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Summary

The main subject of this thesis is Fault Detection and Identification (FDI) in centrifugal
pumps. Here, it is assumed that an induction motor is driving the centrifugal pump, and
that only electrical and hydraulic quantities are measured. A state of the art analysis
of the topic has shown that signal-based approaches are the most used approaches for
FDI in centrifugal pumps. Robustness is seldom considered in these approaches. How-
ever, robustness is a very important aspect when it comes to implementation in real life
applications. Therefore, special focus is put on robustness in this thesis.

The signal-based approaches are utilizing signal processing and/or artificial intelli-
gence to obtain knowledge about the faults in the pump. To analyse robustness in these
systems, a combination of the Failure Mode and Effect Analysis (FMEA) and the Fault
Propagation Analysis (FPA) is proposed. To enable robustness analysis using the FMEA
and FPA a so-called disturbing event is introduced. Moreover, one of the manual steps
in the FPA is automated, using an algorithm developed in this thesis. The proposed anal-
ysis method is used to identify a set of signal events, which can be used for robust FDI
in the centrifugal pump. This shows the usability of the proposed method, not only for
analysis purpose, but also as a part of the design of signal-based fault detection schemes.

The most common fault in submersible pump applications is stator burnout. In the
state of the art analysis it is argued that this kind of fault is often initiated by an inter-turn
short circuit inside the stator. To understand the impact of this short circuit, a model of an
induction motor, including an inter-turn short circuit, is derived. This model is utilized
in the design of an adaptive observer, which can estimate the states of the motor, the
speed, and the inter-turn short circuit simultaneously. The observer is incorporated in a
detection scheme, by which the size of the inter-turn short circuit and the phase, affected
by the short circuit, can be found. The detection scheme is tested on an industrial test-
bench showing the capabilities of the detection scheme on a real application.

Structural Analysis (SA) is utilized in the design of residual generators for FDI in the
mechanical and hydraulic part of the centrifugal pump. The use of the SA is two folded.
Firstly, it is used to divide the centrifugal pump model into two cascade-connected sub-
parts, enabling the design of residual generators. Secondly, it is used to identify subsys-
tems, which can be used in the derivation of residual generators.

Traditionally, the results of the SA are used in the derivation of Analytical Redundant
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Summary

Relations (ARR). However, here a novel realization approach is proposed. With this
approach the subsystems, found using SA, are transformed into nonlinear state space
descriptions suitable for observer designs. All unknown variables, except for the states,
are eliminated in this state space description, leaving only the stability problem to be
considered in the observer design.

The proposed realization approach is used in the derivation of three residual gener-
ators for FDI in the mechanical and hydraulic parts of the pump. The obtained residual
observers are tested on an industrial test-bench, showing that the observers are robust,
with respect to changes in the operating conditions of the pump. Likewise, the tests
shows that the observers are able to detect and identify 5 different faults in the mechan-
ical and hydraulic part of the pump.

In many real life centrifugal pump applications, only slow bandwidth sensors are
available. This means that FDI schemes, based on dynamic models of the system, are not
usable. Therefore, a detection scheme, based on the steady state model of the centrifugal
pump, is proposed. This detection scheme is derived using SA to obtain ARR’s. Robust-
ness, with respect to parameter variation, is incorporated in the detection scheme, with
the utilization of the set-valued approach. This algorithm is also tested on an industrial
test-bench, and is also shown to be able to detect 5 different faults in the mechanical and
hydraulic part of the centrifugal pump. Moreover, the algorithm is shown to be robust
to the operating conditions of the pump, but not to transient changes in these operating
conditions.
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Sammenfatning

Hovedemnet for denne afhandling er Fejl Detektering og Identifikation (FDI) i centrifu-
galpumper. Her antages det, at centrifugalpumperne er drevet af induktionsmotorer og
at kun elektriske og hydrauliske værdier måles. En state of the art analyse af området har
vist, at signalbaserede metoder er de mest brugte til fejl detektering i centrifugalpumper.
Der tages sjældent hensyn til robusthed i designet af disse metoder. Imidlertid er ro-
busthed et meget vigtigt aspekt, når FDI algoritmer skal implementeres i de færdige
produkter. Derfor vil der blive lagt specielt vægt på robusthed i denne afhandling.

I designet af de signalbaserede metoder, benyttes signalbehandling og/eller kunstig
intelligens til at uddrage fejlinformation fra pumpen. Til analyse af robusthed i disse
metoder, foreslås en kombination af en "Failure Mode and Effect Analysis" (FMEA) og
en "Fault Propagation Analysis" (FPA). For at gøre det muligt at bruge FMEA’en og
FPA’en til analyse af robusthed, er et såkaldt forstyrrelses event foreslået. Derudover er
en af de manuelle opgaver i FPA’en automatiseret via en algoritme opbygget i projektet.
Den foreslåede metode er benyttet til identifikation af en række signal events, som kan
benyttes til robust FDI i centrifugalpumper. Dette viser brugbarheden af den foreslåede
metode i såvel analyse som design af signalbaserede FDI algoritmer.

En af de mest almindelige fejl i dykpumpeapplikationer er stator sammenbrud. I
state of the art analysen argumenteres der for, at en stor del af disse fejl starter som ko-
rtslutninger mellem enkelte vindinger i statoren. For at forstå betydningen af sådanne
kortslutninger, er der opbygget en model af en induktionsmotor med denne type kortslut-
ning i statoren. Denne model er efterfølgende benyttet i designet af en adaptiv observer,
som på samme tid kan estimere de elektriske tilstande, hastigheden og kortslutningen
i motoren. Denne observer er indbygget i en FDI algoritme, som både kan estimere
kortslutningen og identificere fasen, som er påvirket af denne. Brugbarheden af FDI
algoritmen er påvist på en testopstilling, opbygget til dette formål.

I designet af residualgeneratorer til detektering af fejl i den mekaniske og hy-
drauliske del af pumpen, er Struktur Analyse (SA) benyttet. Brugen af SA har to formål.
Det første formål er at opdele modellen af centrifugal pumpen i to cascade-koblede sys-
temer. Denne opdeling er foretaget for at muliggøre design af residualgeneratorer. Det
andet formål er identifikation af delsystemer, som kan bruges i designet af residualgen-
eratorer.
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Sammenfatning

Traditionelt bruges resultaterne af SA’en til at udlede Analytiske Redundante Rela-
tioner (ARR). Imidlertid benyttes her i stedet en ny realisationsmetode udviklet i pro-
jektet. Med denne metode kan de delsystemer, der er fundet via SA, omskrives til til-
standsmodeller, som er velegnede til observer design. De eneste ukendte signaler i disse
tilstandsmodeller er tilstandene i modellen. Det betyder, at kun stabilitetsproblemet skal
behandles i observer designet.

Den udviklede realisationsmetode er i afhandlingen brugt til design af tre residual
observere til FDI i den mekaniske og hydrauliske del af pumpen. De udviklede residual
observere er testet på en industriel testopstilling, hvormed det er vist, at observerne er
robuste overfor ændringer i pumpens driftspunkt. Derudover er det vist, at observerne
kan bruges til identifikation af 5 forskellige fejl i den mekaniske og hydrauliske del af
pumpen.

I mange industrielle applikationer forefindes der kun sensorer med en lav bånd-
bredde. Det betyder, at FDI algoritmer, opbygget på baggrund af dynamiske modeller,
ikke kan bruges. Derfor er der i denne afhandling udviklet en algoritme baseret på en
ligevægts model af pumpen. Til udvikling af denne algoritme er SA brugt til at finde
tre ARR’er. Robusthed er inkorporeret i algoritmen ved brug af en "set-valued" metode.
Herved er algoritmen gjort robust overfor parametervariationer i pumpen. Denne algo-
ritme er også testet på en industriel testopstilling, hvor det er vist, at algoritmen kan
detektere 5 forskellige fejl i den mekaniske og hydrauliske del af pumpen. Ydermere,
er det vist, at algoritmen er robust overfor driftspunktet for pumpen, men ikke overfor
transiente ændringer i driftspunktet.
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Nomenclature

Symbols

In this thesis all matrices and vectors are written with bold letters, to distinguish these
from scalar values.

Symbols and parameters used in connection with the motor model
vtdq dq-transformed voltages at the terminals of the induction motor,vtdq =

(vtd vtq)T .
itdq dq-transformed currents at the terminals of the induction motor,itdq =

(itd itq)T .
vsdq dq-transformed stator voltages of the induction motor,vsdq = (vsd vsq).
isdq dq-transformed stator currents of the induction motor,isdq = (isd isq).
i′sdq Deriveddq-transformed stator current,i′sdq = isdq −Tdqγif .
irdq dq-transformed rotor currents of the induction motor,irdq = (ird irq).
γ Among of turns involved in the stator short circuit,γ = (γa γb 0)T .
if Current in the short circuit loop of the stator.
Te Torque generated by the electrical circuit of the motor.
Tdq0(θ) Transformation matrix given byxdq0 = Tdq0(θ)xabc, whereTdq0(θ) =

2
3




cos(θ) cos(θ + 2
3π ) cos(θ + 4

3π )
sin(θ) sin(θ + 2

3π ) sin(θ + 4
3π )

1
2

1
2

1
2


.

Tdq0 Transformation matrix given byTdq0 = Tdq0(0).
Tdq Matrix consisting of the two first rows ofTdq0.
T−1

dq Matrix consisting of the two first columns ofT−1
dq0.

J 2× 2 skew inverse matrix given byJ =
[
0 −1
1 0

]
.
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Nomenclature

I Identity matrix.
rs Stator resistance.
rr Rotor resistance.
lsl Leakage inductance in the stator.
lrl Leakage inductance in the rotor.
lm Mutual inductance in the induction motor.
zp Number of pole pairs in the motor.
Rs Stator resistance matrix,Rs = diag{rs, rs}.
Rr Rotor resistance matrix,Rr = diag{rr, rr}.
Ls Strator inductance matrix,Ls = diag{ 3

2 lm + lls,
3
2 lm + lls}.

Lr Rotor inductance matrix,Lr = diag{ 3
2 lm + llr,

3
2 lm + llr}.

Lm Mutual inductance matrix,Lm = diag{ 3
2 lm, 3

2 lm}.
R′

r derived rotor resistance matrix,R′
r = LmL−1

r RrL−1
r Lm.

L′s derived stator inductance matrix,L′s = Ls − LmL−1
r Lm.

L′m derived mutual inductance matrix,L′s = LmL−1
r Lm.

Bv Transformation from voltages at the terminals of the motor to phase volt-
ages at the stator,vsdq = Bvvtdq.

Ci Transformation from the phase current in the stator to the current at the
terminals of the motor,itdq = Ciisdq.

Symbols and parameters used in connection with the pump model
Hp Pressure across the pump.
He Head calculated from Eulers pump equation.
Qp Flow through the pump.
Qi Flow through the impeller.
Tp Shaft torque of the pump.
ωr Shaft speed of the pump.
J Moment of inertia of the rotor and the impeller.
B Linear friction.
ahi Parameters in the pressure model of the pump,i ∈ {1, 2, 3}.
ati Parameters in the torque model of the pump,i ∈ {1, 2, 3}.
g Gravity constant.
ρ Density of the liquid in the system.
Kl Leakage fault inside the centrifugal pump.
Kf Clogging faul inside the centrifugal pump.
∆B Rub impact fault.
fc Cavitation fault.
fd Dry running fault.
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Nomenclature

Symbols used in connection with the FMEA and FPA
F Finite set of all event vectors in the system.
Fi Finite set of all event vectors in theith component in the system.
Ff Finite set of all fault event vectors.
Fd Finite set of all disturbing event vectors.
If Finite set of all fault event vectors with only one non zero element.
f Vector of fault events.
d Vector of disturbing events.
Aj

fi
Propagation matrix from the faults defined in theith component to the
effects defined in thejth component.

Aj
i Propagation matrix from the effects defined in theith component to the

effects defined in thejth component.
Af Propagation matrix from the faults to the end-effects in the system.
Ad Propagation matrix from the disturbing events to the end-effects in the

system.
Gf , Df GraphGf and corresponding adjacency matrixDf describing the con-

nection between faults and components in the FPA diagram.
Ge, De GraphGe and corresponding adjacency matrixDe describing the struc-

ture of the effect propagation in the FPA diagram.

Symbols used in connection with the SA and realization
S Dynamic system.
O Observer design based on the dynamic systemS.
C Set of constraints.
Z Set of variables.
S System composed of a set of constraints and a set of variables, i.e.S =

(C, Z).
K Set of known variables, i.e.K ⊂ Z.
X Set of unknown variables, i.e.X ⊂ Z.
xd State vector of the dynamic systemS.
xa Algebraic variables of the dynamic systemS.
c Constraint which links a subset of the variables inZ.
d Constraint on the forṁxd = dxd

dt , whereẋd, xd ∈ X.
fx,mx,hx Vector field, algebraic constraints, and output maps of the dynamic system

S.
fo,ho Vector field and output maps of an output transformed system.
fz,hz Vector field and output maps of a state transformed system.
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Symbols used in connection with the steady state FDI
Vrms RMS value of the supply voltage.
Irms RMS value of the supply current.
ωe Frequency of the supply voltage.
φ Angle between the supply voltage and supply current.
V e

sd Stator voltage used in the steady state model of the motor.
V e

sq Stator voltage used in the steady state model of the motor.
Ie
sq Stator current used in the steady state model of the motor.

Ie
md Magnetizing current used in the steady state model of the motor.

Ie
mq Magnetizing current used in the steady state model of the motor.

r Residual.
R Set of residual values.

Mathematical Symbols
Â,≺ Positive and negative definit respectively.
>,< Larger than and smaller than respectively.
→ Logical expression to the left implies logical expression to the right.
∨ Logical or operator.
∧ Logical and operator.
x Maximum value ofx.
x Minimum value ofx.
R The reals.
R+ The positive reals including zero, i.e.R+ = {x ∈ R | x ≥ 0}.

Abbreviations

FDI Fault Detection and Identification.
SA Structural Analysis.
ARR Analytical Redundant Relation.
FMEA Failure Mode and Effect Analysis.
FPA Fault Propagation Analysis.
Model-based FDI FDI approaches based on mathematical models of the applica-

tion.
Signal-based FDI FDI approaches based on signal processing and classifing tech-

niques.
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Chapter 1

Introduction

This thesis considers the analysis and design of algorithms for Fault Detection and Iden-
tification (FDI) in centrifugal pumps. The aim has been to investigate methods for FDI
in centrifugal pumps, with special focus on the robustness and usability of the obtained
algorithms. This means that the algorithms must be able to detect faults under changing
operating conditions, and should be robust with respect to disturbances in the system.

1.1 Background and Motivation

This project was founded by Grundfos, which is a multi-national company with pro-
duction and sale facilities in around 50 different countries all over the world. Grundfos
is producing pumps for a variety of different applications. Still, most of the produced
pumps are for use in water treatment and aqueous solutions. In these applications the
centrifugal pump is the most used pump type. This is due to its simple construction
with few moving parts, making it very reliable and robust. In this thesis especially cen-
trifugal pumps for use in industrial applications, submersible applications, water supply
applications, and sewage applications are of interest.

In many of these applications it is crucial that the pumps are working all the time.
Moreover, the size of the pumps makes maintenance costly, in many cases. In addi-
tion to that, the applications are often situated in remote places, when it comes to water
supply and sewage treatment. This means that maintenance becomes even more costly.
Therefore, in these applications supervision, including fault detection and in specially
fault prediction, is very interesting. Equally interesting is supervision in industrial appli-
cations. Here, the need is initiated by the ongoing demand for production improvement,
meaning that it is crucial that the pumps are only stopped when absolutely necessary.
Therefore, the use of a monitoring system, which includes supervision of the pumps,
would be beneficial in many of these applications. This implies, that monitoring sys-
tems can be expected to be a growing competition parameter in the following years.

1



Chapter 1: Introduction

This project was initiated by a growing need, inside Grundfos, for knowledge about
the newest methods for detection of events and faults in pumps and pump systems. This
need is based on the expectation that monitoring and control systems will be commonly
used for supervision and control, of especially larger pumps, in the future. Besides that,
pumps are sometimes returned on warranty where it has been impossible to reproduce
the fault. In these cases it would be of great interest to know what the pump has been ex-
posed to before it is returned. This knowledge could be used to improve the construction
of the pumps and user manuals to avoid unnecessary returns on warranty, and thereby
unnecessary inconveniencies for the costumer.

The most common maintenance problems and faults expected in centrifugal pumps
can be divided into three main categories,

• Maintenance, such as cleaning of the pump.

• Faults which demands maintenance, such as bearing faults, and leakage due to
sealing faults.

• Severe faults, which demand replacement, such as stator burnouts, and damaged
impeller.

The first item covers normal maintenance, which, to some extend, is necessary in any
application. Likewise, the second item covers replacement of wearing parts, which also
should be expected in any pump setup, when running for long time periods. The last item
covers severe damages, normally caused by unexpected faults or by lack of maintenance.

A well designed monitoring system will be able to help a user, exposed to faults,
in any of the three mentioned categories. Traditionally, the first two categories are,
in large pump applications, handled by doing scheduled maintenance on the plant. At
these scheduled maintenance procedures, a set of predetermined wearing parts are often
exchanged to avoid future breakdowns. When using a monitoring system, maintenance
can be done on demand, which will save costs for unnecessary replacement parts, and
more important, the pump only has to be stopped for maintenance when really necessary.
For the last category, a monitoring system would be able to detect and stop the pump
before a given fault causes total breakdown of the pump. In larger pumps this would
make repair possible, meaning that a replacement of the whole pump is saved.

Different sets of sensors could be used as inputs to such a monitoring system. For
centrifugal pumps the following sensors are interesting; vibration sensors, current and
voltage sensors, absolute pressure and pressure difference sensors, flow sensors, and
temperature sensors. Of these, the current and voltage sensors, and the flow and pressure
difference sensors have been considered in this project. These sensors are all reasonably
cheep and are often already mounted in a pump system. Therefore, by using only these
sensors, no additional hardware is needed for the proposed algorithms to work. There-
fore, the implementation costs for the system is reduced considerably.
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1.2 Objectives

The aim of the Thesis is to investigate different methods for their usability in analyz-
ing and designing FDI algorithms for centrifugal pumps. In the investigation, special
emphasis is layed on the robustness and practical usability of the obtained algorithms.

In (Åström et al., 2001) it is argued that methods for FDI can be divided into two
main groups, namely the model-based and signal-based approaches. Here, the signal-
based approaches are approaches, in which signal processing and/or artificial intelli-
gence are utilized to obtain knowledge about faults in a given system. The model-based
approaches are, on the other hand, utilizing system theory to obtain knowledge about the
faults. In this thesis special focus will be put on the use of the model-based approaches,
as these approaches have inherent methods for handling disturbances. Hereby, increased
robustness of the algorithms can be obtained. However, signal-based approaches have
been widely used for fault detection in centrifugal pumps and their applications. See
Chapter 2 concerning the state of the art of the area. In most of these cases robustness
has not been considered. Therefore, a method for analyzing robustness in signal-based
FDI systems, is also considered.

1.3 Contributions

The contributions of the Thesis can be divided into two groups. The first group contains
contributions to FDI in the centrifugal pumps. The second group contains theoretical
contributions, mainly on robustness analysis of signal-based fault detection schemes
and the realization of subsystems found using Structural Analysis. In this section, first
the theoretical contributions are listed, followed by the contribution to FDI in centrifugal
pumps.

The main contributions in the theoretical areas are:

• A new algorithm for cutting loops in a Fault Propagation Analysis (FPA) graph is
proposed in Chapter 4. With this algorithm and a theorem also proposed in this
thesis, the FPA is automated. This means that the only manual step is to setup the
event model.

• A disturbing event is introduced as a part of the FPA in Chapter 4. With this event
it is possible to analyse the robustness of signal-based fault detection algorithms.
Two theorems are formulated, aimed to analyse robustness, based on this idea.

• A new adaptive observer, for a particular kind of bilinear system, is proposed in
Chapter 5. With this observer it is possible to explore the parameter structure in
the system. Observability of the known part of the system is not necessary. The
gain matrix of the observer can be analysed, and in some cases calculated, using
the proposed Linear Matrix Inequalities (LMI).
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• A novel transformation method is proposed in Chapter 6. With this transfor-
mation, minimal over-constraint subsystems, identified using Structural Analysis
(SA), can be transformed into state space descriptions. The method includes two
transformations; an output transformation, and a state transformation. These are
formulated in two theorems. The state transformation is submitted for publication
(Kallesøe and Izadi-Zamanabadi, 2005).

• As a part of the derivation of a set-valued residual expression, the Taylor Series
expantion is proposed in Chapter 7. The Taylor Series expantion is used on the
parameter expression to include a linear approximation of the nonlinear depen-
dency of the parameters. This has been submitted for publication (Kallesøe et al.,
2004a).

The main contributions to FDI in the centrifugal pumps are:

• A fault propagation model of the faults, expected to happen in centrifugal pumps,
is derived in Chapter 4. This model has been used to analyse different sensor
combinations aimed for robust signal-based fault detection.

• A new model of an inter-turn short circuit in the stator of an induction motor is
derived in Chapter 5. The model is derived for bothY- and∆-connected motors,
and has a nice structure, which has similarities to models of motors not affected by
inter-turn short circuits. The model of theY-connected motor has been published
in (Kallesøe et al., 2004c).

• An adaptive observer for estimating inter-turn short circuit faults in the stator of
an induction motor is proposed in Chapter 5. This has been published in (Kallesøe
et al., 2004c).

• An example of using SA to divide a complex system into two cascade-connected,
less complex, subsystems is shown in Chapter 6. This enables possibilities for
easy observer designs. The idea has been used for solving the nonlinear FDI
problem in the centrifugal pump, using only electrical and hydraulic measure-
ments. This has been submitted for publication (Kallesøe et al., 2004a).

• A model-based FDI scheme, for FDI in centrifugal pumps, is proposed in Chapter
6. The FDI scheme is based on measurements of the electrical quantities and the
hydraulic quantities only. Here, the electrical quantities are the motor voltages
and currents, and the hydraulic quantities are the pressure and volume flow. Parts
of the approach have been published in (Kallesøe et al., 2004b).

• A robust FDI scheme, based on the steady state model of the pump and set-valued
algebra, is derived in Chapter 7. The obtained algorithm depends on steady state
measurements only, making it useful in cost sensitive products.
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1.4 Outline of the Thesis

The thesis is organized as follows,

Chapter 1: Introduction

Chapter 2: Fault Detection and Isolation in Pump Systems

The purpose of this chapter is two-folded. Firstly, the most important ideas and terms
used in the area of Fault Detection and Identification (FDI) are introduced. Secondly,
state of the art on FDI in centrifugal pumps, as well as in induction motors, is considered.
This includes contributions from the academic world and products already on the market.

Chapter 3: Model of the Centrifugal Pump

This chapter introduces the mathematical model of the centrifugal pump. This includes
a model of the induction motor driving the pump, and models of the mechanical and
hydraulic parts of the pump. The presented models are lumped parameter models, which
especially are suitable for use in model-based FDI design. Special emphasize is put on
the dynamics of the hydraulic part. Here, it is shown that the energy conversion from
mechanical to hydraulic energy, is described by a purely algebraic equation. Moreover,
it is shown that the pump dynamics can be described by adding extra mass to the rotating
parts of the pump, i.e. increasing the moment of inertia of the rotating parts of pump.
The derived model is valid under two assumptions, also stated in the chapter.

Chapter 4: System Analysis and Fault Modelling

In this chapter the use of Failure Mode and Effect Analysis (FMEA) and Fault Propaga-
tion Analysis (FPA) in the design of signal-based fault detection algorithms is explored.
The FMEA and the FPA are well known analysis tools, and have been proposed as an
analysis tool in the design Fault Tolerant Control, as well as in FDI algorithms. A new
algorithm for automating parts of the FPA is proposed in this chapter. Moreover, by
introducing a so-called disturbing event in the FPA, it is shown that the robustness of
signal-based FDI algorithms can be analysed.

The chapter includes an FMEA of a general centrifugal pump, meaning that the con-
ceptual faults, expected in centrifugal pumps, are identified and analyzed. The outcome
of the FMEA is a list of possible faults in centrifugal pumps. 11 of these faults are
grouped into 7 fault groups. These 7 faults found the basis for the FDI algorithms de-
signed in this thesis. Using the FPA, different sensor combinations are analysed, aimed
to find a set of signals, which can be used in a signal-based fault detection scheme. One
of these sensor configurations is proven to work on a special designed test setup.
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Chapter 5: A New Approach for Stator Fault Detection in Induction Motors

This chapter introduces a new approach for inter-turn short circuit detection in the stator
of an induction motor. In the design, an adaptive observer approach is used, utilizing
only electrical measurements. The observer is based on a model of the induction motor,
in which a description of the inter-turn short circuit is included. This model is derived
in the beginning of the chapter. With the designed observer it is possible to estimate
the states of the motor, the speed, and the inter-turn short circuit simultaneously. The
observer is shown to work on a special designed motor, where it is possible to simulate
inter-turn short circuit faults. Likewise, it is shown that it is possible to identify the
phase, affected by the inter-turn short circuit. The adaptive observer, used in the pro-
posed design, is formulated in general terms, and could therefore be used in a number
of other applications.

Chapter 6: A New Approach for FDI in Centrifugal Pumps

The topic of this chapter is FDI on the hydraulic and mechanical parts of the centrifugal
pump. The model-based approach is used for this purpose. This means that residual gen-
erators are developed, based on the model of the centrifugal pump, presented in Chapter
3. In the design of the residual generators, subsystems, which are robust with respect
to disturbances and unknown model parts, are identified using Structural Analysis (SA)
(Blanke et al., 2003). These subsystems are then transformed into state space form,
enabling residual observer designs. The transformation from subsystems, identified us-
ing SA, into state space descriptions is novel, and is described in general terms in the
beginning of the chapter.

Chapter 7: FDI on the Centrifugal Pump: A Steady State Solution

In this chapter a FDI algorithm, based on a steady state model of the pump, is developed.
The FDI algorithm is developed using Structural Analysis, in order to obtain three An-
alytical Redundant Relations, each used in the calculation of a residual. The algorithm
is shown to enable detection and identification of five different faults in the hydraulic
part of the pump. Robustness of the algorithm is insured using a set-valued approach,
making it possible to in-count parameter variations in the FDI algorithm.

Chapter 8: Conclusion and Recommendations
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Chapter 2

Fault Detection and Isolation in
Pump Systems

The purpose of this chapter is two-folded. Firstly, a short introduction to the most im-
portant ideas and terms used in the area of Fault Detection and Identification (FDI) is
included. Secondly, a state of the art analysis on FDI in centrifugal pump applications
is presented. The first part is included to lighten readers of the thesis not familiar with
the concept of FDI. The second part includes both a state of the art analysis of FDI in
the centrifugal pump itself, and on the induction motor drive by which centrifugal pump
is driven. Moreover, the analysis includes contributions from both the academic world
and products already on the market.

In Section 2.1, where the concept of FDI is introduced, three different approaches to
FDI are considered. First of all, distinguishing between model-based and signal-based
FDI is considered (Åström et al., 2001), and the main ideas behind both methods are
described. This is followed by an introduction of the parameter adaptation approach,
and finally the concept of residual evaluation is introduced.

In Sections 2.2 and 2.3 state of the art of FDI in respectively induction motors and
centrifugal pumps is considered. A number of different faults and detection methods
have been treated in both the induction motor and in the centrifugal pump. However,
considerable more work is done in the area of FDI on induction motors compared to the
work done on centrifugal pumps. This is mainly because of the widespread use of the
motor type. The state of the art analysis is followed by some concluding remarks, which
end the chapter.
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2.1 Fault Detection and Isolation

To understand the concept of FDI, first it has to be defined what is meant by faults, and
which information is expected to be available for detection of these. To explain this,
let the structure of a system with inputsu(t) ∈ Rm, outputsy(t) ∈ Rd be defined
as shown in Fig. 2.1. Here, a fault affecting the system is symbolized byf . This

System

u
 y


f


Figure 2.1: System with inputsu, outputsy and a faultf affecting the system.

fault is interpreted as an unwanted event creating abnormal operation of the system.
Faults can affect the operation of a system in different ways. Normally, these fault
effects are divided into two sub-groups, which are denotedmultiplicative faultsand
additive faultsrespectively. Multiplicative faults influence the system as a product, like
for example parameter variations, and additive faults influence the system by an added
term (Isermann and Balle, 1997).

As an example of a system affected by faults, consider the following linear system,
which is affected by both multiplicative and additive faults.

dx
dt = A(θf )x + B(θf )u + E1d + F1f
y = C(θf )x + D(θf )u + E2d + F2f .

(2.1)

In this systemx(t) ∈ Rn contains the states,u(t) ∈ Rp contains the inputs,y(t) ∈ Rd

contains the outputs, andd(t) ∈ Rl contains disturbances, which can be interpreted
as unknown or unmeasurable inputs. This system is affected by the faultsf(t) ∈ Rh

affecting the system by an added term, and the parametersθf ∈ Rk affecting the sys-
tem in multiplicative manner. Here the multiplicative faults are seen as changes of the
parameter values in the system. Besides the multiplicative and additive fault effects, a
fault can change the structure of a system, meaning that the system becomes a so-called
hybrid system, where the state change is caused by the given fault.

Having the above described system in mind the fault detection problem is the task
of detecting that a faultf ∈ F has occurred in a given system, whereF is the set of all
possible faults in the system, i.e. it contains all faults inf andθf . The solution to the
fault detection problem is based on the set of measurementsy and possibly the set of
known input signalsu. When a fault is detected it is possible to state that something is
wrong in the system but not what is wrong. However, sometimes it is possible to isolate
the fault, meaning that faultfi can be distinguished for the set of possible faultsF in
the system. When a fault is isolated it is possible to state where and what is wrong in
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the system (Chen and Patton, 1999; Gertler, 1998). The problem of both detection and
isolation of a fault is called the Fault Detection and Isolation (FDI) problem. If it is not
only possible to isolate the faultfi in the setF , but also possible to estimate the size of
this faultfi, the fault is said to be estimated. The three levels of complexity in the fault
detection problem, described above, are summarized below.

Fault Detection: An abnormality in a system is detected, but the type and size are un-
known.

Fault Isolation: The faultfi is identified in the set of all possible faultsF . Hereby the
type of the fault is known but the size remains unknown.

Fault Estimation: The size of the faultfi ∈ F is estimated.

Different methods can be used for detecting a faultf ∈ F . The choice of method
should be based on the type of fault, which has to be detected, and which measurements
are available. Below three main groups of approaches are described.

2.1.1 Signal-Based Approach

In the Signal-Based approach, characteristics in the measured signalsy containing in-
formation about the health of the system are utilized (Åström et al., 2001). A block
diagram of a FDI system based on the signal-based approach is shown in Fig. 2.2. From

System
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Figure 2.2: Structure of a signal based fault detection and isolation system (Åström
et al., 2001).

this figure it is seen that the fault detection algorithm consists of three blocks. In the
first block,signal processing, methods from signal processing theory are utilized to ex-
tract information about the health of the system from the measured signals. The output
from the signal-processing block is sent to a unit consisting of a database and some
sorts of artificial intelligence. In Fig. 2.2 this is theresidual evaluationblock and the
fault scenario databaseblock. This part of the algorithm compares the output from the
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signal-processing block with predefined data sets from the database, each describing the
characteristics of a given fault. From this comparison the FDI algorithm decides if the
system is affected by a fault and if so, which one it is.

The signal-processing block often consists of frequency spectrum analysis such as
FFT-algorithms, wavelets, or higher order statistic (HOS) tools. However, it could also
be a simple limit check on the measured signal. In the decision unit, i.e. the fault
scenario database and the residual evaluation block, all kinds of methods for data evalu-
ation are used. Of these clustering techniques, neural networks, and fuzzy logic should
be mentioned. All of these are sophisticated methods for data mining. However, in most
real applications simple forms of decision logic are used.

Now considering the advantages and disadvantages of the signal-based method as
the author see it. First of all, a mathematical model is not used in this approach, which is
a huge advantage, as such a model can be difficult and even in some cases impossible to
derive. However, the drawback is the need for data from the system when it is affected
by faults, as these data should be used in the development of the fault scenario database.
Moreover, it can be difficult to ensure robustness of the FDI algorithm, as in theory all
possible operation conditions should be tested, before robustness is ensured. Of course,
simulations can solve some of these problems, but then a model is needed, undermining
one of the advantages of the approach. Considering these characteristics, this approach
must be considered most suitable for systems, which are difficult or in particular cases
impossible to describe with a mathematical model.

2.1.2 Model-Based Approach

The model-based approach utilizes analytical redundancy to extract information about
faults in the system. When using analytical redundancy one utilizes physical bindings
between inputs and outputs and between different outputs of the system to describe nor-
mal operation conditions. The physical bindings are here denoted analytical relations.
Faults are then detected when the analytical relation is not fulfilled. When this is the
case the system is operating under abnormal operation conditions, which are exactly the
definition of a fault. The analytical relations, utilized in this approach, are described us-
ing mathematical models. The relations described by these models are compared to the
physical relations in the real system, revealing abnormal operation if a difference exists.

In Fig. 2.3 a block diagram of a model-based fault detection algorithm is shown. The
first block model based residual filteruses the mathematical redundancy to generate a
so-called residual signal. This residual signal is defined in the following definition.

Definition 2.1.1 This residual signal is a signal with the following characteristics,

|r(t)| > κ ≥ 0 for f 6= 0
lim

t→∞
r(t) = 0 for f = 0

wheref is a fault in the system andr is the residual signal.
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Figure 2.3: Structure of a model based fault detection and isolation system.

The model-based residual filter is also called a residual generator. For linear systems
the residual generator is well established, and is well described in the literature. Here,
only two books will be mentioned, these are (Gertler, 1998) in which the parity equation
approach is treated, and (Chen and Patton, 1999) in which observer based approaches
are considered. Else, see for example (Patton and Chen, 1997; Frank and Ding, 1997)
and references included. The aim in the design of the residual generator is to be able
to create residuals with properties as defined in Definition 2.1.1, where the residuals are
not influenced by the disturbance on the systemd, see (2.1). When this is possible the
residual generator is said to be robust. Different design approaches have been used to
obtain robustness. Of these should be mentioned, the unknown input observer approach
(Chen and Patton, 1999, Chap. 3), the eigenvalue assignment approach (Chen and Pat-
ton, 1999, Chap. 4), the geometric approach (Massoumnia et al., 1989), and the standard
formulation approach (Stoustrup and Niemann, 2002).

It was stated before that the residual generator for linear systems is well established.
This is not the case for non-linear systems in fact a lot of research is going on in this
field. In (Garcia and Frank, 1997) an overview is given. To mention some newer results,
for example, the geometric approach is extended to the design of residual filters for non-
linear systems in (De Persis and Isidori, 2001), and in (Stoustrup and Niemann, 1998,
2002) the internal model control approach is used to handle the non-linear parts of the
system. Moreover, the derivation of analytical redundant relations, based on structure
analysis, is described in (Blanke et al., 2003). This approach can be seen as an extension
of the parity equation approach to nonlinear systems.
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2.1.3 Parameter Estimation Approach

In the parameter estimation approach parameters are estimated, which contains fault in-
formation. The estimated parameter values are then compared to the expectation values
of these parameters, resulting in a set of residuals, as shown below,

r = θ0 − θ̂ ,

whereθ0 are the expected parameter values andθ̂ are the estimated values. The param-
eters can either be estimated by an extended Kalman filter (Del Gobbo et al., 2001) or
by means of adaptive observers (Xu and Zhang, 2004; Jiang and Staroswiecki, 2002).
With both of these approaches the states of the system and the parameters containing
fault information are estimated simultaneously. System identification, as it is presented
in (Ljung, 1999), can also be used to estimate the parameter values of the system online.
This approach is explored in for example (Isermann, 1997).

2.1.4 Residual Evaluation

From the definition of the residual signal given in Definition 2.1.1 the residualr should
be smaller than a predefined threshold valueκ, when no fault has happened in the sys-
tem. However, it can be difficult or even impossible to find aκ, which is smaller than|r|
if a fault has happened and larger then|r| at all times in the no fault case. This is because
the residualr will be corrupted by model errors, un-modelled disturbances, and noise in
real life application. To overcome this problem different methods are developed. Two
of these are mentioned here.

To overcome the model error problem it is possible to derive an adaptive threshold
κ(t) on the residual signal. If for example the model is poor under transient phases, the
threshold could be increased during this phase. This is called adaptive residual eval-
uation (Frank and Ding, 1997). To overcome the noise problem statistical test can be
used. Especially the CUSUM algorithm is often used for testing changes in the residual
signals when it is affected by noise (Basseville and Nikiforov, 1998).

2.2 FDI in the Induction Motors

Fault detection and identification in induction motors have gained a lot of attention in
the resent years. Here all kind of faults in induction motors are considered. However, in
(Kliman et al., 1996) it is argued that the main causes of faults in induction motors can
be divided into the following three groups,

40-50% Bearing faults.

30-40% Stator faults.

5-10% Rotor faults.
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Even though most faults fall into one of these three groups, mechanical faults such as
miss alignment and rub impact between stator and rotor are also considered. In the
following two sections detection of mechanical faults are considered first, followed by
an analysis of the used method in detection of electrical faults.

2.2.1 Mechanical Faults in the Motor

As stated before, most mechanical breakdowns of motors are due to bearing faults. This
is especially a problem if a voltage inverter supplies the motor. If this is the case, large
high frequency voltage components will cause circulating current through the bearings.
This current will eventually destroy the bearings. Even though bearing faults are the
most common mechanical faults, also other kind of faults such as for example bend shaft
or rub impact between stator and rotor can happen. For the whole group of mechanical
faults the most used detection schemes fall into two groups,

• Spectrum analysis of motor currents.

• Spectrum analysis of vibration signals.

The current spectrum analysis is explored in (Eren and Devaney, 2001; Schoen et al.,
1995; Benbouzid, 2000). In (Eren and Devaney, 2001) Wavelets are used for analysing
the stator current at start up, to detect bearing faults, and in (Schoen et al., 1995) the
current spectrum, during steady state operation, is used for the same purpose. In (Ben-
bouzid, 2000) an overview is given over different signal analysis methods for current
spectrum analysis. Here such different methods as the FFT, wavelets, and Higher Order
Spectrum (HOS) analyses are considered. The obtained current spectrums are used in
the detection of bearing faults and other mechanical faults.

The spectrum analysis of vibrations is explored in (Li et al., 2000; Chow and Tan,
2000; Stack et al., 2002). In (Li et al., 2000) the signal of vibrations is transformed
into a frequency spectrum, creating attributes used as input to a neural network. The
neural network is then used to map the attributes into fault types. In (Chow and Tan,
2000; Stack et al., 2002) Higher Order Spectrum (HOS) analysis is used to extract fault
information from the signal of vibrations. Also model-based methods have been used
in the detection of mechanical faults. This is explored in (Loparo et al., 2000) where a
mathematical model of the mechanical part of the motor is developed, and used in a FDI
scheme.

In commercial products the analysis of the vibration spectrum is the mostly used
approach for detection of mechanical faults. Companies such asSKF, andBrüel & Kjær
offer hand held or stationary vibration analysers, for use by the maintenance staff. Here
the spectrum of vibrations is shown, leaving it to the user to interpret the signal, and
thereby conclude if there is a fault in the motor or not. To help the maintenance staff
supervising the frequency spectrum, it is normally possible to set alarm thresholds on
parts of this spectrum.
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Even though, analysis of vibration signals is considered the most used method for
detection of mechanical faults in electrical motors, advanced motor protection units can
detect mechanical faults to some extend too. Such motor protection units are offered by
for exampleSiemens, Rockwell Automation, andABB. With these motor protection units
it is possible to detect faults such as blocked rotor, and high temperature, which could
be caused by mechanical faults.

2.2.2 Electrical Faults in the Motor

Both stator and rotor faults are denoted electrical faults. These faults are responsible for
around 35-50% of the faults in induction motors. The only referred electrical fault in the
rotor is broken rotor bar. However, in the stator three main fault groups are considered.
These are; inter-turn short circuits, phase to phase short circuits, and phase to ground
faults. Of these the inter-turn short circuit fault has gained most attention. This could
be explained by referring to (Bonnett and Soukup, 1992; Kliman et al., 1996), where it
is argued that phase to phase or phase to ground faults often start by an inter-turn short
circuit in one of the stator phases.

The detection of inter-turn short circuits in a stator is explored in a large number of
papers. In (García et al., 2004) the voltage between line neutral and the star point of
the motor is used for detection. This is shown theoretical using a model of the motor
in (Tallam et al., 2002). An inter-turn short circuit will cause imbalance in the stator.
This imbalance is used in the detection schemes proposed in (Trutt et al., 2002; Lee
et al., 2003), where the negative sequence impedance is estimated, and used as fault
indicator. When there is an imbalance in the motor a negative sequence current will
be created. This current is used for fault detection in (Kliman et al., 1996; Arkan et al.,
2001; Tallam et al., 2003). In (Arkan et al., 2001) robustness, with respect to imbalanced
voltage supply, is added to the approach by using an estimate of the negative impedance
in the motor. Oscillations in the Park transformed current, due to the motor imbalance
are used for detection in (Cruz and Cardoso, 2001), and in (Kostic-Perovic et al., 2000)
the so-called space vector fluctuations of the current are used.

Also frequency spectrum approaches have be proposed for the detection of inter-
turn short circuit faults (Joksimovic and Penman, 2000; Perovic et al., 2001). In these
FFT as well as Wavelet Package transformations have be used together with some sort
of classifier. Higher Order Statistics (HOS) has also be used for extracting knowledge
about faults in the stator (Chow and Tan, 2000; Arthur and Penman, 2000). In both
the frequency spectrum based methods, and in the HOS based methods steady state
conditions are assumed on the motor. This assumption is relaxed in (Nandi and Toliyat,
2002) where the frequency spectrum of the voltage after having the supply switched
off is used to extract fault information. In (Backir et al., 2001) a parameter estimation
approach is used, also relaxing the steady state assumption.

All the references mentioned until now have been dealing with stator faults, but also
the detection of rotor faults is considered in the literature. For example in (Trzynad-
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lowski and Ritchie, 2000) and in (Bellini et al., 2001) the FFT of the Park transformed
current, is used to extract fault information. However, not only the FFT is used in signal-
based detection of rotor faults. For example in (Ye et al., 2003; Ye and Wu, 2001; Cu-
pertino et al., 2004) the discrete Wavelet and the Wavelet Package transforms are used
for analysing the motor current.

In industry intelligent motor protection units are commercial available. These Motor
protection units can detect ground faults and overcurrent, which again can be initiated
by inter-turn short circuits. These kinds of motor protection units are available from for
exampleSiemens, Rockwell Automation, andABB. Moreover, offline analysis tools are
available from for exampleBaker Instrument Company, which is able to detect inter-turn
short circuits in stators of electrical machines, directly.

2.3 FDI in Centrifugal Pumps

The most referred fault in the hydraulic part of centrifugal pumps is cavitation. Cavi-
tation is the phenomenon, that cavities are created in the liquid if the pressure, at some
points inside the pump, decreases below the vapor pressure of the liquid. When this
phenomenon occurs the impeller erodes and in extreme cases it vanishes totally after
just a short time of duty.

Even though cavitation is the most referred fault other faults are also treated in the
literature. The most important of these are mentioned here,

• Obstruction inside the pump or in the inlet or outlet pipe.

• Leakage from the pump or from the inlet or outlet pipe.

• Leakage flow inside the pump.

• Bloked impeller.

• Defect impeller.

• Bearing faults.

In the two following subsections, detection of caviation is considered first, followed by
an overview of the most interesting approaches for detection of the faults listed above.

2.3.1 Detection of Caviation

The cavitation phenomenon has been known for decades, and is treated in most books
dealing with centrifugal pumps, see for example (Stepanoff, 1957) and (Sayers, 1990).
Even though the phenomenon has been known for a long time it is still a topic of re-
search. Especially detecting cavitation and designing pumps to avoid cavitation has
achieved attention. Here, only the problem of detecting the phenomenon is addressed.
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As described before cavitation is the phenomenon of cavities created by vaporiza-
tion of the liquid, due to local pressure drops below the vapor pressure inside the pump.
When the cavities, due to the vaporization, implode large pressure shocks are created.
These pressure shocks will destroy the pump over time. Cavitation has traditional been
defined at the point where the pressure delivered by the pump has dropped 3%. How-
ever, the degradation of the pump has started long before this point. Therefore, only
methods aimed to detect cavitation before the 3% limit are considered here. Different
approaches are proposed for cavitation detection. These are based on different signals,
such as; mechanical vibrations, high frequency pressure vibrations, high frequency cur-
rent oscillations, acoustic noise, and vision.

The mechanical vibration signal is investigated in (Lohrberg et al., 2002; Lohrberg
and Stoffel, 2000), and the power spectrum of the signal of mechanical vibrations is
compared to the power spectrum of the high frequency pressure signal in (Parrondo
et al., 1998). Here it is argued that the pressure signal has the favour of the signal of
vibrations. The high frequency pressure signal is also considered in (Friedrichs and
Kosyna, 2002), where a connection between cavitation inside the pump and pressure
vibrations is established based on experiments presented in the paper. The same is ob-
tained in (Neill et al., 1997) where controlled cavitation tests, in a special designed
pipeline, are explored. More sophisticated methods are considered in (Cudina, 2003;
Baldassarre et al., 1998). In (Cudina, 2003) audio microphones are placed around the
pump, collecting the audio noise created by cavitation, and in (Baldassarre et al., 1998)
a vision camera is placed inside the pump filming the bobbles created during cavitations.

