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Summary

The main subject of this thesis is Fault Detection and Identification (FDI) in centrifugal
pumps. Here, it is assumed that an induction motor is driving the centrifugal pump, and
that only electrical and hydraulic quantities are measured. A state of the art analysis
of the topic has shown that signal-based approaches are the most used approaches for
FDI in centrifugal pumps. Robustness is seldom considered in these approaches. How-
ever, robustness is a very important aspect when it comes to implementation in real life
applications. Therefore, special focus is put on robustness in this thesis.

The signal-based approaches are utilizing signal processing and/or artificial intelli-
gence to obtain knowledge about the faults in the pump. To analyse robustness in these
systems, a combination of the Failure Mode and Effect Analysis (FMEA) and the Fault
Propagation Analysis (FPA) is proposed. To enable robustness analysis using the FMEA
and FPA a so-called disturbing event is introduced. Moreover, one of the manual steps
in the FPA is automated, using an algorithm developed in this thesis. The proposed anal-
ysis method is used to identify a set of signal events, which can be used for robust FDI
in the centrifugal pump. This shows the usability of the proposed method, not only for
analysis purpose, but also as a part of the design of signal-based fault detection schemes.

The most common fault in submersible pump applications is stator burnout. In the
state of the art analysis it is argued that this kind of fault is often initiated by an inter-turn
short circuitinside the stator. To understand the impact of this short circuit, a model of an
induction motor, including an inter-turn short circuit, is derived. This model is utilized
in the design of an adaptive observer, which can estimate the states of the motor, the
speed, and the inter-turn short circuit simultaneously. The observer is incorporated in a
detection scheme, by which the size of the inter-turn short circuit and the phase, affected
by the short circuit, can be found. The detection scheme is tested on an industrial test-
bench showing the capabilities of the detection scheme on a real application.

Structural Analysis (SA) is utilized in the design of residual generators for FDI in the
mechanical and hydraulic part of the centrifugal pump. The use of the SA is two folded.
Firstly, it is used to divide the centrifugal pump model into two cascade-connected sub-
parts, enabling the design of residual generators. Secondly, it is used to identify subsys-
tems, which can be used in the derivation of residual generators.

Traditionally, the results of the SA are used in the derivation of Analytical Redundant
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Summary

Relations (ARR). However, here a novel realization approach is proposed. With this
approach the subsystems, found using SA, are transformed into nonlinear state space
descriptions suitable for observer designs. All unknown variables, except for the states,
are eliminated in this state space description, leaving only the stability problem to be
considered in the observer design.

The proposed realization approach is used in the derivation of three residual gener-
ators for FDI in the mechanical and hydraulic parts of the pump. The obtained residual
observers are tested on an industrial test-bench, showing that the observers are robust,
with respect to changes in the operating conditions of the pump. Likewise, the tests
shows that the observers are able to detect and identify 5 different faults in the mechan-
ical and hydraulic part of the pump.

In many real life centrifugal pump applications, only slow bandwidth sensors are
available. This means that FDI schemes, based on dynamic models of the system, are not
usable. Therefore, a detection scheme, based on the steady state model of the centrifugal
pump, is proposed. This detection scheme is derived using SA to obtain ARR’s. Robust-
ness, with respect to parameter variation, is incorporated in the detection scheme, with
the utilization of the set-valued approach. This algorithm is also tested on an industrial
test-bench, and is also shown to be able to detect 5 different faults in the mechanical and
hydraulic part of the centrifugal pump. Moreover, the algorithm is shown to be robust
to the operating conditions of the pump, but not to transient changes in these operating
conditions.

viii



Sammenfatning

Hovedemnet for denne afhandling er Fejl Detektering og Identifikation (FDI) i centrifu-
galpumper. Her antages det, at centrifugalpumperne er drevet af induktionsmotorer og
at kun elektriske og hydrauliske veerdier males. En state of the art analyse af omradet har
vist, at signalbaserede metoder er de mest brugte til fejl detektering i centrifugalpumper.
Der tages sjeeldent hensyn til robusthed i designet af disse metoder. Imidlertid er ro-
busthed et meget vigtigt aspekt, nar FDI algoritmer skal implementeres i de faerdige
produkter. Derfor vil der blive lagt specielt vaegt pa robusthed i denne afhandling.

