling of the Earth albedo.

B.1 Sun Spectrum

The spectral distribution of the power emitted from the Sun is modeled by a black body
radiator. The spectral distribution of black body irradiance is calculated using Planck’s
Law

Ebb (λ, T ) =
2πc2h

λ5
(

ech/(kλT )
) , (B.1)

wherec is the velocity of light,h is Planck’s constant,k is Boltzmann’s constant,λ
is the wavelength, andT the black body surface temperature, [Ryer, 1997]. The total
irradiance is given by Stefan-Boltzmann’s Equation

Ebb (T ) =

∫ ∞

−∞

Ebb (λ, T ) dλ = σT 4, (B.2)

whereσ is Stefan-Boltzmann’s Constant. The surface temperature of the Sun isTSun =
5777K, [Wertz, 2001], which means that the total energy emitted by the Sun is

ESun = Ebb (5777K) = 63
MW
m2

. (B.3)
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The Inverse Square Law, which correlates the intensity per unit area as inversely pro-
portional to the square of the distance between light sourceand an observer, can be
expressed as

E1d
2
1 = E2d

2
2, (B.4)

whereE1 is the irradiance from the point source at the surface at distanced1, andE2 is
the irradiance at distanced2. When the Sun is the point source the irradiance from the
Sun at Earth becomes

EAM0 =
r2

Sun

d2
S->E

ESun = 1367
W
m2

, (B.5)

whererSun is the radius of the Sun, anddS->E is the distance from the Sun to Earth. AM0
indicates that the solar irradiance has passed through zeroair-mass, [Mazer, 1997]. The
resultingEAM0 in Equation (B.5) is in accordance with satellite irradiance measurements
published in [Dewitte et al., 2001]. The spectral distribution of the solar irradiance at
Earth is calculated by combining equations (B.1) and (B.5)

Ebb (λ, T ) =
r2

Sun

d2
S->E

2πc2h

λ5
(

ech/(kλTSun)
) . (B.6)

The spectral distribution is shown in Figure B.1.

B.2 Earth Spectrum

The spectral distribution of Earth is calculated followingthe same procedure as for the
solar spectral distribution. The surface temperature is the mean surface temperature of
Earth, which isTEarth = 288K, [Wertz, 1978]. From Equation (B.2) the total irradiance
at the Earth surface is

EE = 391
W
m2

. (B.7)

This irradiance decreases according to the Inverse Square Law. For an orbit altitude of
e.g.800km the irradiance is309W/m2. The spectral distribution of Earth at satellite
positionrsat given in an Earth centered frame, is given by

Ebb (λ, T ) =
r2

E

||rsat||2
2πc2h

λ5
(

ech/(kλTE)
) , (B.8)

whererE denotes the Earth mean radius. The Earth spectrum is shown inFigure B.2. It
can be seen from the figure that the spectrum is close to zero for wavelengths less than
4µm. The amount of energy absorbed by solar cells from the Earththermal radiation is
investigated.

It is known that dual junction InGaP/GaAs cells have practically no absorbance for
wavelengths higher than900nm. Triple junction cells can absorb irradiance at wave-
length as high as1.7µm, [Emcore, 2004]. By numerical integration of Equation (B.8)



B.2 Earth Spectrum 139

Figure B.1: Black body spectrum for a surface temperature of5777K at 1A.U., equiva-
lent to the solar spectrum at Earth.

it is found that4 · 10−8% of the energy is in the spectrum below2µm, meaning that
the Earth radiation may be completely disregarded, in the calculation of Earth albedo
currents induced in solar cells.
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Figure B.2: Black body spectrum for a surface temperature of288K at a distance of
800km from the surface, equivalent to the Earth spectrum at an orbit altitude
of 800km.



Appendix C
Area of Spherical Rectangle

A spherical rectangle is in this thesis defined as the enclosed area constructed from two
pairs of vertical and horizontal lines on sphere. The rectangle is parameterized by the
azimuth angle spanθ, the polar angle spanφ, and the radius of the spherer, illustrated
in Figure C.1.