In the following subsection references, which treat the fault detection and identifi-
cation problem in a more general framework, are presented. However, in almost all of
these references, the problem of cavitation detection has also been considered.

2.3.2 Performance Monitoring and Fault Detection

In the start of this section a number of possible faults in a centrifugal pump application
are listed. These faults can be as important as cavitation to detect in real life applications.
Therefore, the detection and identification of these faults have also be considered in the
literature. Some of the references concerned with this fault detection and identification
problem are presented in this subsection.

The signal of mechanical vibration has been proposed for general fault detection
in centrifugal pumps in (Surek, 2000; Bleu Jr. and Xu, 1995; Kollmar et al., 2000b).
In (Surek, 2000) it is argued that a change in the level of vibrations of the pump can
be used as an indication for need of maintenance. In (Bleu Jr. and Xu, 1995) a so-
call spick energy approach is proposed for signal processing, and in (Kollmar et al.,
2000b) the FFT spectrum of the vibration signals is used as input to a classifier for fault
identification. In this case the classification is based on machine learning techniques.

The current signal has also been used for detection and identification of a num-
ber of faults in centrifugal pumps (Perovic et al., 2001; Müller-Petersen et al., 2004;
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Kenull et al., 1997). In (Perovic et al., 2001) the current spectrum is used as input to
a fuzzy Logic based classifier. This classifier is used for identification of cavitation,
clogging, and damaged impeller. In (Müller-Petersen et al., 2004; Kenull et al., 1997)
fault detection in submersible pumps is considered, based on different signal processing
philosophies.

Also the model-based approach has been used for fault detection in centrifugal
pumps (Dalton et al., 1996; Liu and Si, 1994; Wolfram et al., 2001). In (Liu and Si,
1994) a linearised model of the pump is used in the design, and the considered faults
are; motor faults and the efficiency of the pump hydraulic. In (Dalton et al., 1996)
also a linearised model of the pump is used. In this case a two-pump system is treated.
Clogging faults and faults in connection with the valves in the two pump system are
considered. In (Wolfram et al., 2001) a nonlinear model of the pump, described by a
Neuro-Fuzzy model, is used in the design. Here, faults such as various sensor faults,
leakage, clogging, cavitation, bearings faults, and impeller faults are considered.

Different protection units are commercial available. For example the monitoring
unit CU3 for protection of submersible application is offered byGrundfos. However,
this is not the only commercial available monitoring unit, as bothKSBand ITT offer
monitoring units, too.KSBhas just launched thePumpExpertunit, which enables detec-
tion of cavitation, bearing faults and worn impeller. Moreover, dry running protection
is included. The identification approach is based on a fault tree as described in (Koll-
mar et al., 2000a). Likewise,ITT has launched a set of monitoring units with the brand
PumpSmart. This monitoring unit is based on power level protection, and does not in-
clude adjustment to different operating points of the pump. With the adjusted alarm
levels it is only possible to detect faults with major impact on the power level. Beside
these advanced monitoring units,ABB offers a system for data collection in pump ap-
plication. With this system data measured at any given application location is made
available on a website, and evaluations of trend curves are performed.

Also special sensors for seal protection exist.Burgmann, a seal producing company,
offers a life protection system for their special designed seals, andGrundfosoffers the
humidity sensorLiqTec, for protecting water lubricated seals. The companyWilo is also
working in this area, as the publication (Greitzke and Schmidthals, 2000) describes a
proposed seal protection system.

Beside the products mentioned above, most centrifugal pumps with imbedded elec-
tronic control units, do offer some kind of fault detection and protection. Likewise, for
larger pump systems customized designed monitoring systems can be available.

2.4 Discussion

In this chapter the FDI problem is introduced. Two different approached are considered,
these are the signal-based fault detection approach and the model-based fault detection
approach. It is argued that the signal-based approach has its advantages when a model
of the system is not available. However, robustness properties are difficult to establish.
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For the model-based approach it is argued that the advantages are in its ability to obtain
robustness from theoretical consideration, and the drawback is the need for reasonable
good models.

This introduction is followed by a state of the art analysis of Fault Detection and
Identification (FDI) in centrifugal pump applications. Centrifugal pumps are mostly
driven by induction motors, therefore state of the art in the area of FDI in induction
motors is also considered. Here, it is stated that the most common faults in induction
motors are bearing faults. However, from internal data at Grundfos it is known that stator
burnouts are one of the main reason for faults in submersible pumps. Both signal-based
and model-based approaches have been used for detecting stator faults. The signal-
based approaches are mostly concerned in finding fault signatures in the stator current.
The model-based approaches are mostly based on steady state impedance models of the
machine. This basically means that robustness with respect to dynamic changes in the
motor speed and motor current is not considered.

From the state of the art analysis of FDI in centrifugal pumps it is seen that differ-
ent centrifugal pump faults are considered, and that different methods are used for their
detection. However, the model-based approach is fare less used than signal-based meth-
ods. This might be due to the nonlinear nature of the centrifugal pump model. It is well
known that frequency converters, making it possible to optimize the operating point of
the pump, are used more and more often as drives for centrifugal pumps. However, this
means that the detection algorithms should not only be robust with respect to changes in
the hydraulic resistance, i.e. the flow through the pump, but also to speed changes. This
has not be considered in any of the presented papers.
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Chapter 3

Model of the Centrifugal Pump

In this chapter the mathematical model of the centrifugal pump is presented. The chapter
starts by describing the mechanical construction of a standard centrifugal pump. Here it
is argued that the model of the pump can be divided into three subparts,

• The induction motor driving the pump.

• The hydraulics of the pump.

• The mechanical parts of the pump.

The induction motor is modelled using a so-calleddq-model of the motor dynamics.
This type of model is extensively described in the literature. The description presented
here is based on (Krause et al., 1994; Kazmierkowski, 1994; Novotny and Lipo, 1996).

The steady state performance of the hydraulics of the centrifugal pump is extensively
described in the literature too, (Sayers, 1990; Stepanoff, 1957) and others. Here this
steady state description is extended to cover the dynamics of the centrifugal pump as
well as the steady state operation, making it particular suitable in model based FDI
algorithms. The same approach is in (Gravdahl and Egeland, 1999) used for modelling
a centrifugal compressor, but here the dynamics are neglected. Dynamics of centrifugal
pumps are treated in for example (Bóka and Halász, 2002).

In this work the model is derived using the control volume approach (Roberson and
Crowe, 1993). The derived model expresses the theoretical performance of the impeller.
To obtain a model describing the performance of a real pump extra pressure losses are
added to the theoretical model (Sayers, 1990; Stepanoff, 1957). The obtained model
describes the performance of a single impeller. However, it is shown that the same
model structure also describes the performance of a multi stage pump.

The mechanical part of the pump is modelled using simple considerations based on
Newton’s second law. The frictions losses in the bearing and seals are modelled by a
simple linear friction term, as the friction losses are very small compared to the torque
necessary the drive the pump, and therefore are not important in the model.
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The first section of this chapter contains a description of the mechanical construction
of the centrifugal pump. The second section describes the induction motor model, and
the third section contains the derivation of the model modelling the hydraulics of the
centrifugal pump. The fourth section presents the mechanical model, and in the fifth
section each of the submodels, derived in the previous sections, are composed into the
final nonlinear state space model of the centrifugal pump. Finally, concluding remarks
end the chapter.

3.1 The Construction of the Centrifugal Pump

In this section the mechanical components of the centrifugal pump are described. This
is done in order to give an overview over the construction of the pump. This description
is included to help the reader to follow the model derivations presented in the following
parts of this chapter.

In Fig. 3.1 a CR5-10 Grundfos centrifugal pump is shown. This centrifugal pump
contains the same set of components as almost all other centrifugal pumps, and is in
this section used as an example of a standard centrifugal pump. In Fig. 3.1 the pump is
sliced revealing the inside of the pump. The CR5-10 pump is a multistage centrifugal
pump, meaning that the pressure is increased using a set of identical impellers, see Fig.
3.1. The impellers are the rotating part of the pump, which increase the pressure by the
utilization of the centrifugal force induced by the rotation. This effect is formalized in
section 3.3.

The pump is driven by an 1.5 [KW] induction motor, which is connected to the pump
by a shaft connection, see Fig. 3.1. This is a typical way to drive centrifugal pumps in
the rang from 50 [W] up till several hundreds [KW]. The pumps considered in this thesis
have the same structure as the one shown in Fig. 3.1.

A signal flow diagram of such a centrifugal pump is shown in Fig. 3.2. Here the
pump is divided into four subsystems. These subsystems are,

• The electrical part of the induction motor. This part converts electrical energy into
mechanical energy.

• The mechanical part of the induction motor and the pump. This part connects the
impeller to the rotor of the induction motor.

• The hydraulic part of the pump. This part converts mechanical energy into hy-
draulic energy.

• The hydraulic application. This part absorbs the hydraulic energy delivered by the
pump.

The first three of these are parts of the centrifugal pump itself, and the last part is the
application in which the pump is placed. As the topic of this thesis is FDI on centrifugal
pumps only the first three parts are considered in the following.
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Figure 3.1: A multistage centrifugal pump driven by an induction motor.

3.2 Model of the Electrical Motors

In this section modelling of the energy conversion from electrical to mechanical energy
in the induction motor is considered. The presented model is described in the so-called
dq0-coordinates as it is shown in (Krause et al., 1994), but with the coordinate system
oriented as in (Leonhard, 1996; Kazmierkowski, 1994; Novotny and Lipo, 1996). These
four references contain good descriptions of the induction motor model and form the
foundation for the model presented in this section. Only the stator fixeddq0-coordinates
are treated in this work. This is so because the observer designs, for which the model is
used in this work, are all based on stator fixed models.

In the model derivations described in this section the following set of assumptions
are used, (Kazmierkowski, 1994),

• The motor is symmetrical and contains three phases.

• Only the basic harmonic is considered, while higher harmonics in the field distri-
bution and in the magnetomotive force are neglected.

• The distributed windings in the stator and the rotor cage are replaced by concen-
trated coils.

• The permeability of the iron parts are assumed infinite, meaning that the effect of
magnetic saturation is neglected, hereby the magnetic circuit becomes linear.
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Figure 3.2: Blockdiagram depicting the connection between the different parts of the
centrifugal pump.

• Iron losses and eddy current losses are neglected.

It is possible to avoid the assumptions about the harmonics and the winding distributions
by using higher order models. This is done in (Vadstrup, 2002; Toliyat et al., 1991).
However, this leads to complicated high order models. As the electrical faults, under
consideration in this work, mainly affect the fundamental harmonics in the induction
motor, these high order models introduce unnecessary complexity.

Likewise it is possible to include magnetic saturation in the model (Sullivan and
Sanders, 1995). This effect is neglected in this model, as it is expected, that the motor is
controlled, such that the level of magnetization is almost constant in all operating points
under consideration. This is in fact often the case in induction motor control schemes.

3.2.1 The Induction Motor Model in abc-coordinates

Using the assumptions given above the electrical circuit of an induction motor is given
by the circuit shown in Fig. 3.3. In this figure the stator circuits are supplied with three
voltagesvsa, vsb andvsc and the rotor circuits are short circuited. The coils in both the
rotor and stator are magnetic connected meaning that all coils in the motor must be taken
into account when calculating the flux in a single coil.

Setting up the mesh equations for both the rotor as stator circuits the following set
of equations are obtained.

vsabc = rsisabc + dψsabc

dt

0 = rrirabc + dψrabc

dt .
(3.1)

The signal vectors in this model are given by

vsabc =
[
vsa vsb vsc

]T
isabc =

[
isa isb isc

]T
irabc =

[
ira irb irc

]T

ψsabc =
[
ψsa ψsb ψsc

]T
ψrabc =

[
ψra ψrb ψrc

]T
,
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Figure 3.3: The electrical circuit diagram of the induction motor, placed in the mechan-
ical structure of the induction motor. The three outer circuits are the circuits of the three
phases of the stator and the inner circuit is the rotor circuit.

and the parameter matrices are

rs = rsI rr = rrI ,

wherers andrr are the electrical resistances in respectively the stator and rotor coils,
see Fig. 3.3.

The flux linkagesψsabc andψrabc in (3.1) are given by the following expression.
Here the assumption concerning saturation, described in the start of this section, is used.

ψsabc = lsisabc + lm(zpθr)irabc

ψrabc = lrirabc + lm(zpθr)T isabc .
(3.2)

The parameter matricesls andlr are defined by

ls = llsI + lm(0) lr = llrI + lm(0) ,

wherells and llr are the leakage inductances in the stator and rotor windings respec-
tively, andlm is the mutual inductance and is given by

lm(θe) = lm




cos(θe) cos(θe + 2π
3 ) cos(θe + 4π

3 )
cos(θe + 4π

3 ) cos(θe) cos(θe + 2π
3 )

cos(θe + 2π
3 ) cos(θe + 4π

3 ) cos(θe)


 , (3.3)

wherelm is a constant andθe = zpθr is the electrical angle between the stator and rotor
phases, see Fig. 3.3.
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3.2.2 Transformation to Stator Fixeddq0-coordinates

From the model described in theabc-coordinates it is seen that the mutual inductance
matrix (3.3) is a function ofzpθr. This dependency can be removed using a variable
transformation from theabc-coordinates of the stator and rotor variables respectively to
stator fixeddq0-coordinates. This variable transformation is given by

xsdq0 = Tdq0(0)xsabc xrdq0 = Tdq0(−zpθr)xrabc , (3.4)

where subscripts andr denote the stator variables and rotor variables respectively, and
zpθr is the electrical angle between the stator and rotor circuit, see Fig. 3.3. In this
transformationsTdq0 is given by

Tdq0(θ) =
2
3




cos(θ) cos(θ + 2
3π ) cos(θ + 4

3π )
sin(θ) sin(θ + 2

3π ) sin(θ + 4
3π )

1
2

1
2

1
2


 .

Equations (3.1) and (3.2), describing the electrical and magnetic system of the in-
duction motor respectively, are transformed using the transformation (3.4). Hereby the
following description of the induction motor is obtained,

vsdq = Rsisdq + dψsdq

dt

vs0 = rsis0 + dψs0
dt

0 = Rrirdq + dψrdq

dt − zpωrJψrdq

0 = rrir0 + dψr0
dt ,

(3.5)

wherezpωr = dzpθr

dt , asθr is a function of time. The flux linkages in these equations
are given by

ψsdq = Lsisdq + Lmirdq

ψs0 = llsis0
ψrdq = Lrirdq + Lmisdq

ψr0 = llrir0 .

(3.6)

In (3.5) and (3.6) thedq0-space is split intodq-coordinates and0-coordinates of reasons,
which will become obvious in the following. The parameter matricesRs, Rr, Ls Lr,
andLm do all have a diagonal structure, and are given by,

Rs = diag{rs, rs} Rr = diag{rr, rr}
Ls = diag{3

2 lm + lls,
3
2 lm + lls}

Lr = diag{3
2 lm + llr,

3
2 lm + llr}

Lm = diag{ 3
2 lm, 3

2 lm}
J =

[
0 1
−1 0

]
.
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Rewriting (3.5) and (3.6), and using the magnetizing currentimdq defined such that
it fulfils the equationψrdq = Lmimdq, the induction motor model becomes

L′s
disdq

dt
=− (Rs + R′

r) isdq + (R′
r − zpωrJL′m) imdq + vsdq (3.7a)

lls
dis0
dt

=− rsis0 + vs0 (3.7b)

L′m
dimdq

dt
=R′

risdq − (R′
r − zpωrJL′m) imdq (3.7c)

llr
dψr0

dt
=− rrψr0 , (3.7d)

where

R′
r = LmL−1

r RrL−1
r Lm L′s = Ls − LmL−1

r Lm L′m = LmL−1
r Lm ,

meaning that the new matrices retain the diagonal structure.
Equation (3.7d) shows thatlimt→∞ ψr0 = 0 for every possible operating conditions.

Moreoverψr0 is not influencing the rest of the model equations. Therefore, (3.7d) can
be excluded from the final induction motor model.

3.2.3 Grid Connections

The stator windings described in (3.1) can either be connected in aY- or ∆-connection

as shown in Fig. 3.4. In this figure only the terminal voltagesvtabc =
[
vta vtb vtc

]T
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(a) Y-connection.
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(b) ∆-connection.

Figure 3.4: Example of the stator windings connected in aY- and∆-connection respec-
tively. The stator circuit in this figure is the same as the one shown in figure 3.3.

and the terminal currentsitabc =
[
ita itb itc

]T
are measurable. Therefore a relation-

ship between the voltages and currents at the terminals of the motor, and the voltages
and currents in (3.1) must be defined. This relationship is, in the following, established
for aY- and∆-connected motor respectively.
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The Y-connected induction motor

In the case of aY-connected stator, the mappings between the stator variables and the
terminal variables are given by,

vtabc = vsabc + 1v0 itabc = Iisabc ,

where1 =
[
1 1 1

]T
, andv0 is the voltage between the star point of the supply and

the star point of the stator circuit, see Fig. 3.4(a). Transforming these equations to
dq0-coordinates the description becomes,

vsdq = vtdq itdq = isdq

vs0 = vt0 − v0 it0 = is0 .

Moreover it is seen from Fig. 3.4(a) that the relationsship0 = isa + isb + isc must hold
for this circuit, therefore the currentsis0 = it0 = 0.

Using the expressionvs0 = vt0 − v0, obtained above, and the fact theis0 = 0, the
expression of the zero sequence quantities described by (3.7b) becomes,

0 =vt0 − v0 . (3.8)

This shows that (3.7b) has no impact on the motor performance, therefore it can be
excluded from the final model of aY-connected induction motor.

From the above argumentation theY-connected induction motor is modelled by the
following set of equations,

L′s
disdq

dt
=− (Rs + R′

r) isdq + (R′
r − zpωrJL′m) imdq + vtdq (3.9a)

L′m
dimdq

dt
=R′

risdq − (R′
r − zpωrJL′m) imdq , (3.9b)

where the measurable terminal currentitdq is given by,

itdq = isdq . (3.9c)

Remark 3.2.1 From the expression of the star point voltage (3.8) it is seen that the
start point voltage of the induction motorv0 equals the star point voltage of the supply
vt0 in the no-fault case. This can be used for fault detection inY-connected induction
motors, whenever the star point voltage of the motor is measured. This scheme uses that∫

T
(vs0 − vt0)2dt 6= 0 when a fault has happend in the motor, and in the no-fault case∫

T
(vs0 − vt0)2dt = 0 (Tallam et al., 2002).
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The ∆-connected induction motor

In the case of a∆-connected stator the mappings between the stator variables and the
terminal variables are given by,

vsabc = K∆vtabc itabc = KT
∆isabc ,

where the linear mappingK∆ is given by,

K∆ =




1 −1 0
0 1 −1
−1 0 1


 .

Transforming these equations todq0-coordinates the description becomes,

vsdq0 = Tdq0K∆T−1
dq0vtdq0 itdq0 = Tdq0KT

∆T−1
dq0isdq0 .

The structures of these linear mappings are,

[
vsdq

vs0

]
=

[
Bv 0
0 0

] [
vtdq

vt0

] [
itdq

it0

]
=

[
Ci 0
0 0

] [
isdq

is0

]
.

This shows thatvs0 = 0 despite of the value ofvtdq0, andit0 despite of the value of
isdq0.

Using the factvs0 = 0 in (3.7b) it becomes,

lls
dis0
dt

=− rsis0 .

This shows thatlimt→∞ is0 = 0 for every possible operating conditions. Moreoveris0
is not affecting the rest of the model equations. Therefore (3.7b) can be excluded from
the final model of a∆-connected induction motor.

From the above argumentation the∆-connected induction motor is modelled by the
following set of equations,

L′s
disdq

dt
=− (Rs + R′

r) isdq + (R′
r − zpωrJL′m) imdq + Bvvtdq (3.10a)

L′m
dimdq

dt
=R′

risdq − (R′
r − zpωrJL′m) imdq , (3.10b)

where the measurable terminal currentitdq is given by,

itdq = Ciisdq . (3.10c)
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3.2.4 The Torque Expression

From energy consideration it is shown, in (Krause et al., 1994), that the torque produced
by the induction motor is given by,

Te = iTsabc

∂lm(zpθr)
∂θr

irabc ,

whereisabc is the current of the stator windings andirabc is the current in the rotor.
Including the transformations (3.4) into this expression it becomes,

Te = (Tdq0(0)−1isdq0)T ∂lm(zpθr)
∂θr

(Tdq0(−zpθr)−1irdq0) .

Simplifying the expression and usingLmimdq = Lrirdq + Lmisdq the following torque
expression is obtained,

Te =
3
2
zpL

′
m (imdisq − imqisd) , (3.11)

whereL′m = L2
m/Lr, meaning thatL′m is the diagonal element ofL′m.

3.3 The Hydraulic Part of the Centrifugal Pump

This section is concerned with modelling the hydraulic part of the centrifugal pump.
The hydraulic part of the centrifugal pump consists of the inlet and outlet of the pump,
and the impeller and the diffuser inside the pump. These components are all shown in
Fig. 3.5. The impeller is the rotating part of the pump, which induces a rotational speed
into the liquid. This speed is transformed into a static pressure in the diffuser and volute.
Hereby a pressure difference between the impeller eye and the outlet of the volute is
obtained. This will be formulized in this section.

The model, presented in this section, describes the pressure and torque of the pump
as functions of the flow and speed respectively. This means that the obtained model has
a structure as shown in Fig. 3.6. In this figureωr is the angular speed of the impeller,
Qp is the volume flow, andHp andTp are the pressure and torque produced by the pump
respectively.

In the literature a polynomial model of the centrifugal pump can be found (Sayers,
1990; Stepanoff, 1957). This model describes the torque load of the centrifugal pump
under steady state operation. Here, the aim is to derive a dynamic model of the pump.
Such a model is needed in the design of FDI observers. Fortunately, it is well know
from the literature that a control volume approach can be used in the derivation of the
dynamics of a hydraulic system (Roberson and Crowe, 1993). This approach is used in
this section to obtain a model describing the dynamics as well as the steady state opera-
tion of the centrifugal pump. The obtained model has a nonlinear but simple structure,
which is usable in model based FDI algorithms.
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Figure 3.5: The mechanical construction of a single stage in a centrifugal pump. To the
left-hand side a top view is shown and to the right-hand side a side view is shown.
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Figure 3.6: Definition of the flows and pressures used in the definition of the losses in
the pump.

It is possible to obtain more accurate models of the centrifugal pump using finite
volume solutions of Navier-Stokes equations. With these solutions it is not only possible
to calculate the pressure between the inlet and outlet of the pump, but also possible to
calculate the pressure distributions inside the pump. However, these solutions include
heavy calculations and are therefore not usable in the design of FDI algorithms.

3.3.1 The Principle of the Centrifugal Pump Dynamics

Before the derivation of the mathematical model of the centrifugal pump is presented,
the operation of the pump is described in informal terms. This includes a description of
the expected dynamic performance of the impeller. In Sections 3.3.2 and 3.3.3 the im-
peller performance is treated formally and mathematical expressions of the performance
is obtained.

In Fig. 3.7 the velocity triangle of the fluid at a given radius inside the impeller
is shown (Sayers, 1990). In this figureU is the tangential speed of the impeller, i.e.
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Chapter 3: Model of the Centrifugal Pump

|U| = rωr, C is the liquid speed, andW is the liquid speed in proportion to the impeller,
all defined at the same radiusr. Moreover the liquid speedC is divided into a tangential
and radial component namedCx andCr respectively.

ω


C
x


C


U


W


C

r


r


Eye


Figure 3.7: The impeller of a centrifugal pump. At a given radiusr the liquid speedC,
the impeller speedU, and the liquid speed in proportion to the impellerW are shown.
Moreover the liquid speedC is divided into a tangential and radial component named
Cx andCr respectively.

The torque acting on the impeller due to the liquid inside the impeller must be equal
to the change of momentum of the liquid inside the impeller. As the liquid at all time is
flowing through the impeller there must be a change of momentum from the liquid flow-
ing into the impeller to the liquid flowing out of the impeller. This change of momentum
is due to the increase in the liquid speedC2 − C1, whereC1 andC2 are the liquid
speed at inlet and outlet of the impeller respectively.C1 andC2 are both functions of
the impeller angular speedωr and the volume flowQi, meaning that the mathematical
expression describing this part must be on the form

T = ft(Qi, ωr) ,

whereT is the torque component,Qi is the volume flow andωr is the angular speed of
the impeller. The energy added to the liquid due to this torque component is converted
into static pressure in the diffuser and volute. Therefore the expression of the pressure
produced by the pump must be on the form

Hi = fh(Qi, ωr) ,

hereHi is the pressure produced by the impeller.
This is not the only phenomenon changing the momentum of the liquid inside the

impeller, as transients in the tangential speed of the liquiddCx

dt also will change the
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momentum. Now recognizing that the velocity triangle in Fig. 3.7 will be fulfilled at
all time, and that the direction of the liquid speed in proportion to the impellerW is
fixed due to the impeller blades. This means that changes of the tangential speed of
the impellerU will induce changes inCx, and therefore the momentum of the liquid
inside the impeller is changed. Moreover,Cx will also change if the radial speed of the
liquid Cr is changed. This change is explained by the velocity triangle, which has to be
fulfilled all the time. This means that a change in the volume flowQi will change the
momentum of the liquid inside the impeller, asCr is proportional toQi.

From the above consideration the model describing the torque acting on the impeller
due to the liquid, must be on the form,

Ti = ft(Qi, ωr) + f ′t(Qi, ωr,
dωr

dt ) + f ′′t (Qi, ωr,
dQi

dt ) ,

whereTi is the impeller torque,Qi is the volume flow,ωr is the angular speed of the
impeller andfh, f ′h andf ′′h are functions to be decided. In fact in Section 3.3.2 the
control volume approach is used to derived an expression of the torque. Here it is shown
that the torque is described by,

Ti =
(−at2Q

2
i + at1ωrQi + at0ω

2
r

)
+ JMv

dωr

dt
−KQ

dQi

dt
,

whereat2, at1, at0, JMv andKQ are constants described in Section 3.3.2. An expression
of the pressure produced by the pump is derived in Section 3.3.3. Here it is shown that
the pressure expression becomes,

Hi = ρg(−ah2Q
2
i + ah1ωrQi + ah0ω

2
r) ,

whereah2, ah1 andah0 are constants described in Section 3.3.3.

3.3.2 The Torque Expression

In this section an expression of the torque acting on the impeller is derived using con-
trol volume considerations. In (Roberson and Crowe, 1993, p. 242) a control volume
equation is derived, describing the torque properties of the given control volume. The
obtained equation is (Roberson and Crowe, 1993, p. 243),

∑

j

Tj =
∫

cs

(r× c)ρC • dA +
d

dt

∫

cv

(r× c)ρdV , (3.12)

where allTj are external torques on the control volume,r is a radius vector, andc is the
fluid speed at the radius vectorr. C is the fluid speed in proportion to a infinitesimal
control surfacedA anddA is an infinitesimal area vector describing the direction and
size of the infinitesimal control surfacedA. Finally ρ is the mass density of the liquid
anddV is an infinitesimal volume. The subscribescs andcv on the intergrals denote
the control surface and the control volume respectively. The first term on the right-hand
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side of (3.12) describes the momentum change due to the liquid flow and the second
term describes the dymanics.

To be able to utilize (3.12) for calculating the torque acting on the impeller, a control
volume must be defined. As only the overall performance of the impeller is of interest
in this work the control volume is chosen as the inside of the impeller, see Fig. 3.8(a).
The controlV is represented by the hatched area with a uniform highth and the control������������
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(a) The control volume defined on the impeller.
The hatched area defines the control volumeV
with a uniform hight h, and dm is a small
mass entering and leaving the impeller in timedt
through the areasA1 andA2 respectively.
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(b) The speed triangle at a given point of the im-
peller blad.c is the fluid speed,w is the fluid speed
in proportion to the impeller, andu is the tangential
speed of the impeller.

Figure 3.8: Definition of the control volume and fluid speed inside the control volume.

areasA1 andA2 are the inlet and outlet surface of the impeller respectively.
At a given radiusr = |r| the velocity triangle in Fig. 3.8(b) can be assumed equally

positioned proportional to the radius vectorr for all angles ofr. Therefore the cross
productr× c is constant for all angles ofr and can be expressed by,

r× c = rcx , (3.13)

wherer = |r| andcx is defined in Fig. 3.8(b).cx is in general a function of the radiusr.
As the liquid is assumed incompressible the inlet mass flow must equal the outlet

mass flow. This means that,
∫

A2

ρC2 • dA =
∫

A1

ρC1 • dA =
dm

dt
, (3.14)

wheredm
dt is the mass flow,Ci is the speed of the fluid at the infinitesimal surfacedA and

dA is an infinitesimal area vector describing the direction and size of the infinitesimal
surfacedA.

From Fig. 3.8(a) it is seen that the infinitesimal volumedV equals,

dV = 2πrhdr , (3.15)
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wherer is the radius at a given slice of the disc forming the impeller with highth.
Using (3.13), (3.14), and (3.15) in (3.12), the torque expression is reduced to,

Ti =
dm

dt
(r2cx2 − r1cx1) +

d

dt
2πhρ

∫ R2

R1

r2cx(r)dr , (3.16)

whereTi is the component of the shaft torque created by the fluid inside the impeller.
In (3.16) the first term on the right-hand side describes the time derivative of the change
of momentum between the liquid entering and leaving the impeller. This term is the
pressure or head producing part and is in the following denoted the steady state torque
term. The second term on the right-hand side describes the torque necessary to change
the speed of the impeller when the mass of the impeller itself is not taken into account.
This term is in the following denoted the transient torque term.

The steady state torque expression

From Fig. 3.8(b) it is seen that the speedcx = u − cr cot(β), whereu is the tangential
speed of the impeller and is given byu = rωr. Moreover, if the area of a slice of the
impeller with radiusr is defined asAr = 2πrh, then the volume flow inside the impeller
is given byQi = crAr. Using these considerations the following expressions ofcx are
obtained,

cx = u− cr cot(β) = rωr − Qi

Ar
cot(β) = rωr − Qi

2πrh
cot(β) . (3.17)

Using (3.17) at the inlet and outlet of the impeller to obtain an expression ofcx1 andcx2.
Then used these expressions in the first term on the right-hand side of (3.16) to obtain
the following expression for the steady state torque,

Ti = ρ
(
r2
2 − r2

1

)
Qiωr − ρ

(
r2 cot(β2)

A2
− r1 cot(β1)

A1

)
Q2

i , (3.18)

where the mass flowdm
dt is replaced byρQi. Equation (3.18) models the steady state

torque load of the impeller.
Beside the torque described by (3.18) and extra torque termTf = Knω2

r (Sayers,
1990) is added. This term models the hydraulic friction due to liquid between the volute
and the impeller, see Fig. 3.5. Adding this term the final steady state expression of the
torque becomes,

Tp =− at2Q
2
i + at1ωrQi + at0ω

2
r , (3.19)

where,

at2 = ρ

(
r2 cot(β2)

A2
− r1 cot(β1)

A1

)
at1 = ρ

(
r2
2 − r2

1

)
at0 = Kn .
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The transient torque expression

The transient torque component is given by the second term on the right-hand side of
(3.16). Using (3.17) to describecx in this expression the following expression is ob-
tained,

Tt = JMv

dωr

dt
−KQ

dQi

dt
, (3.20)

whereJMv andKQ are constants and represent the moment of inertia of the water inside
the impeller, and the effects of flow changes on the impeller torque respectively. These
constants are given by,

JMv
= 2πhρ

∫ R2

R1

r3dr KQ = ρ

∫ R2

R1

r cot(β(r))dr .

The first term on the right-hand side of (3.20) describes the change of momentum of the
liquid inside the impeller due to changes in the impeller speed. The second term on the
right-hand side describes the tangential change of liquid speed due to flow changes. As
it is a change of speed in the tangential direction it will affect the transient component
of the shaft torque, as it is shown in (3.20).

The combined torque expression

From (3.19) and (3.20) the final expression of the external torque on the impeller is
found,

Tp = −at2Q
2
i + at1ωrQi + at0ω

2
r + JMv

dωr

dt
−KQ

dQi

dt
, (3.21)

whereTp is the external torque on the impeller.

3.3.3 The Head Expression

In this section an expression of the head is derived from the torque expression (3.18),
presented in the previous section. Head is defined by,

Hp = ρgH ,

whereH is the head andHp is the pressure. The theoretical headHe is given byHe =
P/(Qiρg), whereg is the gravity andP = Tiωr is the power. Including this in (3.18)
the following expression is obtained,

He =
(

r2
2

g
− r2

1

g

)
ω2

r −
(

r2

gA2
cot(β2)− r1

gA1
cot(β1)

)
ωrQi . (3.22)
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The head described by (3.22) is the theoretical obtainable head of the impeller. This head
is not equal to the head between the inlet and outlet of the pump due to head losses. The
following types of head losses are expected to influence the theoretical head (Sayers,
1990),

• Slip factor, here namedσs.

• Shock losses, here namedhs.

• Friction losses, here namedhf .

The slip factor is an empirical factor used to account for re-circulating flow inside the
impeller. The two last head losses are due to friction and shock losses inside the impeller
and at the inlet of the impeller respectively. The head losses affect the theoretical head
as shown in the following equation,

H + hs + hf = σsHe , (3.23)

whereH is the head between the inlet and outlet of the pump. The shock and friction
losses are given by,

hs = Ks(Qi −Qd)2 hf = KfQ2
i ,

whereQd is the design flow, which is a linear expression of the angular velocity e.i.
Qd = Kdωr. Ks, Kf andKd are all constants. When including these expressions in
(3.23) the model describing the head becomes,

H = −ah2Q
2
i + ah1ωrQi + ah0ω

2
r , (3.24)

whereH is the head produced by the pump,ωr is the impeller speed, andQi is the
volume flow through the impeller. The parameters in the expression are given by,

ah2 = Ks + Kf ah1 = σs

(
r2

gA2
cot(β2)− r1

gA1
cot(β1)

)
−KsK

2
d

ah0 = 2KsKd − σs

(
r2
2

g
− r2

1

g

)
.

The slip factorσs in the expression above is, as explained before, an empirical scaling
factor and is in general a non-linear function of the flow and the angular velocity, (Say-
ers, 1990). However, if this factor is assumed constant the parametersah2, ah1 andah0

are also constants.

3.3.4 Leakage Flow and Pressure Losses in the Inlet and Outlet

The model equations derived in the previous part of this section describe the relations
between the speed and flow of the impeller, and the pressure generated by the impeller.
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The impeller is not the only component affecting the hydraulic performance of the pump,
as the fluid also passes through the inlet, the diffuser, the volute and the outlet on its way
through the pump, see Fig. 3.6. To have a complete model of the hydraulic performance
of the pump, leakage flow and pressure losses caused by these components must be
considered.

In Fig. 3.9 the leakage flowq, the inlet and outlet flowQp, and the impeller flowQi

are presented.
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Figure 3.9: Sketch of the flows inside the centrifugal pump.Qp is the main flow com-
ponent andq is the leakage flow between the pressure and suction side of the impeller.

The leakage flowq in this figure is calculated using,

KJ
d

dt
q = aρgHi −Klq

2 ,

whereKJ is a constant depending on the mass of the fluid involved in the leakage,a is
a scaling constant taking into account that the pressure acting on leakage flow is not the
same as the pressure delivered by the impeller, and finallyKl models pressure losses in
the loop of the leakage flowq.

The pressure lossesHinlet andHoutlet in Fig. 3.9, at the inlet and outlet of the
pump respectively, are modelled by adding an extra pressure loss termKc in the flow
Qp. These pressure losses are called casing losses, as the pressure losses are caused by
the casing of the pump.

If each of the pressure losses are symbolized as valves, and the theoretical pressure
ρgHe is symbolized as a pump without losses, the diagram in Fig. 3.10 describes the
operation of the centrifugal pump.

Pump model including leakage flow

Including the description of the lekage flowq in the expressions of the impeller head and
torque in (3.24) and (3.21) respectively, the following model of the centrifugal pump is
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Figure 3.10: Diagram of the centrifugal pump. The valves describe the losses inside the
centrifugal pump, and the pump symbol symbolizes generated pressure without losses.

obtained,

KJ
dq
dt = ρg(−ah2(Qp + q)2 + ah1(Qp + q)ωr + ah0ω

2
r)−Klq

2

Hp = ρg(−ah2(Qp + q)2 + ah1(Qp + q)ωr + ah0ω
2
r)−KcQ

2
p

Tp = −at2(Qp + q)2 + at1(Qp + q)ωr + at0ω
2
r + JMv

dωr

dt −KQ

(
dQp

dt + dq
dt

)
,

(3.25)

whereHp is the pressure generated by the pump,Tp is the impeller torque andQp =
Qi − q is the inlet flow of the pump.

Simplified pump model

When the leakage flowq in Fig. 3.10 can be neglected a simplified model of the pump
can be used. The leakage flow can be neglected when Assumption 3.3.1 holds.

Assumption 3.3.1 For most centrifugal pumps the following assumptions hold in the no
fault case,

1. The dynamics of the leakage flowq is at least a decade faster than the main dy-
namics of the system, i.e.dq

dt ≈ 0 almost all the time.

2. |q| << |Qp| meaning thatQp ≈ Qi.

3. When 2 does not holdTp ≈ at0ω
2
r in (3.25).

When these assumptions hold the effect of the leakage flow on the pump performance is
neglible.
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When Assumption 3.3.1 holds the model (3.25) can be simplified to become,

Hp = ρg(−(ah2 + Kc)Q2
p + ah1ωrQp + ah0ω

2
r)

Tp = −at2Q
2
p + at1ωrQp + at0ω

2
r + JMv

dωr

dt −KQ
dQp

dt .
(3.26)

3.3.5 Multi Stage Pumps

To be able to increase the pressure generated by the pump without increasing the diam-
eter of the pump, normally a set of pump stages are connected in series. Hereby the
pressure across the pump becomes,

H = H1 + H2 + · · ·+ Hn (3.27)

wheren is the number of pump stages. If thesen pump stages are identical, meaning
that Hi = Hi1 = · · · = Hin and q = q1 = · · · = qn the model of a multi stage
centrifugal pump is given by the sum of each stage,

nKJ
dq
dt = nρg

(−ah2(Qp + q)2 + ah1(Qp + q)ωr + ah0ω
2
r

)− nKlq
2

Hp = nρg
(−ah2(Qp + q)2 + ah1(Qp + q)ωr + ah0ω

2
r

)− nKcQ
2
p −K ′

cQ
2
p

Tp = n
(−at2(Qp + q)2 + at1(Qp + q)ωr + at0ω

2
r

)
+

nJMv

dωr

dt − nKQ

(
dQp

dt + dq
dt

)
.

In this modelnKc expresses the pressure losses due to the guidens of the flow from one
stage to the next. Therefore, an extra casing loss termK ′

c is added to model losses at the
inlet and outlet of the pump.

If Assumption 3.3.1 still holds, which is normally the case, this model can be reduced
to,

Hp = ρg
(− (n(ah2 + Kc) + K ′

c) Q2
p + nah1ωrQp + nah0ω

2
r

)

Tp = −nat2Q
2
p + nat1ωrQp + nat0ω

2
r + nJMv

dωr

dt − nKQ
dQp

dt .

From this it is seen that the structure of the model is the same for a serie connected set
of identical stages, as for a single stage centrifugal pump.

Pump curves

Normally centrifugal pumps are described by two so-called pump curves. This is
through for both multi stage and single stage pumps. The two curves depict the vol-
ume flow versus the pressure and the power of the pump respectively. Normally the
curves are only depitch for one particular speed value, which is denoted the norminal
speed. An example of these pump curves is shown in Fig. 3.11.
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Figure 3.11: Pump curves describing the performance of a centrifugal pump at nominal
speed.

3.4 The Mechanical Part of the Centrifugal Pump

In this section the mechanical part of the pump is treated, meaning that a model describ-
ing the moment of inertia and the friction losses in the mechanical parts of the pump is
derived. The mechanical parts of interest when modelling the dynamics are:

• The rotor of the motor.

• The bearings in the motor and pump.

• The impeller.

• The shaft Seals.

Using Newton’s second law the dynamics of the mechanical parts can be described by,

Jm
dω

dt
= Te − Tl ,

whereTe is the torque produced by the motor (3.11),Tl is the load torque created by the
impeller (3.26) and mechanical friction losses respectively, and finallyJm is the moment
of inertia of the mechanical system.

The moment of inertia of the mechanical partsJm is given by the sum of the moment
of inertia of all rotating parts of the pump, i.e. it is given by,

Jm = Jr + Js + Ji .

HereJr is the moment of inertia of the induction motor rotor,Js is the moment of inertia
of the shaft, andJi is the moment of inertia of the impeller.
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If the friction lossesTf of the bearings and shaft seals are assumed linear, i.e.Tf =
Bωr, the load torque is given by,

Tl = Bωr +
(−at2Q

2
p + at1ωrQp + at0ω

2
r

)
+ JMv

dωr

dt
−KQ

dQp

dt
.

In this equation the first term on the right-hand side models the mechanical friction
losses, and the last term models the load torque of the impeller (3.21).

Including the load torque expression in the mechanical equations the model of the
mechanical system is obtained,

J
dωr

dt
= Te −Bωr −

(−at2Q
2
p + at1ωrQp + at0ω

2
r

)
+ KQ

dQp

dt
,

whereJ = Jm +JMv . The termdQp

dt in the above expression means that the mechanical
system depends upon the dynamics of the hydraulic application. This dependency is in
almost all applications very small, meaning that the following assumption holds for
almost all applications.

Assumption 3.4.1 It is assumed that the dynamics of the hydraulic application, in
which the pump is placed, is such that,

∣∣∣∣KQ
dQp

dt

∣∣∣∣ <<
∣∣−at2Q

2
p + at1ωrQp + at0ω

2
r

∣∣ ,

at all time. When this assumption holds it means that the application dynamics is so
slow that its effect on the pump dynamics is negliable.

Using this assumption the mechanical expression becomes,

J
dωr

dt
= Te −Bωr −

(−at2Q
2
p + at1ωrQp + at0ω

2
r

)
.

3.5 Final Model of the Centrifugal Pump

The model derived in the previous sections is described on state space form by the fol-
lowing system,

ẋ = f(x) + Gu + m(x,w)
y = h(x,w) .

(3.28)

In this system the state vector is,

x =
[
isd isq imd imq ωr

]T
,
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whereisd andisq are the motor currents in adq-frame fixed on the stator,imd andimq are
the magintizing currents described in the same frame, and finallyωr is the mechanical
speed of the pump.

The inputs of the system consist of the known input vectoru and the unknown input
vectorw, given by,

u =
[
vsd vsq

]T
w =

[
Qp

]T
,

wherevsd andvsq are the supply voltages of the motor described in the samedq-frame
as the motor currents, and the unknown input is the volume flowQp through the pump.

Except for the known inputs it is assumed that three variables are measured. These
are the motor currents and the pump pressure respectively. Therefore, the measurement
vectory in (3.28) is given by,

y =
[
isd isq Hp

]T
.

The matrixG, the vector fieldsf(x) andm(x,w) and the mappingh(x,w) in (3.28)
are presented below,

f(x) =




−Rs+R′r
L′s

isd + R′r
L′s

imd − zpωr
L′m
L′s

imq

−Rs+R′r
L′s

isq + zpωr
L′m
L′s

imd + R′r
L′s

imq

R′r
L′m

isd − R′r
L′m

imd + zpωrimq

R′r
L′m

isq − zpωrimd − R′r
L′m

imq
1
J

3
2zpLm (imdisq − imqisd)− B

J ωr




G =




1
L′s

0
0 1

L′s
0 0
0 0
0 0




m(x,w) =




0
0
0
0

− 1
J fT (Qp, ωr)




h(x,w) =




isd

isq

fH(Qp, ωr)


 ,

where the first four rows in the model represent the electrical part of the induction motor
and the fifth row describes the mechanical part of the pump.

In this model the expressionfH(Qp, ωr) describes the pressure produced by the
pump, and the expressionfT (Qp, ωr) describes the load torque of the pump. These
expressions are derived in Section 3.3, and are given by,

fH(Qp, ωr) = ρg
(−ah2Q

2
p + ah1Qpωr + ah0ω

2
r

)
fT (Qp, ωr) = −at2Q

2
p + at1Qpωr + at0ω

2
r ,

(3.29)
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whereah2, ah1, ah0 andat2, at1, at0 are constant parameters found from the physical
properties of the pump, see Section 3.3.

The model presented above is not valid in the whole state space since the functions
fH(Qp, ωr) andfT (Qp, ωr) are only valid for positive flow and speed. Therefore, the
state space of interest for this system is given byD = {(x,w)|(x1, · · · , x4) ∈ R4, x5 ∈
R+, w ∈ R+}, wherex1, · · · , x5 are states in the state vector andw is the unknown
input signal.

3.6 Discussion

In this chapter a model of the centrifugal pump including an induction motor drive is
derived. The obtained model is a fifth-order lumped parameter system, making Fault
Detection and Identification designs, based on this model, possible. However, the model
is very nonlinear, therefore a linearized version of the model is only expected to work
in a small neighborhood around the point of linearization. The model is composed of
three sub-models describing the electrical part of the motor, the mechanical parts of the
system and the hydraulic parts of the system respectively.

In the derivation of the model the dynamics is taking into account. It is shown that
under two assumptions given in the chapter, and if the mass of the liquid inside the
impeller is added to the mass of the impeller itself, the model of the hydraulics becomes
purely algebraic. This means that the liquid inside the impeller affects the moment of
inertial in the mechanical description of the pump, and that no additional dynamics are
added to the model due to the hydraulics of the pump.