| designet af de signalbaserede metoder, benyttes signalbehandling og/eller kunstig
intelligens til at uddrage fejlinformation fra pumpen. Til analyse af robusthed i disse
metoder, foreslas en kombination af en "Failure Mode and Effect Analysis" (FMEA) og
en "Fault Propagation Analysis" (FPA). For at ggre det muligt at bruge FMEA'en og
FPAen til analyse af robusthed, er et sékaldt forstyrrelses event foreslaet. Derudover er
en af de manuelle opgaver i FPA'en automatiseret via en algoritme opbygget i projektet.
Den foreslaede metode er benyttet til identifikation af en raekke signal events, som kan
benyttes til robust FDI i centrifugalpumper. Dette viser brugbarheden af den foresldede
metode i savel analyse som design af signalbaserede FDI algoritmer.

En af de mest almindelige fejl i dykpumpeapplikationer er stator sammenbrud. |
state of the art analysen argumenteres der for, at en stor del af disse fejl starter som ko-
rtslutninger mellem enkelte vindinger i statoren. For at forsta betydningen af sddanne
kortslutninger, er der opbygget en model af en induktionsmotor med denne type kortslut-
ning i statoren. Denne model er efterfglgende benyttet i designet af en adaptiv observer,
som p& samme tid kan estimere de elektriske tilstande, hastigheden og kortslutningen
i motoren. Denne observer er indbygget i en FDI algoritme, som bade kan estimere
kortslutningen og identificere fasen, som er pavirket af denne. Brugbarheden af FDI
algoritmen er pavist pa en testopstilling, opbygget til dette formal.

| designet af residualgeneratorer til detektering af fejl i den mekaniske og hy-
drauliske del af pumpen, er Struktur Analyse (SA) benyttet. Brugen af SA har to formal.
Det fgrste formal er at opdele modellen af centrifugal pumpen i to cascade-koblede sys-
temer. Denne opdeling er foretaget for at muliggare design af residualgeneratorer. Det
andet formal er identifikation af delsystemer, som kan bruges i designet af residualgen-
eratorer.



Sammenfatning

Traditionelt bruges resultaterne af SA'en til at udlede Analytiske Redundante Rela-
tioner (ARR). Imidlertid benyttes her i stedet en ny realisationsmetode udviklet i pro-
jektet. Med denne metode kan de delsystemer, der er fundet via SA, omskrives til til-
standsmodeller, som er velegnede til observer design. De eneste ukendte signaler i disse
tilstandsmodeller er tilstandene i modellen. Det betyder, at kun stabilitetsproblemet skal
behandles i observer designet.

Den udviklede realisationsmetode er i afhandlingen brugt til design af tre residual
observere til FDI i den mekaniske og hydrauliske del af pumpen. De udviklede residual
observere er testet pa en industriel testopstilling, hvormed det er vist, at observerne er
robuste overfor sendringer i pumpens driftspunkt. Derudover er det vist, at observerne
kan bruges til identifikation af 5 forskellige fejl i den mekaniske og hydrauliske del af
pumpen.

I mange industrielle applikationer forefindes der kun sensorer med en lav band-
bredde. Det betyder, at FDI algoritmer, opbygget pa baggrund af dynamiske modeller,
ikke kan bruges. Derfor er der i denne afhandling udviklet en algoritme baseret pa en
ligeveegts model af pumpen. Til udvikling af denne algoritme er SA brugt til at finde
tre ARR’er. Robusthed er inkorporeret i algoritmen ved brug af en "set-valued" metode.
Herved er algoritmen gjort robust overfor parametervariationer i pumpen. Denne algo-
ritme er ogsa testet pa en industriel testopstilling, hvor det er vist, at algoritmen kan
detektere 5 forskellige fejl i den mekaniske og hydrauliske del af pumpen. Ydermere,
er det vist, at algoritmen er robust overfor driftspunktet for pumpen, men ikke overfor
transiente aendringer i driftspunktet.
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Nomenclature

Symbols

In this thesis all matrices and vectors are written with bold letters, to distinguish these
from scalar values.