The areaA of the spherical rectangle is calculated using the principle of Surface of
Revolution [Weisstein, 2005]. The curvex = f(y) spanningφ from φ0 on the sphere,
is rotated around they axis by theta. The curve over they axis of the spherical rectangle
can in thexy plane be defined by

x = f (y) = ±
√

r − y2 , y = [a, b], (C.1)

wherea andb are the projections of the span ofφ onto they axis as illustrated in Figure
The surfaceA of revolution of C.1 byθ is given by

A = θ

∫ b

a

f (y)

√

1 +

(

d

dy
f (y)

)2

dy. (C.2)

Inserting Equation (C.1) into Equation (C.2), yields

A = θ

∫ b

a

±
√

r − y2

√

1 +
y2

r2 − y2
dy (C.3)

= θ

∫ b

a

√

r2 − y2 + y2dy (C.4)

= θ

∫ b

a

rdy. (C.5)
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θ

φ

r

Figure C.1: Definition of the spherical rectangle.

From Figure C.2 it is seen that the limits are expressed as a function of the polar angles
anglesφ0 andφ asa = rcos(φ0 + φ) andb = rcos(φ0). Inserting in (C.3) gives

A = θ

∫ rcos(φ)

rcos(φ0+φ)

rdy (C.6)

= θr2 (cos(φ) − cos(φ0 + φ)) . (C.7)

Note that the surface of the entire sphere of radiusr can be calculated using Equation
(C.6) by insertingφ0 = 0, φ = π, andθ = 2π

A = 2πr2 (cos(0) − cos(π)) (C.8)

= 4πr2, (C.9)
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x

y

a

b

φ0

φ

f (y)

Figure C.2: The curvex = f(y) defining the spanφ as a limit[a, b] on they axis.

which is the general equation of the sphere surface.
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Appendix D
Field of View on a Celestial Body

This appendix derives inequality used for calculating the FOV on a celestial body given
a position of an observer. The FOV is characterized by an angular radiusρ. Figure D.1
illustrates an observer at altitudeh observing a FOV2ρ on a celestial body.

From the law of cosine for right triangles, it is given that

cos(ρ) =
r

r + h
(D.1)

hence

ρ = acos

(

r

r + h

)

. (D.2)

Given two points on a sphere,P 1 = (θ1, φ1) andP 2 = (θ2, φ2), the radial distance
is defined as the smaller radial fraction of the great circle,passing through both points,
illustrated in Figure D.2.

Two unit vectorŝv1 andv̂2 are defined from origin to pointsP 1 andP 2, respec-
tively. The vectors are given by

v̂1 =





cos(θ1) sin(φ1)
sin(θ1) sin(φ1)

cos(φ1)



 , v̂2 =





cos(θ2) sin(φ2)
sin(θ2) sin(φ2)

cos(φ2)



 , (D.3)

using spherical to Cartesian coordinate transformation. The cosine to the radial distance
can be calculated as

cos(ρ) = v̂T
1v̂2

= sin(φ1) sin(φ2) (cos(θ1) cos(θ2) + sin(θ1) sin(θ2)) + cos(φ1) cos(φ2)

= sin(φ1) sin(φ2) cos(θ1 − θ2) + cos(φ1) cos(φ2) . (D.4)
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r

ρ

h

Observer

Figure D.1: Illustration of observer at altitudeh, observing a celestial body with FOV
2ρ.
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θ1 θ2
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P 1

P 2

P 3

ρ

x

y

z

Figure D.2: Illustration of the radial distanceρ between two pointsP 1,P 2.

Given the radius of the celestial bodyr and the spherical coordinates of the observer
(θ1, φ1, r + h), whereh is the observer altitude, any point on the sphere surface canbe
classified as in or out of the observers FOV, by combining Equation (D.2) and Equation
(D.5). The spherical coordinates are centered in the originof the celestial body. A point
(θ2, φ2, r) is in the FOV of the observer if and only if

sin(φ1) sin(φ2) cos(θ1 − θ2) + cos(φ1) cos(φ2) ≤
r

r + h
. (D.5)
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