The obtained model or sub-models will in the following be used in the derivation
of FDI-algorithms. Moreover, the understanding of the system obtained through the
model, is used in the design of a test setup, where a number of hydraulic, mechanical
and electrical faults can be simulated.
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Chapter 4

System Analysis and Fault
Modelling

In (Jørgensen, 1995), (Bøgh, 1997) and (Izadi-Zamanabadi, 1999) systematic methods
for developing fault detection, isolation and accommodation algorithms are presented.
These systematic methods include analysis tools aimed to identify faults and their causes
in physical systems. Failure Mode and Effect Analysis (FMEA) and Fault Propagation
Analysis (FPA) are proposed, as a way to start the development of these fault detection,
isolation and accommodation algorithms. These analysis tools will in this chapter be
used to analyse the centrifugal pump, resulting in a list of faults, which are expected to
happend in centrifugal pumps. A subset of these faults are chosen for futher investiga-
tion.

In Chapter 2 two basically different approaches to the fault detection and isolation
(FDI) problem were introduced. The first of these approaches is the signal-based ap-
proach, where a set of events are extracted from the set of measurements on the system.
The second approach is the model-based approach, where a model of the system is used
to extract knowledge of abnormal operation of the system. In Chapter 2 it is argued that
robustness is treated extensively in the second approach, but is hardly considered in the
first approach.

The model obtained using the FMEA and FPA is a logical model connecting faults
in the system with a set of effects chosen by the user. In this chapter a method for using
this model to analyse the robustness of signal based fault detection schemes is proposed.
This is done by defining a set of disturbing events, which are treated in the same way
as the faults in the FEMA and FPA. Hereby a model connecting both the faults and
disturbing events to the chosen set of end effects is obtained. The robustness of the
signal-based fault detection scheme is then obtained by analysing the connection among
faults, disturbing events and end-effects, where the end-effects are chosen as a subset of
the measurable events in the system. To help doing this a set of definitions and theorems
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are developed.
By including the notation of disturbing events in the FPA, the use of the approach

is extended to handle robustness of signal-based fault detection schemes. However, it
does not solve the problem with the manual steps in the analysis. One of these manual
steps is the cutting of loops inherent in the system under investagation (Bøgh, 1997).
In this chapter an automated way of handling these loops is proposed, meaning that the
remaining manual step is to setup the event model.

The chapter starts by presenting some preliminaries on the FMEA and FPA and their
use in connection with fault detection, isolation and accommodation in Section 4.1. The
remaining parts of the chapter are devoted to the presentation of the contributions on the
FMEA and FPA obtained in this work. First, the theoretical contributions are presented,
followed by the FMEA and FPA results on the centrifugal pump. In Section 4.2 the
theoretical results are presented. They are obtained using FMEA and FPA for robustness
analysis of signal-based fault detection schemes. In Section 4.3 the results obtained by
using the ideas, developed in Section 4.2, on the centrifugal pump are presented. This
includes a list of faults expected in the system, a FMEA and FPA model of the system,
and an analysis of the signal based detection possibilities. Finally, the chapter ends
with a presentation of test results obtained on a test setup particular developed for this
propose, and some concluding remarks. This is in Section 4.4 and 4.5 respectively.

4.1 Method for Fault Analysis

In (Izadi-Zamanabadi, 1999) a structured method for developing fault detection, isola-
tion and accommondation algorithms is described. The method includes 8 steps where
step numbers 1, 2 and 6 are interesting from a fault detection and isolation point of view.
These steps are shortly described here:

Fault modeling - step 1: In this step a qualitative model of the faults in each componet
of the system is made. This is done by dividing the system into suitable compo-
nents. In each of these components the faults and their effects are identified and
described. This is done using the Failure Mode and Effect Analysis (FMEA).

Fault propagation analysis (FPA)- step 2: In this step the propagation of the identi-
fied faults through the component of the systems is analysed. The result of this
analysis is a description of the connection between the faults in the system and a
set of interesting effects. This analysis is called Fault Propagation Analysis (FPA),
and is performed by first identifing the functional connection between the com-
ponents of the system, ending with a functional diagram (Bøgh, 1997). After that
this diagram is used for the fault propagation analysis.

Detector design - step 6:In this step detectors for detecting the fault in the system are
developed. Different approaches have be used in this step. The state of the art
on the area of fault detection and isolation in pumps is presented in Chapter 2.

44



Section 4.1: Method for Fault Analysis

In (Izadi-Zamanabadi, 1999) an extension to this step is proposed using structural
analysis. Structural analysis will also be used in this thesis as a tool for analysing
the model structure of the system before designing residual generators.

In this chapter the two first steps are performed on the centrifugal pump, while the rest
of the thesis is devoted to the last step.

From the above list it is seen that FMEA and FPA are used in steps 1 and 2. These
analysis tools form a systematic way of creating a high level qualitative model of the
system under consideration. The model needs only to be descriptive for the behaviour
under faulty conditions, which allow the model to be simple compared to dynamical
models.

Traditionally the FMEA and FPA have been used for analysing the fault behaviour
of a system, and to identify reconfiguration possiblities. Hereby the conditions for fault
robust control of the given system are obtained (Blanke et al., 2003). However, in this
work the purpose of introducing the FMEA and FPA is different. Here these analysis
tools are used as a first step in developing FDI algorithms. The purpose of using FMEA
and FPA is two folded, as it is used for both identifing the set of most important faults
in the system, and analysing different combinations of sensors for detection possiblities.
These sensor combinations are in this thesis denoted sensor configurations. The first of
these purposes is the normal outcome of a FMEA analysis when used in the design of
fault robust control algorithms (Blanke et al., 2003) and qualitative analysis of products.

4.1.1 Preliminaries: The FMEA and FPA

This section contains a short presentation of the FMEA and FPA, and their utilizations
in developing Fault Robust Control algorithms. This presentation is included for readers
not familiar with these analysis tools, and their use in the area of fault detection and
accommodation.

FMEA is a tool originally developed by reliability engineers to analyse components
of a system for possible failures, and their causes and effects (Blanke et al., 2003).
This tool is for analysing single components of a system, therefore the first step in a
FMEA is to identify these components in the system. Each of the components is then
analysed resulting in a set of tables including information about the failure modes, failure
causes, failure effects and risk assessment for each component. An example of such a
table is shown in Table 4.1.1, where a pressure sensor is considered. The table can also
include risk code and actions required. But this information is not used, when the FMEA
is utilized for designing fault detection and accommodation algorithms, therefore it is
omitted here.

This FMEA table includes information of the importance of each of the faults in the
risk assessmentcolumn, and the connection between the failure modes and the failure ef-
fects can be deduced from theFailure modeandFailure Effectcolumn. Mathematrically
this connection can be expressed via the fault propagation matrix defined in Definition
4.1.1.

45



Chapter 4: System Analysis and Fault Modelling

Table 4.1: An example of a typical FMEA worksheet (Blanke et al., 2003, Chap. 4). In
this example the result of analysing a pressure sensor is shown.

Item ident. Failure mode Failure cause Failure effect Risk assess-
ment

Pressure sen-
sor

Clogging Dirt Zero output High

Broken sup-
ply wire

Mechanical
vibration

Undefined
output

Low

Definition 4.1.1 (Fault propagation matrix) (Blanke et al., 2003, p. 78) For a given
boolean mappingM,

M : F × E → {0, 1}

of the finite set of component faultsF onto the finite set of effectsE . The fault propaga-
tion matrix is defined as follows

mi,j =
{

1 if fcj = 1 → eci = 1
0 otherwise,

wherefcj is thejth component infc ∈ F , andeci is theith component inec ∈ E .

As described in the beginning of this section the FMEA is a component-based anal-
ysis. Therefore only knowledge on each component is gained through this analysis. A
system will, in most cases, contain several components, and faults in one component
can affect other components in the system. Therefore a given fault in one component
can cause total failure in the system due to propagation of the fault effects through other
components in the system. To analyse the propagation of the identified faults, the fault
propagation analysis (FPA) is used. The aim of the FPA is to identify the connection
from the set of all failure modes in the system to a decided set end-effectseend. These
end-effects are normally the set of effects causing mailfunction of the system.

The result of the FPA is a fault propagation model or diagram. The first step in the
derivation of this model is to describe the physical connections of the components anal-
ysed using the FMEA. The model describing these connections is called the functional
model. Using the functional model the propagation of the effects of one part to the ef-
fects on another part is described, and depicted in a FPA diagram. An example of such
a diagram is shown in Fig. 4.1. The propagation of the faults is also described mathe-
matically using propagation matrices defined as in Definition 4.1.1, where parts of the
propagation matrix propagate one set of effects onto another set of effects. In this case
the setF contains the possible input effect vectors andE contains the possible output
effect vectors.
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end


Figure 4.1: The propagation of failures in a system. The failuresf1 andf2 are propor-
gated through component 3, thereby their end effects are identified ine3 = eend.

The result of the FPA is a connection between faults in the system and a decided
set of end-effects. The understanding of the propagation can be used to identify where
in the system faults can be stopped in order to prevent total failure of the system. This
knowledge can then be used in the development of reconfiguration logic for fault ac-
commodation.

In Fig. 4.1 it is emphasized that the connections between the faults in the system
and the end-effects are given by simple propagation through the components of the dia-
gram. Unfortunately this is not always the case, as loops can occure in the FPA diagram
(Blanke et al., 2003, Chap. 4). An example of a FPA diagram with a loop is shown in
Fig. 4.2. Such loops arise due to the physical structure of the system, and can therefore

Comp. 1


f
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e

1


Comp. 2


f
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e

2


Comp. 3


f

3


e

3

= e


end


Figure 4.2: Loop example in a fault propagation diagram of a system contaning three
components.

not be avoided in the model. Instead the loops are treated by cutting the connection
somewhere in the loop, and then extend the set of faults with the cutted effects. After-
wards each of the cutted effects are analysed to decide if they could be removed from
the FPA or should be treated as an extra fault.

In the above text it is mentioned that the FMEA and FPA traditionally are used for
designing Fault Tolerant Control systems. But if the end-effects are chosen as a subset
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of the measurable effects in the system, the FPA can be used in the development of
FDI algorithms. An example of this is shown in (Thomsen, 2000). Here the FPA is
used for analysing sensor configurations, revealing the connection between the faults in
the system and the set of measurable signals. Hereby the usability of different sensor
configuration can be analysed. In the following this approach is further developed to
handle robustness with respect to events in the system, which should not be considered
as faults. Finally, the developed approach is used in the analysis of the centrifugal pump.

4.2 Automated FPA

This section is concerned with the theoretical contributions to the FMEA and FPA, when
used in connection with FDI design. Firstly, an algorithm is proposed, which automates
the cutting of loops in the FPA diagram. Secondly, robustness of the chosen signal events
is considered.

4.2.1 The Automated FPA Algorithm

From the FPA diagram in Fig. 4.1 it is seen that a general component of this diagram
has a structure as shown in Fig. 4.3. Herefi is a vector containing the possible faults

Comp. i


f

i


e

i


e

j


Figure 4.3: A single component in a FMEA.fi is the possible failures of the component,
ej is effects affecting the component andei is the effects on the component performance
due tofi andej respectively.

in the component,ej contains the effects affecting the component, andei contains the
effects on the component due tofi andej respectively. The component shown in Fig. 4.3
implies that a component in the FPA diagram can be described as defined in definition
4.2.1.

Definition 4.2.1 (Component description)Theith componentci in the systemS con-
taningn components, i.e.S =

⋃n
i=1 ci, is described by,

ei ← Ai
fi
· fi +

i−1∑

j=1

Ai
j · ej +

n∑

j=i+1

Ai
j · ej , (4.1)

where
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• Ai
fi

: Fi × Ei → {0, 1} andAi
j : Ej × Ei → {0, 1} are propagation matrices on

form described in Definition 4.1.1.

• fi ∈ Fi = {0, 1}ni is the set of faults associated withith component.

• ej ∈ Ej = {0, 1}mj is the set of effects associated withjth component.

• + is the boolean disjunction operator∨ and· is the boolean conjunction operator
∧. Both defined as vector operators.

Remark 4.2.1 In Definition 4.2.1Ai
j = 0 means that there does not exist a connection

from componentj to componenti in the FPA diagram. AndAi
fi

= 0 means that no
faults affect theith component.

Remark 4.2.2 This description is similar to the one used in (Jørgensen, 1995; Blanke
et al., 2003) except for opertator and matrix notation. In (Blanke et al., 2003, Chap.
4) all the matricesAi

fi
andAj

i are lumped into one matrixMf
i . An example of such a

matrix is shown below,

ei ← Mf
i ⊗




fi
e1

e2

...
en




=
(
Mf

i,f Mf
i,e1

Mf
i,e2

. . . Mf
i,en

)
⊗




fi
e1

e2

...
en




,

whereAi
f = Mf

i andAi
j = Mf

i,ej
in Definition 4.2.1.

The component description in Definition 4.2.1 is slightly different from the conventional
one as seen in Remark 4.2.2. The reason for this will be obvious later in this section.

In Definition 4.2.1 a description of each component in the FPA diagram is defined.
Moreover the structure of the diagram is implicit given by the set of propagation matri-
ces, which equals0. An example of a FPA diagram is shown in Fig. 4.1. The structure
of this diagram can be described by a graphGe and a graphGf , whereGe contains the
structure of the propagation of the effects in the system, andGf contains the structure
of the propagation from the fault vectorsfi to the effect vectorsei ∀i ∈ {1, 2, · · · , n}.
The graphsGe andGf are defined as in Definition 4.2.2.

Definition 4.2.2 (Graph representation)A graph representation of a FPA diagram is
defined by two graphs, namely a directed graph (digraph)Ge and a bi-partite graph
Gf . The digraphGe is a graph withn verticesY. Where the vertexyi ∈ Y is associated
with the effect vectorsei. The edges ofGe are defined by the following rule,

• A directed edge exists fromyi to yj if the matrixAj
i 6= 0, where the matrixAj

i is
defined in Definition 4.2.1.
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The bi-partite graphGf is a graph withm verticesU andn verticesY. Where the vertex
ui ∈ U is associated with the fault vectorfi and the vertexyj ∈ Y is associated with the
effect vectorej . The edges ofGf are defined by the following rule,

• An edge exists betweenui andyj if the matrixAi
fj
6= 0, where the matrixAi

fj
is

defined in Definition 4.2.1.

A example of the graphs defined in Definition 4.2.2 are shown in Figs. 4.4 and 4.5.
The above definition defines a general graph representation of the FPA diagram. The
adjacency matrixDe associeated withGe includes the structure of the FPA diagram,
meaning that loops in the FPA diagram are seen in this matrix. Using this graph repre-
sentation it is possible to define the properties for the system to be on calculable form.
This is formulated in Defintion 4.2.3. Here the calculability is defined from the structure
of the adjacency matrixDe of Ge.

Definition 4.2.3 (Calculable graph reprecentation)The system described by the
graph representation in Definition 4.2.2 is on calculable form if then vertices inY
are ordered, e.i.Y = {y1, y2, · · · , yn}, such that the adjacency matrixDe associated
with Ge has the following structure,

De =




0 0 . . . 0 0 0
d2,1 0 . . . 0 0 0
d3,1 d3,2 . . . 0 0 0

...
...

.. .
...

...
...

dn−1,1 dn−1,2 . . . dn−1,n−2 0 0
dn,1 dn,2 . . . dn,n−2 dn,n−1 0




,

wheredi,j ∈ {0, 1}. Moreover the vertex representing the end-effecteend must be the
last vertex inY, i.e. the vertexyn is associated witheend.

All FPA diagrams with a graph representation as defined in Defintion 4.2.2, which do
not contain loops, can be transformed to this form by changing the order of the vertices
in Y (Shih, 1999).

If the graph representation is on the form defined in Definition 4.2.3 the following
theorem can be used for calculating the connection between faults and end-effects.

Theorem 4.2.1 Let the graph representation of a system be on the form defined in Def-
inition 4.2.3, withn vertrices inY andm vertices inU . Then by association of the edge

di,j in De with Ai
j , the connection between the faultsf =

(
fT
1 fT

2 · · · fT
m

)T
and

the end-effect vectoren is given by,

en ←
[
T1 T2 . . . Tn−1 I

] ·Af · f (4.2)
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where,

Tn−1 = An
n−1

Tn−k = An
n−k +

k−1∑

i=1

Tn−i ·An−i
n−k

and

Af =




A1
f1

A1
f2

· · · A1
fm

A2
f1

A2
f2

· · · A2
fm

...
...

. ..
...

An
f1

An
f2

· · · An
fm


 .

In Af the submatrixAi
fj
6= 0 if there is an edge from the vertexuj ∈ U to the vertex

yi ∈ Y elseAi
fj

= 0.

Proof: If the graphGe of a system, defined as in Definition 4.2.2, is on the form defined in
Definition 4.2.3 the logical structure of the system is given by,

e1 = A1
f · f

e2 = A2
1 · e1 + A2

f · f
e3 = A3

1 · e1 + A3
2 · e2 + A3

f · f
...

en−1 = An
1 · e1 + An

2 · e2 + · · ·+ An
n−2 · en−2 + An−1

f · f
en = An

1 · e1 + An
2 · e2 + · · ·+ An

n−2 · en−2 + An
n−1 · en−1 + An

f · f

(4.3)

where eachAj
i corresponds todj,i in the adjacency matrixDe of the digraphGe, and f =(

fT
1 fT

2 · · · fT
m

)T
, wherem is the number of components affected by faults.

We search for a solution ofen on the form,

en =
[
T1 T2 · · · Tn−1 Tn

] ·Af · f (4.4)

whereAf is given by,

Af =
[
A1

f
T

A2
f

T · · · An
f

T
]T

.

The structure ofAf corresponds to the structure of the adjacency matrixDf : F → E of the
bigraphGf .

From (4.3) and (4.4) it is seen thatTn propagates the effects fromAn
f · f to en, thereforeTn

can be found by settingAi
f = 0 for all i 6= n. From (4.3) it is seen that allej for j < n are equal

to zeros in this case. This implies that,

en = Tn ·An
f · f = I ·An

f · f
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meaning that,

Tn = I (4.5)

Tn−1 is found by settingAi
f = 0 for all i 6= n− 1. From (4.3) and (4.4) it is seen that allej

for j < n− 1 are equal to zeros in this case, anden−1 = An−1
f · f . This implies that,

en = Tn−1 ·An−1
f · f = An

n−1 · en−1

meaning that,

Tn−1 = An
n−1 (4.6)

whereTn−1 propagates the effect vectoren−1 to en.
Choosek ∈ {2, 3, · · · , n − 1} and assuming that allTn−i are known fori < n − k, then

Tn−k is found by settingAi
f = 0 for all i 6= n− k. From (4.3) and (4.4) it is seen that allej for

j < n− k are equal to zeros in this case, anden−k = An−k
f · f . This means that,

en = Tn−k ·An−k
f · f =

(
An

n−k + Tn−(k−1) ·An−(k−1)
n−k + · · ·+ Tn−1 ·An−1

n−k

)
· en−k

whereTn−i propagates the effect vectoren−i to en. From this equations it is seen that,

Tn−k = An
n−k + Tn−(k−1) ·An−(k−1)

n−k + · · ·+ Tn−1 ·An−1
n−k

Tn−k = An
n−k +

k−1∑
i=1

Tn−i ·An−i
n−k (4.7)

which complets the proof.¤

The above theorem represents a simple solution for finding the connection between fault
and end-effects in the system. The theorem uses Definition 4.2.3, which is the same
as assuming that no loops exist in the FPA diagram. Therefore, loops must be cutted
before the theorem can be used. This is a well known problem and is described in
(Blanke, 1996; Blanke et al., 2003; Bøgh, 1997). In these references it is suggested that
a solution to the loop problem is to cut loops at places, which are sensible in a physical
sense.

However, it can be argued that optimal cuts would be the set of cuts, which maxi-
mizes the number of faults seen in the chosen end-effects. By intuition these cuts would
be placed such that the backward walk from the end-effect to the cut is as long as pos-
sible. As an example see Fig. 4.4, wherey4 is chosen as the vertex associated with the
end-effect vector.

In this figure the edgesd2, d3 andd4 form a loop. This loop can be cutted at each
of these edges. But by cuttingd4 all faults associated with the vertisesy2 andy3 can
be seen in the effects associated with the vertexy4. This is not the case if the loop is
cutted at eitherd2 or d3. By doing this either all effects associated withy2 andy3, or
the effects associated withy2 can not be seen in the effects ofy4. Whend4 is cutted it
is possible to do the backward walky4 → y3 → y2, whereas in the other two cases the
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Figure 4.4: An example of the graphGe from Definition 4.2.2. This graph represents
the structure of the FPA diagram.

backward walk would bey4 → y3 andy4 respectively. This confirms the connection
between faults seen in the end-effect and the possible steps in the backward walk.

In the following an algorithm is presented. This algorithm is designed to sort out the
set of vertricesY and cut edges inGe such that the possible backward walks inGe are
maximized andDe is on the form defined in Definition 4.2.3. When an edge is cutted it
means that the propagation of an effect vector is removed from the analysis. In (Blanke
et al., 2003) it is argued that the cutted effects should be added to the fault vector, and
thereby treated as additional faults. In the following algorithm this is done by adding
vertices to the setU and edges toGf corresponding to each cutted effect. As the set
of verticesU corresponds to the faults in the system, the set of cutted effects are hereby
added to the set of faults as argued in (Blanke et al., 2003). The algorithm is given below,
and an example of using this algorithm is shown in the example ending this section.

Algorithm 4.2.1 (The cutting algorithm) Assuming that a system is described by two
graphs, as defined in Definition 4.2.2, withn verticesyi ∈ Y andm verticesui ∈ U ,
whereY andU are ordered sets. LetDf : U → Y be the adjacency matrix associated
with the graphGf andDe : Y → Y be the adjacency matrix associated with the graph
Ge. Then the algorithm is as follows:

Initialization: TransformDf andDe such that the vertex inY associated with the end-
effecteend is the last vertexY, and for all vertices at position1 to n − 1 in Y;
remove all vertices with zero colomns inDe recusively, and seti = n′ such that
the vertexyi is associated witheend, wheren′ is the number of vertices after
removing zero colomns.

Step 1: If there are non-zero elements above the diagonal element in theith colomn of
De then, set these equal to zero and add the vertexyi to the set of verticesU and
add a colomn inDf corresponding to this new vertexyi ∈ U . This new colomn
must have zero elements at positioni to n′ and a structure corresponding to the
ith colomn ofDe at position1 to i− 1.
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Step 2: Sort out the vertices at possition1 to i− 1 in Y such that the vertex at position
i − 1 is the vertex with edges incident to one or more of the vertices at positioni
to n′ and with fewest edges incident to the vetices at position1 to i− 1.

Step 3: Seti := i− 1 and go to step 1.

Using this algorithm on a given graph representation, the graphsGf andGe are forced
to have a structure as defined in Definition 4.2.3. Therefore Theorem 4.2.1 states the
connection between fault and end-effects. The obtained logical expression is on the
form,

eend ← A · f . (4.8)

In this expressionf contains both the faults in the system, and the effects cutted using
the cutting Algorithm 4.2.1. As it is argued in (Blanke et al., 2003; Bøgh, 1997), each
of the cutted effects should be analysed to check if they can be omitted in the analysis,
or should be treated as an additional fault.

Remark 4.2.3 It would be possible to define the two graphs in Definition 4.2.3 such
that each vertex inU is associated with a single faultfi and not a fault vectorfi, and
likewise each vertexY is associated with a single effectei and not a vector of effects
ei. This approach is not chosen here as the physical meaning is somewhat lost by doing
that.

In the following example the result of using this algorithm on a small system containing
only four components is shown.

Example

Using Definition 4.2.1 a system containing 4 components is shown in Table 4.2.1. Here

Table 4.2: An example of a system containing 4 components.fi contains failure modes
andei contains failure effects in thei’th component, andAi

fi
andAi

j are fault propaga-
tion matrices.

Part Name Failures Effects Transformations
c1 Comp. 1 f1 e1 A1

f1
,A1

4

c2 Comp. 2 0 e2 A2
3

c3 Comp. 3 f3 e3 A3
f3

,A3
1,A

3
2

c4 Comp. 4 f4 e4 A4
f4

,A4
1,A

4
3

it is seen that each componentci is described by the propagation matricesAi
fi

andAi
j .

TheAi
j = 0 is omitted in the system representation.
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The graph representation of the system in Table 4.2.1 is, according to Definition
4.2.2, given by the following two graphs,

Df =




11,f1 0 0
0 0 0
0 13,f3 0
0 0 14,f4


 De =




0 0 0 11,4

0 0 12,3 0
13,1 13,2 0 0
14,1 0 14,3 0




where the set of verticesU = {uf1 , uf3 , uf4} andY = {ye1 , ye2 , ye3 , ye4}. In these
adjacency matrices the symbol1j,i corresponds to a1 in the matrix, and the subscript
i, j denotes the position of vertices joint by the edge before the transformation. Here the
edge is incident from thejth vertex and incident toith vertex.

In these sets the vertexufi
is assosiated with the fault vectorfi and likewise the

vertexyej
is assosiated with the effect vectorej . The graphs are shown in Fig. 4.5.
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Figure 4.5: The graphsGf (Fig. (a)) andGe (Fig. (b)) before edges are cutted.

Now choosee3, e.i. ye3 ∈ Y, as the end-effect in the analysis. With this end-
effect the adjacency matrixDe of the graph representation is not on the form defined in
Definition 4.2.3. Therefore the cutting Algorithm 4.2.1 is used to cut and sort edges in
Ge to obtain the form defined in Definition 4.2.3. The first run through Algorithm 4.2.1
is shown below.

Initialization: TransformingDf andDe leads to the following matrix representation.
Hereby the last vertex inY becomes the vertex associated with the end-effecte3.

Df =




11,f1 0 0
0 0 0
0 0 14,f4

0 13,f3 0


 De =




0 0 11,4 0
0 0 0 12,3

14,1 0 0 14,3

13,1 13,2 0 0




with U = {uf1 , uf3 , uf4} andY = {ye1 , ye2 , ye4 , ye3}. Seti = n = 4 meaning
that the last vertex inY, ye3 , is treated in the algorithm.
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Step 1: Cut the edges above theith diagonal element, add theith vertex ofY to U , and
the cutted edges toGf , e.i. Df . This results in,

Df =




11,f1 0 0 0
0 0 0 12,3

0 0 14,f4 14,3

0 13,f3 0 0


 De =




0 0 11,4 0
0 0 0 0

14,1 0 0 0
13,1 13,2 0 0




with U = {uf1 , uf3 , uf4 , ue3} andY = {ye1 , ye2 , ye4 , ye3}.
Step 2: Sorting outDe such that the vertex at positioni− 1 is a vertex with edges inci-

dent to theith vertex, and as few as possible no zero elements above the diagonal
in De. This results in,

Df =




1f1,1 0 0 0
0 0 1f4,4 13,4

0 0 0 13,2

0 1f3,3 0 0


 De =




0 11,4 0 0
14,1 0 0 0
0 0 0 0

13,1 0 13,2 0




with U = {uf1 , uf3 , uf4 , ue3} andY = {ye1 , ye4 , ye2 , ye3}.
Step 3: Seti := i − 1 and return to step 1. This means that the vertexye2 is treated in

the next run through the algorithm.

After 5 cycils of the algorithm the following two adjact matrices are obtained,

Df =




0 14,f4 0 14,3 14,1

11,f1 0 0 0 0
0 0 0 12,3 0
0 0 13,f3 0 0


 De =




0 0 0 0
11,4 0 0 0
0 0 0 0
0 13,1 13,2 0




whereU = {uf1 , uf3 , uf4 , ue3 , ue1} andY = {ye4 , ye1 , ye2 , ye3}. The resulting graphs
are depicted in Fig. 4.6.

These are on the form defined in Definition 4.2.3, hence Theorem 4.2.1 can be used
to obtain relations between the faults and the end-effects. In this example the following
connection between the extended fault vector and the end-effects is obtained,

e3 ←
[
A3

1A
1
f1

A3
f3

A3
1A

1
4A

4
f4

(A3
2A

2
3 + A3

1A
1
4A

4
3) A3

1A
1
4A

4
1

] ·




f1
f3
f4
e3

e1




.

The remaining task is to analyse each cut to validate the results against the physical
proporties of the system.
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Figure 4.6: The graphsGf (Fig (a)) andGe (Fig. (b)) after edges are cutted.

4.2.2 Sensor Configuration and Disturbing Events

In the previous section analysis tools was derived, which can establish an expression
between faults and end-effects in a system. Using these analysis tools it is possible to
obtain knowledge about the effects of faults in any component of the system. This is nor-
mally used to identify the effects of the faults on the overall performance of the system.
However, the analysis tools could also be used to identify the connection between faults
and the measurable effects in a given system. If the identification of these connections
is the goal of the analysis, the end-effect should be chosen as a subset of the measurable
effects in the system. This subset should be interpreted as a given sensor configuration,
which hereby is analysed. The result of the analysis can in this case be used to develop
a logical detection scheme based on events extracted from measurements.

If the analysis tools are used for evaluating detection capabilities of different sensor
configurations, it is important to take disturbing events in the system into account. Here
disturbing events are defined as events, which affect the system, but should not be de-
tected. This means that the only difference between faults and disturbing events is that
the faults should be detected and the disturbing events should not. As the only difference
between faults and disturbing events is their interpretation, it is possible to use the anal-
ysis tools presented in the previous section, for analysing system with disturbing events.
This is done by extending the faults vector with the set of disturbing events. Duing this,
the end-effects are given by the following expression,

eend ←
(
Af Ad

) ·
(

f
d

)
, (4.9)

wheref is the set of faults in the system,d is the set of disturbing events, andAf ,
Ad are logical matrices defined as in Definition 4.1.1. This means that (4.9) is only a
factorization of (4.8). The factorization intof andd of the fault vector is formilized in
the following definition.
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Definition 4.2.4 (Faults and Disturbing Events)Define the set of all possible events
in (4.8) asF =

⋃n
i=1 Fi where eachFi is the set of events associated with theith

component andn is the number of components in the system. This set can be split into
a set which should be detectedFf ⊆ F and a set which should notFd ⊆ F , where
Ff ∩ Fd = ∅. Fd andFf denote the set of disturbing events and faults repectively.

From (4.9) it is seen that the end-effects are given byedi ← Ad · di in the no fault
case, i.e.f = 0. Hereedi is the effect vector generated by theith disturbing event vector
di ∈ Fd. Likewise, it is seen that the end-effects are given byefj ← Af · fk + Ad · dj

in the case of the fault vectorfk ∈ Ff and thejth disturbing event vectordj ∈ Fd. For
a fault vectorfk to distinguishable from the no fault case all possible effect vectors in
the faulty caseefj must be different from all possible effect vectors in the no fault case
edi, i.e.

efj 6= edi ∀di,dj ∈ Fd (4.10)

whereefj ← Af · fk + Ad · dj andedi ← Ad · di. If this expression is true for
all di,dj ∈ Fd the given faultfk is said to be detectable in a logical sense. This is
formalized in the following definition.

Definition 4.2.5 (Logical Robust Fault Detectability) The fault vectorfk ∈ Ff is log-
ical detectable if the effect vectoreend in the case of the fault vectorfk is different from
the effect vectoreend in the no fault case. This must be true for all possible combinations
of disturbing events in both the fault and in the no fault case.

From (4.10) it is seen that for a fault to be logical detectable in a robust manner,
it is necessary that at least one of the effects of the fault cannot be corrupted by any
disturbing events. The following theorem states the conditions for this to be possible.

Theorem 4.2.2 (Logical Robust Fault Detectability)LetIf be the set of vectors with
only 1 element different from zero. Letfk ∈ If be a vector with only thekth element
different from zero, and letAf andAd be defined as in (4.9). Let(Af )j,k be thej, kth

element inAf and likewise for(Ad)j,k, then the fault described byfk is logically de-
tectable iff,

∃ j ∈ {1, 2, · · · , ne} : (Af )j,k = 1 and
nd∑

i=1

(Ad)j,i = 0 (4.11)

wherene is the number of end-effects andnd is the number of disturbing events. This
is the same as saying thatfk can be distinguished from all possible combinations of
disturbing events.

Proof: (Af )j,k = 1 implies that thejth element ofefk ← Af fk is equal to 1 forfk ∈ Ff .
Moreover,

∑nd
i=1(Ad)j,i = 0 implies that thejth element ined ← Add is equal to zero for
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all d ∈ Fd, i.e. thejth element ofe will always be equal to zero in the no fault case. This
again implies that, only faults can affect thejth element ine. Therefore, if thejth element of
e ← Af f + Add is different from zero it must be due tof . fk will cause thejth element ine to
be different from zero, therefore (4.11) implies thatfk is robust detectable.

Now assume thatefk 6= ed, where

efk ← Af · fk + Ad · d (4.12a)

ed ← Ad · d . (4.12b)

This implies that there exists an elementj in efk anded, such that thejth element inefk is
different from thejth element ined. For this to be true thejth element ined must be equal to
zero, as the termAd · d is part of both (4.12a) and (4.12b). Fored to be zero for alld ∈ Fd the
jth row of Ad must equal zero, i.e.

∑nd
i=1(Ad)j,i = 0. Therefore, for thejth element ofefk to

be different from thejth element ofed, thejth element ofefk must be different from zero. This
implies that(Af )j,k = 1 for the faultfk to be detectable.¤

Remark 4.2.4 From Theorem 4.2.2 it is seen that ifFd = ∅, meaning that no disturbing
events exist in the system, then the demand for detectability offk reduces to(Af )j,k = 1
for somej ∈ {1, 2, · · · , ne}.
If Theorem 4.2.2 is fulfilled for a given fault in a system, then this fault is detectable
despite of the disturbing events affecting the system.

In some cases not all disturbing events are independent. As an example there could
exist two disturbing eventsd1 andd2; d1 saying that an input to a given component is
increasing andd2 saying that the same input is decreasing. In this cased1 andd2 are
mutually excluded ord1 = 1 → d2 = 0 andd2 = 1 → d1 = 0. When this is the case
Theorem 4.2.2 is too restrictive.

In general such dependencies between disturbing events can be described by,

di1 = 1, di2 = 1, · · · , diα = 1 → dj1 = 0, dj2 = 0, · · · , djβ
= 0 (4.13)

where there areα disturbing eventsdi1 to diα , which excludeβ disturbing eventsdj1

to djβ
. The following Corollary relaxes the demands for logical robust fault detection,

whenh dependencies on the form (4.13) are assumed.

Corollary 4.2.1 (Logical Robust Fault Detectability) For thecth dependency expres-
sion on the form (4.13), defineα + 1 fault propagation matrices, whereα matrices are
formed by setting theithl column equal 0,l ∈ {1, 2, · · · , α}, and one matrix is formed
by setting thejth

1 , jth
2 , · · · , jth

β columns equal 0. These matrices form the set,

Ac = {Ad,i1 ,Ad,i2 , · · · ,Ad,iα ,Ad,j} . (4.14)

If there areh dependency expression there existA1 toAh of this sets each corresponding
to one dependency expression. This means that there existsh′ =

∏h
x=1(αc +1) different
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combinations given by the set,

Ah =

{
Ah | Ah =

h∧
c=1

Ac, Ac ∈ Ac

}
.

Iff Theorem 4.2.2 holds for a faultfk ∈ If for all Ah ∈ Ah, then the fault is logical
detectable.

Proof: Before stating the proof a set of disturbing event vectors is defined. From Theorem 4.2.2
it is obvious that all end-effects, which can be affected by disturbing events, will be affected if all
elements ind is equal to 1. Let this worst case vector be given by1d. When there are mutual
excluded disturbing events, as given in (4.13), the vector1d becomes too restictive. In this case
the vectors with the maximal possible number of elements equal to one, must form the set of worst
case vectors. Let this set be given by,

Dc = {d1,d2, · · · ,dm}
Examining (4.13) the firstm − 1 vectors must be formed by setting one of the elementsi1 to iα
equal to zero. Themth vector is formed by setting the elementsj1, · · · , jβ equal to zero. From
this it is deduced that there existm = α + 1 independent vectors inDc describing the possible
worst case disturbing event vectors, when the mutual exclusion (4.13) exists. If there existh of
these mutual exclusions, formingh sets of vectorsD1,D2, · · · ,Dh all possible worst case vectors
can be defined as,

D = {d | d = d1 ∧ d2 ∧ · · · ∧ dh, whered1 ∈ D1, d2 ∈ D2, · · · ,dh ∈ Dh}
where∧ is the logical "and" operator. Each of the elements inD is formed byαc + 1 vectors,
meaning that the total number of vectors becomesΠh

c=1(αc + 1).
To prove Corollary 4.2.1 recognise that Theorem 4.2.2 holds for allAh ∈ Ah. This implies

that fk is logical robust detectable with respect to eachAh ∈ Ah, which again implies that
ef 6= ed whereef ← Af fk + Ahd anded ← Ahd. Ah =

∧h
c=1 Ac, whereAc ∈ Ac is on

the form described in the corollary. From the definition ofAc it is seen that for eachAc ∈ Ac

there corresponds exactly onedc ∈ Dc such thatAc1d = Addc. Using this the following is true
for eachAh ∈ Ah,

Ah1d =

(
h∧

c=1

Ac

)
1d =

(
h∧

c=1

Ac1d

)
=

(
h∧

c=1

Addc

)
= Ad

(
h∧

c=1

dc

)
= Add

whered ∈ D. Due to the one to one correspondency betweendc ∈ Dc andAc ∈ Ac the above
equation implies that if Theorem 4.2.2 hold for eachAh ∈ Ah, thenfk is logical robust detectable
for every disturbing event vectord ∈ D. In the start of the proof it was argued that all worst case
disturbing event vectors are contained inD. Therefore,fk is detectable for all possible disturbing
event vectors.

To show sufficiency just reverse the proof.¤

Theorem 4.2.2 and alternatively Corollay 4.2.1 states the demands for a fault to be
robust detectable in a logical sense. If this is the case for a set of faults in a system, it
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is interesting to know if the faults in this set can be distinguished from each other i.e.
efk

6= efi wheneverfk 6= fi wherefk, fi ∈ If . The following theorem states the
demands for this to be possible,

Theorem 4.2.3 (Logical Fault Identification)Let If be the set of vectors with only 1
element different from zero. Letfk ∈ If be the vector describing thekth fault and let
(Af )k denote thekth column inAf then the fault described byfk can be distinguished
from all otherf ∈ If in a logical sense iff,

(Af )k 6= (Af )i ∀i 6= k, i ∈ {1, 2, · · · , n} . (4.15)

Proof: Two faults fk and fi (fk 6= fi, fk, fi ∈ If ) are distinguishable ifefk 6= efi , where
efk ← Af fk andefi ← Af fi. Let fk be a vector with only thekth element different from zero.
Thenefk equals thekth column inAf , i.e. (Af )k. Likewise, letfi be a vector with only theith

element different from zero. Thenefi equals theith column inAf , i.e. (Af )i. From this it is
immediately seen that (4.15) implies thatefk 6= efi wheneverfk 6= fi, wherefk, fi ∈ If . This
completes the proof.¤

Remark 4.2.5 It should be noted that the effects used for fault identification must not
be corrupted by disturbing events. Therefore if there are disturbing events in the system
only the end-effectsej associated with

∑nd

i=1(Ad)j,i = 0 should be used in Theorem
4.2.3.

Remark 4.2.6 In (Blanke et al., 2003) a methods for defining the logical connection
from the effects to the faults is given, i.e.f ← B ¯ e where¯ is a special operator
defined in (Blanke et al., 2003). Using this expression it is possible to identify a given
fault from the measurable effects, whenever Theorem 4.2.3 is fulfilled for the system.

If both Theorems 4.2.2 and 4.2.3 are fulfilled for a set of faults in a system, then this set
of faults are said to be robust identifiable in a logical sense. Whenever this is the case it
is possible to measure a set of effect in the system, and from these measurements detect
and isolate the faults.

Unfortunately for many systems it is not possible to find a set of measurable effects
where both Theorems 4.2.2 and 4.2.3 are fulfilled. However, in many cases Theorem
4.2.3 is fulfilled but not Theorem 4.2.2. In these cases the problem is that the disturbing
events cannot be distinguished from the faults in a logical sense. However, it might
still be possible to quantitatively decouple the disturbing events from the faults using
model-based techniques.

4.3 Pump Applications

In this section first the FMEA technique will be used for analysing the centrifugal pump,
and second the algorithm presented in the previous section will be utilized for analysing
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sensor configuration on the centrifugal pump. In the first subsection the division of the
system into useful components is described. In the second subsection each of these
components are then analysed for their faults and fault effects. This is done by using
the FMEA. The result of this analysis is a set of possible faults in the system. 7 of
these faults are chosen for further investigation. Using this subset, different sensor con-
figurations are analysed, showing their capability in fault detection and isolation, when
signal-based fault detection methods are used.

The centrifugal pump under investigation in this section should be seen as a general
centrifugal pump, meaning that the faults identified are general centrifugal pump faults.
Therefore in real application only a subset of these faults will occur in practice. Even
though no particular type of pump is chosen in the investigation, a CR5-10 Grundfos
pump is used as an example, whenever it can illustrate the presented ideas.

4.3.1 Component Identification in the Centrifugal Pump

The FMEA and FPA are component based analysis tools, therefore the first step is to di-
vide the system, in this case the centrifugal pump, into suitable components. In (Bøgh,
1997) three approaches are proposed for this division. These are the component hier-
archy model, the physical structure model, and the functional structure model. In the
first approach, the system is divided into components based on the functionality of the
components, and in the physical structure model, physical components are identified. In
the last approach the functionality of the components is identified, meaning that a model
of the functional connection between the components is obtained.

In this work the physical structure model is used to identify components for the
FMEA, whereas the functional structure model is used for the FPA. In Fig. 4.7 a com-
ponent diagram of the pump is shown. In this diagram 7 physical components are iden-
tified. In Fig. 4.8 each of these components are identified on a CR 5-10 Grundfos pump.

In the middle of Fig. 4.8 the centrifugal pump is shown, and each component, iden-
tified in Fig. 4.7, is shown in separate subfigures. On the top left corner the induction
motor, driving the pump, is shown. In the physical structure diagram this motor is again
divided into an electrical and a mechanical component.

Below the motor, the centrifugal pump is shown. The centrifugal pump is also di-
vided into two components in the physical structure diagram, namely a hydraulic and a
mechanical component. The hydraulic component covers the parts directly involved in
the energy transfer from mechanical to hydraulic energy, and the mechanical component
covers the remeaning parts. The middel figure to the left is a zoom of the hydraulic parts.
Here the impeller and the guide vanes are seen.

On the top to the right the shaft is shown. The CR5-10 Grundfos pump has a short
shaft connection. In other pumps this can be longer and often positioned horisontal and
not vertical as in the CR5-10 case. The two last figures show the inlet and outlet part of
the pump. In some pump applications the inlet part can be equiped with a filter to avoid
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Figure 4.7: Physical structure diagram of the centrifugal pump. First the pump is divided
into three components; the motor, the shaft, and the hydraulics. These components are
again divided into 7 components.

large impurities to enter the pump.
The functional connection between the identified components, shown in Fig. 4.7,

is presented in Fig. 4.9. To cover the functionality of the pump two extra non physical
components are added. These are, a component covering the dynamics of the mechanical
parts of the pump, and a component deriving the pressure difference produced by the
pump. Each component is named in Table 4.3.

Each of the components in Table 4.3 will in the next subsection be analysed using
the FMEA.

4.3.2 FMEA on the System Components

Each of the components identified in the previous section, see Table 4.3, is in this section
described with respect to the functionality of the components, the faults in the compo-
nents, and the disturbing events affecting the components. Here a fault denotes an event
causing malfunction of a given component, and therefore should be detected. Whereas
a disturbing event is an event affecting the component, but should not be detected. The
faults and disturbing events, and their effects on each component are analysed using the
FMEA. The full result of this analysis is presented in Appendix A, whereas only the
faults and disturbing events are presented in this section. Beside the faults, disturbing
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Figure 4.8: A real pump example of the component chosen for the FMEA. The pump is
a CR5-10 Grundfos pump drived by a 1.5 [KW] induction motor.

events, and their effects on the components, the propagation matrices are presented in
Appendix A.

c1: Electrical part of the induction motor

This component contains the electrical parts of the induction motor driving the centrifu-
gal pump. This includes the grid connections, the stator windings, and the rotor bars.
This component converts electrical energy from the grid to mechanical energy on the
shaft of the pump. The faults identified in the component are,

fem1 Loss of one or more phases of the supply voltage.

fem3 Short circuit between windings in the motor.
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Figure 4.9: The functional connection between the components used in the FMEA of
the pump system.

Table 4.3: Description if the components in the centrifugal pump.

Comp. Name
c1 Electrical part of the induction motor
c2 Mechanical dynamics
c3 Mechanical part of the induction motor
c4 Shaft
c5 Hydraulic part of the centrifugal pump
c6 Mechanical part of the centrifugal pump
c7 Inlet part of the pump
c8 Outlet part of the pump
c9 Pressure difference

fem4 Short circuit to ground.

fem5 Broken rotor bar.

fem6 Eccentric air gab due to bend or misaligned motor shaft.

The main effects of all these faults are higher harminics oscillations in the motor current
and torque respectively.

Beside the faults described above the following set of disturbing events can affect
the component.

dem1 Unbalanced supply voltage.

dem2 Increased supply voltage.

dem3 Decreased supply voltage.
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dem4 Increased supply frequency with constant V/f relationship.

dem5 Decreased supply frequency with constant V/f relationship.

c2: Mechanical dynamics

This component contains the mass of all rotating parts in the pump. It is introduced
in the functional model to cover the convertion from torque to speed. As it is not a
physical component, but a functional signal transformation, no faults are identified in
the component.

c3: Mechanical part of the induction motor

This component contains the ball bearings and the shaft of the motor. The functionality
of the component is to transfer torque produced by the electrical part of the motor to
the shaft connecting the centrifugal pump and the motor. The faults identified on the
component are:

fmm1 Ware of the bearings in the motor.

fmm2 Rub impact between the stator and the rotor due to a bend or misaligned motor
shaft.