Symbols and parameters used in connection with the motor model

Vtdg dg-transformed voltages at the terminals of the induction motgy, =
(Vtd vtq)T-

itdq dg-transformed currents at the terminals of the induction mdtgy, =
(itd Z'tq)T'

Vsdg dg-transformed stator voltages of the induction motQp, = (vsq Vsq)-

isdq dg-transformed stator currents of the induction motQf, = (isq sq)-

iy Deriveddg-transformed stator currerif,;, = isag — Taqviy-

irdg dg-transformed rotor currents of the induction moigs, = (irq irq)-

¥ Among of turns involved in the stator short circujt= (v, v 0)7.

if Current in the short circuit loop of the stator.

T, Torque generated by the electrical circuit of the motor.

Taq0(0) Transformation matrix given b¥g,0 = Taq0(0)Xabe, WhereT g40(6) =
cos(f) cos(f+ =) cos(f + o)
2 |sin(9) sin(f+ =) sin(f+ 5-)
1 1 1

2 2 2
Taq0 Transformation matrix given b¥ 450 = T 440(0).
Ty, Matrix consisting of the two first rows dF 440.
T,, Matrix consisting of the two first columns af ;.
J 2 x 2 skew inverse matrix given by = {(1) _07 .
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Nomenclature

I Identity matrix.
Ty Stator resistance.
T Rotor resistance.
la1 Leakage inductance in the stator.
I Leakage inductance in the rotor.
I Mutual inductance in the induction motor.
Zp Number of pole pairs in the motor.
R, Stator resistance matriR. = diag{rs, rs}.
R, Rotor resistance matriR.,. = diag{r, . }.
L, Strator inductance matrif,; = diag{31,,, + lis, 3l + ls }.
L, Rotor inductance matrid,, = diag{31,,, + iy, 30, + lir }.
L., Mutual inductance matrix,,, = diag{31,,, 30, }.
R/ derived rotor resistance matriR,. = L,,L, 'R, L 'L,,.
L. derived stator inductance matrik, = L, — L,,, L. L,,.
L, derived mutual inductance matrik/ = L,, L, *L,,.
B, Transformation from voltages at the terminals of the motor to phase volt-
ages at the statov,.q; = B, Viag.
C; Transformation from the phase current in the stator to the current at the
terminals of the motoi;q, = C;isqq-
Symbols and parameters used in connection with the pump model
H, Pressure across the pump.
H, Head calculated from Eulers pump equation.
Qp Flow through the pump.
Q; Flow through the impeller.
T Shaft torque of the pump.
Wy Shaft speed of the pump.
J Moment of inertia of the rotor and the impeller.
B Linear friction.
Ghi Parameters in the pressure model of the pump{1, 2, 3}.
i Parameters in the torque model of the puing,{1, 2, 3}.
g Gravity constant.
p Density of the liquid in the system.
K; Leakage fault inside the centrifugal pump.
Ky Clogging faul inside the centrifugal pump.
AB Rub impact fault.
fe Cavitation fault.
fa Dry running fault.
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Nomenclature

Symbols used in connection with the FMEA and FPA

F Finite set of all event vectors in the system.

Fi Finite set of all event vectors in thi& component in the system.

Fr Finite set of all fault event vectors.

Fa Finite set of all disturbing event vectors.

Iy Finite set of all fault event vectors with only one non zero element.

f Vector of fault events.

d Vector of disturbing events.

Agc Propagation matrix from the faults defined in tHé component to the
effects defined in thg!” component.

A{ Propagation matrix from the effects defined in the component to the
effects defined in thg!” component.

Ag Propagation matrix from the faults to the end-effects in the system.

Ay Propagation matrix from the disturbing events to the end-effects in the
system.