The main effect of these faults is vibrations in the mechanical structure of the motor,
beside that small torque oscillation can occur.

c4: Shaft mechanics

This component contains the shaft and the shaft connection attaching the motor and
pump shaft. The functionality of the component is to transfer the torque on the motor
shaft to torque on the pump shaft. The faults identified on the component are,

fsh1 Broken shaft.

fsh2 Misalignment between the motor and pump.

fsh3 Bend shaft.

The main effect of these faults are mechanical vibrations and, in the case of the last two
faults, torque oscillations.

c5: Hydraulics of the centrifugal pump

This component contains the impeller, the diffuser, the volute, and the guide vanes of
the centrifugal pump. The component converts mechanical energy from the shaft to
hydraulic energy induced into the liquid pumped by the pump. The faults identified in
the component are the following,
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fi1 Dry running.

fi2 Impurities fixed on the impeller, causing inbalance.

fi3 Wear of the impeller.

fi4 Blocked or partial blocked flow field inside the impeller.

fi5 Blocked impeller rotation.

fi6 Wear of the sealing ring.

fi7 Missing sealing ring.

fi8 Loss of the impeller.

The main effects of these faults are changes in the value of pressure and the load torque
generated by the impeller at a given flow. Moreover some of the faults can induce pres-
sure oscillations. These pressure oscillations can be either harmonics of the rotational
frequency, or noise like signals covering a larger frequency span.

Beside the faults described above the following set of disturbing events can affect
the component.

di1 Decreased flow through the pump.

di2 Increased flow through the pump.

c6: Mechanical part of the pump

This component contains those mechanical parts of the pump not directly involved in
the energy transformation from mechanical to hydraulic energy (the parts involved in
the energy transformation are contained in componentc5, hydraulics of the centrifugal
pump). This means that parts such as the shaft of the pump, bearings inside the pump,
and the casing are included in this component. The functionality of the component is to
secure the hydraulic parts in the right possition, and to lead the liquid to and from the
hydraulic part of the pump. The faults identified in the component are the following:

fmp1 Dry running.

fmp2 Inlet flow equal to zero.

fmp3 Ware of the bearings in the pump.

fmp4 Ware of seals.

fmp5 Rub impact between the impeller and the cassing.
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The first two of these faults are connected to the cooling of the pump, and therefore the
main effect of these faults is an increased temperature of the pump. The main effects of
the last four faults are mechanical vibrations and leakages from the pump casing.

Beside the faults described above the following set of disturbing events can affect
the component.

dmp1 Decreased flow through the pump.

dmp2 Increased flow through the pump.

c7: Inlet of the pump

This component includes the inlet parts of the pump, which can contain a suction pipe
and/or a filter. The functionality of the component is to lead the liquid to the impeller.
The faults identified in the part are the following,

fip2 Low pressure at the inlet of the pump.

fip3 Opstruction of the inlet of the pump.

The main effect of these faults is that the inlet pressure to the impeller becomes too low.
Beside the faults described above the following set of disturbing events can affect

the component.

dip1 Decreased flow through the pump.

dip2 Increased flow through the pump.

dip3 High frequency pressure oscillations.

c8: Outlet of the pump

This component includes the outlet part of the pump, which can contain an outlet pipe
or a riser pipe. The length of this pipe is defined by the two points where the pressure
difference generated by the pump is measured. The component is leading the liquid
from the pump to a given distination. The faults identified in this component are:

fop2 Leakage on the outlet pipe.

fop3 Opstruction of the outlet pipe.

The main effects of these faults are leakages from the system and decreased pressure
produced by the pump.

Beside the faults described above the following set of disturbing events can affect
the component.

dip1 Decreased flow through the pump.

dip2 Increased flow through the pump.
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c9: Generated differential pressure

This component is not a physical component, but a collection of the pressure effects
affecting the pressure difference across the pump. The component is necessary in the
functional model as the effects on the pressure difference is a function of head losses in
the inlet and the outlet components and the hydraulics of the centrifugal pump.

Sensor components

This work is not concerned with sensor faults, even though it is an important field.
Instead sensors are seen as components, which are able to measure special effects on the
system. Hence, they collect the end-effects used in the sensor analysis.

The list of possible sensors is long, some of the most important, with respect to the
centrifugal pump applications, are the following,

• Current sensors.

• Voltage sensors.

• Vibration sensors on the stator and/or the pump mechanics.

• Pressure difference sensor (between outlet and inlet).

• Absolute pressure sensor at the inlet and/or the outlet of the pump.

• Flow sensor at the inlet and/or the outlet of the pump.

• Temperature sensors inside the stator, bearings and/or seals.

• Speed sensors, on the motor and/or the pump shaft.

Of these especially the pressure difference sensor is often used for control purposes.
Likewise, if the speed of the motor is controlable normally expressions of the currents
and the voltages of the motor are also available. If the system is equipped with a surveil-
lance system, a subset of all the sensor information can be available. Unfortunately, this
is only the case in very few centrifugal pump applications.

4.3.3 Identifying Interesting Faults

Normally, in the FMEA it is common to include risk assessments and frequencies for
the faults expected in the given component. These risk assessments and frequencies are
attached to a given product. In this work no specific centrifugal pump is chosen, instead
the general components forming a centrifugal pump is analysed. Therefore, it has not
been possible to make a risk assessment and even less possible to include frequencies of
the faults. Instead the FMEA has be used to identify a set of common faults in centrifugal
pumps, and their effects on the component under investagation. The obtained set can
then be used as a gross set when analysing a specific centrifugal pump.
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As neither risk assessments nor frequencies are identified for the faults on the cen-
trifugal pump these cannot be used as guidelines for choosing faults for further investa-
gation. Instead a set of fault is chosen using the following criteria:

• The fault must be expected to happen in real life applications.

• It must be possible to simulate the fault on a test-bench without changing compo-
nents in the pump.

The first of these criteria is included to insure the relavance of the faults from an indus-
trial point of view. The second criterion is included to make it possible to simulate the
fault behaviour in real time on a test-bench.

Using these criteria the following set of faults is chosen for futher investagation,

Fault Group Faults Fault Description
fe1 fem3 Short circuit between stator windings.
fh1 fi4 Inc. hydraulic resistance inside the pump.
fh2 fip3 Inc. hydraulic resistance at inlet.
fh3 fi6 fi7 Wear of or missing sealing ring
fm1 fmp5 Rub impact between impeller and casing
fin1 fi1 fmp1 fip1 fop1 Dry running.
fin2 fip2 Too low inlet pressure. Can cause cavita-

tion.

Of these faultsfi1 , fmp1 , fip1 , fop1 , and fip2 are input faults meaning that they are
caused by unsuitable operation of the application in which the pump is placed. These
type of faults are also called external faults. Even though these faults are not dirrectly
connected to the components of the pump, they are very important to detect. The reason
is that dry running will destroy the bearings of the pump in a few seconds, and too
low inlet pressure will cause cavitation inside the pump, which again will destroy the
impeller over time.

Beside these faults of course all disturbing events affecting the system must be taken
into account in the following analysis. The disturbing events are,

Dist. Group Dist. Dist. description
de1 dem1 Unbalanced supply voltage.
de2 dem2 Increased supply voltage.
de3 dem3 Decreased supply voltage.
de4 dem4 Increased supply freq. with const. V/f.
de5 dem5 Decreased supply freq. with const. V/f.
dh1 di1 dmp1 dip1 dip1 Decreased flow through the pump.
dh2 di2 dmp2 dip2 dip2 Increased flow through the pump.
dh3 dip3 High frequency pressure oscillations.
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Collecting the chosen fault and disturbing events the following logical fault vector is
obtained,

fe =
(
fT dT

)T
(4.16)

where,

f =
(
fe1 fh1 fh2 fh3 fm1 fin1 fin2

)
d =

(
de1 de2 de3 de4 de5 dh1 dh2 dh3

)
.

(4.17)

In the next section the effects of this fault vector on different measureable signals are
analysed.

4.3.4 FPA on the General Pump System

In Section 4.2.1 it is argued that logical models of the components forming the system
can be described as defined in Definition 4.2.1. Using this definition the component
model of the centrifugal pump, presented in Section 4.3.1, is given in Table 4.4.

Table 4.4: The component description of the centrifugal pump. The structure of each of
the logical matrices is given in Appendix A.

Comp. Faults Effects Transformations
c1 fem eem Aem

f ,Aem
dy

c2 0 edy Ady
em,Ady

mm,Ady
sh,Ady

mp,A
dy
i

c3 fmm emm Amm
f ,Amm

dy

c4 fsh esh Ash
f ,Ash

dy

c5 fi ei Ai
f ,Ai

sh,Ai
ip

c6 fmp emp Amp
f ,Amp

sh ,Amp
i

c7 fip eip Aip
f

c8 fop eop Aop
f ,Aop

mp

c9 0 edh Adh
i ,Adh

op ,Adh
ip

Having a model on this form Algorithm 4.2.1 and Theorem 4.2.1 can be used to de-
rived the connection from the faults and disturbing events, to any effect vectore in the
system. Therefore, by identifing all measureable effects of interest it is possible to estab-
lish a connection between faults and disturbing events, and a subset of the measurable
effects. This connection can then be used to evaluate the usability of the given sensor
configuration, when the design of signal-based fault detection schemes is considered.

In the previous section a list of sensors used on centrifugal pumps is presented.
Moreover, it is argued that some of these sensors are only used in special applications.
The most frequently used sensors are the electrical sensors and the pressure difference
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sensor. Therefore these should attend special attention when developing intelligent FDI
algorithms. The electrical and pressure sensors are often used for control purposes in
hydraulic applications, and are therefore often available for other purposes too. This
means that the cost of implementing a supervision system is reduced considerably by
using only these sensors as input to the FDI algorithms.

Beside the sensors just mentioned, the flow sensor is considered. Flow sensors are
normally expensive, but by using the newest micro technology it is possible to reduce
the cost considerably. This means that this sensor will become interesting in even small
centrifugal pump applications. Also a sensor measuring the impeller eye pressure is
considered. The flow sensor and the impeller eye pressure sensor are considered to be
additional sensors and are therefore increasing the cost of implementing the supervision
system.

To summarize; the effects seen in the following sensors are analysed using the FPA,

• Current sensors.

• Voltage sensors.

• pressure difference sensor (between outlet and inlet).

• Flow sensor.

• Impeller eye pressure sensor.

The results of the FPA using these sensors are presented in the following, where each of
the logical matrices are obtained by using Algorithm 4.2.1.

Effects on the electrical part of the motor

The effects measurable using the current and voltage sensors are all found in component
c1 Electrical Part of the Motor. The measurable effects on this component are,

eem,i1 ∼ Increased current.
eem,i2 ∼ Decreased current.
eem,i3 ∼ Oscillations in the length of the pack transform current.
eem,i4 ∼ Unbalanced stator current.
eem,v1 ∼ Zero voltage in one or more of the phases.
eem,v2 ∼ Oscillations in the length of the pack transform voltage.
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The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,




eem,i1

eem,i2

eem,i3

eem,i4

eem,v1

eem,v2



←




1 0 0 1 1 0 0 0 1 0 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 0 1
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0




(
f
d

)

(4.18)

wheref is the fault vector andd is disturbing event vector, both defined in (4.17).

Effects on the pressure difference generated by the pump

The effects measuable using the pressure difference sensor are all found in component
c9 Pressure Difference. The measurable effects on this component are,

eop,h1 ∼ Increased pressure difference across the pump.
eop,h2 ∼ Decreased pressure difference across the pump.
eop,h3 ∼ Zero pressure difference across the pump.
eop,h4 ∼ Harmonic oscillations in the pressure difference signal.
eop,h5 ∼ High frequence oscillations in the pressure difference signal.
eop,h6 ∼ Pressure difference across the pump is not defined.

The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,




edh1

edh2

edh3

edh4

edh5

edh6



←




0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 1 1 1 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0




(
f
d

)

(4.19)

wheref is the fault vector andd is disturbing event vector, both defined in (4.17).

Effects on the flow measurement

Using a flow sensor it is possible to measure effects on the flow input, meaning that the
effects of the input faults and disturbing events, which are associated with the flow, are
measurable with this sensor. The measurable effects on this component are,
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eq1 ∼ Increased flow
eq2 ∼ Decreased flow
eq3 ∼ Not defined

The connection between these effects, and the faults and disturbing events in the system
is given by the following logical equation,




eq1

eq2

eq3


 ←




0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0




(
f
d

)

(4.20)

wheref is the fault vector andd is disturbing event vector, both defined in (4.17).

Effects on the impeller eye pressure measurement

It is well known that the inlet pressure has large impact on the pump performance, as
cavitation will occur if this pressure becomes too low. If cavitation does occure it will
destroy the pump over time. Therefore, by measuring the pressure at the impeller eye it
might be possible to detect decreases in this pressure and thereby detect the possibilities
for cavitation. Moreover measuring the pressure at the impeller eye pressure noise due
to cavitation might be measurable. The effects in the impeller eye pressure are found in
componentc7 Inlet of the Pumpandc5 Hydraulic part of the centrifugal pump, where
the mean pressure is coming fromc7 and the pressure noise due to cavitation is coming
from c5. The measurable effects are,

eeh1 ∼ Noise like pressure oscillations
eeh2 ∼ Impeller eye pressure not defined
eeh3 ∼ Impeller eye pressure too low

The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,




eeh1

eeh2

eeh3


 ←




0 0 1 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0




(
f
d

)

(4.21)

4.3.5 Sensor Configuration Analysis

In this section different combinations of the proposed sensors are analysed with repect
to logical robustness and identification. This is done by analysing the logical connection
between the measurable effects in each sensor and the faults in the system. In this anal-
ysis both logical robustness and identification possibilities are considered. The logical
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connections between faults and effects were established for each of the sensors in the
previous section.

The robustness of the different sensor configurations could be analysed using Theo-
rem 4.2.2, but by looking at the description of the disturbing events in Section 4.3.3 the
following mutually exclusive expressions of the disturbing events are recognized,

de2 = 1 → de3 = 0 de3 = 1 → de2 = 0
de4 = 1 → de5 = 0 de5 = 1 → de4 = 0
dh2 = 1 → dh1 = 0 dh1 = 1 → dh2 = 0

asde2, de4 anddh2 are increased voltage, frequency and flow respectively, andde3, de5

anddh1 are decreased voltage, frequency and flow. These dependencies are taken into
account using Corollary 4.2.1. When the robustness properties are establised the pos-
sibilities for fault identification of the detectable fault can be analysed, using Theorem
4.2.3.

The results are presented in two logical vectorsRr andRi, whereRr contains
the results of the robustness analysis, andRi contains the results of the identificability
analysis. Such that,

if the property holds forfj thenrj := 1 ,elserj := 0

wherefj is thejth component in the fault vectorf andrj is thejth component in either
Rr orRi dependent on which property is analysed. The fault vectorf is given by,

f =
(

fe1 fh1 fh2 fh3 fm1 fin1 fin2

)

where eachfj is described in Section 4.3.3. Three sensor configurations are considered
in the following, these are,

1. Sensors measuring the electrical quantities, e.i. the voltage and current measure-
ments.

2. Sensors measuring the electrical quantities and the pressure difference across the
pump.

3. Sensors measuring the electrical quantities, the pressure difference and the volume
flow.

4. Sensors measuring the electrical quantities, the pressure difference, the volume
flow and the impeller eye pressure.

The results of the analysis of these different sensor configurations are presented in the
following.
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Electrical measurements

Firstly, only the effects in the electrical measurements are considered, e.i. the effects
measurable using the current and voltage sensors. The connection from the faults and
disturbing events, to their effect on the electrical quantities is given by (4.18). This
equation is on the form,

e ← [
Af Ad

] ·
[
f
d

]

meaning that Theorem 4.2.2 and Corollary 4.2.1 can be used to establish the logical
robust fault detection possibilities. The result of this analysis is shown below,

Rr =
(
0 0 0 0 0 0 0

)
. (4.22)

FromRr it is seen that it is not possible to distinguish any of the faults from possible
logical combinations of disturbing events. This means that non of these effects can be
used in a robust signal-based fault detection scheme.

Electrical and pressure difference measurements

Secondly, consider the effects on the electrical measurements and the pressure difference
measurement. These are given by (4.18) and (4.19). The result of this analysis is shown
below,

Rr =
(
0 1 0 0 1 1 0

)
. (4.23)

Here it is seen that 3 of the 6 faults are detectable using signal-based methods.
Normally it is impossible to measure the high frequency components in the pressure

signal using standard pressure sensors. To analyse the detection properties under this
assumption, the high frequency pressure componenteop,h5 is removed from the analy-
sis. Moreover it is assumed that the pressure value is always available, meaning that the
effect eop,h6 is also removed. The result of this test is shown below,

Rr =
(
0 1 0 0 1 1 0

)
. (4.24)

By comparing this result with the result from the analysis including the high frequency
components, it is seen that all the fault information, not corrupted by disturbing events,
is contained in the low frequency parts of the pressure signal.

Electrical, pressure difference and flow measurements

In the third analysis the electrical measurements are combined with both a pressure
measurement containing high frequency components and a flow measurement. These
are given by (4.18), (4.19) and (4.20) repectively. The result of this test is shown below,

Rr =
(
0 1 0 0 1 1 0

)
. (4.25)
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Comparing these results, with the results of the analysis where only the electrical mea-
surements and the pressure sensor are considered, it is seen that no addition information
is added using the flow sensor. This is in fact true when only logical combinations are
considered. But, as it will be shown in Chapter 6, The flow sensor can be used for dis-
turbance decoubling, when model-based methods are used. Hereby, it becomes possible
to detect the faultfh3 corresponding to increased leakage flow inside the pump.

Electrical, pressure difference, flow and impeller eye pressure measurements

As the last analysis a pressure sensor measuring the impeller eye pressure is added. This
means that effect in the electrical quantities, the pressure difference, the volume flow,
and the impeller eye pressure are assumed known. These are given by (4.18), (4.19),
(4.20) and (4.21) respectively. The result of this analysis is shown below,

Rr =
(
0 1 1 0 1 1 1

)
. (4.26)

Here it is seen that only the faultsfe1 andfh1 corresponding to inter-turn short circuit
and leakage flow are undetectable. To check the possibilities for identification of the
the 5 detectable faults, the effects not corrupted by disturbing events are analysed using
Theorem 4.2.3. The logical expression of the faults is given by the following expression.




eem,i4

eem,v1

edh3

edh4

edh6

eq3

eeh2

eeh3




←




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 1 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 1 0 0 0 1




· (f) .

In this expression the effects, which can be corrupted by disturbing events, are removed.
The result of the detectability analysis is shown below,

Ri =
(
x 0 0 x 0 1 0

)
(4.27)

wherex corresponds to the fault not robust detectable. Here it is seen that only one fault
is distinguishable from the other faults, when all the effects corrupted by disturbing
events are removed.

4.4 Detection Algorithm for the Centrifugal Pump

In this section an example of a robust signal-based detection scheme is developed. The
obtained detection scheme is tested on a test-bench particular developed for this purpose.
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4.4.1 Decision Logic

In the analysis presented in the previous section the system was assumed to be disturbed
by 8 different disturbing events, see Section 4.3.3. If this assumption is relaxed by
removing the disturbing eventde1 the robust detection properbilities are increased. Re-
moving this disturbing event is the same as assuming that the supply voltage is balanced
at all times. Now consider the sensor configuration including the following sensors,

• Current sensors.

• Voltage sensors.

• Low bandwide pressure difference sensor.

With this sensor configuration the result of the FPA is the following,

Rr =
(
1 1 0 0 1 1 0

) Ri =
(
1 0 x x 0 1 x

)

where thex’s inRi indicates that the given fault is not robust detectable (the interpreta-
tion ofRr andRi is described in Section 4.3.5). FromRr it is seen that four faults are
logical robust detectable. This means that the following fault vector is detectable using
the considered sensor configuration,

f =
(

fe1 fh1 fm1 fin1

)
.

The connection between the measurable effects, and the faults and disturbing events is
in this particular case given by the following logical equation,




eem,i3

edh3

edh4


 ←




1 1 1 0
0 0 0 1
0 1 1 0







fe1

fh1

fm1

fin1


 , (4.28)

where the measurable effects not in use are removed. From (4.28) it is easy to see that
the faultsfh1 andfm1 are indistinguishable as they affect the same measurable effect.
This is also shown inRi. Likewise it is seen inRi that the faultsfe1 andfin1 can be
distinguished from the remaining two faults. This is confirmed by examination of (4.28).
The detection logic is very simple in this case, and is given by,

eem,i3 → fe1

eem,i3 ∨ edh4 → fh1

eem,i3 ∨ edh4 → fm1

edh3 → fin1 .

(4.29)

In this expressioneem,i3 indicates frequency components of the length of the Park trans-
formed motor currents, where the length of the Park current vector is given by,

‖isdq‖ = ‖Tdqisabc‖ .
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In this expression the same notation as in Chapter 3 is used. The effectedh3 corresponds
to zero difference pressure, when the pump is running. Finally, the effectedh4 corre-
sponds to low freqency harmonic oscillations in the pressure measurements. Here low
frequency components correspond to frequencies larger than 0 [Hz] and up to 2-4 times
the supply voltage frequency.

4.4.2 Test Results

To test the validity of the decision logic, derived in the previous subsection, data sets ob-
tained by simulating faults on a centrifugal pump is analysed. These data are obtained by
running tests on a test-bench particular developed for testing fault detection algorithms
in this project. A sketch of the test-bench is shown in Fig. 4.10. The pump used in the
test-bench is a Grundfos 1.5(KW ) CR5-10 pump.
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Figure 4.10: Sketch of the test-bench. The measurements are the electrical quantities,
the pressure differenceHp delivered by the pump and the volume flow through the pump
Qp.

In the tank and pipe system, connected to this pump, the valveV1 is used to model
disturbances in the system. The inter-turn short circuit is simulated by shorting windings
in phasea in the costimized designed stator particular developed for this purpose. Dry
running is simulated by closingV2 and openingV3, and rub impact is simulated by
adding an extra force on the shaft. During the test, presented here, this is done by
mounting twist on the shaft, which rubs against the mechanical connection between the
pump and motor. Hereby an oscilating force, similar to the one expected in a pump
during faultfm1, is added. Finally, clogging inside the pump can be simulated by the
closing valveVc. However, this valve simulates clogging of for example an inlet filter,
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Table 4.5: Summing of the test results. Here, the faults denoted inter-turn, Dry-running,
and rub-impact corresponds tofe1, fm1, andfin1 respectively. Likewise, and increase in
σis, andσh corresponds toeem,i3, andedh4 respectively. Finally, whenµh approximate
zero it corresponds toedh3.

Normal Inter-turn Rub-impact Dry-running
µis 2.7366 5.2066 4.6263 2.0450
σis 0.0037 0.4954 0.0141 0.0041
µh 2.2178 2.2561 1.6402 0.1054
σh 0.0003 0.0006 0.0067 0.0010

and not clogging in one of the channels in the impeller, which was assumed in the logical
analysis. Therefore, results from this test are not considered here.

The measurable effects considered in these tests are affecting the current and the
pressure measurements, therefore only these will be analysed in the following test re-
sults. To evaluate the robustness of the approach, signals obtained on the pump at con-
stant speed and at different positions of valveV1 are analysed. The different valve po-
sitions simulates the no fault condition at different hydraulic loads. Results from this
test are shown in Fig. 4.11. From these test results it is obvious that the DC-level of
the considered signals are not usable for fault detection. This was also predicted by the
FPA-analysis performed in Section 4.4.1.

Figs. 4.12, 4.13, and 4.14 depitch the current and pressure signals when the pump
is exposed to the three faultsfe1, fm1, andfin1 denoting inter-trun short circuit, rub
impact, and dry running respectively. The results of these tests are summarized in Table
4.5. In the evaluation of the resultsσis andσh are used as measurements of the end-
effectseem,i1 and eh4 respectively. The end-effectedh3 is assumed triggered when
µh ≈ 0.

Considering the results presented in Table 4.5 it is seen thatσis is increased consid-
erably in the case of the inter-turn faultfe1 and the rub-impact faultfm1. Comparing
these results with the decision logic in (4.29), and rembering thatσis is a measure of
the end-effecteem,i1 it fits perfectly. Likewise, by usingσh as a measure of theedh4

it is seen that the rub-impact faultsfm1 is the only fault which increasesσh. This also
fits the results of (4.29) perfectly. Finally, the only fault forcingµh close to zero is the
dry-running faultfin1. As µh ≈ 0 is considered a measure ofedh1 this also fits the
results of (4.29).

4.5 Discussion

In the literature it is described how Failure Mode and Effect Analysis (FMEA) and Fault
Propagation Analysis (FPA) are used in the design of Fault Tolerant Control (FTC).
However, these tools are general analysis tools, and could as well be used in the design
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(b) Pressure difference across the pump.

Figure 4.11: Results obtained when running the pump at constant speed and different
positions of valveV1. The change in valve position simulates different load condition of
the pump.
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(b) Pressure difference across the pump.

Figure 4.12: Results obtained when introducing an inter-turn short circuit in phasea of
the induction motor stator. The fault is introduced at time 6.05 [sec] and removed at time
5.75 [sec]. The mean and variance of the two presented signals are calculted from data
between the two indicator lines. During the test the pump is running at constant speed
and with valveV1 fixed at a constant position.
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(b) Pressure difference across the pump.

Figure 4.13: Results obtained when introducing a rub-impact fault on the pump. Here,
the pump is affected by the fault during the whole data series. The mean and variance of
the two presented signals are calculated from data between the two indicator lines. Dur-
ing the test the pump is running at constant speed and with valveV1 fixed at a constant
position.

of Fault Detection and Identification (FDI) alogrithms. In this chapter these algorithms
are used as analysis and design tools in the design of signal-based FDI algorithms.

In the first part of the chapter some theoretical considerations on using FPA in the
design of signal-based FDI are considered. It is well known that some workarounds are
necessary in the FPA when loops occur in the system model. Normally, this is handled
by cutting the loops and then treat the cutted effects as additional faults in the system. In
this chapter an algorithm for identifing the optimal cuts in the loops is developed. From
the result obtained using this algorithm it is easy to find the connection between the
faults in the system and any set of end-effects. This can be done by using a theorem also
prestented in this chapter. Hereby the step of cutting loops in FPA is fully automated,
meaning that the only manual work necessary in the FPA is to set up the event model of
the system. The developed algorithm can be used in the design of FTC as well as FDI.

One of the main concerns in the design of FDI algorithms is how to handle dis-
turbances in the system. This is necessary to avoid generating fault alarms. To treat
this problem in the frame work of the FPA, it is proposed to define a set of disturbing
events. These disturbing events are treated as faults in the FPA analysis, meaning that
the connection between faults as well as disturbing events can be established using the
automated FPA. When this connection is established the connection between disturbing
events and end-effect is used to identify those of the end-effects, which will be corrupted
by disturbing events. Hereby it is possible to find the end-effects, which can be used for
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(b) Pressure difference across the pump.

Figure 4.14: Results obtained when introducing a dry running fault at the test setup.
The fault is introduced at time 3.5 [sec] and removed at time 10 [sec]. The mean and
variance of the two presented signals are calculated from data between the two indicator
lines. During the test the pump is running at constant speed and with valveV1 fixed at a
constant position.

fault detection in a robust manner. A theorem for doing this is developed in the chapter.
In the second part of the chapter the FMEA and FPA are used in an analysis of

a centrifugal pump. First the FMEA is used to identify all faults expected to happen
in a centrifugal pump. This result can be used when a fault detection scheme should
be developed, as it contains information about the faults, which should be expected in
a centrifugal pump. In the presented analysis a list of possible disturbing events are
also included. The results of the FMEA are used in the FPA to analyse different set
of measurable end-effects for their fault detection capabilities. The analysed end-effects
are all measurable by conventional sensors, meaning that only voltage, current, pressure,
and flow sensors are considered. This analysis shows that the sensor configurations
analysed have pure detection capabilities, when all identified disturbing events are taken
into account. However, by relaxing the number of disturbing events a robust signal based
detection algorithm is developed, using only current and pressure measurements. This
algorithm is tested on a test-bench, where it is shown to work as expected.
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Chapter 5

A New approach for Stator Fault
Detection in Induction Motors

Stator faults are according to (Kliman et al., 1996) the most common electrical faults
in electrical motors. Moreover according to (Bonnett and Soukup, 1992) most of these
faults start as an inter-turn short circuit in one of the stator coils. The increased heat due
to this short circuit will eventually cause turn to turn or turn to ground faults, and finally
lead to a breakdown of the stator, (Wiedenbrug et al., 2003) and references included. The
time, from an inter-turn short circuit has occurred to breakdown of the stator, can be very
short. In (Gerada et al., 2004) it is argued that the time from an inter-turn short circuit
has occured to the temperature in the short circuit exceed the breakdown temperature of
the insulation can be as small as 1 to 2 [sec].

Inter-turn short circuits are caused by several different influences on the stator. For
example mechanical stress during assembling or during operation can create scratches
in the insulation, which again can cause short circuits. If the motor is placed in wet
environment, moisture can cause flow of current from scratch to scratch, which can
make a hot spot and thereby destroy the insulation. Moreover, if the motor is supplied
with a PWM voltage source, partial discharges due to very high amplitude alternating
voltage between the turns can degrade the insulation over time and cause a short circuits.

In the literature different approaches are proposed for detection of inter-turn short
circuits. In (Cruz and Cardoso, 2001) the stator currents are transformed using the Park
transformation. Second order harmonics in the length of the transformed current vector
is then used for fault detection. In (Cash, M. A. et al., 1997; García et al., 2004) oscilla-
tions in the voltage between the line neutral and the star point of the motor are used as
a fault indicators. This is also shown in (Tallam et al., 2002) using a model of a faulty
motor. In (Lee et al., 2003) estimation of the negative impedance of the motor is used
as a fault indicator, and in (Arkan et al., 2001) the negative sequence current is used for
the same purpose. In (Briz et al., 2003) high frequency voltage injection in the supply
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voltage is utilized to create a response on the motor current. This response contains
information of the inter-turn short circuit fault.

In this chapter a model-based approach is proposed. The proposed approach is based
on a model of the induction motor including an inter-turn fault in the stator. Different
approaches for modelling inter-turn short circuits in the stator windings are found in the
literature. In (Joksimovic and Penman, 2000) a higher order model is used. This model
is an extension of the model presented in (Luo et al., 1995). This type of model is used
for simulating higher order effects in the motor, but the obtained model is of high order.
The inter-turn short circuit fault has its main harmonics in the lower frequency range.
Therefore observers designed on the basis of this type of model will be of unnecessary
high order for this kind of fault. In (Williamson and Mirzoian, 1985) a steady state
model of both inter-turn and turn-turn faults in an induction motor is developed using a
low order model. In (Tallam et al., 2002) a transient model of the same order as the one
presented in (Williamson and Mirzoian, 1985) is developed. This model describes an
Y-connected induction motor with an inter-turn short circuit in phasea.

In this chapter an adaptive observer is proposed for estimation of the inter-turn short
circuit fault. Theoretical considerations on adaptive observers can for example be found
in (Besancon, 2000; Rajamani and Hedrick, 1995; Cho and Rajamani, 1997). Based on
these contributions a new observer scheme is proposed, specially designed for handling
bi-linear systems. The observer is formulated in general terms, hence is usable in other
applications. The proposed observer is capable of simultaneously estimating the speed
of the motor, the amount of turns involved in the short circuit, and an expression of the
current in the short circuit. The observer is based on a model, developed particular for
this purpose. This model is based on the same ideas as the model described in (Tallam
et al., 2002). However, the model developed in this chapter is valid for bothY- and
∆-connected induction motors, and does includes both inter-turn and turn-turn short
circuits. Moreover, the model has a more useful structure compared to (Tallam et al.,
2002). Using three copies of the designed adaptive observer the phase affected by the
inter-turn short circuit is identified using an approach described in (Zhang, 2000).

As a model-based approach for fault estimation is proposed in this chapter, the chap-
ter starts by deriving a model of the induction motor with an inter-turn short circuit in
Section 5.1. This model is in Section 5.2 used in the design of the proposed adaptive
observer. In Section 5.3 test results from tests on a customized designed motor are pre-
sented. Finally concluding remarks end the chapter.

5.1 Model of the Stator Short Circuit

As described in the introduction, this chapter is concerned with detection of inter-turn
short circuit faults. In this work the model-based approach is used, meaning that a
model of the motor is needed in the derivation of the FDI algorithm. The derivation of
this model is considered in this section, meaning that a model of an induction motor
including a stator fault is derived.

86



Section 5.1: Model of the Stator Short Circuit

A turn-turn short circuit denotes a short circuit between windings in two different
phases of the stator, see Fig. 5.1. Here a short circuit between phasea and b in a
Y-connected and a∆-connected stator is shown.
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(a) Short circuit between turns in phasea and
b in aY-connected stator.
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(b) Short circuit between turns in phasea and
b in a∆-connected stator.

Figure 5.1: Simplified electrical diagram of a three phaseY-connected and∆-connected
stator with a turn-turn short circuit between phasea andb.

An inter-turn fault is, in contrast with the turn-turn fault, a short circuit between
windings in the same phase coil. However, an inter-turn fault can be treated as a special
case of the turn-turn fault, as it can be modelled by assuming that no turns, of for ex-
ample phaseb, are involved in the short circuit. However, it can be argued that this is a
rather limited model assumption for the inter-turn fault, because the short circuit always
must be connected to the end point of the phase coil in this case. But, if the electrical
circuit is assumed linear, all short circuits in a coil can be represented by a short circuit
connected to the end point of the given coil. This new short circuit must of cause have
the same amount of turns as the real short circuit.

In the following, a model of an induction motor, including a turn-turn short circuit
between phasea andb, is developed. The model is developed under the assumption that
the short circuit does not affect the overall angular position of the coil in the motor.

5.1.1 The Y-connected Motor inabc-coordinates

First theY-connected motor is considered. Setting up the mesh equations for theY-
connected motor shown in Fig. 5.1(a) and rearranging these equations, a model de-
scribing a motor with a short circuit between phasea andb is found. Using the matrix
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notation presented in Chapter 3 this model is given by the following set of equations,

vsabc = rs(isabc − γif ) +
dψsabc

dt
(5.1a)

γT vsabc = rf if + lf
dif
dt

(5.1b)

0 = rrirabc +
dψrabc

dt
(5.1c)

ψsabc = ls(isabc − γif ) + lm(θ)irabc (5.1d)

ψrabc = lrirabc + lm(θ)(isabc − γif ) , (5.1e)

where (5.1a) and (5.1d) describe the voltages and the flux linkages in each of the stator
phases, (5.1c) and (5.1e) describe the voltages and the flux linkages in each of the rotor
phases, and finally (5.1b) describes the current in the short circuit. In these equations
vsabc contains the voltages across each stator phase,isabc is the current running into
each stator phase, andif is the current in the short circuit. The matricesrs, rr, ls, lr,
andlm(θ) have the same form as in the case of a motor with no faults. These matrices
are given in Section 3.2.1.

The vectorγ in (5.1a) to (5.1e) represents the position and the amount of turns in the
short circuit. The vector is, in the case of a short circuit between phasea andb, given by

γ =
[
γa −γb 0

]T
, (5.2)

whereγa is the amount of turns affected in phasea, andγb is the amount of turns affected
in phaseb by the short circuit. The inductor and the resistor in (5.1b) are given by

lf = (γa(1− γa) + γb(1− γb)) lls, rf = (γa(1− γa) + γb(1− γb)) rs + ri (5.3)

wherers is the stator resistance,lls is the leakage inductance of the stator, andri is the
resistance in the insulation break.ri = ∞ means that no short circuit has occurred and
ri 6= ∞ means that a leakage current is flowing. The evolution fromri = ∞ to ri = 0
is very fast in most insulating materials, meaning that the value ofri can be assumed to
equal either∞ or 0 in most cases.

5.1.2 The∆-connected Motor inabc-coordinates

To set up the model of the∆-connected induction motor the same procedure as used in
the case of aY-connected motor is used.

Setting up the mesh equations for the∆-connected motor depicted in Fig. 5.1(b)
and rearranging these equations, a model describing the∆-connected motor with a short
circuit between phasea andb is obtained. Using the same matrix notation as used in the
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previous section the following set of equations is obtained,

vsabc = rs(isabc − γif ) +
dψsabc

dt
(5.4a)

γT vsabc = rf if + lf
dif
dt

(5.4b)

0 = rrirabc +
dψrabc

dt
(5.4c)

ψsabc = ls(isabc − γif ) + lm(θ)irabc (5.4d)

ψrabc = lrirabc + lm(θ)(isabc − γif ) . (5.4e)

This model has the same structure as the one modelling theY-connected motor. More-
over the parametersrs, rr, rf , ls, lr, lm andlf in this model have the same values as in
the model of theY-connected motor. The only difference is the vectorγ modelling the
amount of turns involved in the short circuit, which in this case is given by

γ =
[
γa γb 0

]T
. (5.5)

5.1.3 Transformation to a Stator fixeddq0-frame

Comparing the models developed in the two previous sections it is seen that the model
of theY-connected and∆-connected motor has the same structure. This model structure
will in this section be transformed to a stator fixeddq0-frame.

Using thedq0-transformationTdq0(θ) presented in Section 3.2.2 the models pre-
sented in (5.1) and (5.4) are transformed into the following,

vsdq = Rs(isdq −Tdqγif ) + dψsdq

dt

vs0 = rs(is0 − 1
3T

T
0 γif ) + dψs0

dt

0 = Rrirdq + dψrdq

dt − zpωrJψrdq

0 = rrir0 + dψr0
dt

lf
dif

dt = −rf if + γT T−1
dq0vsdq0 ,

(5.6)

where the flux linkages are given by

ψsdq = Ls(isdq −Tdqγif ) + Lmirdq

ψs0 = lls(is0 − 1
3T

T
0 γif )

ψrdq = Lrirdq + Lm(isdq −Tdqγif )
ψr0 = llrir0 .

(5.7)

In these expressionsTdq contains the two first rows andT0 contains the last row of
Tdq0. The parameter matrices in this modelRs, Rr, Ls Lr, andLm do all have diagonal
structures, and are given in Section 3.2.2.

From (5.6) and (5.7) it is seen that it is convenient to define a new current vector
i′sdq0 = isdq0 − Tdq0γif . This current equals the amount of the stator current, which
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generates air gab flux. Rewriting (5.6) and (5.7) using the same procedure as described
in Section 3.2, and introducing the currenti′sdq0 the induction motor model becomes,

L′s
di′sdq

dt = −(Rs + R′
r)i

′
sdq + (R′

r − zpωrJL′m)imdq + vsdq

lls
di′s0
dt = −rsi

′
s0 + vs0

L′m
dimdq

dt = R′
ri
′
sdq − (R′

r − zpωrJL′m)imdq

lf
dif

dt = −rf if + γT T−1
dq0vsdq0 ,

(5.8)

where

R′
r = LmL−1

r RrL−1
r Lm L′s = Ls − LmL−1

r Lm L′m = LmL−1
r Lm ,

meaning that the new matrices retain the diagonal structure.

5.1.4 Grid Connections

In the model presented in (5.8) the voltagesvsdq0 and the currentsisdq0 are defined as
the quantities related to each phase in the motor. These are in general not measurable,
therefore the connection between these quantities and the quantities of the terminal of
the motor must be establised. This is done in Section 3.2.3 in Chapter 3 for an induction
motor without stator faults. In the following the connection established in Section 3.2.3
is used to obtain the final model of theY- and∆-connected induction motors with an
inter-turn short circuit in the stator.

The Y-connected Case

From Section 3.2.3 the relationships between the phase quantities and the measurable
quantities are given by

vsdq = vtdq itdq = isdq

vs0 = vt0 − v0 it0 = is0 ,

where quantities with subscripts are related to the phases of the motor, and quantities
with subscriptt are related to the terminals of the motor, and are therefore measurable.
Moreover in theY-connected caseis0 = it0 = 0. Introducing these relationships in
(5.8) the model of theY-connected induction motor with a stator short circuit becomes

L′s
di′sdq

dt
= −(Rs + R′

r)i
′
sdq + (R′

r − zpωrJL′m)imdq + vtdq (5.9a)

lls
di′s0
dt

= −rsi
′
s0 + (vt0 − v0) (5.9b)

L′m
dimdq

dt
= R′

ri
′
sdq − (R′

r − zpωrJL′m)imdq (5.9c)

lf
dif
dt

= −rf if + γT T−1
dq0(vtdq0 − v0) , (5.9d)
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and the measurable currents are given by

itdq0 = i′sdq0 + Tdq0γif . (5.9e)

From (5.9e) it is seen thati′s0 = − 1
3 (γa − γb)if asit0 = 0 in the Y-connected case.

Using this expression in (5.9b), and using the obtained expression to eliminatevt0 − v0

in (5.9d) a new expression of the short circuit currentif is found. This expression is
given by

Lf
dif

dt = −Rf if + γT T−1
dq vtdq , (5.10)

whereT−1
dq is a matrix consisting of the two first columns ofT−1

dq0, andLf andRf are
scalars and are given by

Lf = lf + 1
3 (γa − γb)2lls Rf = rf + 1

3 (γa − γb)2rs .

The final model of theY-connected induction motor then becomes

L′s
di′sdq

dt = −(Rs + R′
r)i

′
sdq + (R′

r − zpωrJL′m)imdq + vtdq

L′m
dimdq

dt = R′
ri
′
sdq − (R′

r − zpωrJL′m)imdq

Lf
dif

dt = −Rf if + γT T−1
dq vtdq

itdq = i′sdq + Tdqγif ,

(5.11)

whereγ =
(
γa −γb 0

)T
.

The ∆-connected Case

From Section 3.2.3 the relationships between the phase quantities and the measurable
quantities in the∆-connected case are given by,

[
vsdq

vs0

]
=

[
Bv 0
0 0

] [
vtdq

vt0

] [
itdq

it0

]
=

[
Ci 0
0 0

] [
isdq

is0

]
,

here again quantities with subscripts are related to the phases of the motor, and quanti-
ties with subscriptt are related to the terminals of the motor, and are therefore measur-
able. Introducing these relationships in (5.8) the model of the∆-connected induction
motor with a stator short circuit becomes

L′s
di′sdq

dt
= −(Rs + R′

r)i
′
sdq + (R′

r − zpωrJL′m)imdq + Bvvtdq (5.12a)

lls
di′s0
dt

= −rsi
′
s0 (5.12b)

L′m
dimdq

dt
= R′

ri
′
sdq − (R′

r − zpωrJL′m)imdq (5.12c)

lf
dif
dt

= −rf if + γT T−1
dq0

[
Bv

0

]
vtdq , (5.12d)
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and the measurable currents are given by

itdq =
[
Ci 0

] (
i′sdq0 + Tdq0γif

)
. (5.12e)

In the∆-connected case the currenti′s0 = is0 − 1
3 (γa − γb)if . From (5.12b) it is seen

thati′s0 → 0 ast → ∞, meaning thatis0 → 1
3 (γa − γb)if ast → ∞. This shows that

the circulating current in the∆-connected motor will be proportional to the current in
the short circuitif .

The final model of the∆-connected induction motor with a short circuit fault be-
comes

L′s
di′sdq

dt = −(Rs + R′
r)i′sdq + (R′

r − zpωrJL′m)imdq + Bvvtdq

L′m
dimdq

dt = R′
ri
′
sdq − (R′

r − zpωrJL′m)imdq

lf
dif

dt = −rf if + γT T−1
dq Bvvtdq

itdq = Cii′sdq + CiTdqγif ,

(5.13)

whereγ =
(
γa γb 0

)T
in the∆-connected case, andT−1

dq consists of the two first

columns ofT−1
dq0 as in theY-connected case.

5.1.5 Torque Expression

An expression of the torque developed by an induction motor, not affected by faults,
is derived in Section 3.2.4. In the following the same approach is used to derive an
expression of the torque developed by an induction motor affected by a turn-turn short
curcuit fault in the stator. This torque expression is based on the same idea as used in
(Tallam et al., 2002). From (Krause et al., 1994) the torque produced by the induction
motor is given by

Te = zpiTs
∂lfm(θ)

∂θ
ir , (5.14)

whereis is the current in the stator windings andir is the current in the rotor. In the case
of a stator with faults, the current in each part of the faulty windings must be defined.
In the case of a stator with a single turn-turn short circuit between phasea andb, the
currentsis andir are given by

is =
[
isa isa − sign(γ1)if isb isb − sign(γ2)if isc

]T

ir =
[
ira irb irc

]T
,

where γ1 and γ2 are the first and second elements inγ respectively. The matrix
lfm(zpθr) is the mutual inductance matrix between the stator and rotor.lfm(zpθr)
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is in the case of a turn-turn fault between phasea andb given by,

lfm(θ) = lm




(1− γa) cos(θ) (1− γa) cos(θ + 2π
3 ) (1− γa) cos(θ − 2π

3 )
γa cos(θ) γa cos(θ + 2π

3 ) γa cos(θ − 2π
3 )

(1− γb) cos(θ − 2π
3 ) (1− γb) cos(θ) (1− γb) cos(θ + 2π

3 )
γb cos(θ − 2π

3 ) γb cos(θ) γb cos(θ + 2π
3 )

cos(θ + 2π
3 ) cos(θ − 2π

3 ) cos(θ)




.

The torque expression in (5.14) can be rearranged to become

Te = zp (isabc − γif )T ∂lm(zpθr)
∂θ

irabc , (5.15)

whereγ is given by (5.2) and (5.5) in theY- and∆-connected cases respectively.lm(θ)
has the same structure as in the no fault case, and is given in Section 3.2.1.

Transforming the torque expression in (5.15) using the transformationTdq0 and us-
ing thatLmimdq = Lrirdq + Lmisdq, the following torque expression is obtained,

Te =
3
2
zpL

′
m

(
imdi

′
sq − imqi

′
sd

)

whereL′m = L2
m/Lr, meaning thatL′m is the diagonal element ofL′m.

Remark 5.1.1 By examining the electrical model of an induction motor with an inter-
turn short circuit (5.11) or (5.13) and the torque expression given above, it can be seen
that no torque ripples should be expected, if the load is constant at a given speed and
the motor is supplied with a balanced three phase sinusoidal voltage.

5.2 An Adaptive Observer for Inter-turn Fault Detec-
tion

According to (Bonnett and Soukup, 1992) most stator burnouts start as an inter-turn
short circuit in one of the stator coils. The increased heat due to this short circuit will
eventually cause turn to turn and turn to ground faults and finally lead to a burnout of
the stator. In (Gerada et al., 2004) the time, from an inter-turn short circuit has occured
to an insulation breakdown due to heat, is investagated on a 15 [KW] motor. Here it is
shown that this time slot can be as short as 2 [sec]. This means that a fast and reliable
detection scheme is necessary, but also that the most important of the inter-turn and the
turn-turn faults are the inter-turn faults. Therefore, a detection scheme, which can detect
inter-turn short circuits in the stator of an induction motor, is considered in this section.

The considered detection scheme is based on the model developed in the previous
section. This model is used in the derivation of an observer which can estimate the inter-
turn short circuit faults. Only inter-turn short circuits in phasea are considered, as three

93



Chapter 5: A New approach for Stator Fault Detection in Induction Motors

identical observers, which can detect faults in phasea, b andc respectively, can be used
for identification. The approach used for this is described at the end of this section and
is based on (Zhang, 2000).

In the model developed in the previous section an inter-turn short circuit in phasea
is modelled by settingγb = 0 in the vectorγ. Doing this the parametersRf andLf in
both theY- and∆-connected motors can be expressed by

Rf = f(γa)rs + ri Lf = f(γa)lls ,

wheref(γa) equalsγa(1 − 2
3γa) and γa(1 − γa) in the Y- and ∆-connected cases

respectively. In section 5.1.1 it is argued that the resistorri in the expression ofRf is
almost always either equal to∞ or 0. Therefore the assumption thatri = 0 is almost
always true if a short circuit has occurred. Using this and consideringγa as a state in the
system the model of both theY- and∆-connected motors with an inter-turn short circuit
can be expressed as

L′s
di′sdq

dt = −(Rs + R′
r)i

′
sdq + (R′

r − zpωrJL′m)imdq + Bvvtdq

L′m
dimdq

dt = R′
ri
′
sdq − (R′

r − zpωrJL′m)imdq

dif

dt = − rs

lls
if + 1

lls

[
γa

f(γa) 0
]
Bvvtdq

dγa

dt = 0 ,

(5.16a)

where the measurable outputs are given by

itdq = Ci

(
i′sdq +

[
2
3γa

0

]
if

)
. (5.16b)

The only differences between the model of theY- and∆-connected induction motors
are the structures ofBv, Ci, andf(γa). In theY-connected caseBv = Ci = I and in
the∆-connected caseBv andCi are given in Section 3.2.3 of Chapter 3.

The model in (5.16) represents an induction motor with an inter-turn short circuit in
the stator. However, by settingγa = 0 a motor not affected by a fault can be modelled.
This is true because settingγa = 0 represents a short circuit involving 0 turns, which
have the same effect on the motor performance as when no short cicuits have occured.
To ensure the validity of this model the termγa

f(γa) must be bounded whenγa → 0. The
term is given by

γa

f(γa)
=

γa

γa(1− aγa)
,

wherea equals2
3 and1 in theY- and∆-connected cases respectively. From this expres-

sion it is seen that γa

f(γa) is bounded on the set{γa : 0 ≤ γa < 1}, which contains all
possible values ofγa.

A surprising fact when modelling the no fault case by settingγa = 0 is that the fault
currentif is not equal to zero in the no fault case. This is because the model expresses
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the limit of the fault current whenγa → 0, when the no fault case is modelled in this
way. The model is still correct in the no fault case, as the fault current only affects the
remaining model in the output expression (5.16b), and here the fault current is multiplied
with γa which is equal to zero.

From (5.16) it is seen that the model of the induction motor contains one unknown
variableωr, which represents the speed of the rotor. If this variable is modelled as an
unknown but constant parameter, an adaptive observer approach can be used for state
estimations, and thereby estimation of the fault. The design of this adaptive observer is
considered in Section 5.2.1. The design of the feedback gain in the adaptive observer
is considered in Section 5.2.2, and finally the identification of the phase affected by a
given inter-turn short circuit fault is considered in Section 5.2.3.

5.2.1 The Adaptive Observer

An adaptive observer exists for the system in (5.16) if it can be transformed into the
adaptive observer form defined in Definition 5.2.1. This definition is a bilinear version
of the general nonlinear definition given in (Besancon, 2000).

Definition 5.2.1 Consider a system on the form

dz
dt = A(u, θ)z + Bu
y = Cz ,

(5.17)

wherez(t) ∈ Rn contains the states of the system,y(t) ∈ Rd contains the meassurable
outputs,θ ∈ Rk contains unknown but constant parameters andC =

[
I 0

]
. This

system is said to be on bilinear adaptive form if,

1. A(u, θ) is bounded for allθ ∈ Dθ ⊆ Rk andu(t) ∈ U ⊆ Rm, whereDθ is the
parameter space andU is the input space,

2. the set(A(u, θ),C) is an observable pair for everyθ ∈ Dθ andu(t) ∈ U ,

3. Aθ1(u) to Aθk
(u) are linear independent matrices for everyu(t) ∈ U ,

4. Im{Aθi(u)}⋂
Ker{C} = 0 ∀ i ∈ {1, 2, · · · , k},

where

A(u, θ) = A0(u) +
k∑

i=1

θiAθi(u) .

Remark 5.2.1 Item Number 4 in Definition 5.2.1 means that the only states, which can
be directly affected byθi, are the measurable states, and thatAθi(u) has the following
structure

Aθi(u) =
[
A′

θi
(u)

0

]
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due to the structure ofC =
[
I 0

]
.

For systems on the form defined by Definition 5.2.1 an adaptive observer exists accord-
ing to the following proposition.

Proposition 5.2.1 For a system of the form defined in Definition 5.2.1 an adaptive ob-
server exists and has the following form,

dẑ
dt = A(u, θ̂)ẑ + Bu + K(u)(y −Cẑ)

dθ̂i

dt = κiẑT A′
θi

(u)T (y −Cẑ) ∀ i ∈ {1, · · · , k} ,
(5.18)

whereκi > 0, i ∈ {1, · · · , k} are design constants,A(u, θ̂) is a copy of the system
matrix defined in Definition 5.2.1 andA′

θi
(u) is a submatrix given by

Aθi
(u) =

[
A′

θi
(u)

0

]
.

If there exists aK(u) stabilizing the system for everyθ ∈ Dθ andu ∈ U , i.e. there
exists aP(θ) fulfilling the following Matrix Inequality (MI),

(A(u, θ)−K(u)C)T P(θ) + P(θ) (A(u, θ)−K(u)C) ≺ 0
−P(θ) ≺ 0 .

(5.19)

Proof: Defining the state estimation error asez = z− ẑ, and the parameter estimation errors as
eθi = θi − θ̂i, the dynamics of the errors become

ėz = (A(u, θ)−K(u)C) ez +
∑k

i=1 Aθi ẑeθi

ėθi = −κiẑ
T AT

θi
ez ∀i ∈ {1, 2, · · · , k} ,

where it is used thaṫeθi = − ˙̂
θi asθ̇i = 0. This error equation can be reformulated by defining

the following parameter error vector and matrix,

eθ =
[
eθ1 eθ2 · · · eθk

]T
Aθ(ẑ) =

[
Aθ1 ẑ Aθ2 ẑ · · · Aθk ẑ

]
.

Using this vector and matrix in the description of the error system it becomes,
[
ėz

ėθ

]
=

[
(A(u, θ)−K(u)C) Aθ(ẑ)

−κAθ(ẑ)T 0

] [
ez

eθ

]

=

[
I 0
0 κ

] [
(A(u, θ)−K(u)C) Aθ(ẑ)

−Aθ(ẑ)T 0

] [
ez

eθ

]
, (5.20)

whereκ = diag{κ1, κ2, · · · , κn}, meaning that

[
I 0
0 κ

]
=

[
I 0
0 κ

]T

Â 0. Now definee =

[
eT

z eT
θ

]T
and let the following quadratic function be a Lyapunov function candidate for the

error system (5.20),

V = eT

[
P(θ) 0

0 I

]
e ,where

[
P(θ) 0

0 I

]
Â 0 .
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Taking the derivative along the trajectory of (5.20) and recognizing that

eT

[( [
I 0
0 κ

] [
0 Aθ(ẑ)

−Aθ(ẑ)T 0

] )T [
P(θ) 0

0 I

]
+

[
P(θ) 0

0 I

] (
∗

)]
e = 0

for all e ∈ Rn+k. This is true as the matrix in the expression is skew symmetric. Moreover,
dP(θ)

dt
= 0 asθ̇ = 0. Using these statements the derivative of the Lyapunov function candidate

becomes,

V̇ = eT
z

(
(A(u, θ)−K(u)C)T P(θ) + P(θ) (A(u, θ)−K(u)C)

)
ez .

This shows thatez → 0 ast → ∞ if (5.19) is fulfilled for everyu ∈ U andθ ∈ Dθ. To show
that the error of the parameter estimate also tends to zero the La-Salle’s theorem is used (Khalil,
2002). This theorem can be used to state that an error system as (5.20) is asymptotic stable if the
only positive invariant space with respect to (5.20) inE ⊂ Rn+k is e = 0, whereE is the space
of all error vectorse, which makeV̇ = 0. Now consider (5.20) wheṅV = 0,

ėz = Aθ(ẑ)eθ =
∑k

i=1 Aθi ẑeθi

ėθ = 0 .

This shows that the positive invariant spaceE is given byez = 0 and
∑k

i=1 Aθi ẑeθi = 0. From
Definition 5.2.1 it is known that{Aθ1 ,Aθ1 , · · · ,Aθk} are linearly independent. Therefore, there
must exist time serieŝz(t), t ∈ [t0, t0 + T ], which guarantees that

∑k
i=1 Aθi ẑeθi = 0 implies

thateθ = 0. This leads to the following persistently of excitation demand,

∃α1, α2, T : α1I ≤
∫ t0+T

t0

Aθ(ẑ(t))T Aθ(ẑ(t))dt ≤ α2I .

¤

Using a nonlinear transformationΦ on (5.16), this system is transformed into a form,
which fulfills Definition 5.2.1. The transformationΦ : x → z maps the original states

x =
[
i′Tsdq iTmdq if γa

]T

(5.21)

into the new statesz ∈ R6, and is given by

Φ(x) =




i′sdq +
[

2
3γa

0

]
if

L′m
−1L′si

′
sdq + imdq + L′m

−1L′s

[
2
3γa

0

]
if

2
3γaif

γ2
a

llsf(γa)




. (5.22)

When this transformation is used on system (5.16) it is transformed into a bilinear system
on the form,

dz
dt = (A0 + ωrAωr + vsdAvsd

)z + Bu
y = Cz ,

(5.23)
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where the input vectoru = vtdq, the output vectory = itdq, and the matrices in (5.23)
are given by

A0 =




−L′s
−1(Rs + R′

r)− L′m
−1R′

r L′s
−1R′

r

[
Rs+R′r

L′s
− rs

lls

0

]
0

L′m
−1Rs 0

[ Rs

L′m
− rs

lls

0

]
0

0 0 − rs

lls
0

0 0 0 0




Aωr
=




zpJ −zpJL′s
−1L′m 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 Avsd

=




0 0 0
[

2
3lls
0

]

0 0 0
[

2(lm+lls)
3Lmlls

0

]

0 0 0 2
3lls

0 0 0 0




B =




L′s
−1

L′m
−1

0
0


Bv C = Ci

[
I 0 0 0

]
.

If ωr is treated as an unknown but constant parameter, system (5.23) fulfills Definition
5.2.1 except for the observability condition whenvsd = 0. However, it can be argued
that, when the induction motor is running, the fraction of time wherevsd = 0 tends to
zero. This is so becausevsd passes zero but does never stay there during normal oper-
ation. Therefore the system described by (5.23) is observable at all the times, meaning
that Definition 5.2.1 is fulfilled.

As (5.23) fulfills Definition 5.2.1 an adaptive observer is given by Proposition 5.2.1.
This observer becomes

Oa :





dẑ
dt = (A0 + ω̂rAωr + vsdAvsd

)ẑ + Bu + K(u)(y −Cẑ)
dω̂r

dt = κ(y −Cẑ)T Aωr ẑ
x̂ = Φ−1(ẑ) .

(5.24)

In this designK(u) is the stabilizing feedback gain and0 < κ is the adaptation gain.
κ should be chosen such that the adaptation speed is suitable.K(u) should be chosen
according to Proposition 5.2.1. The calculation ofK(u) is considered in the following
section.
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5.2.2 Calculation of the Observer Gain

Proposition 5.2.1 states that aK(u) must exist, which guarantees that the following
Matrix Inequality (MI) is fulfilled,

(A(u,θ)−K(u)C)T P(θ) + P(θ) (A(u, θ)−K(u)C) ≺ 0
−P(θ) ≺ 0

(5.25)

for all u ∈ U andθ ∈ Dθ. In the induction motor case this is the same as saying that the
MI must be fulfilled for all possible values ofvsd andωr.

Before the design of the induction motor case is considered a general approach for
analysis and synthesis of the observer gain is given. This analysis and synthesis approach
is restricted to the subset of systems defined in Definition 5.2.1, and whereA(u, θ) is
given by

A(u, θ) = A0 +
k∑

i=1

θiAi +
m∑

j=1

ujAk+j , (5.26)

meaning thatA(u,θ) is affine with respect tou andθ. Here Im{Ai}
⋂

Ker{C} = 0 for
all i ∈ {1, · · · , k} must be true for Definition 5.2.1 to be fulfilled. Moreover,A(u,θ)
must be bounded, which is the case for (5.26) wheneverDθ andU are bounded sets.

Analysis

First the analysis of stability is considered when a candidate forK(u) is given. Assume
thatK(u) has a structure such that it can be written asK(u) = K0 +

∑m
j=1 ujKj , i.e.

it is affine with respect tou. If this is the case the MI in (5.25) is affine with respect tou.
Moreover, assume that the setsU andDθ are on a form such that the set of unknownu, θ
in (5.25) can be descibed by a convex hull (Scherer and Weiland, 1999), see Appendix
B.2. Let this convex hull be given by

∆ = co{∆0} , ∆0 =
{
(u, θ) | uj ∈ {uj , uj}, θi ∈ {θi, θi}

}
,

whereuj and uj j ∈ {1, · · · ,m} are elements inU , forming a convex hull onU .
Likewise,θi andθi i ∈ {1, · · · , k} are elements inDθ forming a convex hull onDθ.

With this choise ofK(u) and∆0, (5.25) can be reformulated as a Linear Matrix
Inequality (LMI). This means that feasibility of this LMI on the set∆0 is a proof of
stability of the adaptive observer (5.18), with the chosenK(u). The LMI is given by the
following expression (Scherer and Weiland, 1999, Prop. 2.40), see Appendix B.2,

(A(u, θ)−K(u)C)T P(θ) + P(θ) (A(u,θ)−K(u)C) ≺ 0
−P(θ) ≺ 0

AT
i Pi + PiAi º 0 ,

(5.27)
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which must be fulfilled for all(u,θ) ∈ ∆0 and alli ∈ {1, · · · , k}. In this LMI P(θ) is
on the formP(θ) = P0 +

∑k
i=1 θiPi.

The feasability of this LMI states that the adaptive observer in Proposition 5.2.1
is stable for the givenK(u). However, if there are limits on the change rate of the
supply signalsu, this rate limit can be incorporated in the stability analysis, relaxing the
condition. To see this, leṫu be contained in the setΛ given by

Λ = co{Λ0} , Λ0 = co
{
u̇ | u̇j ∈ {λj , λj}

}
,

and letP in (5.27) be an affine function of bothθ andu. Then the stability condition
can be formulated by the following LMI (Scherer and Weiland, 1999, Prop. 2.43), see
Appendix B.2,

(A(u, θ)−K(u)C)T P(θ,u) + P(θ,u) ( ∗ ) + P(0, λ) ≺ P0

−P(θ,u) ≺ 0
AT

i Pi + PiAi º 0 ,

(5.28)

where∗ denotes a copy of the contents of the previous bracket andP(θ,u) is on the
form P(θ,u) = P0 +

∑k
i=1 θiPi +

∑m
j=1 ujPj+k. The LMI must be fulfilled for all

(u,θ) ∈ ∆0, λ ∈ Λ0 and alli ∈ {1, · · · , k + m}.
Remark 5.2.2 The LMI’s presented in (5.27) or (5.28) are not the only LMI formulation
for stability analysis of (5.18). The problem can also be transformed to the standard
formulation used in the robust control community. Doing this performance demands
defined in the frequency domaín can be included in the analysis. However, this approach
is not prestented here, as it is the author oppinion that (5.27) and (5.28) are easier to
follow, due to the straightforward connection to Lyapunov stability.

Synthesis

The LMI presented in (5.27) and (5.28) can only be used for analysis, becauseP is a
function ofθ ∈ Dθ andu ∈ U . However, introducing the restriction thatP is constant
overDθ andU , the LMI is made solvable forK(u) = K0 +

∑m
j=1 ujKj . Introducing

this restriction in (5.25) it becomes

(A(u, θ)−K(u)C)T P + P (A(u,θ)−K(u)C) ≺ 0
−P ≺ 0 ,

(5.29)

which must be fulfilled for all(u,θ) ∈ ∆0. Using the transformationsLj = KjP
j ∈ {0, 1, · · · ,m}, (5.29) can be rewritten to become

(
P

(
A0 +

∑k
i=1 θkAi

)
− L0C

)T

+
(
∗

)
+

∑m
j=1 uj

[(
PAk+j − LjC

)T

+
(
∗

)]
≺ 0

−P ≺ 0 ,

(5.30)
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where∗ denotes a repetition of the contents of the previous bracket. This expression is
affine inP andLj j ∈ {1, · · · , m}, meaning that if a solution exists forP andLj it
can be found using the LMI (5.30).P has full rank, meaning that the transformation
Lj = KjP is solvable for allKj j ∈ {1, · · · ,m}.

The assumption thatP(θ) is constant for allθ, is the same as saying that the param-
eters inθ can change arbitrary fast. However, the parametersθ are assumed constant in
the design of the adaptation part of the observer, meaning that conservatism is introduced
by this calculation ofK(u).

Observer Gain in the Induction Motor Case

The only unknown parameter in the induction motor case is the speedωr, meaning that
θ = ωr. Likewise, there is only one input making the system bilinear, namelyvsd, i.e.
u = vsd. Based on this the convex hull for this system is given by

∆ = co{∆0} , ∆0 = {(vsd, ωr) | vsd ∈ {vsd, vsd}, ωr ∈ {ωr, ωr}} ,

wherevsd < 0 < vsd andωr < 0 < ωr. In Section 5.2.1 it is argued that the induction
motor system is not observable whenvsd = 0. Therefore, the MI (5.25) can never have
a solution on∆0. It is also argued thatvsd only goes through zero and never stays there.
Therefore, the fraction of time wherevsd = 0 tends to zero. Using this argument it is
only necessary to check stability in the set{vsd | vsd ≤ vsd ≤ vsd}\ 0. This can be
done by reformulating the MI (5.25) obtaining the following LMI,

(A(vsd, ωr)−K(vsd)C)T P(ωr) + P(ωr) ( ∗ ) ≺ 0
(A(−vsd, ωr)−K(−vsd)C)T P(ωr) + P(ωr) ( ∗ ) ≺ 0

−P(ωr) ≺ 0 ,

(5.31)

where∗ denotes a copy of the contents of the previous bracket, andA(vsd, ωr) = A0 +
ωrAωr + vsdAvsd

. The matricesA0, Aωr , Avsd, B, andC in the above LMI are all
defined in Section 5.2.1. This LMI should be feasible on the set given by

∆0 = {(vsd, ωr) | vsd ∈ {ε, vsd}, ωr ∈ {ωr, ωr}} ε > 0

for the adaptive observer to exist. For the induction motor used in the tests presented at
the end of this chapter the conservatism imposed in the synthesis is too restrictive, i.e. no
solution can be found. However, it is still possible to check stability for a givenK(vsd)
without introducing conservatism in the analysis. This is done by using the analysis
approach presented by the LMI (5.28), taking limits on the change rate of the supply
signalvsd into account. Utilizing this approach the stability of the observer with a given
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feedback gainK(vsd) is checked by the LMI,

(A(vsd, ωr)−K(vsd)C)T P(ωr, vsd) + P(ωr, vsd) ( ∗ )
+P(0, v̇sd) ≺ P0 (5.32a)

−P(ωr, vsd) ≺ 0 (5.32b)

(A(−vsd, ωr)−K(−vsd)C)T P(ωr,−vsd) + P(ωr,−vsd) ( ∗ )
+P(0, v̇sd) ≺ P0 (5.32c)

−P(ωr,−vsd) ≺ 0 (5.32d)

AT
wr

Pwr
+ Pwr

Awr
º 0 (5.32e)

AT
vsd

Pvsd
+ Pvsd

Avsd
º 0 , (5.32f)

where∗ denotes a copy of the contents of the previous bracket, andA(vsd, ωr) = A0 +
ωrAωr

+ vsdAvsd
. The matricesA0, Aωr

, Avsd, B, andC in the above LMI are all
defined in Section 5.2.1. This LMI should be feasible on the set given by,

{
(vsd, v̇sd, ωr) | vsd ∈ {ε, vsd}, v̇sd ∈ {λ, λ}, ωr ∈ {ωr, ωr}

}
ε > 0

for the adaptive observer to exist. In the LMI the inequalities (5.32a) to (5.32d) are
introduced to check stability of the two regions defined by0 < vsd andvsd < 0 re-
spectively. The inequalities (5.32e) and (5.32f) are introduced to guarantee convexity
of (5.32a) and (5.32c) with respect to the parameterωr and the inputvsd. The analysis
approach presented by the LMI (5.32) is utilized in the design of the observer, used in
the tests prestented in Section 5.3.

Remark 5.2.3 In the above text it is argued that the observer is stable for all values of
the voltagevsd between−vsd andvsd [V ] except forvsd = 0, and all speeds between
ωr andωr [rad/sec], if the LMI (5.32) is feasiable. This is not the same as saying that it
is possible to estimate the fault and speed at zero speed, due to demands for persistence
of excitation, see the proof of Proposition 5.2.1.

Remark 5.2.4 Fault tolerant control can be obtained using the current vectori′sdq, es-
timated by the proposed observer, as input to the current controllers in a traditional
motor control system. This current is the part of the stator current producing air gab
flux. Therefore, by using this current the control is not affected by the short circuit.

This current vector is given by the two first terms of the state vectorx in (5.21),
which is calculated usingx = Φ−1(z), whereΦ is defined in (5.22).

5.2.3 Identification of the Faulty Phase

According to (Zhang, 2000) isolation between different faults can be obtained using a
set of adaptive observers. Here it is shown that the estimator faultey = y − ŷ is an
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indicator of the correctness of the model used in the observer design. This means that
when only one of the observer faults approximate zero it indicates that the fault modelled
by this particular observer has happened in the system. This approach can, in the case
of the induction motor, be used if three identical observers are designed, each detecting
a stator winding fault in one of the three phases. This is considered in the following.

The adaptive observerOa in (5.24), is capable of estimating an inter-turn fault in
phasea. However, the same observer can be used to estimate a fault in phaseb andc
by using another phase sequence as argument in the transformationTdq0. To estimate a
fault in phaseb the following transformation must be used,

vsdq0 = Tdq0vsbca isdq0 = Tdq0isbca ,

wherexsbca =
[
xsb xsc xsa

]T
andx ∈ {v, i}. When these signal vectors are used

as input to the observer in (5.24), the observer can estimate faults in phaseb, and is
therefore calledOb. Likewise, an observerOc for estimating inter-turn faults in phasec
is found by using yet another phase sequence resulting in the following transformations,

vsdq0 = Tdq0vscab isdq0 = Tdq0iscab .

Using these transformations in the approach presented in (Zhang, 2000) the overall struc-
ture of the fault identification and estimation algorithm becomes as depitched in Fig. 5.2.
Here the error signalseya, eyb andeyc are used for identification of the phase affected
by a inter-turn fault, and̂xa, x̂b and x̂c are the estimates of the states including the
estimates of the fault currentif and the fault sizeγ.

The affected phase is in this work identified by comparing the square error, of each
error signaleya, eyb andeyc, with a predefined threshold value. The square error is
calculated usingeT

i ei.

Remark 5.2.5 The approach used here is based on a predefined threshold value. This
threshold must be chosen as a trade-off between how small a fault can be detected and
robustness in the system. However, the problem of choosing this threshold can be over-
come by comparing the square error of the three error signalseya, eyb, andeyc. If the
levels of these error signals are alike no fault has occurred, and if a fault has occured
it is identified by the signal with the smallest square error. However, using these ap-
proaches you cannot be sure to identify the correct fault, you will just identify the fault
most likely to have occured among the modelled faults.

5.3 Test Results

In this section the identification and estimation approaches described in the previous
section are tested on an induction motor setup, where inter-turn stator faults can be sim-
ulated. The electrical circuit of the stator is shown in Fig. 5.3. The motor used in the
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Figure 5.2: The structure of the identification algorithm for identification and estimation
of inter-turn short circuits. Hereeya, eyb and eyc are used for identification of the
affected phase, and̂xa, x̂b andx̂c are the estimates of the states including the estimates
of the fault currentif and the fault sizeγ.

tests is a 1.5 [KW] customized Grundfos motor, supplied with a Danfoss frequency con-
verter. The speed, the three phase currents, and the three phase voltages are available at
the test setup. The voltage to the motor is controlled using a linear voltage to frequency
relation, with a voltage boost at low frequencies. All tests are preformed at supply fre-
quencies around 30 [Hz] to avoid too large short circuit currents and thereby burnout of
the motor during the tests. The tests are performed with the induction motor connected
in a ∆-connection as it is shown Fig. 5.3. However, similar results can be found for a
Y-connected motor in (Kallesøe et al., 2004c).

In the first, of the two following subsections, the identification capabilities of the
proposed algorithm are tested. In the second subsection the estimation capabilities of the
adaptive observer are tested. In these tests the algorithm is tested against three different
operating conditions. These are,

• Constant speed at 25 [Hz] supply frequency and balanced supply voltage.

• Speed changes at every 1 second between 25 and 40 [Hz] and balanced supply
voltage.

• Constant speed at 25 [Hz] supply frequency and a 5 % voltage decrease in phase
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Figure 5.3: The electrical circuit of the stator in the test setup. Two points of phasesa
andb and their end points are available at the terminal box.

a, meaning that the supply voltage is unbalanced.

5.3.1 Test of Identification Capabilities

In this subsection the identification capability of the identification algorithm, presented
in Section 5.2.3, is tested. Three tests are performed, each testing one of the three
operating conditions described above. In each of the tests a short circuit of 5% of the
windings is introduced in phasea andc respectively. The results of the test with constant
speed and balanced supply are shown in Fig. 5.4, the results of the test with speed
changes and balanced supply are shown in Fig. 5.5, and finally the results of the test
with constant speed and unbalanced supply are shown in Fig. 5.6.

All the tests show that the phase, in which the fault is introduced, can be recognised
by the level of the observer error signal. From all three tests it is seen that this error
signal is considerable lower for the observer modelling the particular fault. However, it
is also seen that the level of the observer error signal is changing in the case of a fault,
even in the observer modelling the particular fault. This is especially a problem in the
case of a fault in phasea, see Figs. 5.4 and 5.5. This unexpected behaviour is due to an
inherent imbalance between the phases in the costumer-designed motor used in the tests.
The phenomenon is not so dominant in Fig. 5.6, where the supply voltage is unbalanced.
This is because the unbalance in the voltage does account for some of the imbalance of
the phases.

From Fig. 5.5, presenting the results of the test with the speed changes, it is seen
that the error signal is in average larger and is oscillating compared to the two other
tests. This is due to the violation of the constant speed assumption in the design of the
adaptive fault observers. However, it is still possible to recognize the phase, in which
the fault is introduced, using the observer error signal.

Comparing the results of Figs. 5.4 and 5.6 it is seen that, beside of the problem with
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Figure 5.4: The mean square error of the observersOa, Ob, andOc respectively. In
this test the speed is constant and the supply voltage is balanced, and faults are imposed
seperately in phasea andc.

the inherent imbalance in the phases, the results are comparable. This shows that the
algorithm is able to handle unbalanced supply conditions, which also was expected as
no assumption were put on the supply voltage in the design. This means that the observer
can manage any distortion of the supply voltage as long as it does not introduce too large
oscillations in the speed.

5.3.2 Test of Estimation Capabilities

In this subsection the estimation capability of the adaptive observer, derived in the pre-
vious section, is tested. The observer is tested under the three different operating con-
ditions described in the start of this section. In each of the tests the algorithm is tested
with no short circuit, 5% of the windings short circuited, and 25% of the windings short
circuited in phasea. The results of the test with constant speed and balanced supply
are shown in Fig. 5.7(a) and 5.7(b). The results of the test with speed changes and bal-
anced supply are shown in Fig. 5.8(a) and 5.8(b), and finally the results of the test with
constant speed and unbalanced supply are shown in Fig. 5.9(a) and 5.9(b).

All the tests have shown that the observer is stable. From the first test, presented in
Fig. 5.7(a) and 5.7(b), it is seen that the speed is estimated without any bias. It is also
seen that there is a bias on the estimated fraction of turns in the short circuit. This bias is
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Figure 5.5: The mean square error of the observersOa, Ob, andOc respectively. In
this test the speed is variating and the supply voltage is balanced, and faults are imposed
seperately in phasea andc.

partly due to noise on the measurements, partly due to mismatch between the real motor
parameters and the motor parameters used in the observer, and partly due to the initial
imbalance between the three stator phases. This bias is repeated in each of the three
tests.

Results from the second test, presented in 5.8(a) and 5.8(b), show that the observer
is capable of estimating the wanted quantities despite of speed changes. Still it is seen
that the speed changes affect the estimated amount of turns in the short circuit. This is
because of the constant speed assumption used in the design. It is, however, still possible
to use the estimate of the fault.

From the results of the last test, presented in 5.9(a) and 5.9(b), it is seen that an
unbalanced supply of 5% is not affecting the performance of the observer.

5.4 Conclusion

An adaptive observer for simultaneous estimation of the motor states, the speed, and
the amount of turns in an inter-turn short circuit is proposed. The observer is tested
on a customized designed induction motor. The tests have shown that the observer can
estimate an inter-turn fault despite of speed changes and unbalanced supply conditions.
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Figure 5.6: The mean square error of the observersOa,Ob, andOc respectively. In this
test the speed is constant and the supply voltage is unbalanced, and faults are imposed
seperately in phasea andc.

This makes the estimation scheme usable in inverter feed induction motor drives, or in
motor applications supplied by a bad grid. Using three of these observers it is shown
that it is possible to identify the phase affected by a given inter-turn short circuit.

The adaptive observer is based on a model of an induction motor including an inter-
turn short circuit. This model is a simplification of the model presented in the start of
this chapter, as the derived model describes the motor behaviour in both the inter-turn
and the turn-turn short circuit cases. Moreover, the model describes the motor when it
is connected in aY-connection as well as a∆-connection.

Comparing the approach presented here with traditional approaches, the main ad-
vance is that the obtained observer is based on a dynamic model of the system. This
means that the detection capabilities are not affected by dynamic changes in the elec-
trical system. The main drawback of the proposed approach is the need for the motor
parameters. However, in the cases where the approach is used in a frequency converter
application, this problem can be solved by parameter identification methods at start up
(Rasmussen, 1995).

The proposed adaptive observer can be used for fault-tolerant control of the induction
motor, as the impact of the inter-turn short circuit is estimated. This is so because it is
possible to obtain control in the case of an inter-turn short circuit, meaning that it is
possible to control the process, driven by the motor, to a fail-safe mode, or to reduce the
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(a) The top figure shows the estimation of the scaled currentγaif and
the bottom figure shows the estimated and real amount of windings af-
fected by the short circuit.
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(b) The top figure shows the estimated and the measured speed and
the bottom figure shows the error between the estimated and measured
speedωe.

Figure 5.7: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is constant and the supply voltage is balanced.
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(b) The top figure shows the estimated and the measured speed and
the bottom figure shows the error between the estimated and measured
speedωe.

Figure 5.8: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is variating and the supply is balanced.

110



Section 5.4: Conclusion

0 2 4 6 8 10
−6

−4

−2

0

2

4

6

S
ca

le
d 

cu
rr

en
t

γ ⋅ i
f

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

Fr
ac

tio
n 

in
 s

ho
rt 

ci
rc

ui
t

time [sec]

γ
est

γ
real

(a) The top figure shows the estimation of the scaled currentγaif and
the bottom figure shows the estimated and real amount of windings af-
fected by the short circuit.

0 2 4 6 8 10
80

100

120

140

160

180

200

220

sp
ee

d 
[r

ad
/s

ec
]

ω
r,est

ω
r

0 2 4 6 8 10
−30

−20

−10

0

10

20

30

sp
ee

d 
er

ro
r 

[r
ad

/s
ec

]

time [sec]

ω
e
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Figure 5.9: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is constant and the supply voltage is unbalanced.
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level of the current in the short circuit, and thereby increase the time from the occurrence
of the inter-turn short circuit to a stator burnout.
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Chapter 6

A New Approach for FDI in
Centrifugal Pumps

The topic of this chapter is FDI on the hydraulic and mechanical part of the centrifugal
pump. The model-based approach is used for this purpose, meaning that a set of residual
generator are developed, each based on the centrifugal pump model presented in Chapter
3. The centrifugal pump model is highly nonlinear, which is why methods based on
a linearization of the model will, in general, fail to work on a larger area around the
operating point of the linearization. Therefore nonlinear methods should be considered,
when the operating point is changed frequently or is unknown. In a lot of applications
this is infact the case.

Beside robustness with respect to the operating point, it is important that the algo-
rithms do not depend on knowledge of the application of the pump. This means that the
developed algorithms should work in spite of the hydraulic system in which the pump
is placed. The Structural Analysis (SA) (Blanke et al., 2003; Izadi-Zamanabadi, 2001;
Izadi-Zamanabadi and Staroswiecki, 2000) is a tool designed to identify subsystems,
which are independent of the rest of the system. Therefore this tool will be chosen for
identification of subsystems, which can be used for FDI on the centrifugal pump in a
robust manner.

The common way to obtain residual generators from subsystem identified using SA
is to derive Analytical Redundance Relations (ARR) (Blanke et al., 2003). Unfortu-
nately, in general the derived ARR’s are functions of the derivatives of the measurements
in the system. These are normally not known and are difficult to calculate. To overcome
this problem a novel method to derived state space realizations of the subsystems iden-
tified using SA is developed in this chapter. Using this method the obtained state space
realizations are decoupled from any unknown algebraic variables or inputs. Therefore,
the decoupling problem is solved and the only remaining problem is to design a stable
residual observer.
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The chapter starts by presenting some preliminaries on SA in Section 6.1. Then the
state space realization, developed in this work, is described in Section 6.2. After that FDI
on the centrifugal pump is considered. This is done by presenting the model of the pump
in Section 6.3, followed by the results obtained using SA in Section 6.4. One of the re-
sults of the SA is that the system can be splitted into two cascade connected subsystems,
of which only the second is affected by the mechanical and hydraulic faults considered
in this chapter. Therefore only an observer has to be considered for the first subsys-
tem. This observer must observe the connecting variables between the two subsystems.
The design of this observer is described in Section 6.5. In Section 6.6 the design of the
residual observers are considered. These observers are based on results obtained using
SA on the second subsystem, and the realization theory developed in Section 6.2 of the
chapter. Test results obtained on an industrial test-bench, which has been particularly
developed for this purpose, are presented in Section 6.7. Finally, concluding remarks
end the chapter.

6.1 Preliminaries: Structural Analysis

Structural Analysis (SA) is the study of the system properties, which are independent
of the actual values of the parameters. Only links between the variables and parameters
are represented in this analysis. These links result from the operating model and are
called relations or constraints. They are independent of the operating model and are
thus independent of the form under which this operating model is expressed (qualitative
or quantitative data, analytical or non-analytical relations). The links are represented
by a graph, on which a structural analysis is performed (Blanke et al., 2003; Izadi-
Zamanabadi, 2001; Izadi-Zamanabadi and Staroswiecki, 2000). In this section some of
the most important definitions and theorems of SA are presented. The presentation is
based on (Blanke et al., 2003).

In SA a system is described by a set of variablesZ and a set of constraintsC. Each
constraint inC describes the connection between a subset of the variables inZ, mean-
ing that the equations and differential equations describing the system form the set of
constraints. The definition of a system of this form is given below.

Definition 6.1.1 (System structure)(Blanke et al., 2003) A systemS is defined by two
setsC andZ, where,

• Z is the set of variables in the system.

• C is the set of constains in the system connecting the variables of the system.

The following three assumptions must hold on the constraintsC in S for the SA al-
gorithms to work. Before these assumptions are presented, letZc = Q(c) denote the
varibles constrained byc and letnc = |Q(c)| be the number of variables inc.
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(a) Graph representation.

K X

u x1 ẋ1 x2 ẋ2

c1 1 1
c2 1 1
c3 1 1
c4 1 1 1 1

(b) Table representation.

Figure 6.1: Structural representation of the connection between set of equations denoted
constraintc1 to c4, and the set of variablesZ = {u, x1, ẋ1, x2, ẋ2}. HereK = {u} is
the known variable, andX = {x1, ẋ1, x2, ẋ2} is the set of unknown variables.

Assumption 6.1.1 (Blanke et al., 2003, Ass. 5.1) Any algebraic constraintc ∈ C defines
a manifold of dimensionnc − 1 in the space of the variablesQ(c).

Assumption 6.1.2 (Blanke et al., 2003, Ass. 5.2) All the constraints inC are compati-
ble.

Assumption 6.1.3 (Blanke et al., 2003, Ass. 5.3) All the constraints inC are indepen-
dent.

The structural model ofS, defined in Definition 6.1.1, is a model describing the connec-
tion between the variablesZ and the constraints inC by a bi-partite graph. This graph is
defined in the following definition.

Definition 6.1.2 (Structural model) (Blanke et al., 2003, Sec. 5.2) The structural
model (or the structure) of the system(C, Z) is a bi-partite graph(C, Z, E) where
E ⊆ C× Z is the set of edges defined by:

(ci, zj) ∈ E if the variablezj ∈ Z appears in the constaintci ∈ C.

An example of such a bi-partite graph is shown in Fig. 6.1. Both a graphical and a table
representation of the the graph are shown here. Using the bi-partite graphs defined in
Definition 6.1.2 the structure of the model equations forming the set of constraintsC can
be analysed. Two important properties in this analysis areReachabilityandMatching.
These are defined in the following definitions.

Definition 6.1.3 (Reachability)(Blanke et al., 2003, Def. 5.8) A variablez2 is reach-
able from a variablez1 if there exists an alternated chain fromz1 to z2 in the graph
(C, Z,E). A variablez2 is reachable from a subsetX ⊆ Z\{z2} if the existsz1 ∈ X
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such thatz2 is reachable fromz1. A subset of variablesZ2 is reachable from a subset of
variablesZ1 if any variable ofZ2 is reachable fromZ1.

Definition 6.1.4 (Matching) (Blanke et al., 2003) A matchingM is a subset of the
edgesE such that the endpoints of the edges have no common vertices, i.e.

∀ei, ej ∈M : ei = (a, b), ej = (α, β), thena 6= α, b 6= β.

Definition 6.1.5 (Complete matching)(Blanke et al., 2003) A matching is called com-
plete with respect toC if |M| = |C| holds. A matching is called complete with respect
to Z if |M| = |Z|.
When there exist a complete matching with respect to the unknown variablesX ⊂ Z

in the system, it means that, in almost all cases, these variables can be eliminated by
rewriting the system equations. To ensure this property the notation of calculability is
used. Calculability is defined in the following definition.

Definition 6.1.6 (Calculability) (Izadi-Zamanabadi and Staroswiecki, 2000) Letzi,
i = 1, · · · , p, · · · , n be variables, which are related through a constraintci, e.g.
ci(z1, · · · , zn). The variablezp is calculable if its value can be determined through
the constraintci under the condition that the values of the other variableszj , j =
1, · · · , n , j 6= p are known.

When a matching of an unknown variable is done under the calculability constraint it
is possible to calculate the given unknown variable in the space where the calculabil-
ity condition is fulfilled. Unfortunately, this is not enough to state that a matching,
where all the unknown variables are calculable, implies that all unknown variables can
be eliminated. This fact will be considered later when the notation of causal matches is
considered.

To connect the definitions given above to a system description as known from system
theory, let a dynamic systemS be described by the following set of equations,

S :





Cf : ẋd = fx(xd,xa,u)
Cm : 0 = mx(xd,xa,u)
Ch : y = hx(xd,xa,u)
Cd : dxd

dt = ẋd

, (6.1)

where the set of variablesZ = xd ∪ ẋd ∪ xa ∪ u ∪ y. Z can be decomposed into a
set of unknown variablesX = xd ∪ ẋd ∪ xa and a set of known variablesK = u ∪ y.
The constaintsC of system (6.1) are given by the setC = Cf ∪ Cm ∪ Ch ∪ Cd. The
structural model of this system is shown in Table 6.1. HereG, Fi,Mi,Hi are boolean
matrices describing the connections between the variablesZ and the constaintsC. I is
the identity matrix andX is a diagonal matrix denoting thatxd can only be calculated
form ẋd up to an unknown but constant offset.
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Table 6.1: Incident matrix of a structural graph. This structural graph is a graph of a
minimal over-constrained system, which can be a subsystem of a larger system.

yT uT ẋT
d xT

d xT
a

fx 0 G I F1 F2

mx 0 M3 0 M1 M2

hx I H3 0 H1 H2

dx 0 0 I X 0

The structural model presented in Table 6.1 of the systemS can have, but does not
always have, one of following three properties,

Definition 6.1.7 (Over-constrained graph)(Blanke et al., 2003, Def. 5.9) A graph
(C, Z,E) is called over-constained if there is a complete matching on the variablesZ

but not on the constaintsC.

Definition 6.1.8 (Just-constrained graph)(Blanke et al., 2003, Def. 5.10) A graph
(C, Z,E) is called just-constained if there is a complete matching on the variablesZ

and on the constaintsC.

Definition 6.1.9 (Under-constrained graph)(Blanke et al., 2003, Def. 5.11) A graph
(C, Z,E) is called under-constained if there is a complete matching on the constaintsC

but not on the variablesZ.

In the cases where the systemS fails to conform to any of the three above properties,
it can be proven that there exists a unique decomposition ofS into three subsystems
(Blanke et al., 2003),

S+ = (C+, Z+)
S0 = (C0, Z+ ∪ Z0)
S− = (C−,Z+ ∪ Z0 ∪ Z−),

whereC = C− ∪ C0 ∪ C+ andZ = Z− ∪ Z0 ∪ Z+. For this decomposition the sub-
systems(C+,Z+), (C0, Z0), and(C−, Z−) are over-constrained, just-constrained, and
under-constrained respectively. On the over-constrained and just-constrained subsys-
tems the notion of causality is important, as it is used to state the conditions for structural
observability. Causality is defined in the following definition.

Definition 6.1.10 (Causality)(Blanke et al., 2003) A subsystem is called causal if there
exists an alternating chain fromki ∈ K to xj ∈ X for all reachablexj ∈ X and this
chain is composed of only calculable matchings.
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A special and very important over-constrained subsystem is defined in the following
definition.

Definition 6.1.11 (Minimal over-constrained subsystem)(Izadi-Zamanabadi, 2001,
Def. 4) A minimal over-constrained subsystem,Smin = (Cmin, Zmin) is an over-
constrained subsystem with the following property:

|Cmin| = 1 + |Xmin| (6.2)

whereXmin ⊆ Zmin are the unknown variables contained in the set of constraints
Cmin. Additionally,Cmin ⊆ C andZmin ⊆ Z.

Such a minimal over-constrained subsystem contains information enough to derived ex-
actly one residual. Therefore, if a set of minimal over-constrained subsystems is identi-
fied in a system, and the matchings, which define each of these subsystems, are causal,
a set of residual generators can be derived. When the residual generators are derived
by eliminating all unknown variables in the subsystem they are called Analytical Re-
dundant Relations (ARR). If each of these residual generators are sensitive to different
subsets of the faults affecting the system this can be used for fault identification. This is
formalized in the following two theorems.

Theorem 6.1.1 (Structural observability)(Blanke et al., 2003, The. 5.2) A necessary
and sufficient condition for system (6.1) to be structural observable is that, under deriva-
tive causality

1. all the unknown variablesX are reachable from the known ones,

2. the over-constrained and the just-constrained subsystems are causal,

3. the under-constrained subsystem is empty.