Gy, Dy  GraphGy and corresponding adjacency matfix: describing the con-
nection between faults and components in the FPA diagram.

G.,D. GraphG, and corresponding adjacency matfi% describing the struc-
ture of the effect propagation in the FPA diagram.

Symbols used in connection with the SA and realization

S Dynamic system.

o Observer design based on the dynamic sysfem

e Set of constraints.

Z Set of variables.

8 System composed of a set of constraints and a set of variables, ie.
(€,2).

X Set of known variables, i.€€ C Z.

X Set of unknown variables, i.& C Z.

Xq State vector of the dynamic syste¥n

Xq Algebraic variables of the dynamic systen

c Constraint which links a subset of the variable€in

d Constraint on the formi; = dj—td, wherezy, zq4 € X.

f,, m,, h, Vector field, algebraic constraints, and output maps of the dynamic system
S.

f,, h, Vector field and output maps of an output transformed system.

f.,h, Vector field and output maps of a state transformed system.
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Nomenclature

Symbols used in connection with the steady state FDI

Vims RMS value of the supply voltage.

Loms RMS value of the supply current.

We Frequency of the supply voltage.

1) Angle between the supply voltage and supply current.

Ve Stator voltage used in the steady state model of the motor.

Vi Stator voltage used in the steady state model of the motor.

I, Stator current used in the steady state model of the motor.

Ie . Magnetizing current used in the steady state model of the motor.

I, Magnetizing current used in the steady state model of the motor.

r Residual.

R Set of residual values.

Mathematical Symbols

-, < Positive and negative definit respectively.

>, < Larger than and smaller than respectively.

— Logical expression to the left implies logical expression to the right.

\Y% Logical or operator.

A Logical and operator.

T Maximum value ofz.

T Minimum value ofz.

R The reals.

Ry The positive reals including zero, i.&, = {z € R |z > 0}.
Abbreviations

FDI Fault Detection and Identification.

SA Structural Analysis.

ARR Analytical Redundant Relation.

FMEA Failure Mode and Effect Analysis.

FPA Fault Propagation Analysis.

Model-based FDI  FDI approaches based on mathematical models of the applica-

tion.

Signal-based FDI  FDI approaches based on signal processing and classifing tech-

XViii
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Chapter 1

Introduction

This thesis considers the analysis and design of algorithms for Fault Detection and Iden-
tification (FDI) in centrifugal pumps. The aim has been to investigate methods for FDI
in centrifugal pumps, with special focus on the robustness and usability of the obtained
algorithms. This means that the algorithms must be able to detect faults under changing
operating conditions, and should be robust with respect to disturbances in the system.

1.1 Background and Motivation

This project was founded by Grundfos, which is a multi-national company with pro-
duction and sale facilities in around 50 different countries all over the world. Grundfos

is producing pumps for a variety of different applications. Still, most of the produced
pumps are for use in water treatment and aqueous solutions. In these applications the
centrifugal pump is the most used pump type. This is due to its simple construction
with few moving parts, making it very reliable and robust. In this thesis especially cen-
trifugal pumps for use in industrial applications, submersible applications, water supply
applications, and sewage applications are of interest.

In many of these applications it is crucial that the pumps are working all the time.
Moreover, the size of the pumps makes maintenance costly, in many cases. In addi-
tion to that, the applications are often situated in remote places, when it comes to water
supply and sewage treatment. This means that maintenance becomes even more costly.
Therefore, in these applications supervision, including fault detection and in specially
fault prediction, is very interesting. Equally interesting is supervision in industrial appli-
cations. Here, the need is initiated by the ongoing demand for production improvement,
meaning that it is crucial that the pumps are only stopped when absolutely necessary.
Therefore, the use of a monitoring system, which includes supervision of the pumps,
would be beneficial in many of these applications. This implies, that monitoring sys-
tems can be expected to be a growing competition parameter in the following years.