For systems which are structural observable as stated in Theorem 6.1.1, and where the
over-constraint subsystem is non empty, it is always possible to identify a number of
minimal over-constraint subsystems, as defined in Definition 6.1.11.

Let one of the constraintsϕ ∈ C be corrupted by a fault. Let the unknown variables
containted in the constraint be given byXϕ = Q(ϕ). Then the following theorem states
the conditions for the fault corrupting the constraintϕ to be monitorable or detectable.

Theorem 6.1.2 (Monitorability) (Blanke et al., 2003, The. 5.3) Two equivalent neces-
sary conditions for a faultϕ to be monitorable are:

(i) Xϕ is structural observable - according to Theorem 6.1.1 - in the system
(C\{ϕ}, Z),

(ii) ϕ belongs to the structurally observable over-constrained part of the system
(C,Z).
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Algorithms exist, which can decompose a systemS into all possible minimal over-
constraint subsystems. For each of these minimal over-constraint subsystems the con-
nectionnc = nx +1 holds, wherenc = |C| is the number of constraints andnx = |X| is
the number of unknown variables in these constraints (Izadi-Zamanabadi, 2001; Izadi-
Zamanabadi and Staroswiecki, 2000). It is possible to derive an Analytical Redundant
Relation (ARR) for each of these subsystems. Each of these ARR can be used to gen-
erate one residual, which is sensitive to a subset of the faults in the systemS (Blanke
et al., 2003). The connection between the subsystem used in the derivation of a given
ARR and the faults is described by Theorem 6.1.2.

6.2 Realization

Realization denotes the task of finding a description of an over-constrained subsystem,
identified using SA, which can be used for residual generation. A straightforward way
to find such a residual generator, is to solve the set of constraintsC, forming the sub-
system, for the unknown variablesX in this set of constraints. The solution obtained
using this approach is an Analytical Redundant Relation (ARR) (Blanke et al., 2003).
Unfortunately in general the obtained ARR’s are functions of the derivatives of the mea-
surements, which are in general not calculable due to measurement noise.

To overcome the problem with the derivatives in the ARR’s, a new approach is devel-
oped here. The main idea is to find a state space description of the subsystem identified
using SA, meaning that the subsystem can be described on the form,

dz
dt = fz(z,y,u)

gz(y,u) = hz(z,y,u) ,
(6.3)

wherez contains the states of the system, andu andy contain the known signals in the
system. If a state space description (6.3) exists it can be used in the development of an
observer, which enables residual generation. The decoupling of unknown inputs has not
to be considered in this observer design, as this problem is already solved using SA and
the realization techniques presented here.

Assuming that an over-constrained subsystem identified using SA is described by
the following set of equations,

Sx :





ẋd = fx(xd,xa,u)
0 = mx(xd,xa,u)
y = hx(xd,xa,u)

dxd

dt = ẋd

, (6.4)

wherexd(t), ẋd(t) ∈ Rn, xa(t) ∈ Rl, u(t) ∈ Rp andy(t) ∈ Rd. fx, mx, andhx are
sufficiently smooth maps.fx is denoted a map, as theẋd is considered a free variable
constraint by the derivative constraintdxd

dt = ẋd, in SA. Finally,u andy are the known
input and output signals respectively, andxd, ẋd, andxa are unknown signals.
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Let the subsystem, identified using SA, be given by(C, Z), then each equation in
(6.4) is given by a constraint inC. Likewise, the variablesu,y ⊂ K andxd, ẋd,xa ⊂ X

are the known and unknown variables respectively. These variables form the setZ, i.e.
Z = K ∪ X. The graph representation of this system is shown in Table 6.2, where

Table 6.2: Incident matrix of a structural graph. This structural graph is a graph of a
minimal over-constrained system, which can be a subsystem of a larger system.

y u ẋd xd xc

fx 0 G I F1 F2

mx 0 M3 0 M1 M2

hx I H3 0 H1 H2

dx 0 0 I X 0

G,Fi,Mi, Hi are boolean matrices describing the connection between the variablesZ

and the constaintsC. I is the identity matrix andX is a diagonal matrix denoting that
xd can only be calculated forṁxd up to a constant offset.

In the following a method is presented, which can be used to obtain the state space
description (6.3) from the over-constraints subsystem (6.4). To obtain this state space
description all the unknown algebraic variablesxa must be eliminated, or in other words
a state and/or output transformation must be found such that the unknown signalsxa are
decoupled from the residual output. When such a state space description exists a residual
observer or residual filter of the following form can be obtained,

dẑ
dt = fz(ẑ,y,u)− k(z,y,u)(gz(y,u)− hz(ẑ,y,u))
r = q(gz(y,u)− hz(ẑ,y,u)) .

Here it is assumed that a stabilizing feedbackk can be found. In the above equationr
is the set of residual outputs,u is a set of known signals defined as input in the original
system,y is the set of known signals defined as outputs in the original system, andẑ
contains the states of the residual filter. If the subsystem is a minimal over-constraint
subsystem the residualr becomes a scalarr. This is infact normally the case.

In the following, first an output transformation is considered, eliminating a part of
the algebraic variablesxa. The remaining algebraic variables are eliminated using a
state transformation. This is considered in Section 6.2.2. Finally, the two elimination
approaches are composed into one algorithm in Section 6.2.3.

6.2.1 Output Transformation

In this subsection the eliminations of the algebraic variablesxa, using only the algebraic
constraints of system (6.4), is considered, i.e. the set of constraints formed bymx and
hx are used. If the causal match, found using SA, shows that a subset of the variables in
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xa denotedxa1 and a subset of the variablesxd denotedxd1 are matched usingmx and
hx. Then there must exist an explicite solution to these variables usingmx andhx. Let
this solution be given by,

(
xa1

xd1

)
=

(
g1(xd2,xa2,y,u)
g2(xd2,xa2,y,u)

)
,

wherexa,xd are partitioned such thatxa =
(
xT

a1 xT
a2

)T
, xd =

(
xT

d1 xT
d2

)T
. This

proves the following lemma.

Lemma 6.2.1 Letxa =
(
xT

a1 xT
a2

)T
andxd =

(
xT

d1 xT
d2

)T
be partitioned such that

xa1 andxd1 are the unknown variables matched by the set of constraintsmx ∪hx, then
there must exist explicite solutions forxa1 andxd1. Let these solutions be denoted by,

xa1 = g1(xd2,xa2,y,u)
xd1 = g2(xd2,xa2,y,u) ,

(6.5)

The above Lemma states that a solution exists for a subset of the algebraic variablesxa

and a subset of the state variablesxd in the system, without introducing derivatives of
any known variables, i.e. variables inK. This solution can be used for elimination of
these variables. Moveover under the following assumption an output transformation can
be found, which has the property that the known and unknown variables in the output
expression are separated.

Assumption 6.2.1 It is assumed that the expressiong2 in Lemma 6.2.1 exists and can
be rewritten to become,

ho(xd) = go(y,u) , xd =
(
xT

d1 xT
d2

)T
. (6.6)

Assumption 6.2.1 states that the algebraic variables matched by the algebraic constraints
mx andhx can be eliminated using these. For linear systems, this is the same as assum-
ing that disturbances in the output equation are decoupled using a transformation of the
output, e.i.Qy = QCx + QEdd whereQEd = 0.

Under Assumption 6.2.1 the following theorem can be used to derive a state space
description where all unknown algebraic variables are contained in the differential equa-
tions.

Theorem 6.2.1 (Output Transformation)If a causal match exists on an over-constrained
subsystem on the form given in (6.4), then if Assumption 6.2.1 holds for this system, it
can be rewritten to the following form,

So :
{

dxd

dt = fo(xd,xa2,y,u)
go(y,u) = ho(xd) ,

(6.7)

wherexa2 is a vector of algebraic variables.
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Proof: Using Lemma 6.2.1 and Assumption 6.2.1 the set of constraintsmx∪hx can be rewritten
to become,

xa1 = g1(xd2,xa2,y,u)
ho(xd) = go(y,u) ,

(6.8)

wherexa =
(
xT

a1 xT
a2

)T
andxd =

(
xT

d1 xT
d2

)T
. Using the first expression (6.8) to eliminate

the variablesxa1 in fx in (6.4) it becomes,

dxd
dt

= fo(xd,xa2,y,u).

Choose the second expression in (6.8) as the output equation, system (6.7) is obtained.¤

In some cases all the algebraic variables in the vectorxa are match using the set of
constraintsmx ∪ hx. When this is the case all the algebraic variables can be eliminated
using the output transformation given in Theorem 6.2.1. This is stated in the following
corollary.

Corollary 6.2.1 (Output Transformation) If a causal match exists on an over-
constrained subsystem on the form given in (6.4), then if Assumption 6.2.1 holds for
this system and all algebraic variblesxa are matched usingmx andhx, then the system
can be rewritten to become,

So :
{

dxd

dt = fo(xd,y,u)
go(y,u) = ho(xd) .

(6.9)

6.2.2 State Transformation

The theorem and corollary, presented in the previous subsection, deal with the elim-
ination of the algebraic variables, using the algebraic constraintsmx and the output
mapshx. In general, it is not possible to eliminate all algebraic variables using these
constraints. In order to eliminate the remaining algebraic variables a state space trans-
formation is required, hence proposed. To be able to perform the state transformation
it is required that system (6.7) admits a simpler form as specified by the following as-
sumption.

Assumption 6.2.2 The state space description of system (6.7) is of the following form

dxd

dt = f ′o(xd,y,u) + Go(xd)xa2

go(y,u) = ho(xd) ,
(6.10)

whereGo(xd) is a(n× l2) matrix with full column rank for allxd ∈ Dxd
. It is assumed

thatn > l2 wherel2 is the number of elements inxa2.
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Later, in the proof of the main theorem in this subsection, it will be shown that, for the
over-constrained subsystems,Go has full rank always.

The elimination of the algebraic variablesxa2 in (6.10) are dealt with in the follow-
ing Lemma.

Lemma 6.2.2 Eliminating algebraic variablesxa2 from the state space description of
system (6.10) results in a new system on the form

D̃(xd)dxd

dt = f̃ ′o(xd,y,u) , (6.11)

whereD̃ is an(n− l2)× n matrix of function ofxd with full row rank.

Proof: Let the state space system (6.10) be scaled by an arbitrary(n× n) matrixD(xd), which
is full rank for allxd ∈ Dxd ⊆ Rn. UsingD on (6.10) the system becomes,

D(xd) dxd
dt

= D(xd)f ′o(xd,y,u) + D(xd)Go(xd)xa2 .

Design the scaling matrixD such that the following condition is fulfilled,

D(xd)Go(xd) =

[
0

Il2×l2

]
. (6.12)

The solution can easily be found using the Gauss-Jordan elimination method on the system,

[
In×n Go(xd)

] →
[

D(xd)

[
0

Il2×l2

] ]
.

When the scaling matrixD is used on the system, it becomes,

D(xd) dxd
dt

= D(xd)f ′o(xd,y,u) +

[
0(n−l2)×l2

Il2×l2

]
xa2 . (6.13)

In this expression the first(n − l2) rows are independent ofxa2. This means thatxa2 has been
eliminated in this part of the system. Using the first(n− l2) rows in (6.13) the final expression is
obtained,

D̃(xd) dxd
dt

= D̃(xd)f ′o(xd,y,u) = f̃ ′o(xd,y,u)

The matrixD̃(xd) is formed by the first(n− k2) rows of the matrixD(xd). ¤

The following additional assumption, that is required to prove the main theorem, is
introduced.

Assumption 6.2.3 The following condition for system (6.10) is fulfilled:

Span{∂ho

∂xd
(xd)T } ⋃

Ker
{
Go(xd)T

}
(6.14)

must spanRn for all xd ∈ Dxd
.
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Remark 6.2.1 A linear version of (6.10) is given by the following state space model

dxd

dt = Axd + Bu + Gxa2

y = Cxd .
(6.15)

Comparing this expression with (6.10) it is seen that∂ho

∂xd
(xd) and Go(xd) in (6.10)

corresponds toC andG in (6.15) respectively. Using these relations Assumtion 6.2.3
implies that rank{CG} = rank{G}, which is exactly the demand for existence of an
unknown input observer for linear systems (Chen and Patton, 1999, chap. 3).

In the following the main theorem of this section is presented. Using this theorem it is
possible to eliminate the remaining algebraic variablesxa2 in system (6.10).

Theorem 6.2.2 (Realization)By a state transformation, system (6.10) can, under as-
sumption 6.2.3, be transformed into a new system of the following form

dz
dt = fz(z,y,u) = µ(xd)f̃ ′o(xd,y,u)|xd=Ψ(z,y,u)

go1(y,u) = hz(z,y,u) = ho1(xd)|xd=Ψ(z,y,u) .
(6.16)

The inverse state transformationxd = Ψ(z,y,u) is obtained as the local solution to
(
go2(y,u)

z

)
=

(
ho2(xd)
Φ(xd)

)
, (6.17)

with output map organized as

go(y,u) = ho(xd) ⇔
(
go1(y,u)
go2(y,u)

)
=

(
ho1(xd)
ho2(xd)

)
.

The transformationz = Φ(xd) is given by the partial differential equation (p.d.e.),

µ(xd)D̃(xd) =
∂Φ
∂xd

, (6.18)

whereD̃ is given by Lemma 6.2.2 andµ(xd) is a l2 × l2 scaling matrix with full rank
for all xd ∈ Dxd

⊆ Rn.

Proof: The proof is done in two steps. In the first step it is shown that allxa2 can be eliminated
in (6.10). In the second step it is shown that under Assumption 6.2.3 there exists a transformation
transforming system (6.10) into (6.16).

Step 1:First it is shown that (6.10) is on a form such that Lemma 6.2.2 can be used in the
elimination of the unknown algebraic variablesxa2. To show this, it must be proven thatGo(xd)
has full column rank and that the number of rows exceed the number of columns.

System (6.7) is by definition a over-constrained subsystem with the set of constraintsCmin =
do ∪ fo ∪ ho and the set of unknown variablesXmin = ẋd ∪ xd ∪ xa2. Using Definition 6.1.7
the following property must hold for (6.7)

|do|+ |fo|+ |ho| = |ẋd|+ |xd|+ |xa2|+ k ,
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where| · | is the number of elements in the given vector anddo is the set of differential constraints
(arranged in a vector) as described in Section 6.1. By definition|do| = |ẋd|. Moreover, some
of the elements inxd must be matched usingho. Let these elements be denotedxd1. Since all
constraints inho are matched we have|xd1| = |ho|, and we get

|fo| = |xd2|+ |xa2|+ k , (6.19)

wherexd =
(
xT

d1 xT
d2

)T
. Under Assumption 6.2.2 (6.7) is restricted to be on the form (6.10).

Here the number of columns inGo are given byl2 = |xa2| and the number of rows are given by
|f ′o| = |fo|, which is strictly larger than|xa2|, see (6.19). Moreover from the match obtained from
SA it is known thatxa2 can be calculated usingfo, which implies thatGo must have full column
rank. Therefore, using Lemma 6.2.2 system (6.10) can be rewritten to,

D̃(xd) dxd
dt

= f̃ ′o(xd,y,u)
g(y,u) = ho(xd) .

(6.20)

A method for calculating̃D is given in the proof of Lemma 6.2.2. Multiplying the differential
equation (6.20) with the scaling matrixµ, we obtain an expression fordz

dt

dz

dt
= µ(xd)D̃(xd)

dxd

dt
= µ(xd)f̃ ′o(xd,y,u) . (6.21)

From this equation it is seen thatΦ is given by the p.d.e.

∂Φ

∂xd
= µ(xd)D̃(xd).

Step 2.:Next it is shown that there exists an expression on the form

(
go2(y,u)

z

)
=

(
ho2(xd)
Φ(xd)

)
, (6.22)

wherego2(y,u) = ho2(xd) contains a subpart of the rows ingo(y,u) = ho(xd). This expres-
sion must be solvable for allxd in the system, i.e. a local solution must exists. For this to be true
the inverse function theorem states that the Jacobian determinant of (6.22) must be different from
zero, e.i.

∂

∂xd

(
ho2(xd)
Φ(xd)

)
=

(
∂ho2(xd)

∂xd

µ(xd)D̃(xd)

)
(6.23)

must have full rank for allxd ∈ Dxd .
Using the proof of Lemma 6.2.2 it can be deduced that Span{(µ(xd)D̃(xd))T } =

Span{D̃(xd)T } = Ker
{
Go(xd)T

}
, and thatD̃(xd) has full row rank for allxd ∈ Dxd . Using

Assumption 6.2.3 it is guaranteed that there exists aho2 ⊆ ho such that∂ho2(xd)
∂xd

span thel2

dimensional row space not spanned byD̃(xd). This implies that the matrix in (6.23) has full rank
for all xd ∈ Dxd , i.e. (6.22) can be solved forxd. Let the solution ofxd be given by

xd = Ψ(z,y,u).
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Using this expression in (6.21) the final model becomes

dz
dt

= µ(xd)f̃ ′o(xd,y,u)|xd=Ψ(z,y,u)

go1(y,u) = ho1(xd,y,u)|x=Ψ(z,y,u) .

¤

Remark 6.2.2 The question arise about the existence of the solutionz = Φ(x) that
satisfies (6.18). InR2 the problem can be formilized by

∂Φ
∂x

= µ(x)D̃(x) ⇔ (
∂Φ
∂x1

∂Φ
∂x2

)
= µ(x)

(
d̃1(x) d̃2(x)

)

which implies that,

∂2Φ
∂x1∂x2

− ∂2Φ
∂x1∂x2

= ∂µd̃1
∂x2

− ∂µd̃2
∂x1

= 0

This expression can be solved forµ (in theR2 case) using the intergrating factor ap-
proach (Nagle and Saff, 1996, chap. 2). Whenµ is knownΦ can be found by simple
intergration (this approach is used in the example in Section 6.2.4).

The expression described above, can inR3 be described by

∇Φi(x) = [µ(x)f(x)]i

wherei denotes theith row in (6.18). Using the∇ operator the following expression
can be obtained

∇×∇Φi(x) = ∇× [µ(x)f(x)]i = 0

Unfortunately, no procedure exists for findingµ(x) in R3.

Remark 6.2.3 In general the existence of a solution to the p.d.e. (6.18) can be treated
using Frobenius theorem (Isidori, 1995). A discussion on this approach is found in (Frisk
and Åslund, 2003), which treats the solution to problems similar to (6.18).

6.2.3 Elimination Algorithm

To summarize the results obtained in the previous two subsections, an algorithm is
prestented below. This algorithm presents the steps necessary to obtain a state space
description of (6.4).

1. First use Theorem 6.2.1 to eliminate a subset of the unknown algebraic variables
xa. If all the algebraic variables can be eliminated using this approach Corollary
6.2.1 states the final solution. If this is not the case go to step 2.
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2. Check if Assumptions 6.2.2 and 6.2.3 holds for the system. If it holds go to step 3,
else it is not possible to transform the system into a state space description using
the approach given here.

3. Use Theorem 6.2.2 to obtain the state transformationΨ, and derive the trans-
formed system.

4. Finally, to design a residual observer, find a stabilizing feedback for the trans-
formed system. This is not treated here.

In this section ideas for developing residual observers using over-constrainted subsys-
tems found using SA are presented. Even though deriving residual observers were the
aim of the section, it is possible to use the same ideas to identify subsystems which can
be used in the development of reduced order observers. The following theorem can be
used to formulate a necessary condition for this to be possible.

Theorem 6.2.3 (Observability and over-constraint subsystems)If a system given by

dx
dt = f(x)
y = h(x)

(6.24)

is observable for allx ∈ Dx, then there exists an over-constrained match of the unknown
variablesX = ẋ ∪ x using the system constraintsC = h ∪ f ∪ d.

Proof: A necessary but not sufficent condition for system (6.24) to be observable is,

rank

(
∂f
∂x

(x)
∂h
∂x

(x)

)
= n ∀x ∈ Dx .

This implies that, when (6.24) is observable then allxi i ∈ {1, · · · , n} are containted in either
f or h. This implies that there exist a match of allxi. When this match exisṫxi can be match
using the differential constraintsd. The length of bothf andd is n, and the number of unknown
variablesX is 2n. Therefore, there exist|h| more constraints than unknown variables, i.e. the
system is over-constraint. This completes the proof.¤

Remark 6.2.4 Theorem 6.2.3 states that if system (6.24) is observable, then there exist
and over-constrained match on the system. Reversing this argument, it can be said
that if there does not exist an over-constraints subsystem, then there does not exist an
observable state space description of the system.

Remark 6.2.5 The arguments presented in this section does not garantee the existence
of a residual observer or a reduced order observer, as the stability of an observer imple-
mentation is not considered here.
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6.2.4 Ex: Satellite Case

According to (De Persis and Isidori, 2001) a point mass model of a satellite is described
by the set of constraints given in (6.25),

c1 : ρ̇ = v
c2 : v̇ = ρω2 − θ1

1
ρ2 + θ2u1 + d

c3 : φ̇ = ω

c4 : ω̇ = − 2vω
ρ + θ2

u2
ρ + θ2

f
ρ

c5 : y1 = ρ
c6 : y2 = φ
c7 : y3 = ω

(6.25)

and four derivative constraints of the forṁx = dx
dt . In this model(ρ, φ) denotes the

position of the satellite in polar coordinates on the plane,v is the radial velocity,ω is
the angular velocity andu1, u2 are the radial and tangential thrust, respectively.f is the
fault signal andd represents a disturbance signal. The parametersθ1 andθ2 are supposed
to be known, constant and different from zero. The constraintsc1 to c4 describe the
dynamics of the satellite and the constraintsc5 to c7 describe the measurement system
on the satellite.

The structural graph of the satellite system (6.25) is shown in Table 6.3. From this

Table 6.3: The structure table of the satellite system.x means uni-directional relations
and1 means bi-directional relations, where uni-directional means that the given variable
is not calculable from the relation, see definitions in (Izadi-Zamanabadi, 2001). The
symbols➀ show a matching for a part of the system.

Known Unknown Faults
y1 y2 y3 u1 u2 d v̇ φ̇ φ ρ̇ v ω̇ ρ ω f

c2 1 1 1 1 1
d4 1 x
d2 1 x
c3 1 1
c6 1 1
d1 1 x
c1 ➀ 1
c4 1 ➀ 1 1 1 1
d3 ➀ x
c5 1 ➀
c7 1 ➀

table it is seen that a match exists, which includes the constraint affected by the faultf .
Therefore the subsystem formed by this match can be used for fault detection. Moreover
the subsystem does not contain the disturbanced, and is therefore robust with respect to
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this disturbance. The match is given by the following set of constraints

C = {d1, d3, c1, c4, c5, c7}.
Considering the theory developed in Section 6.2, the set of equations describing the iden-
tified subsystem must be described as in (6.4). The state, algebraic and output vectors
are therefore given by

xd =
(
ρ ω

)T
xa = v y =

(
y1 y3

)T
,

and the vector field and vector functions are given by

fx =
(

v
− 2vω

ρ + θ2
u2
ρ

)
mx = 0 hx =

(
ρ
ω

)
.

Form these expressions it is seen that the the vector fieldfx must be used for the elimina-
tion of xa. fx can be put on the formf ′o(xd,u) + Go(xd)xa, meaning that Assumption
6.2.2 is fulfilled. Duing this the expression becomes

(
ρ̇
ω̇

)
=

(
0

θ2
u2
ρ

)
+

(
1

− 2ω
ρ

)
v . (6.26)

Hence, Lemma 6.2.2 can be used to obtain the matrixD̃ as it is shown in the following
by choosing

D(xd) =
(

d11(xd) d12(xd)
d21(xd) d22(xd)

)
, (6.27)

we computeD(xd)dxd

dt = D(xd)f ′o(xd,u) + D(xd)Go(xd)xa and obtain

D(xd)
dxd

dt
=

(
d12(xd)θ2

u2
ρ

d22(xd)θ2
u2
ρ

)
+

(
d11(xd)− 2d12(xd)ω

ρ

d21(xd)− 2d22(xd)ω
ρ

)
. (6.28)

In order to fulfill condition (6.12) we choose:

d11(xd) = 2ω d12(xd) = ρ d21(xd) = 1 d22(xd) = 0 .

According to (6.13) we get
D̃(xd) =

(
2ω ρ

)
,

and system (6.20) as:

(
2ω ρ

) (
ρ̇
ω̇

)
=

(
θ2

u2
ρ

0

)

y =
(

ρ
ω

)
.
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The transformationΦ can therefore, according to Theorem 6.2.2, be found by solving
the following p.d.e.

∂Φ
∂xd

= µ(xd)D̃(xd) = µ(xd)
(
2ω ρ

)
.

Choosing the integrating factorµ(xd) = ρ the solution to the p.d.e. becomes

Φ = ωρ2 .

WhenΦ exists and Assumption 6.2.3 is fulfilled then the state transformationΨ is,
according to Theorem 6.2.2, given by the explicit solution to,

(
y1

z

)
=

(
ρ

ωρ2

)
,

wherey1 = ρ is one of the output constraints, see (6.25). The solution to this equation
becomes,

(
ω
ρ

)
= Ψ =

(
z/(y2

1)
y1

)
.

Using this transformation the state space representation of the identified subsystem be-
comes,

S :
{

ż = θ2y1u2

y3 = z/(y2
1) .

A residual observer for this system could be

O :
{

ż = θ2y1u2 + k(y2
1y3 − z)

r = q(y2
1y3 − z) ,

wherek andq are design constants. The observerO is exactly the same observer as
obtained in (De Persis and Isidori, 2001) using the geometric approach.

6.3 System Model

In this section the model of a general hydraulic application including a centrifugal pump
is presented. Moreover, five faults, which are assumed to affect the centrifugal pump,
are included in the model. Only quantities measurable at the pump site are assumed
measured in this application. In the case, studied in this chapter, this means that the
pressureHp and the flowQp of the pump, and the supply voltagevsabc and current
isabc of the motor are assumed known.

In Chapter 3 a model describing a centrifugal pump driven by an induction motor
was derived. From this model it is seen that the input to the pump is the supply voltage
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Centrifugal


pump


Application
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p
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sabc


Figure 6.2: The centrifugal pump placed in a hydraulic application. The inputs to the
centrifugal pump are the supply voltagevsabc and the volume flowQp and the output is
the pressure differenceHp. The inputs to the application are a set of unknown inputsd
and the pressure difference of the pumpHp, and the output is the volume flowQp.

vsabc and the volume flowQp, and the output is the pressure differenceHp delivered by
the pump. This input/output structure is depicted in Fig. 6.2 where it is connected to a
general hydraulic application. The inputs to this application are a set of unknown inputs
d and the pressure differenceHp of the pump, and the output is the volume flowQp.
The model of the system, depiced in Fig. 6.2, is formalized in the following subsections.

6.3.1 The Model of the Centrifugal Pump and its Application

It is assumed that the application is a dynamic system, which can be modelled by a set
of first order ordinary differential equations. The structure of a model describing such a
system is shown below,

dxQ

dt = fA(xQ,Hp,d)
Qp= hA(xQ) ,

(6.29)

wherexQ is a vector containing the states of the hydraulic application and the vectord
represents the unknown inputs to this application.Hp andQp are the pressure output
and the volume flow of the centrifugal pump respectively.

The model of the centrifugal pump, presented in Chapter 3, is connected in a feed-
back loop with the application model, as it is depiced in Fig. 6.2. This results in the
following model,

dxd

dt = fx(xd,u,d)
y= hx(xd) ,

where the state vectorxd is given by,

xd =
[
isd isq imd imq ωr xT

Q

]T
,

and the input vectoru and the output vectory are given by,

u =
[
vsd vsq

]T
y =

[
isd isq H Q

]T
.

131



Chapter 6: A New Approach for FDI in Centrifugal Pumps

Finally, the unknown input vectord is the same vector as the unknown input vector
prestented in (6.29). The vector fieldfx of the system is described by the following set
of equations,

fx(xd,u,d) =




−Rs+R′r
L′s

isd + R′r
L′s

imd − zpωr
L′m
L′s

imq + 1
L′s

vsd

−Rs+R′r
L′s

isq + zpωr
L′m
L′s

imd + R′r
L′s

imq + 1
L′s

vsq

R′r
L′m

isd − R′r
L′m

imd + zpωrimq

R′r
L′m

isq − zpωrimd − R′r
L′m

imq
1
J

3
2zpL

′
M (imdisq − imqisd)− B

J ωr − fT (h(xQ), ωr)
fA(xQ,H,d)




,

wherefH(Q,ωr) andfT (Q,ωr) are given by,

fH(Q,ωr) = −ah2Q
2 + ah1Qωr + ah0ω

2
r

fT (Q,ωr) = −at2Q
2 + at1Qωr + at0ω

2
r

. (6.30)

The output map of the system is given by,

hx(x) =




isd

isq

fH(hA(xQ), ωr)


 .

This model represents the behaviour of the system when no fault has occured. In the
following the effect of faults on the centrifugal pump is described.

6.3.2 Fault Models

Five faults are considered in this chapter, these are,

1. clogging inside the pump,

2. increased friction due to either rub impact or bearing faults,

3. increased leakage flow,

4. performance degradation due to cavitation,

5. dry running.

The first three faults are internal faults caused by impurities in the liquid and wear re-
spectively. The fourth fault, cavitation, is caused by too low inlet pressure, meaning
that the fault is external. Finally, the last fault, dry running, is a phenomenon caused by
faults in the surrounding system, hence it is also an external fault. Even though it is not
a fault in the pump, this fault is important to detect as sealing rings and bearings will be
destroyed when the pump is running without water for only a few seconds.
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The mentioned faults all affect the hydraulic part of the pump. The performance of
the hydraulic part of the pump is modelled byfH andfT . These functions describe
the pressure and the torque produced by the pump respectively. Moreover the flow
measurement is part of the hydraulic description of the pump. Introducing the faults
described above, the description of the hydraulics of the pump becomes,

Hp = fH(Q,ωr)−KfQ2 − Cchfc − Cdhfd

Tp = fT (Q,ωr) + ∆Bωr − Cctfc − Cdtfd

y3 = Q−Kl

√
Hp .

In this fault modelKf ∈ R+ represents clogging,∆B ∈ R+ represents rub impact,
Kl ∈ R+ represents increased leakage flow,fc ∈ R+ represents cavitation, andfd ∈
R+ represents dry runnning. The first three signals model the faults accurately, while
the last two terms are linear approximations.

6.4 Structural Analysis

As stated in Section 6.1 the structural analysis is the study of the system properties,
which are independent of the actual values of the parameters. Only links between the set
of variablesX and the set of constraintsC are represented in the analysis. In this work
the use of SA is two folded, as it is both used for identifying two cascade connected
subsystems, and to identify subsystems which can be used for residual generations.

The system is splitted into two cascade connected subsystems to facilitate the deriva-
tion of residual generators. This is possible as the faults considered in this work only
affect the second subsystem, meaning that only this subsystem must be considered when
deriving residual generators.

As the SA is working on the two setsC, Z these must be defined for the pump
application before the results of the SA can be obtained. This is done in the Section
6.4.1. After that the splitting of the system is considered in Section 6.4.2. Finally this
section ends with identifying subsystem for residual generation in Section 6.4.3.

6.4.1 Variables and Constraints of the System

The constraintsC of the hydraulic system are identified from the model presented in
Section 6.3. These constraints are given by
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c1 : L′si̇sd = −(Rs + R′r)isd + A1 + vsd

c2 : L′si̇sq = −(Rs + R′r)isq + A2 + vsq

c3 : L′mi̇md = −A1 + R′risd

c4 : L′mi̇mq = −A2 + R′risq

c5 : Jω̇r = Te −Bωr − Tp

c6 : ẋQ = fA(xQ,Hp,uQ)
c7 : A1 = R′rimd + zpωrL

′
mimq

c8 : A2 = R′rimq − zpωrL
′
mimd

c9 : Te = 3
2zpL

′
m (imdisq − imqisd)

c10 : Hp = −ah2Q
2
p + ah1Qpωr + ah0ω

2
r

c11 : Tp = −at2Q
2
p + at1Qpωr + at0ω

2
r

c12 : Qp = hA(xQ)
c13 : y1 = isd

c14 : y2 = isq

c15 : y3 = Hp

c16 : y4 = Qp ,

(6.31)

where the constraintsc7 andc8 are included to make the constraintsc1 to c4 independent.
Hereby Assumption 6.1.3 is fulfilled globally (Blanke et al., 2003).

In (6.31) the constraintsc1 to c4 and c7 to c8 describe the electrical part of the
induction motor,c5 describes the mechanical dynamics of the pump, andc6 describes
the dynamics of the hydraulic applications.c9, c10 andc11 describe the torque generated
by the induction motor, the pressure difference generated by the centrifugal pump, and
the load torque of the centrifugal pump respectively.c12 describes the volume flow
through the pump and finallyc13 to c16 describe the measurements on the system.

Two extra constraints can be deduced by differentatingc7 and c8 with respect to
time. Doing this the following additional constraints are obtained,

cd7 : Ȧ1 = R′r i̇md + zpω̇rL
′
mimq + zpωrL

′
mi̇mq

cd8 : Ȧ2 = R′r i̇mq − zpω̇rL
′
mimd − zpωrL

′
mi̇md .

(6.32)

Beside the constrains presented above, there is a differential constraint for each variable
ẋd, meaning that a constraint on the form,

di :
dxdi

dt
= ẋdi, (6.33)

exists for each element iṅxd. In this expressioni denotes theith element inẋd.
From the constraints presented in (6.31) and (6.32) the set of variables are identified.

These are given by,

Z = ẋd ∪ xd ∪ xa ∪ u ∪ y
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whereX = ẋd ∪ xd ∪ xa are the unknown variables, which must be matched, and
K = u ∪ y are the known variables.xd, xa, u, andy are given by,

xd =
[
isd isq imd imq ωr A1 A2 xT

Q

]T

xc =
[
Hp Qp Tp dT

]T
u =

[
vsd vsq

]T
y =

[
y1 y2 y3 y4

]T
.

6.4.2 Cascade Connected Systems

From the model of the system presented in Section 6.3 it is seen that the system is non-
linear. Therefore, traditionally a nonlinear transformation is required to enable a design
of a residual observer (Garcia and Frank, 1997). This transformation is not easy to find
due to the nonlinear nature of the system. Moreover, developing Analytical Redundancy
Relations (ARR’s), using for example Groebner basis (Cox et al., 1997) for variable
eliminations, have not given any usable result. This is also due to the nonlinear nature
of the system. Therefore, the system is divided into two cascade-connected subsystems
by using structural consideration on the system (Blanke et al., 2003; Izadi-Zamanabadi
and Staroswiecki, 2000).

Using SA it is shown that it is in fact possible to make this split. By analysing the
relation describing the electrical part of the induction motor, it is seen from Table 6.4 that
these constraints form an over-constraint system, see Definition 6.1.7. Therefore from
Theorem 6.1.1 the system is structural observable, meaning that the set of constrainsCe

form an observable subsystem for almost all parameters. This set is given by,

Ce = {d1, d2, dd7, dd8, c1, c2, c3, c4, c7, c8, c9, cd7, cd8, c13, c14} , (6.34)

Ce is defined as the first subsystem. The remaining relations are defined as the second
subsystem, meaning that the constrains of this subsystem are given by,

Cm = {d5, d6, c5, c6, c10, c11, c12, c15, c16}. (6.35)

The connecting variables between the two subsystems are in this work defined as the
estimates ofωr andTe, and will in the following be denoted̂ωr andT̂e respectively.

It is also seen from the column at the right hand side of Table 6.4 that the faults
treated in this chapter are not affecting the relations in the first subsystem. Therefore, it
is only necessary to consider the second subsystem when designing residual generators
for FDI on the system. Hence, the fault detection algorithm can be divided into two parts
as shown in Fig. 6.3.

Using the relations describing the first part, an adaptive observer is designed. This
observer observes the variablesωr andTe connecting the two parts. The design of this
observer is considered in Section 6.5. But first SA is used to identify minimal over-
constrained subsystems (see Definition 6.1.11) in the system formed by the constraints
Cm. The obtained results are presented in the following subsection,
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Table 6.4: The structure table of the system.x implies that the given variable is not cal-
culable using the constraint but does appear in the constraint (Izadi-Zamanabadi, 2001).
The symbols➀ show a matching for the first part of the system.
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Figure 6.3: The division of the fault detection algorithm. In the first subpart the model
of the electrical part of the motor is used, and in the second subpart the models of the
mechanical and hydraulic parts of the system are used.

6.4.3 Structural Analysis on the Second Subsystem

The SA is in this section used for identification of four minimal over-constrained sub-
systems. Each of these subsystem can be utilized for detecting a subset of the faults
in the centrifugal pump. The second subsystem is described by the set of constraints
Cm in (6.35). Beside these constraints two extra constraints are defined to describe the
connecting variableŝωr andT̂e. These constraints are given by,

c15 : ω̂r = ωr

c16 : T̂e = Te .

In Table 6.5 the graph of the second subsystem is shown. Here the two extra constraints
are added.

Table 6.5: The structural model of the second subsystemCm obtained in Section 6.4.2.
Known Unknown Faults

y3 y4 ω̂r T̂e uQ ẋQ xQ ω̇r Tp ωr Hp Qp Te Kf Kl ∆B fc fd

c6 1 1 1 1
d6 1 x
c10 1 1
d5 1 x
c5 1 1 1 1
c9 1 1 1 1 1 1
c8 1 1 1 1 1 1
c15 1 1
c13 1 1
c14 1 1 1
c16 1 1

Using the definitions and procedures described in (Blanke et al., 2003; Izadi-
Zamanabadi, 2001), four minimal over-constrained subsystems are identified. The set
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of constraints contained in each of these system are given by,

Cm1 = {d5, c5, c9, c14, c15, c16}
Cm2 = {c8, c13, c14, c15}
Cm3 = {d5, c5, c8, c9, c13, c15, c16}
Cm4 = {d5, c5, c8, c9, c13, c14, c16} .

(6.36)

From these four minimal over-constrained subsystems, it is seen that the constraintsd6,
c6, andc10 are not contained in any of the matchings. These constraints describe the
application in which the pump is placed. Therefore, when these are not used in a match
it means that the matching is independent of the application model, and therefore no
knowledge about the application is necessary for the algorithm to work.

Looking at the column to the right in table 6.5 the faults affecting each of the sub-
systemsCmi can be identified. The connections between the faults and the subsystems
are shown below,

Cm1 : {Kl, ∆B, fc, fd}
Cm2 : {Kf ,Kl, fc, fd}
Cm3 : {Kf ,∆B, fc, fd}
Cm4 : {Kf ,Kl,∆B, fc, fd} .

(6.37)

These connections show that the given faults areStructurally monitorablefrom the given
set of constraints, see Theorem 6.1.2 (Blanke et al., 2003).

From the connection in (6.37) it is seen that the faultsfc andfd are indistinguish-
able from a structural point of view, meaning that isolation of these faults is impossible
using residual generator built on these sets of constraints. Moreover, it is seen that no
additional information is added usingCm4. Therefore the set,

{Cm1, Cm2, Cm3} ,

contains the obtainable information about the faults in the system. The last relationCm4

could be used for validation in a robust fault detection scheme.

6.5 Observer for the Motor Part

In Section 6.4.2 it is shown, using SA, that the model of the centrifugal pump can be
splitted into two subsystems, where the first system isstructurally observable, see The-
orem 6.1.1 (Blanke et al., 2003). When this is the case the behaviour model of the
system is also observable for almost all parameters (Blanke et al., 2003). Therefore, it
should be possible to derive an expression of the measurements and their derivatives for
calculating the connecting variables.

Unfortunately, the derivatives of the measurements are not known. Therefore, an
observer solution is investigated in this section. In the first part of the section a state
space description of the system is derived from the constraintsCe. In the last part an
adaptive observer for observing the connecting variables is presented.
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6.5.1 Realization of the set of ConstraintsCe

One approach for developing an observer to observe the speed and torque is to derive a
dynamic description of the set of constraints using the theory presented in Section 6.2.
The obtained dynamic description can then be used in the design of an observer.

In Section 6.4.2 the set of constraintsCe is identified. This set forms a match of
the two connecting variablesωr andTe. From Table 6.4 it is seen that the constraint
c9 is used to match the variableTe, which is not used in any other constraints inCe.
Therefore,c9 is not necessary in a match of the speedωr. However, it is seen that, when
the speed is matched,c9 can be used to calculateTe, as all variables exceptTe is matched
in c9. Therefore, when an expression for calculatingωr is derived, then the derivation
of an expression for calculatingTe is just a matter of form.

Based on the above argumentation only the calculation ofωr is considered in the
following. In Remark 6.2.4 it is argued that an observable state space description only
exists if the given subsystem is over-constrained, which is not the case for the setCe.
Therefore, by adding an extra constraint toCe making the new set over-constraint and
removingc9, the following set is obtained

C′e = (Ce\c9) ∪ d3 , (6.38)

which fulfills the demand of existence given in Remark 6.2.4. The new setC′e is formed
by the following constraints,

c1 : L′si̇sd = −(Rs + R′r)isd + A1 + vsd

c2 : L′si̇sq = −(Rs + R′r)isq + A2 + vsq

c3 : L′mi̇md = −A1 + R′risd

c4 : L′mi̇mq = −A2 + R′risq

c7 : A1 = R′rimd + zpωrL
′
mimq

c8 : A2 = R′rimq − zpωrL
′
mimd

c13 : y1 = isd

c14 : y2 = isq

cd7 : Ȧ1 = R′r i̇md + zpω̇rL
′
mimq + zpωrL

′
mi̇mq

cd8 : Ȧ2 = R′r i̇mq − zpω̇rL
′
mimd − zpωrL

′
mi̇md .

In this set the unknown variablesxd ∪ xa and the known variablesu ∪ y are given by,

xd =
[
isd isq imd A1 A2

]T
xa =

[
i̇mq imq ω̇r ωr

]T

u =
[
vsd vsq

]T
y =

[
y1 y2

]T
.

Comparing the set (6.38) with the general system given by (6.4) the vector fieldfx, the
algebraic mapsmx and the output mapshx are constructed using the set of constraints
{c1, c2, c3, cd7, cd8}, {c4, c7, c8}, and{c13, c14} respectively. According to Theorem
6.2.1 and the match shown in Table 6.4, it is possible to eliminate a subset of the alge-
braic variablesxa in the system using the vector functionmx. From the match presented
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in Table 6.4 it is seen that the two algebraic variablesi̇mq andimq should be eliminated
usingmx. By eliminating these the following system is obtained,

dxd

dt = f ′o(xd,xa2,u)
go(y) = ho(xd,xa2) ,

(6.39)

wherexa2 =
[
ωr ω̇r

]T
and,

fo =




−Rs+R′r
L′s

isd + 1
L′s

A1 + 1
L′s

vsd

−Rs+R′r
L′s

isq + 1
L′s

A2 + 1
L′s

vsq

− 1
L′m

A1 + R′r
L′m

isd

R′r
L′m

(R′risd −A1) + zpω̇r

(
L′m
R′r

A2 + zpωr
L′m

2

R′r
imd

)
+ zpωr(R′risq −A2)

− R′r
L′m

A2 + R′r
2

L′m
isq − zpω̇rL

′
mimd − zpωr(R′risd −A1)




go =




0
y1

y2


 ho =




(
R′r + z2

pω2
r

L′m
2

R′r

)
imd + zpωr

L′m
R′r

A2 −A1

isd

isq


 .

The next step in the derivation of a state space description is to use the approach de-
scribed in Theorem 6.2.2 to eliminate the algebraic variablesxa2 in (6.39). Unfortu-
nately, doing this the expression becomes huge, making it very difficult to find the state
transformationΦ, see Theorem 6.2.2. This makes the obtained expression useless.

However, by eliminating the variables inxa2 in two steps an useful expression
is obtained. To see this firsṫωr is eliminated in (6.39), and then the state trans-
formation T : x, ωr → xd is used to transform the obtained system. Herex =[
isd isq imd imq

]T
andT is given by

T(x, ωr) =




isd

isq

imd

R′rimd + zpωrL
′
mimq

R′rimq − zpωrL
′
mimd




,

Doing this the traditional description of the electrical part of an induction motor is ob-
tained, i.e. the transformed model has the following form

dx
dt = fx(x, ωr,u)
y = hx(x) ,

(6.40)
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where

fx(x, ωr,u) =




−Rs+R′r
L′s

isd + R′r
L′s

imd − zpωr
L′m
L′s

imq + 1
L′s

vsd

−Rs+R′r
L′s

isq + zpωr
L′m
L′s

imd + R′r
L′s

imq + 1
L′s

vsq

R′r
L′m

isd − R′r
L′m

imd + zpωrimq

R′r
L′m

isq − zpωrimd − R′r
L′m

imq




hx(x) =
(

isd

isq

)
.

As the second step the approach presented in Theorem 6.2.2 is used ones again. This
time to eliminateωr in (6.40). Hereby the following state space description is obtained,

dz
dt = fz(z,u′)

y = hz(z,u′) ,
(6.41)

wherez ∈ Dz ⊂ R3 andu′ =
[
vsd vsq y2

]T
. The vector fieldfz and the nonlinear

maphz in this expression are given by,

fz(z,u′) =



−Rs

L′s
z1 + Rs

√
2L′mz3−z2

2+2z2L′sy2−L′s
2y2

2
L′s

+ vsd

−Rsy2 + vsq

−2R′rL′s+R′rL′m
L′sL′m

z3 + R′r
L′mL′s

z2
2 − R′r

L′m
z2y2 + R′r

√
2L′mz3−z2

2+2z2L′sy2−L′s
2y2

2z1

L′mL′s




hz(z,u′) =
(

1
L′s

z1 −
√

2L′mz3−z2
2+2z2L′sy2−L′s

2y2
2

L′s

)
.

The system (6.41) is a state space realization of the set of constraintsC′e, where all
algebraic variables are eliminated. The speed of the motor can be calculated from the
states of (6.41) using the following expression,

ωr =
R′r
L′m

z2+vsq−L′sẏ2−
(

Rs+
R′rL′s
L′m

+R′r

)
y2

zp

√
2L′mz3−z2

2+2z2L′sy2−L′s
2y2

2

,

from which it is seen thatωr is a function ofẏ2, which in general is not known. Even
though this expression is not usable for estimating the speedωr, the following remark
on this system should be considered.

Remark 6.5.1 If an observer can be found based on system (6.41), then this observer
is a residual observer for the induction motor, which is independent of the speedωr.

In this section it is argued that it is not possible to estimate the speed of the motor without
knowing the derivative of at least one of the measurements. However, it is also shown
that the subsystem identified using SA corresponds to the electrical part of an induction
motor, see (6.40). Therefore, all the methods, described in the literature, for speed
and torque estimation based on the electrical model can be used. In the following the
adaptive observer, developed in Section 5.2.1, is utilized for estimating the connecting
variables, i.e. motor speed and torque.
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6.5.2 The Adaptive Observer

In most pump applications the speed is either constant most of the time or changing
slowly over time. Therefore the speed can be assumed constant in the observer design,
meaning that an adaptive observer can be used for estimating the states and speed of the
motor simultaneously. This approach, of course, has the drawback that, when transient
phases occurs, short time errors in the estimated signals must be expected.

Considering the motor description (6.40) obtained in the previous section, it is seen
that this system can be rewritten to be on the following form

dx
dt = (A0 + ωrAωr )x + Bu
y = Cx ,

(6.42)

where the state vectorx, the input vectoru and the output vectory are given by

x =
[
isd isq imd imq

]T

u =
[
vsd vsq

]T
y =

[
isd isq

]T
,

and the matrices in (6.42) are

A0 =




−Rs+R′r
L′s

0 R′r
L′s

0

0 −Rs+R′r
L′s

0 R′r
L′s

R′r
L′m

0 − R′r
L′m

0

0 R′r
L′m

0 − R′r
L′m




Aωr =




0 0 0 −zp
L′m
L′s

0 0 zp
L′m
L′s

0
0 0 0 zp

0 0 −zp 0




B =




1
L′s

0
0 1

L′s
0 0
0 0


 C =

[
1 0 0 0
0 1 0 0

]
.

If the speed is assumed constant, this system is a linear system with one unknown but
constant parameter. Using the transformationx = Tz given by

T =




1 0 0 0
0 1 0 0

− L′s
L′m

0 1 0

0 − L′s
L′m

0 1




the system (6.42) is tranformed to the adaptive observer form defined in Definition 5.2.1
in Section 5.2.1, whereA(u,θ) = A(θ) andθ = ωr. This means that an adaptive
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observer is given by Proposition 5.2.1. Using this proposition the adaptive observer for
the induction motor becomes

Oe :





dẑ
dt = (A′

0 + ω̂rA′
ωr

)ẑ + B′u + K(y −C′ẑ)
dω̂r

dt = κ(y −C′ẑ)T A′′
ωr

ẑ
x̂ = Tẑ ,

(6.43)

whereẑ ∈ R4 contains the observer states, andω̂r is the estimated speed. The matrices
in the observer are

A′
0 = T−1A0T A′

ωr
= T−1Aωr

T
B′ = T−1B C′ = CT ,

and A′′
ωr

is a matrix composed by the two first rows ofA′
ωr

. K and κ are design
constants.K is chosen such that the LMI (5.27), described in Section 5.2.2, is feasible,
andκ is chosen such that the convegence speed ofω̂r is suitable.

The connecting variables between the two subsystems are the speed and torque. Of
these only the speed is directly available from the observer (6.43). However, usingc9

the torque can be calculated whenever the states of the motor are known. When the
estimates of the states are usedc9 becomes,

c9 : T̂e = 1.5zpL
′
m

(
îmdîsq − îmq îsd

)
,

whereîsd, îsq, îmd and îmq are estimates of states in the original system presented in
(6.42).

This observer is, as mentioned in the beginning of this subsection, developed under
the assumption that the speed is constant i.e.dωr

dt = 0. This assumption is not correct
during transient phases, therefore it is expected that problems can arise when transients
occur in the speed.

6.6 Observer Based Fault Detection and Isolation

In this section one ARR and three residual observers are designed. These are based on
the four minimal over-constrained subsystems identified in Section 6.4.3. The design
of the observers is partly based on the theory presented in Section 6.2, and partly based
on a proposition presented in this section, which states the stability condition for the
observers. Results obtained using the developed residual observers on the test setup are
presented in Section 6.7.

6.6.1 The Residual Generators

Looking at the constraints forming the setCm2 = {c8, c13, c14, c15} it is seen that no
differential constraints are included in this. Therefore an ARR obtained from this set
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does not include derivatives. The ARR is given by,

r2 = −ah2y
2
4 + ah1ω̂ry4 + ah0ω̂

2
r − y3 . (6.44)

It is also possible to obtain ARR’s from the setsCm1, Cm3 andCm4, but because a
differential constraint is used in each of these sets, it is necessary to use derivatives of
the output in these cases. To avoid this, three residual observers are developed in the
following. The constraints contained in the setsCm1, Cm3 andCm4 are given by (6.36),
and are reproduced below for convenience,

Cm1 = {d5, c5, c9, c14, c15, c16}
Cm3 = {d5, c5, c8, c9, c13, c15, c16}
Cm4 = {d5, c5, c8, c9, c13, c14, c16} ,

where the constraints are given by,

d5 : ω̇r = dωr

dt
c5 : Jω̇r = Te −Bωr − Tp

c8 : Hp = −ah2Q
2
p + ah1Qpωr + ah0ω

2
r

c9 : Tp = −at2Q
2
p + at1Qpωr + at0ω

2
r

c13 : y3 = Hp

c14 : y4 = Qp

c15 : ω̂r = ωr

c16 : T̂e = Te .

Comparing the setsCm1, Cm3 andCm4 with the structure of (6.4), the vector fieldfx
is formed by the constraintc5, the mapmx is formed by a subset of{c8, c9}, and the
maphx is formed by a subset of{c13, c14, c15, c16}. Using Corollary 6.2.1 on these sets
it is shown that the setsCm1, Cm3 andCm4 all can be transformed to systems with the
following structure,

dxd

dt = axd + fx(xd, v1, u) + e1(xd, v1, u, f)
g(v1, v2, u) = h(xd) + e2(xd, v1, v2, u, f) ,

(6.45)

where the state of the systemxd = ωr, the inputu = T̂e, the outputsv1, v2 ∈
{ω̂r, y3, y4}, andf is a vector containing the fault signals. This shows that the alge-
braic variables in systemCm1, Cm3 andCm4 can be decoupled using a transformation
of the output equations only. For the three obtained systems the following assumption
holds.

Assumption 6.6.1 It is assumed that in the case where no faults have occurred, i.e.
f = 0, the output maph in (6.45) can be solved forxd locally. Let this solution be given
by,

xd = g̃(v1, v2, u) . (6.46)
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Using the above assumption the following proposition describes a residual observer
for the system described by (6.45).

Proposition 6.6.1 Under Assumption 6.6.1 the following observer is a residual ob-
server for systems described by (6.45),

x̂d

dt = ax̂d + fx(g̃(v1, v2, u), v1, u) + k(g̃(v1, v2, u)− x̂d)
r = q(g̃(v1, v2, u)− x̂d)

. (6.47)

The residual observer is asymptotical stable ifa−k < 0. The fault input to this observer
is given by,

ff =(fx(xd, v1, u)− fx(xd + δxf , v1, u)) + e1(xd, v1, u, f)− kδxf ,

whereff is a derived fault signal, which is strongly detectable. In the expression offf

the signalδxf is given by,

δxf = h−1(g(v1, v2, u)− e2(xd, v1, v2, u, f))− g̃(v1, v2, u) .

Proof: In the no fault casef = 0 the observer error equation becomes,

ė = (axd + fx(xd, v1, u))− (ax̂d + fx(xd, v1, u) + k(xd − x̂d))

ė = (a− k)e (6.48)

where (6.46) is used in the observer expression (6.47), meaning thatg̃(v1, v2, u) = xd. Equation
(6.48) shows that the error dynamic of the observer is asymptotical stable ifa− k < 0.

The expression of the derived fault signalff is obtained in the following by introducing the
fault signals in the error equation of the observer. First, an expression of the fault when mapped
throughg is obtained. To this end define the functiong̃f as,

gf (v1, v2, u) = g(v1, v2, u)− e2(xd, v1, v2, u, f) = h(xd)

From this expression it is seen that the functiongf must be used to obtain a map from the mea-
surementsv1 andv2 to the statexd if a fault f has occured, i.e.

xd = g̃f (v1, v2, u) = h−1(g(v1, v2, u)− e2(xd, v1, v2, u, f))

Defineδxf andxf asδxf = xd−xf andδxf = g̃f (y1, y2, u)− g̃(y1, y2, u) respectively. Using
these signals the observer error equation, in the faulty case, i.e.f 6= 0, becomes,

ė =ae + fx(xd, y1, u)− fx(xf , y1, u) + e1(x, y1, f)− k(xf − x̂)

ė =(a− k)e + (fx(xd, y1, u)− fx(xd − δxf , y1, u)) + e1(x, y1, f)− kδxf (6.49)

From this expression the following nonlinear expression of the fault can be identified,

ff =(fx(xd, y1, u)− fx(xd + δxf , y1, u)) + e1(x, y1, f)− kδxf
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Including this fault expression in the error equation (6.49) it becomes,

ė = (a− k)e + ff

r = qe

From this expression it is seen that the derived fault signalff is strongly detectable.¤

Remark 6.6.1 The derived faultff is strongly detectable using this observer. This is
not the case for the faults inf , as the nonlinear expression offf can equal zero even
though one of the entries inf is different from zero.

Remark 6.6.2 The observer described by Proposition 6.6.1 is designed under the as-
sumption that a perfect model exists, and that the measurements are not affected by
noise. This is, of course, not fulfilled in real life applications. To overcome this the gain
k of the observer is chosen such that errors due to small model mismatchs and noise will
be suppressed.

Using Corollary 6.2.1 and Proposition 6.6.1 on the three over-constrained subsystems
Cm1, Cm3, andCm4, the following three residual observers are obtained,

Om1 :
{

J dx̂d

dt = −Bx̂d − fT (y4, ω̂r) + T̂e + k1 (ω̂r − x̂d)
r1 = q1 (ω̂r − x̂d)

(6.50)

Om3 :
{

J dx̂d

dt = −Bx̂d − fT (g3(ω̂r, y3), ω̂r) + T̂e + k3 (ω̂r − x̂d)
r3 = q3 (ω̂r − x̂d)

(6.51)

Om4 :
{

J dx̂d

dt = −Bx̂d − fT (y4, g4(y3, y4)) + T̂e + k4 (g4(y3, y4)− x̂d)
r4 = q4 (g4(y3, y4)− x̂d)

(6.52)

whereki is designed according to Proposition 6.6.1 andqi is chosen such that the resid-
uals have a reasonable value in the case of faults. The functionfT is given by

fT (Qp, ωr) = −at2Q
2
p + at1Qpωr + at0ω

2
r ,

and the functionsg3 andg4 are derived from the output maph in (6.45), and are given
by,

g3(ω̂r, y3) =
ah1ω̂r +

√
a2

h1ω̂
2
r − 4ah2(y3 − ah0ω̂2

r)
2ah2

g4(y3, y4) =
−ah1y4 +

√
a2

h1y
2
4 + 4ah0(y3 + ah2y2

4)
2ah0

.

These expressions are valid forω̂r, y4 ∈ R+ when the parameters of the pump used in
the test are considered. Therefore the expressions are valid in the state spaceωr, Q ∈
R+, which is exactly the state space in which the model is valid, see Section 3.5.

146



Section 6.7: Test Results

6.7 Test Results

The final FDI algorithm is obtained by composing the adaptive observer developed in
Section 6.5, and the residual generators developed in Section 6.6. The structure of the
FDI algorithm is depitch in Fig. 6.4. In this algorithm the adaptive observer is used for
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Figure 6.4: The final detection algorithm. The first part is the motor observer described
in Section 6.5, and the second part is composed of the ARR and residual observers
described in Section 6.6.

estimating the connection variablesωr andTe, based on the supply voltagevsabc and
the motor currentisabc. These connection variables are then, together with the flow and
pressure measurementQp andHp, used as input to the residual generators.

This detection algorithm is in the following tested on a Grundfos 1.5(KW ) CR5-10
pump. This pump is placed in a tank system as depicted in Fig. 6.5. In this tank system
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Figure 6.5: Sketch of the test setup. The measurements are the electrical quantitatives,
the differential pressureHp delivered by the pump and the volume flow through the
pumpQp.

the valveV1 is used to model disturbances in the system. Clogging inside the pump is
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modelled by the valveVc and dry running is modelled by closingV2 and openingV3.
Rub impact is modelled by adding an extra force to the shaft and cavitation is modelled
by closing valveV2 gradually. Leakage flow is modelled by openingVl.

Test results have shown that the sensitivity to the faultsfc andfd of the observer
Om4 is very low. Infact it is so low that changes due to the faults are smaller than
changes due to noise and parameter variations. Moreover in Section 6.4.3 it is shown
that the obtainable fault information is included in the residualsr1, r2, andr3. Therefore
only these residuals are considered in the test presented in this section.

Since the tests are performed on a real system, noise is expected on the residuals. To
overcome this problem a CUSUM algorithm (Basseville and Nikiforov, 1998) is used to
detect changes in the mean of the residuals and thereby detect the faults. The CUSUM
algorithm is shortly described in Appendix B.1. In the following, outputs of the CUSUM
algorithms are denotedD1 to D3, whereD1 is the decision signal ofr1 and so forth.

All test results are shown in Fig. 6.6, Fig. 6.7 and Fig. 6.8. First robustness
with respect to the operating point is tested. In this test both the position of the valve
V1 and the speed of the pump are changed during operation. During the test the valve
is changed in three steps from medium to maximum opened. The speed of the pump
is changed between 2380 and 2910 (rpm) each 2 (sec) during the test. The result of
this test is shown in Fig. 6.6(a), wherer1 to r3 are shown in the top figure and the
decision signalsD1 to D3 in the bottom figure. The test shows that the three residual
generatores are robust with respect to the tested operating points, but also that there are
some dependency to the operating point, see top figure of Fig. 6.6(a), This is partly due
to problems with the flow sensor at zero flow and partly due to dependency between the
parameters and the operating point.

Figures 6.6(b) to 6.8(b) show test results concerning isolability of the five faults
considered in this chapter. All these tests are performed withV1 half opened and an
angular speed of approximately 2650 (rpm). ComparingD1, D2, andD3 in the five
figures it is seen that the faults are distinguishable except for cavitation and dry running
shown in Fig.6.8(a) and Fig. 6.8(b) respectively. This was expected as the structural
analysis in Section 6.4.3 already had predicted this.

6.8 Discussion

The first topic of the work presented in this chapter is realization of over-constrained
subsystems identified using Structural Analysis (SA). It is well known that there is a
straightforward connection between Analytical Redundant Relations (ARR’s) and mini-
mal over-constrained subsystem. Unfortunately, the obtained ARR’s are in general func-
tions of the derivatives of the measurements, which are difficult to calculate when the
measurements are corrupted by noise.

To overcome this problem a new method for rewriting a subsystem identified using
SA to a state space description is developed. The obtained state space description has the
property, that the only unknown variables are the states of the system. The state space
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(b) Detection of the faultKf clogging.

Figure 6.6: Test results from test of the developed algorithms on the test setup. The
top figures shows the obtained residuals and the bottom figures shows decision signals
obtained from CUSUM algorithms.
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Figure 6.7: Test results from test of the developed algorithms on the test setup. The
top figures shows the obtained residuals and the bottom figures shows decision signals
obtained from CUSUM algorithms.
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(b) Detection of the faultfd dry running.

Figure 6.8: Test results from test of the developed algorithms on the test setup. The
top figures shows the obtained residuals and the bottom figures shows decision signals
obtained from CUSUM algorithms.
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description can then be used for derivation of residual observers. In the design of these
observers decoupling of unknown inputs has not to be considered, as the only unknown
variables are the states of the system. The method is tested on a satellite model, showing
that a residual observer can be obtained using this approach. Moreover the method is
used to develop residual observer for the centrifugal pump application, which is the
second topic of the chapter.

The second topic of the chapter is fault detection and isolation in a centrifugal pump
placed in an arbitrary hydraulic application. An algorithm, which is capable of detection
and isolation of five faults in a centrifugal pump, is developed. The proposed alogrithm
is independent of the application in which the pump is placed. This makes the algorithm
robust and usable in a wide range of applications, such as submersible application, waste
water application, and heating application.

Tests have shown that it is possible to distinguish between four of the five faults un-
der consideration, using three chosen residuals. But it is also shown that the algorithm is
sensitive to the operating point. This is partly due to dependency between the operating
point and the parameters in the model and partly due to flow sensor problems at zero
flow. Even though the algorithm has a small inherent dependency of the operating point,
it still performs considerably better than algorithms built on a linearized model, when
the operating point is changed.
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Chapter 7

FDI on the Centrifugal Pump: A
Steady State Solution

In this chapter Structural Analysis (SA) is utilized to derive Analytical Redundant Re-
lations (ARR’s), which can be used for fault detection. The concept of SA is described
in Section 6.1 in the previous chapter. The obtained ARR’s are based on a steady state
model of the pump. Here a steady state model denotes a model describing the pump
under constant speed, pressure and flow conditions. The developed detection algorithm
is only using electrical measurements on the motor, and the pressure and flow measure-
ments on the centrifugal pump. The electrical measurements are in this case Root Mean
Square (RMS) measurements of the voltage and current, the voltage frequency, and the
electrical angle between the voltage and current. These measurements become constant
when the system is running under steady state conditions, and can therefore be sampled
at any given sample rate, provided the steady state conditions. Therefore, by using only
these measurements the microprocessor load of the derived algorithm can be chosen
freely. Moreover, the steady state measurements of the electrical signals are sometimes
made available by modern motor protection units. All in all this makes the algorithm
suitable for implementation in cost sensitive products.

The obtained algorithm is robust with respect to parameter variations and the oper-
ating point of the pump respectively, making it usable in real life applications. In the
development of the FDI algorithm, the approach, presented in Section 6.4, of dividing
the system into two cascade-connected subsystems is used. This is done to avoid two
large residual expressions. The first of these subsystems consists of the electrical part
of the induction motor driving the pump, and the second subsystem consists of the me-
chanical and hydraulic part of the pump. Theoretical considerations regarding to Struc-
tural Analysis (SA) are, among others, found in (Blanke et al., 2003; Izadi-Zamanabadi,
2001).

The faults, which only affect the second subsystem, are detected using Analytical
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Redundancy Relations (ARR’s). These relations are obtained through the utilization of
structural analysis (Blanke et al., 2003) and the Groebner basis algorithm (Cox et al.,
1997). Using this approach the obtained ARR’s are polynomial. This is utilized in
the development of a detection algorithm, which is robust with respect to parameter
variations. Theoretical results on using the Groebner basis are given in (Staroswiecki
and Comtet-Varga, 2001). Moreover, an overview of model-based methods using ARR’s
is given in (Staroswiecki, 2000).

This chapter starts by presenting the steady state model of a centrifugal pump placed
in an arbitrarily hydraulic application. This is done in Section 7.1. Structural analysis on
the derived steady state model is considered in Section 7.2, which includes; the division
of the system into two suitable subsystems, derivation of an expression for calculating
the connecting variables, and ARR expressions for fault detection. In Section 7.3 a
method for robust fault detection using ARR’s is considered. Section 7.4 presents some
test results obtained on the industrial test bench, which also was used to obtain the test
results presented in Chapter 6. Finally concluding remarks end the chapter.

7.1 Steady State Model of the System

In this section, the model of the centrifugal pump derived in Chapter 3, is reformulated
to describe the pump under steady state conditions, only. The section is divided into
three subsections, where the first one is concerned with the steady state model of the
motor. The second one is concerned with the steady state model of the mechanical and
hydraulic parts of the pump, and finally the last one is concerned with fault modelling.
The obtained model will in the following be used in the derivation of a FDI algorithm
based on low bandwidth measurements, such as Root Mean Square (RMS) measurement
of the electrical quantities.

7.1.1 Steady State Motor Model

The model of the induction motor is described in Section 3.2. In this section both a
model of aY-connected and a∆-connected motor is derived. The obtained models are
prestented in (3.9) and (3.10) respectively. Comparing these models it is seen that the
following equations describe the motor in both cases,

L′s
disdq

dt =− (Rs + R′
r) isdq + (R′

r − zpωrJL′m) imdq + vsdq

L′m
dimdq

dt =R′
risdq − (R′

r − zpωrJL′m) imdq .
(7.1)

The variablesvsdq, isdq, andimdq are in general unknown. However, in theY-connected
case the measurable electrical quantities at the terminals of the motoritdq and vtdq

equalsisdq andvsdq respectively. In the∆-connected case these currents and voltages
are given by the transformationsitdq = Ciisdq andvsdq = Bvvtdq respectively, see
Section 3.2.3.
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To obtain a steady state model of the motor, a transformation of the motor states is
used. This transformation takes the states described in the stator fixed reference frame
xdq and transform these to an arbitrary frame. In this case the arbitrary frame rotates
with the frequency of the supply voltageωe. The new states are denotedxe

dq. The
transformation is given byxdq = T(θe)xe

dq, whereθe is the angle between the stator
fixed frame and the arbitrary rotating frame.T is given by

T(θe) =
[
cos(θe) − sin(θe)
sin(θe) cos(θe)

]
, (7.2)

whereθe is a function of time. Using this transformation to transformvsdq, isdq, and
imdq, a new model is obtained with the property that all states are constant during steady
state operation. Setting the derivatives of the states equal to zero, the following steady
state model of the motor is obtained,

−ωeL
′
sI

e
sq = −(Rs + R′r)Ie

sd + (R′rIe
md − zpωrL

′
mIe

mq) + V e
sd

ωeL
′
sI

e
sd = −(Rs + R′r)I

e
sq + (R′rI

e
mq + zpωrL

′
mIe

md) + V e
sq

−ωeL
′
mIe

mq = −(R′rIe
md − zpωrL

′
mIe

mq) + R′rI
e
sd

ωeL
′
mIe

md = −(R′rI
e
mq + zpωrL

′
mIe

md) + R′rI
e
sq .

Defining Ie
sd = 0 in the above model, meaning that the rotating reference frame is

aligned with the currentIe
sq, the final steady state model of the motor is obtained,

−ωeL
′
sI

e
sq = (R′rIe

md − zpωrL
′
mIe

mq) + V e
sd

0 = −(Rs + R′r)I
e
sq + (R′rI

e
mq + zpωrL

′
mIe

md) + V e
sq

−ωeL
′
mIe

mq = −(R′rI
e
md − zpωrL

′
mIe

mq)
ωeL

′
mIe

md = −(R′rIe
mq + zpωrL

′
mIe

md) + R′rI
e
sq .

(7.3)

The torque expression of the motor is given in (3.11) and repeated here for the sake of
convenience,

Te =
3
2
zpL

′
m (imdisq − imqisd) .

Using the transformationT, given in (7.2), a torque expression of the new variables is
obtained. The expression becomes

Te =
3
2
zpL

′
m

(
Ie
mdI

e
sq

)
. (7.4)

Equations (7.3) and (7.4) form the model of the induction motor during steady state op-
erations. However, the electrical quantitiesV e

sd, V e
sq, andIe

sq are not directly measurable.
Therefore, a connection between these quantities and the measurable quantities must be
established. The measurable quantities are the RMS values of the supply voltageVrms

and currentIrms, the supply frequencyωe and the electrical angle between the voltage
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and currentφ. The angleφ is in this case defined as the angle between the voltage vec-

tor Ve
tdq =

[
V e

td V e
tq

]T
, and the current vectorIe

tdq =
[
0 Ie

tq

]T
, where subscriptt

denotes quantities available at the terminals of the motor. The Euclidean length of the
vectorsVe

tdq andIe
tdq is connected to the RMS values of the measurable electrical quan-

tities by|Ve
tdq| =

√
2Vrms and|Ie

tdq| =
√

2Irms. Using the RMS valuesVrms andIrms

and the angleφ the voltagesV e
td andV e

tq, and the currentIe
tq can be calculated using

V e
td = −

√
2Vrms sin(φ) V e

tq =
√

2Vrms cos(φ) Ie
tq =

√
2Irms . (7.5)

In the case of aY-connected motor the electrical quantities at the motor terminalsV e
td,

V e
tq, andIe

tq and the quantitiesV e
sd, V e

sq, andIe
sq in (7.3) are equivalent. However, in

the case of a∆-connected motor the transformation matricesBv andCi have to be
considered. These matrices are defined in Section 3.2.3. It can be shown that

Bv =
√

3T∆ C−1
i =

1√
3
T∆ ,

whereT∆ is a rotation matrix. Using these expressions in (7.1) to obtain the steady
state model, it is seen that (7.3) can be used to model the steady state operation of the
motor when it is connected in a∆-connection if the following scalings of the electrical
quantities are used,

V e
td =

√
3V e

td V e
tq =

√
3V e

tq Ie
sq =

1√
3
Ie
tq . (7.6)

7.1.2 Steady State Pump Model

The hydraulic and the mechanical parts of the pump are derived in Section 3.4 and
Section 3.3 respectively. Moreover, a model of a general hydraulic application is given
in Section 6.3.2. In Section 3.4 it is shown that the mechanical part is described by the
following differential equation,

J
dωr

dt
= Te −Bωr − Tp

whereTe is the torque produced by the motor,ωr is the speed of the shaft, andTp the
load torque produced by the pump. Under steady state operation the speed is constant,
i.e. dωr

dt = 0, meaning that the steady state model of the mechanical part becomes,

0 = Te −Bωr − fT (Qp, ωr) . (7.7)

The hydraulic parts of the pump is considered as the parts involved with the energy
transformation from mechanical to hydraulic energy. In the model derived in Section
3.3 this energy transformation is described by two maps given by

Tp = fT (Qp, ωr) Hp = fH(Qp, ωr) , (7.8)
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whereTp andHp are the load torque and pressure produced by the pump respectively.
The arguments of the mapsfT andfH in (7.8) are the volume flowQp and the speed of
the pumpωr. The mapsfT andfH are given by,

fH(Qp, ωr) = ρg
(−ah2Q

2
p + ah1Qpωr + ah0ω

2
r

)
fT (Qp, ωr) = −at2Q

2
p + at1Qpωr + at0ω

2
r .

A general model of a hydraulic application of a centrifugal pump is given in Sec-
tion 6.3.1. Here it is argued that such a model, in most cases, can be described by the
following state space model,

ẋQ= fA(xQ,Hp,d)
Qp= hA(xQ) ,

wherexQ is the state vector of the application model,Hp andQp are the pressure and
volume flow of the centrifugal pump, andd is a vector containing some unknown input
signals to the application. If it is assumed that the derivative of the statesẋQ equals zero
during steady state operation, the steady state model becomes,

0= fA(xQ, Hp,d)
Qp= hA(xQ) .

(7.9)

7.1.3 The Fault Models

In Section 6.3.2 five faults are included in the centrifugal pump model. These faults are
all affecting the hydraulic part of the pump. The faults are,

1. clogging inside the pump,

2. increased friction due to either rub impact or bearing faults,

3. increased leakage flow,

4. performance degradation due to cavitation,

5. dry running.

In the model of the system used here, the hydraulic part of the pump is modelled by
the mapsfH , fT and the flow measurement. Introducing the faults described above, the
description of the hydraulic part of the pump becomes,

Hp = fH(Q,ωr)−KfQ2 − Cchfc − Cdhfd

Tp = fT (Q,ωr) + ∆Bωr − Cctfc − Cdtfd

y3 = Q−Kl

√
Hp .

In this fault modelKf ∈ R+ represents clogging,∆B ∈ R+ represents rub impact,
Kl ∈ R+ represents increased leakage flow,fc ∈ R+ represents cavitation andfd ∈ R+

represents dry runnning. The first three signals model the faults accurately, while the last
two terms are linear approximations.
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7.2 Structural Analysis

In this section Structural Analysis (SA) is utilized to identify subsystems, which can be
used for fault detection. Moreover, the results obtained in Section 6.4, on the division
of the system into two cascade connected subsystem using SA is utilized here, too. This
is done to avoid too large residual expressions. The equations forming the steady state
model, derived in the previous section, are collected in (7.10). Here the four motor equa-

c1 : −ωeL
′
sI

e
sq = A1 + V e

sd

c2 : 0 = −(Rs + R′r)I
e
sq + A2 + V e

sq

c3 : −ωeL
′
mIe

mq = −A1

c4 : ωeL
′
mIe

md = −A2 + R′rI
e
sq

c5 : 0 = Te −Bωr − Tp

c6 : 0 = fA(xQ,Hp,uQ)
c7 : A1 = R′rI

e
md − zpωrL

′
mIe

mq

c8 : A2 = R′rI
e
mq + zpωrL

′
mIe

md

c9 : Te = 3
2zpLm

(
Ie
sqI

e
md

)
c10 : Hp = −ah2Q

2
p + ah1Qpωr + ah0ω

2
r

c11 : Tp = −at2Q
2
p + at1Qpωr + at0ω

2
r

c12 : Qp = hA(xQ)
c13 : Y1 = Ie

sq

c14 : Y2 = ωe

c15 : Y3 = Hp

c16 : Y4 = Qp

(7.10)

tions in (7.3) are split into six equations to avoid using redundant structural information
in the SA.

The graph representation of the constraints in (7.10) is shown in Table 7.1. From
this table it is seen that the set of constaintsCe = {c1, c2, c3, c4, c7, c9, c13, c14} forms a
match on the unknown variables contained in these constraints. Therefore, this part can
be considered as a subsystem, with two outputsωr andTe. These outputs are denoted
the connecting variables between this subsystem and the remaining parts of the system.
The set of constraintsCe is in the following denoted the first subsystem, whereas the
remaining set of constraintsCm = {c5, c6, c10, c11, c12, c15, c16} is denoted the second
subsystem. This division of the system is equivalent to the division described in Chapter
6.

In Section 7.1.3 it is argued that the faults considered in this section only affect the
hydraulic part of the pump. The hydraulic part of the pump is described byfH , fT and
the expression of the flow measurement. These expressions are given by the constraints
c10, c11, andc16, which are included inCm only. Therefore, only the second subsystem
Cm is affected by the faults considered in this chapter, meaning that only this part must
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Table 7.1: The structure table of the centrifugal pump system under steady state condi-
tions. The symbols➀ show a matching for the first part of the system.

Known Unknown
Y1 Y2 V e

sd V e
sq Y3 Y4 xQ uQ Tp Hp Qp Te ωr Ie

mdIe
mq A1 A2 Ie

sq ωe

c6 1 1 1
c12 1 1
c5 1 1 1
c11 1 1 1
c10 1 1 1
c15 1 1
c16 1 1
c8 1 1 1 1
c9 ➀ 1 1
c7 ➀ 1 1 1
c4 ➀ 1 1 1
c3 ➀ 1 1
c1 1 ➀ 1 1
c2 1 ➀ 1
c13 1 ➀
c14 1 ➀

be considered when FDI is applied.

7.2.1 Calculating the Connection Variables

The SA showed that the connecting variablesωr andTe should be calculable using the
set of constraints,

Ce = {c1, c2, c3, c4, c7, c9, c13, c14} .

Rewriting these constraints the following expression of the speedωr is obtained,

ω̂r =
L′mω2

eL′sI
e
sq + L′mωeV

e
sd −R′rRsI

e
sq + R′rV

e
sq

L′mzp(ωeL′sIe
sq + V e

sq)
, (7.11)

whereV e
sd, V e

sq, Ie
sq = Y1, andωe = Y2 are assumed known. The torqueTe is also

obtained by rewritingCe resulting in the following expression,

T̂e =
3zpI

e
sq(I

e
sqRs − V e

sq)
2ωe

. (7.12)

As in the above expressionV e
sq, Ie

sq = Y1, andωe = Y2 are assumed known in the torque
expression.

In the speed and torque expression (7.11) and (7.12) the voltagesV e
sd, V e

sq, and the
currentIe

sq are calculated using the RMS values of the supply voltageVrms, supply
currentIrms, and angle between the voltage and currentφ, defined in Section 7.1.1.
This is done using (7.5), and in the case of a∆-connected motor (7.6).
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7.2.2 Structural Analysis on the Second Subsystem

The second subsystem is described by the set,

Cm1 = {c5, c6, c10, c11, c12, c15, c16} .

Beside these constraints two extra constraints are added to model the estimation of the
connecting variableŝωr andT̂e. These constraints are given by

c17 : Te = T̂e

c18 : ωr = ω̂r .
(7.13)

Table 7.2 is a representation of the graph describing the structure of the second subsys-
tem. In this table the column at the right hand side is added to show the connection
between the faults in the system and the constraints. Using SA three minimal over-

Table 7.2: The structure table of the second system. The first two columns describe
the structural connection between the constraints and the known and unknown variables
respectively. Whereas the last column describes the connection between the constraints
and the faults in the system.

Known Unknown Faults
Y3 Y4 T̂e ω̂r xQ uQ Tp Hp Qp Te ωr Kf Kl ∆B fc fd

c6 1 1 1
c12 1 1
c5 1 1 1
c11 1 1 1 1 1 1
c10 1 1 1 1 1 1
c15 1 1
c16 1 1
c17 1 1
c18 1 1 1

constraint subsystems are identified. These are given by the following three sets,

Cm1 = {c5, c11, c16, c17, c18}
Cm2 = {c5, c10, c11, c15, c16, c17}
Cm3 = {c10, c15, c16, c18} .

(7.14)

The connections between these sets and the faults in the system are given by

Cm1 : {Kl, ∆B, fc, fd}
Cm2 : {Kf ,∆B, fc, fd}
Cm3 : {Kf ,Kl, fc, fd} .

(7.15)
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7.2.3 ARR’s of the Pump

The constraintsc6 andc12, describing the application in which the pump is placed, are
not included in any of the set of constraintsCm1, Cm2, andCm3. Hence, any ARR
based on these sets will not be affected by the application in which the pump is placed,
i.e. it will be robust with respect to the application of the pump. The next step in the
development of an ARR is to eliminate all unknown variables in this set. Although it
could be done by hand, here the Groebner basis algorithm is used to guarantee residual
expressions that are on polynomial form. The polynomial characteristic is utilized in
next section to derive an algorithm, which takes parameter variations into account. In
(Staroswiecki and Comtet-Varga, 2001) the Groebner basis is also used as a part of an
algorithm to obtain ARR’s.

The ARR obtained using the Groebner basis algorithm on the setsCm1, Cm2, and
Cm3 are used to establish residual expressions on the following form,

rpi
= fpi

(ypi
)T api

(θpi
) i ∈ {1, 2, 3}

whereθpi is the parameter vector andypi is the measurement vector. In this expression
both api(θ) and fpi(y) contain polynomial functions. In the following the parameter
and measurement vectorsθpi andypi , and the polynomial vector functionsfpi andapi

are given for each set of constraintsCm1, Cm2, andCm3.

ARR based on the set of constraintsCm1

The set of constraintsCm1 contains the following parameters and measurements de-
scribed on vector form,

θp1 =
(
at2 at1 at0

)T
yp1 =

(
Te ωr Y4

)T
.

The polynomial vector functionsfp1 andap1 are given by

ap1(θp1) =




1
at2

−at1

−at0


 fp1(yp1) =




Te −Bωr

Y 2
4

Y4ωr

w2
r


 .

ARR based on the set of constraintsCm2

The set of constraintsCm2 contains the following parameters and measurements de-
scribed on vector form,

θp2 =
(
ah2 ah1 ah0 at2 at1 at0

)T
yp2 =

(
Te ωr Y3

)T
.
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The polynomial vector functionsfp2 andap2 are given by

ap2(θp2) =


a2
h2

a2
t2

ah2at1ah1 − at2a
2
h1 + 2a2

h2at0 − 2ah2ah0at2

a1(θ) + a2(θ)
2ah2at2at0 + ah2a

2
t1 − 2ah0a

2
t2 − ah1at2at1

2ah2at2




,

where

a1(θ) = at2(a2
h0at2 + ah0ah1at1 − at0a

2
h1)

a2(θ) = ah2(a2
t0ah2 + at0at1ah1 − ah0a

2
t1 − 2ah0at2at0) ,

and

fp1(yp1) =




B2ω2
r − 2BTeωr + T 2

e

Y 2
3

Bω3
r − Teω

2
r

ω4
r

Y3ω
2
r

−Y3Te + BY3ωr




.

ARR based on the set of constraintsCm3

The set of constraintsCm3 contains the following parameters and measurements de-
scribed on vector form,

θp3 =
(
ah2 ah1 ah0

)T
yp3 =

(
ωr Y3 Y4

)T
.

The polynomial vector functionsfp3 andap3 are given by

ap3(θp3) =




−1
−at2

at1

at0


 fp3(yp3) =




Y3

Y 2
4

Y4ωr

ω2
r


 .

7.3 The Robust FDI Algorithm

The ARR’s developed in the previous section depend on the parameters describing the
pump. As the application treated in this work is a real system the model parameters are
not matching the real parameters exactly over the whole operating range of the pump.
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Moreover, the density of the liquid is not constant due to temperature changes and im-
purities in the liquid. This density affects the value of the parameters in the hydraulic
model of the pump given by (3.29). Therefore, parameter variations must be taken into
account, for the developed algorithms to be robust and thereby usable in real applica-
tions.

7.3.1 Robustness with Respect to Parameter Variations

The residuals are in this case calculated using functions on the formr = f(y)T a(θ) as
seen in Section 7.2.3. In these equationsr = 0 when the parameter vectorθ = θ0 and
no fault has occured in the system. Hereθ0 is the parameter vector used in the design
of the residual generators. Robustness is now formulated as the problem of handling
the residual generation problem whenθ ∈ Θ, whereΘ is the set of possible parameter
values includingθ0. This means thatr = 0 is not necessary fulfilled in the no fault case
anymore. However, in all real life systems it is assumed thatr is bounded on the setΘ.

One way to treat the parameter variation problem, sketched above, is the use of a set-
valued approach, as presented in for example (Tornill et al., 2000; Idrissi et al., 2001).
When using this approach a set of possible residual values is obtained. If0 is not in this
set it can be concluded that there is a fault in the system in spite of parameter variations.
This is formalized in the following definition,

Definition 7.3.1 The set of possible residual valuesR has the following properties,

• If the system is not affected by faults i.e.e = 0 then0 ∈ R.

• If 0 /∈ R then there are faults in the system i.e.e 6= 0

wheree is a given fault vector andR ⊂ R is a connected set.

Now let r = g(y, θ) be an ARR describing the behaviour of a given system, wherey
contains the measurements andθ contains the parameters in the ARR. For this ARRr
only equals0 in the no fault case, if the structure and parameters of the system are known
exactly. When, for such a system, parameter uncertainties are taken into account the set
of possible residualsR defined in Definition 7.3.1 is given by the following lemma,

Lemma 7.3.1 If the set of possible parametersΘ is a compact set, given by

Θ = {θ|θi = [θi, θi], i = 1, · · · , n} , (7.16)

whereθ ∈ Rn, and the residual functiong : Y ×Θ → R is continuous onΘ for all
y ∈ Y ⊂ Rm, then the set of possible residual values, in the no fault case, is defined by
the maximum valuer and minimum valuer ofR. These maximum and minimum values
are given by

r = max
θ∈Θ

g(y, θ)

r = min
θ∈Θ

g(y, θ) .
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This is a well known fact from mathematical analysis and the proof can be found in
(Apostol, 1974). Using this lemma the boundaries ofR can be calculated. Unfortunately
it is not straightforward to calculate these maximum and minimum values. However,
in the case treated in this work the functiong can be separated into a function of the
parameters and a function of the measurements i.e.g(y, θ) = f(y)T a(θ). When this is
the case it is easy to see that one set of boundaries on the residual setR is given by

r ≤ rmax =
k∑

i=1

max
θ∈Θ

(ai(θ)fi(y))

r ≥ rmin =
k∑

i=1

min
θ∈Θ

(ai(θ)fi(y)) .

From these expression it is seen that onlyai i = 1, · · · , k is a function of the parameters
θ. The maximum and minimum ofai can be calculated offline, leaving only a sign check
of fi to be done online. This is expressed in the following lemma.

Lemma 7.3.2 If r = f(y)T a(θ) wherea and f are two vector functions, which are
continuous on respectivelyΘ andY, then an upper (lower) boundary ofr (r) is given
by

r ≤ rmax =
∑

i

ri,max r ≤ rmin =
∑

i

ri,min ,

where

ri,max =
{

fi(y) maxθ∈Θ (ai(θ)) if fi(y) > 0
fi(y)minθ∈Θ (ai(θ)) otherwise

ri,min =
{

fi(y)minθ∈Θ (ai(θ)) if fi(y) > 0
fi(y) maxθ∈Θ (ai(θ)) otherwise .

The upper and lower boundaries, found using this lemma, are fast and easy to calculate
online, as the hard part of the calculations can be done offline. Unfortunately, the found
upper and lower boundaries are in general not very tight. However, if the residual ex-
pressionr = g(y,θ) is affine with respect to the parametersθ an exact solution exists.
If g is affine with respect to the parametersθ it can be rewritten to be come,

r = g(y, θ) = G0(y) + Gl(y)θ . (7.17)

For an expression of this form the upper and lower boundaries can be found on an
interval setΘ using interval algebra (Boukhris et al., 1998). Using this approach the
exact maximum and minimum values of (7.17) can be calculated, in the no fault case,
using the following lemma.
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Lemma 7.3.3 For the parameter affine system (7.17) the maximum and minimum values
of the residual setR can be calculated exactly, and are given by

r = G0(y) + Gl(y)θ0 + |Gl(y)| (θ − θ0)
r = G0(y) + Gl(y)θ0 + |Gl(y)| (θ − θ0) ,

whereθ0 = 1
2 (θ + θ).

This is a well-known fact from interval analysis (Boukhris et al., 1998; Moore, 1979).
In the following, Lemma 7.3.2 and 7.3.3 are used to calculate an upper and a lower
boundary of the residual expressions found in the previous section.

All the residual expressions derived in Section 7.2.3 are on the form

r = f(y)T a(θ) ,

where botha andf are vector functions with only polynomial nonlinearities inθ and
y. As this is a nonlinear expression, Lemma 7.3.2 could be used to find upper and
lower boundaries of the residual set. However, these upper and lower boundaries are in
general far from the real maximum and minimum values ofR, which is also the case in
centrifugal pumps. Therefore, the linear dependency between the parameters is extracted
using a first order Taylor Series expansion ofa(θ). This Taylor Series expansion is given
by

a(θ) = a(θ0) +
[

∂a
∂θi

(θ0)
]
(θ − θ0) + O(θ − θ0) .

When this expression is used in the residual equation the residual is calculated by the
sum of two termsr = rl + rO. These terms are given by

rl(y) =
(
f(y)T a(θ0)

)
+

(
f(y)T

[
∂a
∂θi

(θ0)
])

θ̃ (7.18a)

rO(θ,y) = f(y)T
(
O(θ̃)

)
, (7.18b)

whereθ̃ = θ − θ0, andθ0 is chosen such thatθ0 = 1
2 (θ − θ). It is immediately seen

that (7.18a) has the same structure as (7.17), meaning that Lemma 7.3.3 can be used
to calculate the maximum and minimum values ofr1 in the no fault case. This does
however not form the boundaries onr because of the higher order termsO(θ−θ0). The
dependency onr of these terms is described by (7.18b). This expression is a nonlinear
expression on the form treated in Lemma 7.3.2, which therefore gives the upper and
lower boundaries on this expression.

Using interval algebra it is easy to find the boundaies ofr from the boundaries of
rl andrO. This is formalized in the following algorithm, which is used for robust fault
detection.
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1. At each new sampley computef(y), G0(y) = f(y)T a(θ0) and
Gl(y) = f(y)T

[
∂a
∂θi

(θ0)
]
.

2. Compute the maximum and minimum valuesrl and rl using
Lemma (7.3.3).

3. Compute the boundariesrO,min andrO,max using Lemma 7.3.2.

4. Compute the boundaries of the residual set using,

r ≥ rmin = rl + rO,min

r ≤ rmax = rl + rO,max

5. Compute the decision signalD using,

D =
{

0 if rmin ≤ 0 ≤ rmax

1 otherwise

Remark 7.3.1 This algorithm can calculate the boundaries of the residual set of one
single residual expression. However, parameter dependencies between residuals, when
more than one residual is considered, are not taken into account. Therefore, the identi-
fication of incipient faults can create problems in some cases.

Interpretation of the algorithm

The idea of the algorithm is to find the possible variation on the residual value, which
can be caused by parameter divergence form the nominal parameter values. This is
illustrated in Fig. 7.1.
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Figure 7.1: Illustration of the different boundary values in the proposed algorithm.

To the left of Fig. 7.1 the set of possible parameter valuesΘ is shown. At each
measurement vectoryi this set of parameter values is mapped into a set of possible
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residual values. In the right-hand side figure of Fig. 7.1 this set is defined byr, r. Now
considering the developed algorithm. The residual set defined byrl, rl in Fig. 7.1 is
calculated in step 2, andrO,min, rO,max are calculated in step 3. These values sum up
to a set defined byrmin, rmax, which is in general conservative compared to the real
residual set defined byr, r. If r = 0 is not in betweenr, r or alternative not in between
rmin, rmax it is guaranteed that a fault has happened in the system.