1



Chapter 1: Introduction

This project was initiated by a growing need, inside Grundfos, for knowledge about
the newest methods for detection of events and faults in pumps and pump systems. This
need is based on the expectation that monitoring and control systems will be commonly
used for supervision and control, of especially larger pumps, in the future. Besides that,
pumps are sometimes returned on warranty where it has been impossible to reproduce
the fault. In these cases it would be of great interest to know what the pump has been ex-
posed to before it is returned. This knowledge could be used to improve the construction
of the pumps and user manuals to avoid unnecessary returns on warranty, and thereby
unnecessary inconveniencies for the costumer.

The most common maintenance problems and faults expected in centrifugal pumps
can be divided into three main categories,

e Maintenance, such as cleaning of the pump.

e Faults which demands maintenance, such as bearing faults, and leakage due to
sealing faults.

e Severe faults, which demand replacement, such as stator burnouts, and damaged
impeller.

The first item covers normal maintenance, which, to some extend, is necessary in any
application. Likewise, the second item covers replacement of wearing parts, which also
should be expected in any pump setup, when running for long time periods. The last item
covers severe damages, normally caused by unexpected faults or by lack of maintenance.

A well designed monitoring system will be able to help a user, exposed to faults,
in any of the three mentioned categories. Traditionally, the first two categories are,
in large pump applications, handled by doing scheduled maintenance on the plant. At
these scheduled maintenance procedures, a set of predetermined wearing parts are often
exchanged to avoid future breakdowns. When using a monitoring system, maintenance
can be done on demand, which will save costs for unnecessary replacement parts, and
more important, the pump only has to be stopped for maintenance when really necessary.
For the last category, a monitoring system would be able to detect and stop the pump
before a given fault causes total breakdown of the pump. In larger pumps this would
make repair possible, meaning that a replacement of the whole pump is saved.

Different sets of sensors could be used as inputs to such a monitoring system. For
centrifugal pumps the following sensors are interesting; vibration sensors, current and
voltage sensors, absolute pressure and pressure difference sensors, flow sensors, and
temperature sensors. Of these, the current and voltage sensors, and the flow and pressure
difference sensors have been considered in this project. These sensors are all reasonably
cheep and are often already mounted in a pump system. Therefore, by using only these
sensors, no additional hardware is needed for the proposed algorithms to work. There-
fore, the implementation costs for the system is reduced considerably.
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1.2 Obijectives

The aim of the Thesis is to investigate different methods for their usability in analyz-
ing and designing FDI algorithms for centrifugal pumps. In the investigation, special
emphasis is layed on the robustness and practical usability of the obtained algorithms.

In (Astrém et al., 2001) it is argued that methods for FDI can be divided into two
main groups, namely the model-based and signal-based approaches. Here, the signal-
based approaches are approaches, in which signal processing and/or artificial intelli-
gence are utilized to obtain knowledge about faults in a given system. The model-based
approaches are, on the other hand, utilizing system theory to obtain knowledge about the
faults. In this thesis special focus will be put on the use of the model-based approaches,
as these approaches have inherent methods for handling disturbances. Hereby, increased
robustness of the algorithms can be obtained. However, signal-based approaches have
been widely used for fault detection in centrifugal pumps and their applications. See
Chapter 2 concerning the state of the art of the area. In most of these cases robustness
has not been considered. Therefore, a method for analyzing robustness in signal-based
FDI systems, is also considered.

1.3 Contributions

The contributions of the Thesis can be divided into two groups. The first group contains
contributions to FDI in the centrifugal pumps. The second group contains theoretical
contributions, mainly on robustness analysis of signal-based fault detection schemes
and the realization of subsystems found using Structural Analysis. In this section, first
the theoretical contributions are listed, followed by the contribution to FDI in centrifugal
pumps.