7.4 Test Results

The final FDI algorithm is obtained by composing the steady state motor equations given
in Section 7.2.1, and the ARR expressions developed in Section 7.2.3. The motor equa-
tions are used in the first subsystem to calculate the connecting variables, see Fig. 7.2.
The ARR expressions are used in the second subsystem to obtain residuals for FDI. To
obtain robustness in the residual generation the interval approach, described in Section
7.3, is imposed on each ARR expression. The structure of the whole FDI algorithm is
depitch in Fig. 7.2.
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Figure 7.2: The final detection algorithm. The first part consists of (7.11) and (7.12)
used for calculating the connecting variables. The second part consists of the interval
algorithm described in Section 7.3.

In this algorithm the first part consists of (7.11) and (7.12), which are used for cal-
culating the connecting variableŝωr andT̂e. These calculations are based on the RMS
values of the supply voltageVrms and currentIrms, cos(φ) whereφ is the angle between
the supply voltage and current, and the frequency of the supply voltageωe, see Section
7.1. The connection variableŝωr andT̂e are then, together with the flow and pressure
measurementQp andHp, used as input to the second subsystem, which consists of the
residual generators.

This detection algorithm is tested on the same test setup as the algorithm described
in Chapter 6. Meaning that it is tested on a Grundfos 1.5(KW ) CR5-10 pump placed
in a tank system as depicted in Fig. 7.3. In this tank system the valveV1 is used to
model disturbances in the system. Clogging inside the pump is modelled by the valve
Vc and dry running is modelled by closingV2 and openingV3. Rub impact is modelled
by adding an extra force to the shaft and cavitation is modelled by closing valveV2

gradually. Leakage flow is modelled by openingVl. In the tests shown here a low
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Figure 7.3: Sketch of the test setup. The measurements are the electrical quantities, the
differential pressureHp delivered by the pump and the volume flow through the pump
Qp.

bandwidth but precise flow sensor is used. This flow sensor is chosen, as this type of
sensor is often used in real industrial applications.

First robustness with respect to the operating point is tested. In this test both the
position of the valveV1 and the speed of the pump are changed during operation. During
the test the valve is changed in three steps from maximum opened to almost closed. The
first step change is done at time 26.3 [sec] and the second step change is done at time
52.3 [sec]. The speed of the pump is changed between approximately 2030 and 2580
(rpm) each 13 [sec] during the test. The result of this test is shown in Fig. 7.4. In the
three lower figures the residual setsRp1 toRp3 are shown by their boundaries at each
time instant, and in the top figure the speed changes are shown. The test shows that
after each transient phase, zero is included in all the three residual sets, i.e. zero is in
between the residual boundaries for each residual set. This shows that the algorithm is
not capable of handling transient behaviour, which was expected. More important, it
shows that the algorithm is robust with respect to the operating point of the pump.

Figures 7.5 to 7.7 show test results concerning isolability of the five faults considered
in this chapter. All these tests are performed withV1 half opened and an angular speed
of approximately 2350 (rpm). In each of the figures the residual setsRp1 to Rp3 are
shown by their boundaries in the top figure, and the decisionDp1 to Dp3 are shown
in the bottom figure. The tests show that all the five faults considered in this chapter
are detectable using the three residual sets. Moreover, comparing the decision signals
it is seen that all the fault signatures given byDp1, Dp2, andDp3 are distinguishable
except from the cavitation and dry running fault, i.e.fc andfd. This was expected as

168



Section 7.5: Discussion

0 10 20 30 40 50 60 70

200

250

300

S
pe

ed
 [r

ad
/s

ec
]

0 10 20 30 40 50 60 70

−0.5

0

0.5
R

p1

0 10 20 30 40 50 60 70
−0.02

0

0.02

R
p2

0 10 20 30 40 50 60 70

−0.1

0

0.1

time [sec]

R
p3

Figure 7.4: Robustness test. The top figure shows the speed steps, and the three lower
figures show the residual boundaries for each of the three residual setsRp1 toRp3.

the structural analysis in Section 7.2.2 already had predicted this.
Both the appearance and the disappearance of the considered faults, except from

the dry running faultfd, are detected. From Fig. 7.7 the problem of detecting the
disappearance of the dry running fault is seen. This problem is due to air bobbles in the
system imposed by the dry running fault, which disturbs the flow sensor used in this test.

7.5 Discussion

The topic of this chapter is fault detection in a centrifugal pump based on steady state
measurements only. Here the steady state measurements are Root Mean Square (RMS)
measurement of the voltage and current, the voltage frequency, the electrical angle be-
tween the voltage and current, and the pressure and volume flow of the pump. Three
residuals are derived form the steady state model of the pump, using Structural Analy-
sis and Analytical Redundant Relations (ARR’s). The faults under consideration in this
chapter are only affecting the second subsystem. Hence the ARR’s are only developed
for this part. The connecting variables between the two subsystems are calculated using
a steady state model of the motor.

Structural analysis has been used to analyse the system. As a result of this analysis
the system is divided into two cascade-connected subsystems simplifying the derivation
of the Analytical Redundancy Relation (ARR) considerably. The first subsystem con-
sists of the induction motor model, and the mechanical and hydraulic parts of the pump
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(a) Detection of the faultKf clogging.
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(b) Detection of the faultKl leakage flow.

Figure 7.5: Test results. The top figures show the residual boundaries for each of the
three residual setsR1, R2 andR3. The bottom figures show the decision signalsD1,
D2, andD3.
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(a) Detection of the fault∆B rub impact.

0 2 4 6 8 10 12 14 16

−1.5

−1

−0.5

0

0.5

1

1.5

R
es

id
ua

l s
et

s

R
p1

R
p2

R
p3

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

2.5

3

D
ec

is
io

n 
si

gn
al

s

time [sec]

D
p1

+2
D

p2
+1

D
p3

(b) Detection of the faultfc cavitation.

Figure 7.6: Test results. The top figures show the residual boundaries for each of the
three residual setsR1, R2 andR3. The bottom figures show the decision signalsD1,
D2, andD3.
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Figure 7.7: Test results showing detection of the faultfd dry running. The top figures
show the residual boundaries for each of the three residual setsR1, R2 andR3. The
bottom figures show the decision signalsD1, D2, andD3.

form the second subsystem. The approach of dividing the system into two cascade-
connected subsystems was also utilized in Chapter 6. Parameter variations are only
considered for the second subsystem, with the drawback that the algorithm can handle
only parameter variations in the hydraulic part of the pump. However, the possibility
of handling parameter variations in the hydraulic part can be used to obtain a simple
and logical way of setting alarm levels for a user of the system, as these can be defined
directly on pump curves, as those shown in Section 3.3.5.

The residuals obtained from the ARR’s are made robust with respect to parame-
ter variations in the centrifugal pump model by using the set-valued approach. It is
shown that linearization of the parameter function can be used to calculate relatively
tight boundaries of the residual in the centrifugal pump case. Using the set-valued ap-
proach the set of possible residual values are changed as a function of the operating
point of the pump. This could be compared to a residual with an adaptive threshold. The
presented method has the advantage of connecting the physics of the pump and the set
of residuals in a straightforward manner.
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Chapter 8

Conclusion and
Recommendations

In this thesis different aspects of Fault Detection and Identification (FDI) in centrifugal
pumps were considered. Special focus was put on the robustness of the FDI algorithms.
In this connection an analysis method for analysing robustness in signal-based fault
detection schemes was proposed. In most model-based fault detection schemes, robust-
ness considerations are a part of the design. Therefore, the possibilities of using these
approaches on the centrifugal pump were investigated too, ending up with three new FDI
algorithms. Here, a small example of connecting these algorithms into one FDI scheme
is given. This example is followed by a conclusion and a number of recommendations
for further research.

8.1 Algorithm Example

In the thesis four different FDI algorithms were considered. One of these was based on
the signal-based approach, and the remaining three on the model-based approach. In
the design of the three model-based algorithms, a subset of the following 6 faults were
considered.

1. Inter-turn short circuit in the stator of the induction motor.

2. Clogging inside the pump.

3. Increased friction due to either rub impact or bearing faults.

4. Increased leakage flow.

5. Performance degradation due to cavitation.
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6. Dry running.

In chapter 5 the detection and identification of the inter-turn short circuit were consid-
ered, and in Chapters 6 and 7 the remaining five faults were handled. The difference
between the two algorithms in Chapters 6 and 7 lies in their ability to handle transient
behaviour in the system. The algorithm derived in Chapter 6 was based on a dynamic
description of the pump and was therefore able to handle transient behaviour. The al-
gorithm derived in Chapter 7 was on the other hand based on a steady state model and
therefore had inherent problems during transient phases.

Composing the algorithm derived in Chapter 5 with the FDI part of the algorithm
derived in Chapter 6, the final FDI scheme is obtained. This FDI scheme is capable of
detecting and identifying the 6 different faults in the centrifugal pump. The composition
of the two algorithms is shown in Fig. 8.1.
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Figure 8.1: The composition of the adaptive observer, designed for inter-turn short cir-
cuit detection, and residual observers, designed for fault detection and identification in
the mechanical and hydraulic part of the centrifugal pump.

In Fig. 8.1 the block denoted adaptive observer, contains the observer used for de-
tecting stator faults. The output from this observer is the estimates of the electrical states,
the speed, and the inter-turn short circuit. The estimates of the electrical states are used
for calculating the torque, meaning that the adaptive observer is capable of estimating
both the speed, the torque, and the inter-turn short circuit fault.

The inputs to the block, denoted residual observers in Fig. 8.1, are the measured
pressure, the measured volume flow, and the estimates of the speed and torque. The
output of the residual observer block is the three decision signals described in Chapter
6, meaning that the information of the mechanical and hydraulic faults are available.

In Chapter 7 residual generators, designed using the steady state model of the me-
chanical and hydraulic parts of the centrifugal pump, are described. These residual gen-
erators could also be used for residual generation in the block, denoted residual observer
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in Fig. 8.1. However, by using these residual generators, problems will arise during
transient phases.

8.2 Conclusion

The following conclusions are drawn on the accomplishments and contributions of the
thesis:

• The dynamics of the centrifugal pump were considered in the development of the
centrifugal pump model in Chapter 3. Two assumptions were given, under which
algebraic maps can be used for describing the energy conversion from mechani-
cal to hydraulic energy, and the pressure of the centrifugal pump. Moreover, the
dynamics of the hydraulic part can be described by an added mass to the impeller,
which is corresponding to the mass of the liquid inside the impeller. This means
that, when the mechanical and hydraulic part of the centrifugal pump is consid-
ered, the dynamics of the pump is described by a first order system. The algebraic
maps describing the energy conversion and the pressure generation are polyno-
mial of second order. This makes the model of the system a nonlinear lumped
parameter model. As the model is a lumped parameter model, it is well suited for
use in model-based designs, both when it comes to control and to FDI.

• The most used methods for FDI in centrifugal pumps are, according to the state
of the art analysis, presented in Chapter 2, based on the signal-based approaches.
Normally robustness is not considered when FDI algorithms are derived using
signal-based approaches. Therefore, it was found that a method, which can be
used for robustness analysis, was needed. In Chapter 4 a combination of the Fail-
ure Mode and Effect Analysis (FMEA) and Fault Propagation Analysis (FPA) is
proposed for the robustness analysis of signal-based FDI algorithms. The pro-
posed method can be used in the design, as well as in the analysis. In addition
to the robustness analysis method, an algorithm for automating one of the manual
steps in the FPA was proposed. Using the improvements of the FMEA and FPA,
the proposed analysis method was used to analyse different sensor configurations
on the centrifugal pump. Also it was used in the design of a detection scheme,
based on one particular sensor configuration. Test results on an industrial test-
bench showed that 3 out of 7 chosen faults could be detected in a robust manner
with this sensor configuration. This showed the usability of the proposed analysis
and design method. However, the result obtained in Chapters 6 and 7 showed that,
using the model-based approach, 5 different faults were detected using the same
sensor configuration. This shows the drawback of the signal-based approaches
when used on centrifugal pumps.

• One of the faults considered in this work was the inter-turn short circuits in the
windings of the induction motor driving the pump. In the state of the art analysis
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in Chapter 2, it was argued, that this fault is often the initiator of a stator burnout.
To understand the nature of the inter-turn short circuit fault, a dynamic model
of the fault was derived in Chapter 5. A model was established for bothY- and
∆-connected induction motors. One remarkable result was shown by this model,
namely that torque ripple should not be expected when an inter-turn short circuit
has occurred. That is, if the motor is supplied with a balanced sinusoidal supply
voltage, and a constant torque load. This fact was indirectly shown in the test,
presented in the end of Chapter 5, as the level of oscillations in the real speed did
not change when introducing the inter-turn short circuit fault.

• In Chapter 5, the model of the induction motor, including an inter-turn short cir-
cuit, was used in the derivation of an adaptive observer. In real applications, only
the electrical quantities are normally available. Therefore, the derived adaptive
observer was only using these quantities. The obtained observer was capable of
estimating an inter-turn short circuit fault in one of the phases, the electrical states,
and the speed of the induction motor simultaneously. The design of the observer
was based on a dynamic model of the induction motor, with the speed assumed
constant. Therefore, the observer was capable of detecting the faults during tran-
sient behaviour, when the constant speed assumption was not violated too much.
This makes the algorithm very useful in real applications. Especially for induction
motors supplied with a frequency converter, as transients are expected to occur
frequently in these applications. The drawback of the algorithm is the need for
the motor parameters, which are not always known in real life applications.

• In Chapter 3 it was shown that the model of the centrifugal pump is highly non-
linear, meaning that model-based approaches, based on nonlinear models, should
be considered when the operating point of the pump is changed frequently or is
unknown. This is actually the case in many centrifugal pump applications. Here,
Structural Analysis (SA) was chosen as the first step in the derivation of residual
generators. The only straightforward way to use the results of the SA, in order
to obtain residual generators, is the derivations of Analytical Redundant Relations
(ARR’s). These ARR’s can, and in general do, contain derivatives of the measured
signals. To overcome this problem, a novel realization approach was proposed in
Chapter 6. With this approach, it is possible to obtain a nonlinear state space de-
scription from the results of the SA. The obtained state space description does not
include unknown variables, except for the states of the system. The approach was
tested on three applications; a satellite case borrowed from (De Persis and Isidori,
2001), the induction motor, and the hydraulic part of the centrifugal pump. The
realization method is based on a solution to a partial differential equation, which
is the main problem with this approach. This is, however, a known problem con-
cerning nonlinear state transformations on general nonlinear systems, as it is the
case in the proposed realization approach.

• Based on the results obtained using SA and the realization approach developed in
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Chapter 6, three residual observers and an ARR were derived for the centrifugal
pump. Tests, on a test-bench developed particularly for this purpose, were per-
formed, showing the capabilities of the observers and the ARR. The tests showed
that the observers and the ARR were robust, with respect to changes in the operat-
ing point of the pump. Moreover, the tests showed that 5 different faults, affecting
the hydraulic and mechanical parts of the pump, were detectable with this ap-
proach. This shows the superiority of the model-based approach compared to the
signal-based approach, when it comes to robustness.

• In Chapter 6, the algorithm, developed for detecting faults in the mechanical and
hydraulic part of the centrifugal pump, was based on a dynamic model of the sys-
tem. This means that the involved signals were expected to have a bandwidth
covering the dynamics of the system. These high bandwidth signals are often not
available in real life centrifugal pump applications. However, low bandwidth sig-
nals are often available. Therefore, an algorithm based on a steady state model
of the centrifugal pump was proposed in Chapter 7. This algorithm was shown
to be able to detect 5 different faults in the mechanical and hydraulic parts of
the centrifugal pump. The algorithm was made robust with respect to parameter
uncertainties, using a set-valued approach. The need for only low bandwidth sen-
sors and the robustness considerations, makes the algorithm appropriate for im-
plementation in cost sensitive applications, where the necessary sensors already
are available.

8.3 Recommendations

The following topics are not covered in this thesis, but it is believed that future investi-
gations could be beneficial.

• In Chapter 5 an adaptive observer is designed for simultaneous estimation of the
electrical states, the speed, and the inter-turn short circuit of the induction mo-
tor. In the design proposed here, the parameters of the motor are assumed known.
However, an adaptive observer is used. Therefore it should be possible to find
a transformation of the induction motor model, making it possible for the adap-
tive observer to adapt to the motor parameters. If this is possible, the proposed
algorithm becomes parameter independent.

• In Chapter 5 also a Linear Matrix Inequality (LMI) approach was used for both
analysis and synthesis of the observer gain in the proposed adaptive observer. It
could be interesting to include the concept of LMI regions in the proposed analysis
and synthesis. Hereby, it would be possible to state demands on the damping ratio
in the system, as well as the convergence rate.

• In Chapter 6 a new concept, for realization of subsystems identified using Struc-
tural Analysis, was presented. This concept should be further investigated. Es-
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pecially Assumption 6.2.3, stating the condition for the existence of a state space
transformation, should be considered.

• In Chapter 7 a detection scheme, based on the steady state model of the pump,
was proposed. Because of the steady state model, transient phases can force the
residual to be different from zero, even in the no fault cases. Therefore, means for
detecting these transient conditions, must be established before implementing the
algorithm in real life applications.

• A set-valued approach was proposed for obtaining robustness in the residual gen-
eration in Chapter 7. This approach utilizes interval models. Extending the set-
valued approach, to include interval models of each fault case, it might be possible
to state which fault has happened in a robust manner. Hereby robustness is intro-
duced in the identification of incipient faults.
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Appendix A

FMEA Tables Describing Faults
in the System

This appendix contains tables describing the fault modes of the pump system. The pump
system is in Chapter 4 devided into 7 components. These are,

• Electrical part of the induction motor.

• Mechanical part of the induction motor.

• Shaft.

• Hydraulic part of the centrifugal pump.

• Mechanical part of the centrifugal pump.

• Inlet of the pump.

• Outlet of the pump.

In each Section of this appendix one of the above components is analysed. This means
that a FMEA table is given and that the disturbing events affecting the component are
listed. The FMEA tables contain the following information; thename of the fault mode,
the causes of the fault, and thethe effect of the fault. Here, the general components,
forming a centrifugal pump, are analysed. This means that no failure information of a
particular product is used. This information is necessary to include risk assessment and
frequency of the faults in the FMEA, and are therefore omitted here. The tables and
matrices in this appendix are the results of the FMEA described in Chapter 4.
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Winding temperature


Motor speed


Park transformed current


Motor torque


Figure A.1: The input/output structure of the electrical part of the induction motor.

A.1 Electrical part of the induction motor

The input/output structure of this part is shown in Fig. A.1, and the identified faults in
the component are shown in the following FMEA table,

Electrical Part of the Motor
Fault Modes Fault Causes Possible Effects

fem1 Loss of one or more
phases of the supply voltage.

• Broken Fuse.

• Fault on the supply cable.

• poor connections.

eem,i3 Oscillations in the
length of the pack transform
current.

eem,v1 Zero voltage in one
or more of the phases.

eem,v2 Oscillations in the
length of the pack transform
voltage.

eem,t3 1st harmonic torque
oscillations.

In
pu

ts

fem3 Short circuit between
windings in the motor.

• Moisture or water in the
motor.

• Mechanical stress.

• High motor temperature.

• wear-out failure on the
inter-turn insulation.

eem,i3 Oscillations in the
length of the pack transform
current.

eem,T1 Increased
temperature inside the motor.

fem4 Short circuit to ground. • Moisture or water in the
motor.

• Mechanical stress.

• High motor temperature.

• wear-out failure on the turn
to ground insulation.

eem,i3 Oscillations in the
length of the pack transform
current.

eem,i4 Unbalanced stator
current.

eem,T1 Increased
temperature inside the motor.

eem,t3 1st harmonic torque
oscillations.
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P
ar

ts

fem5 Broken rotor bar. • Poor production.

• Mechanical stress.

eem,i3 Oscillations in the
length of the pack transform
current.

eem,t4 higher harmonic
torque oscillations.

fem6 Eccentric air gab due to
bend or misaligned motor
shaft.

• Poor production.

• Mechanical stress.

eem,i4 Unbalanced stator
current.

eem,t3 1st harmonic torque
oscillations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

eem ← Aem
fem

fem + Aem
dy edy (A.1)

where the fault vectorfem and the effect vectoreem equals,

f ′em =
(

fem1 fem2 fem3 fem4 fem5 fem6

)T

eem =
(

eem,i1 eem,i2 eem,i3 eem,i4 eem,v1 eem,v2

eem,T1 eem,t1 eem,t2 eem,t3 eem,t4

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAem

fem
in (A.1) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
The propagation matrixAem

dy is defined below,

Aem
dy =




0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0




T

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,
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Disturbing events Causes Effects

dem1 Unbalanced supply
voltage.

• poor grid.

• Fault on the supply cable.

• poor connections.

eem,i3 Oscillations in the
length of the pack transform
current.

eem,v2 Oscillations in the
length of the pack transform
voltage.

eem,t3 1st harmonic torque
oscillations.

dem2 Increased supply
voltage.

• Changes in the supply grid.

• Decreased grid load
combined with too small grid
for the load.

eem,i1 Increased current.

de2 Decreased supply voltage.• Changes in the supply grid.

• Increased grid load combined
with too small grid for the
load.

eem,i2 Decreased current.

Including these disturbing events in the fault vector, it becomes,

fem =
(

f ′em
T

dem1 dem2

)T

Likewise the matrixAem
fem

is extended with rows according to the above table.

A.2 Mechanical dynamics

The input/output structure of this part is shown in Fig. A.2. As described in chapter 4

Mechanical

dynamics


Load torque


Motor speed


Motor torque


Figure A.2: The input/output structure of the part modelling the dynamics of the rotating
parts of the pump.

this component is included in the analysis to cover the signal structure of the system,
when building the functional model of the centrifugal pump. This means that no faults
are identified in the component.

The propagation matrix representation of the component is given by the following
logical expression,

edy ← Ady
emeem + Ady

mmemm + Ady
shesh + Ady

i ei + Ady
mpemp (A.2)
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The resulting effect vectoredy in this expression is given by,

edy =
(

edy,n1 edy,n2 edy,n3 edy,n4

)T

where the effects in this vector are,

edy,n1 ∼ Increased speed.
edy,n2 ∼ Decreased speed.
edy,n3 ∼ 1st harmonic speed oscillations.
edy,n4 ∼ higher harmonic speed oscillations.

The propagation matricesAdy
em, Ady

mm, Ady
sh, Ady

i , andAdy
mp in (A.2) are defined below,

Ady
em =




0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1




Ady
mm =




0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




Ady
sh =




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 1




Ady
i =




0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0




Ady
mp =




0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0




A.3 Mechanical part of the motor

The input/output structure of this part is shown in Fig. A.3, and the identified faults in
the component are shown in the following FMEA table,
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Mechanical part

of the motor


Motor speed

Bearing temperature


Mechanical vibrations


Load torque


Figure A.3: The input/output structure of the mechanical part of the induction motor.

Mechanical Part of the Motor
Fault Modes Fault Causes Possible Effects

fmm1 Ware of the bearings
in the motor.

• Ware-out faults due to a
long running period.

• Impurities in the bearings.

• Water in the bearing oil.

emm,t4 higher harmonic
torque oscillations.

emm,T1 Increased bearing
temperature.

emm,v2 Increased higher
harmonic vibrations.

P
ar

ts

fmm2 Rub impact between
the stator and the rotor due to
a bend or misaligned motor
shaft.

• Production fault.

• Overload due to suddent
blocked rotor.

emm,t1 Increased torque
load from mechanical parts in
the motor.

emm,t3 1st harmonic torque
oscillations.

emm,v1 Increased 1st
harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

emm ← Amm
fmm

fmm + Amm
dy edy (A.3)

where the fault vectorfmm and the effect vectoremm equals,

fmm =
(

fmm1 fmm2

)T

emm =
(

emm,t1 emm,t2 emm,t3 emm,t4 emm,T1 emm,v1 emm,v2

)T
.

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAmm

fmm
in (A.3) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
The propagation matrixAmm

dy is defined below,

Amm
dy =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1




T
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Section A.4: The shaft mechanics

A.4 The shaft mechanics

The input/output structure of this part is shown in Fig. A.4, and the identified faults in

Shaft mechanics
 Load torque

Motor speed


Mechanical vibrations


Impeller speed


Figure A.4: The input/output structure of the shaft part.

the component are shown in the following FMEA table,

Shaft Mechanics
Fault Modes Fault Causes Possible Effects

fsh1 Broken shaft. • esh,s5 Zero shaft speed.

P
ar

ts

fsh2 Misalignment between
the motor and pump.

• Overload due to sudden
blocked rotor.

• Fault introduced during
production.

• Fault introduced due to poor
repair.

esh,t1 1st harmonic torque
oscillations.

esh,v1 Increased 1st
harmonic vibrations.

fsh3 Bend shaft. • Overload, due to for
example blocked rotation.

esh,t1 1st harmonic torque
oscillations.

esh,v1 Increased 1st
harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

esh ← Ash
fsh

fsh + Ash
dyedy (A.4)

where the fault vectorfsh and the effect vectoresh equals,

fmm =
(

fsh1 fsh2 fsh3

)T

emm =
(

esh,s1 esh,s2 esh,s3 esh,s4 esh,s5 emm,t1 emm,v1

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAsh

fsh
in (A.4) is just a matrix representation of the connections
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between faults and the effects described in the FMEA table presented in this section.
The propagation matrixAsh

dy is defined below,

Amm
dy =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




T

A.5 Hydraulics of the Centrifugal Pump

The input/output structure of this part is shown in Fig. A.5, and the identified faults in

Electrical part of

the motor


Impeller speed


Torque load
Eye pressure

Mechanical vibrations


Impeller pressure

Inlet flow


Figure A.5: The input/output structure of the part describing the hydraulics of the cen-
trifugal pump.

the component are shown in the following FMEA table,

Hydraulics of the Centrifugal Pump
Fault Modes Fault Causes Possible Effects

In
pu

ts

fi1 Dry running. • Error in the hydraulic
system in which the pump is
placed.

ei,h3 Zero pressure.

ei,t3 Zero torque load from
the impeller.

fi2 Impurities fixed on the
impeller, causing inbalance.

• Impurities in the water. ei,h4 Harmonic pressure
oscillations.

ei,t4 1st harmonic torque
oscillations.

ei,t5 higher harmonic torque
oscillations.

ei,v1 Increased 1st harmonic
vibrations.

ei,v2 Increased higher
harmonic vibrations.
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P
ar

ts

fi3 Wear of the impeller. • Sand and other impurities in
the water.

ei,h2 Decreased pressure.

ei,h4 Harmonic pressure
oscillations.

ei,t2 Decreased torque load
from the impeller.

ei,t4 1st harmonic torque
oscillations.

ei,t5 higher harmonic torque
oscillations.

ei,v1 Increased 1st harmonic
vibrations.

ei,v2 Increased higher
harmonic vibrations.

fi4 Blocked or partial
blocked flow field inside the
impeller.

• Larges obstical in the liquid. ei,h2 Decreased pressure.

ei,h4 Harmonic pressure
oscillations.

ei,t2 Decreased torque load
from the impeller.

ei,t4 1st harmonic torque
oscillations.

ei,t5 higher harmonic torque
oscillations.

ei,v1 Increased 1st harmonic
vibrations.

ei,v2 Increased higher
harmonic vibrations.

fi5 Blocked impeller
rotation.

• Sand and other impurities in
the water.

ei,h3 Zero pressure.

ei,t1 Increased torque load
from the impeller.

fi6 Wear of the sealing ring. • Long running time / normal
wear.

• Overheated, due to for
example dry running.

ei,h2 Decreased pressure.

ei,t2 Decreased torque load
from the impeller.

fi7 Missing sealing ring. • Production error. ei,h2 Decreased pressure.

ei,t2 Decreased torque load
from the impeller.
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fi8 Loss of the impeller. • Production error.

• Mechanical vibrations.

ei,h3 Zero pressure.

ei,t3 Zero torque load from
the impeller.

The propagation matrix representation of the component is given by the following logi-
cal expression,

ei ← Ai
fi
fi + Ai

shesh + Ai
ipeip (A.5)

where the fault vectorfi and the effect vectorei equals,

fi =
(

fi1 fi2 fi3 fi4 fi5 fi6 fi7 fi8

)T

ei =
(

ei,h1 ei,h2 ei,h3 ei,h4 ei,h5 ei,t1 ei,t2 ei,t3 ei,t4

ei,t5 ei,v1 ei,v2

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAi

fi
in (A.5) is just a matrix representation of the connections be-

tween the faults and the effects described in the FMEA table presented in this section.
The propagation matricesAi

sh andAi
ip are defined below,

Ai
sh =




1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




T

Ai
ip =




0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0




T

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,
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Disturbing events Causes Effects

di1 Decreased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

ei,h1 Increased pressure.

ei,t2 Decreased torque load
from the impeller.

di2 Increased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

ei,h2 Decreased pressure.

ei,t1 Increased torque load
from the impeller.

Including these disturbing events in the fault vector, it becomes,

fi =
(

f ′i
T

di1 di2

)T

Likewise the matrixAi
fi

is extended with rows according to the above table.

A.6 Mechanical Part of the Pump

The input/output structure of this part is shown in Fig. A.6, and the identified faults in

Mechanical part

of the pump


Impeller speed


Torque load


Inlet flow

Mechanical vibrations


Leakage flow
Imp. pressure

Mech. vibrations


Cassing Temp.


Figure A.6: The input/output structure of the part including all mechanical components
in the pump, not directly involved in the pressure generation.

the component are shown in the following FMEA table,

Mechanical Part of the Pump
Fault Modes Fault Causes Possible Effects

fmp1 Dry running. • Error in the hydraulic
system in which the pump is
placed.

emp,tp1 Increased bearing
temperature.

In
pu

ts

fmp2 Inlet flow equal to zero. • Error in the hydraulic
system in which the pump is
placed.

emp,tp1 Increased bearing
temperature.
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fmp3 Ware of the bearings in
the pump.

• Sand in the liquid.

• Wear out due to long runing
time.

emp,t3 1st harmonic torque
oscillations.

emp,t4 higher harmonic
torque oscillations.

emp,tp1 Increased bearing
temperature.

emp,v1 Increased 1st
harmonic vibrations.

P
ar

ts

fmp4 Ware of seals. • Over heated seals, due to for
example dry running or zero
flow.

• Wear out due to long runing
time.

emp,q1 Leakage flow from
the pump.

fmp5 Rub impact between
the impeller and the cassing.

• Dirte fixed between the
rotating and stationary parts of
the pump.

• Bend shaft due to overload,
cause by for example large
obsticals in the liquid.

emp,t1 Increased torque load
from the mechanical parts of
the pump.

emp,t3 1st harmonic torque
oscillations.

emp,v1 Increased 1st
harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

emp ← Amp
fmp

fmp + Amp
sh esh + Amp

i ei (A.6)

where the fault vectorfmp and the effect vectoremp equals,

fmp =
(

fmp1 fmp2 fmp3 fmp4 fmp5

)T

emp =
(

emp,t1 emp,t2 emp,t3 emp,t4 emp,T5 emp,v1 emp,v2 emp,q1

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAmp

fmp
in (A.6) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
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The propagation matricesAmp
sh andAmp

i are defined below,

Amp
sh =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




T

Amp
i =




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




T

A.7 Inlet Part of the Pump

The input/output structure of this part is shown in Fig. A.7, and the identified faults in

Inlet part of the

pump


Pressure drop at inlet


Inlet flow


Inlet pressure


Impeller eye pressure


Figure A.7: The input/output structure of the part including the component forming the
inlet of the pump.

the component are shown in the following FMEA table,
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Inlet part of the pump
Fault Modes Fault Causes Possible Effects

fip1 Dry running. • Application error. eip,e1 The pressure at
impeller eye is not defined.

eip,h1 The pressure drop at
the inlet part is not defined.

In
pu

ts

fip2 Low pressure at the inlet
of the pump.

• Poor dimensioned system.

• Low water level in the inlet
tank or well.

eip,e2 To low impeller eye
pressure.

P
ar

ts

fip3 Opstruction of the inlet
of the pump.

• Clogging in the inlet part,
due to impurities in the water.

eip,e2 To low impeller eye
pressure.

eip,h2 The pressure drop at
the inlet part is increased.

The propagation matrix representation of the component is given by the following logi-
cal expression,

eip ← Aip
fip

fip (A.7)

where the fault vectorfip and the effect vectoreip equals,

f ′ip =
(

fip1 fip2 fip3

)T

eip =
(

eip,e1 eip,e2 eip,e3 eip,h1 eip,h2 eip,h3

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAip

fip
in (A.7) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
To cover the disturbances affecting this component, the fault vector is extended with

a set of disturbing events. These are,

Disturbing events Causes Effects

dip1 Decreased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

eip,h3 The pressure drop at
the inlet part is decreased.

dip2 Increased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

eip,h2 The pressure drop at
the inlet part is increased.
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dip3 High frequency pressure
oscillations.

• High frequency pressure
noise, due to for example
cavitation in valves.

eip,e3 High frequency
pressure oscillations at the
impeller eye.

Including these disturbing events in the fault vector, it becomes,

fip =
(

f ′ip
T

dip1 dip2 dip3

)T

Likewise the matrixAip
fip

is extended with rows according to the above table.

A.8 Outlet part of the Pump

The input/output structure of this part is shown in Fig. A.8, and the identified faults in

Outlet part of the

pump


Outlet flow


Leakage flow


Inlet flow


Pressure drop at outlet


Figure A.8: The input/output structure of the part including the component forming the
outlet of the pump.

the component are shown in the following FMEA table,

Outlet part of the pump
Fault Modes Fault Causes Possible Effects

fop1 Dry running. • Application error. eop,h1 The pressure drop at
the outlet part is not defined.

eop,q1 The outlet flow is not
defined.

In
pu

ts

fop2 Leakage on the outlet
pipe.

• Waer of the outlet part. eop,q2 The outlet flow is
descreased.

P
ar

ts

fop3 Opstruction of the outlet
pipe.

• Clogging in the outlet part,
due to impurities in the warter.

eop,h2 The pressure drop at
the outlet part is increased.
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The propagation matrix representation of the component is given by the following logi-
cal expression,

eop ← Aop
fop

fop + Aop
mpemp (A.8)

where the fault vectorfop and the effect vectoreop equals,

f ′op =
(

fop1 fop2 fop3

)T

eop =
(

eop,h1 eop,h2 eop,h3 eop,q1 eop,q2

)T

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixAop

fop
in (A.8) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
The propagations matrixAop

mp is defined below,

Aop
mp =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1




T

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,

Disturbing events Causes Effects

dip1 Decreased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

eop,h3 The pressure drop at
the outlet part is decreased.

dip2 Increased flow through
the pump.

• Changes in the hydraulic
system in which the pump is
placed.

eop,h2 The pressure drop at
the outlet part is increased.

Including these disturbing events in the fault vector, it becomes,

fop =
(

f ′op
T

dop1 dop2

)T

Likewise the matrixAop
fop

is extended with rows according to the above table.

204



Section A.9: Difference pressure

Outlet part of the

pump


Impeller pressure


Outlet pressure drop
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Figure A.9: The input/output structure of the part modelling the dynamics of the rotating
parts of the pump.

A.9 Difference pressure

The input/output structure of this part is shown in Fig. A.9. As described in chapter
4 this component is included in the analysis to cover the signal structure of the system
when building the functional model of the centrifugal pump. This means that no faults
are identified in the component.

The propagation matrix representation of the component is given by the following
logical expression,

edy = Adh
i ei + Adh

ip eip + Adh
opeop (A.9)

The resulting effect vectoredh in this expression is given by,

edh =
(

edh,h1 edh,h2 edh,h3 edh,h4 edh,h5 edh,h6

)T

where the effects in this vector are,

eop,h1 ∼ Increased pressure difference across the pump.
eop,h2 ∼ Decreased pressure difference across the pump.
eop,h3 ∼ Zero pressure difference across the pump.
eop,h4 ∼ Harmonic oscillations in the pressure difference signal.
eop,h5 ∼ High frequence oscillations in the pressure difference signal.
eop,h6 ∼ Pressure difference across the pump is not defined.
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The propagation matricesAdh
i , Adh

ip , andAdh
op in (A.9) are defined below,

Adh
i =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




T

Adh
ip =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0




T

Adh
op =




0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




T
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Appendix B

Mathematical Tools

This appendix contains a short presentation of two mathematical tools used in this thesis.
These are a CUSUM alogithm, and some notes on Linear Matrix Inequalities (LMI).

B.1 The CUSUM Algorithm

The cumulative sum (CUSUM) algorithm is a statistical tool to identify changes in the
statistical properties of a signal. The algorithm is described in (Basseville and Nikiforov,
1998, Sec. 2.2). This presentation is based of one particular version of the CUSUM
Algorithm also presented in (Basseville and Nikiforov, 1998).

The CUSUM algorithm is based on the log-likelihood ratioln
pθ1 (yk)

pθ0 (yk) , which can be
used to measure the likelihood of two different hypothesesH0 andH1 described by the
parameterθ, i.e.

H0 : θ = θ0

H1 : θ = θ1

These hypotheses can be tested using a recursive algorithm called the CUSUM algo-
rithm. One from of this algorithm is given by,

gk =





gk−1 + ln pθ1 (yk)

pθ0 (yk) if gk−1 + ln pθ1 (yk)

pθ0 (yk) > 0

0 if gk−1 + ln pθ1 (yk)

pθ0 (yk) ≤ 0
(B.1)

whereg0 = 0. The interpretation of the variablegk, compared to the hypothesisH0 and
H1, is given by the decision signalD,

D =
{

1 if gk ≥ h
0 otherwise
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Chapter B: Mathematical Tools

whereh is a predefined threshold value. IfD = 1 the hypothesesH1 is most likely to
have occurred and otherwise ofD = 0.

In this work the CUSUM algorithm is used to statistical evaluation of residual sig-
nals. Here it is assumed that the residual signals are normal distributed, meaning that
their distribution is given by,

pµ(y) =
1

σ
√

2π
e−

(y−µ)2

2σ2

whereµ is the mean value of the residual. Therefore it can be deduced thatµ = µ0 = 0
in the no fault case, andµ = µ1 6= 0 in the faulty case. It is assumed that the variances
of the residual signals are known and do not change due to faults, i.e.σ in the above
expression is constant and known. When these properties are fulfilled the log-likelihood
in the CUSUM algorithm (B.1) is given by,

ln
pµ1(yk)
pµ0(yk)

= − (yk − µ1)2

2σ2
+

y2
k

2σ2
= −µ1

σ2

(
yk − µ1

2

)

The signalgk in the CUSUM algorithm (B.1) is bounded from below by0. In the
algorithm used in this work the signalgk is also bounded from above byh, resulting in
the following algorithm,

gk =





0 if gk−1 − θ1
σ2

(
yk − θ1

2

) ≤ 0
h if gk−1 − θ1

σ2

(
yk − θ1

2

) ≥ h

gk−1 − θ1
σ2

(
yk − θ1

2

)
otherwise

(B.2)

This algorithm is a discrete algorithm. However, only continuous systems are considered
in this work. Therefore, for the sake of cosistency a continuous version of (B.2) is given
below. Heres(t) = −µ1

σ2

(
y(t)− µ1

2

)
is used.

dg

dt
=

{
0 if (g(t) = 0 ∧ s(t) ≤ 0) ∨ (g(t) = h ∧ 0 ≤ s(t))

s(t) otherwise
(B.3)

where∧ and∨ denotes the logicalandandor operator respectively.

B.2 Linear Matrix Inequalities

In this appendix some general remarks on Linear Matrix Inequalities (LMI)’s and there
use in connection with parameter variating systems are presented. The presentation is
based on (Scherer and Weiland, 1999). First the consept of LMI’s is defined, followed
by three proporsitions dealing with stability of parameter variating system. These pro-
porsitions are in Section 5.2.2 used in the analysis and synthesis of the feedback gain in
the proposed adaptive observer.
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Section B.2: Linear Matrix Inequalities

A LMI is an expression on the form,

F(x) = F0 +
m∑

i=1

xiFi ≺ 0 (B.4)

where

• x =
[
x1 x2 · · · xm

]
is a vector of real numbers.

• F0, · · · ,Fm are real symmetric matrices, i.e.Fi = FT
i ∈ Rn×n, i = 1, · · · ,m

for somen ∈ Z+.

• The inequality≺ 0 in (B.4) means positive definite, i.e.uT F(x)u < 0 for all
u ∈ Rn. Equivalently, the largest eigenvalue ofF(x) is negative.

This is stated in slightly more general in the following definition.

Definition B.2.1 (Linear Matrix Inequality) (Scherer and Weiland, 1999, Sec. 1.3) A
Linear Matrix Inequality (LMI) is an inequality,

F(X) ≺ 0 (B.5)

whereF is an affine function mapping a finit dimensional vector spaceV to the set
Sn = {M | M = MT ∈ Rn×n}, n > 0 of real symmetric matrices.

The feasibility of the LMI defined in Definition B.2.1 denotes the existence of at least
oneX which fulfills (B.5). Likewise the LMI is infeasible if such anX does not exist.
If an affine performance function on the formc(X) is defined, algorithms exists which
can solve the minimization problemminX c(X) constrainted by (B.5).

LMI’s as defined in Definition B.2.1 can be used for checking stability of linear
systems with unknown and variating parameters. Such a system is shown below,

ẋ = A(δ(t))x (B.6)

where the state matrixA(δ(t)) is a function of the real valued parameter vectorδ. In all
physical system this parameter vector belongs to a bounded set∆, i.e. δ ∈ ∆.

Suppose that the state matrixA(δ(t)) is an affine function of the parameters, i.e.
A(δ(t)) = A0 +

∑k
j=1 δj(t)Aj for all δ ∈ ∆, then (B.6) is refered to as anaffine

parameter dependent model. Suppose that the unknown parametersδj j = 1, · · · , k in
this expression are bounded on an interval, i.e.δj ∈ [δj , δj ]. If the unknown parameters
are bounded on this interval thecornersof the uncertainty region is given by the set,

∆0 =
{
δ = (δ1, · · · , δk) | δj ∈ {δj , δj}

}
(B.7)

Then the uncertainty region∆ = co{∆0}, whereco denotes the convex hull of the
generators∆0 (Scherer and Weiland, 1999).

The stability of (B.6), whenA(δ(t)) is an affine parameter dependent model, is
formulated by an LMI in the following proposition.
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Proposition B.2.1 (Scherer and Weiland, 1999, Sec. 2.4) if (B.6) is an affine parameter
dependent model then it is quadratically stable if and only of there existsP Â 0 such
that

A(δ)T P + PA(δ) ≺ 0

for all δ ∈ ∆0, where∆0 contains the generators of the convex hull, i.e.∆ = co{∆0}.
This proposition is motivated by the Lyapunov stability criterion. When Proposition
B.2.1 holds, system (B.6) is stable for arbitrary fast variations ofδ. However, if the
parameters are unknown and bounded on a set, but not variating Proposition B.2.1 is to
restricted, i.e. system (B.6) can be stable for allδ ∈ ∆ even though Proprosition B.2.1
does not hold.

The following proposition states the stability conditions for (B.6) if the parameter
vector is assumed constant, i.e.δ̇ = 0.

Proposition B.2.2 (Scherer and Weiland, 1999, Page 62) If (B.6) is an affine parameter
dependent model and∆ ⊂ Rk is the uncertainty set given by∆ = co{∆0}, where∆0

is defined in (B.7), then system (B.6) is affinely quadralically stable if there exist real
matricesP0, · · · ,Pk such that,

A(δ)T P(δ) + P(δ)A(δ) ≺ 0 ∀δ ∈ ∆0 (B.8a)

P(δ) Â 0 ∀δ ∈ ∆0 (B.8b)

AT
j Pj + PjAj º 0 for j = 1, · · · , k (B.8c)

Here,A(δ) = A0 +
∑k

j=1 δjAj andP(δ) = P0 +
∑k

j=1 δjPj . Moreover, in that

caseV (x, δ) := xT P(δ)x is a quadratic parameter-dependent Lyapunov function for
the system.

Proposition B.2.1 states the stability conditions for system (B.6) for abitraly variating
parametersδ ∈ ∆ and Proposition B.2.2 stated the stability condition for the same
system when the parametersδ ∈ ∆ are constant. The following proporsition states the
stability conditions in the case where the parameters are variating, but with a limet on
the variation rate, i.e.̇δi = λi ∈ [λi, λi]. If each variation rate is limited to this set, the
cornersof the uncertainty region of the variations rates is given by,

Λ0 = {λ = (λ1, · · · , λk) | λi ∈ [λi, λi]} (B.9)

Then the uncertainty regionΛ = co{Λ0} is the set of possible variation rates of the
parametersδ. When the variation rates are limited on this set the following proposition
states the stability conditions for system (B.6).

Proposition B.2.3 (Scherer and Weiland, 1999, Page 64) If (B.6) is an affine parameter
dependent model and∆ ⊂ Rk is the uncertainty set given by∆ = co{∆0}, where∆0
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is defined in (B.7), then system (B.6) is affinely quadralically stable if there exist real
matricesP0, · · · ,Pk such that,

A(δ)T P(δ) + P(δ)A(δ) + P(λ) ≺ P0 ∀ δ ∈ ∆0 andλ ∈ Λ0 (B.10a)

P(δ) Â 0 ∀ δ ∈ ∆0 (B.10b)

AT
j Pj + PjAj º 0 for j = 1, · · · , k (B.10c)

Here,A(δ) = A0 +
∑k

j=1 δjAj andP(δ) = P0 +
∑k

j=1 δjPj . Moreover, in that

caseV (x, δ) := xT P(δ)x is a quadratic parameter-dependent Lyapunov function for
the system.
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