The main contributions in the theoretical areas are:

e A new algorithm for cutting loops in a Fault Propagation Analysis (FPA) graph is
proposed in Chapter 4. With this algorithm and a theorem also proposed in this
thesis, the FPA is automated. This means that the only manual step is to setup the
event model.

e Adisturbing eventis introduced as a part of the FPA in Chapter 4. With this event
it is possible to analyse the robustness of signal-based fault detection algorithms.
Two theorems are formulated, aimed to analyse robustness, based on this idea.

e A new adaptive observer, for a particular kind of bilinear system, is proposed in
Chapter 5. With this observer it is possible to explore the parameter structure in
the system. Observability of the known part of the system is not necessary. The
gain matrix of the observer can be analysed, and in some cases calculated, using
the proposed Linear Matrix Inequalities (LMI).
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e A novel transformation method is proposed in Chapter 6. With this transfor-
mation, minimal over-constraint subsystems, identified using Structural Analysis
(SA), can be transformed into state space descriptions. The method includes two
transformations; an output transformation, and a state transformation. These are
formulated in two theorems. The state transformation is submitted for publication
(Kallesge and Izadi-Zamanabadi, 2005).

e As a part of the derivation of a set-valued residual expression, the Taylor Series
expantion is proposed in Chapter 7. The Taylor Series expantion is used on the
parameter expression to include a linear approximation of the nonlinear depen-
dency of the parameters. This has been submitted for publication (Kallesge et al.,
2004a).

The main contributions to FDI in the centrifugal pumps are:

o A fault propagation model of the faults, expected to happen in centrifugal pumps,
is derived in Chapter 4. This model has been used to analyse different sensor
combinations aimed for robust signal-based fault detection.

e A new model of an inter-turn short circuit in the stator of an induction motor is
derived in Chapter 5. The model is derived for bdthand A-connected motors,
and has a nice structure, which has similarities to models of motors not affected by
inter-turn short circuits. The model of tRé-connected motor has been published
in (Kallesge et al., 2004c).

e An adaptive observer for estimating inter-turn short circuit faults in the stator of
an induction motor is proposed in Chapter 5. This has been published in (Kallesge
et al., 2004c).

e An example of using SA to divide a complex system into two cascade-connected,
less complex, subsystems is shown in Chapter 6. This enables possibilities for
easy observer designs. The idea has been used for solving the nonlinear FDI
problem in the centrifugal pump, using only electrical and hydraulic measure-
ments. This has been submitted for publication (Kallesge et al., 2004a).

e A model-based FDI scheme, for FDI in centrifugal pumps, is proposed in Chapter
6. The FDI scheme is based on measurements of the electrical quantities and the
hydraulic quantities only. Here, the electrical quantities are the motor voltages
and currents, and the hydraulic quantities are the pressure and volume flow. Parts
of the approach have been published in (Kallesge et al., 2004b).

e Arobust FDI scheme, based on the steady state model of the pump and set-valued
algebra, is derived in Chapter 7. The obtained algorithm depends on steady state
measurements only, making it useful in cost sensitive products.
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1.4 Outline of the Thesis

The thesis is organized as follows,

Chapter 1: Introduction
Chapter 2: Fault Detection and Isolation in Pump Systems

The purpose of this chapter is two-folded. Firstly, the most important ideas and terms
used in the area of Fault Detection and Identification (FDI) are introduced. Secondly,
state of the art on FDI in centrifugal pumps, as well as in induction motors, is considered.
This includes contributions from the academic world and products already on the market.

Chapter 3: Model of the Centrifugal Pump

This chapter introduces the mathematical model of the centrifugal pump. This includes
a model of the induction motor driving the pump, and models of the mechanical and
hydraulic parts of the pump. The presented models are lumped parameter models, which
especially are suitable for use in model-based FDI design. Special emphasize is put on
the dynamics of the hydraulic part. Here, it is shown that the energy conversion from
mechanical to hydraulic energy, is described by a purely algebraic equation. Moreover,
itis shown that the pump dynamics can be described by adding extra mass to the rotating
parts of the pump, i.e. increasing the moment of inertia of the rotating parts of pump.
The derived model is valid under two assumptions, also stated in the chapter.

Chapter 4: System Analysis and Fault Modelling

In this chapter the use of Failure Mode and Effect Analysis (FMEA) and Fault Propaga-
tion Analysis (FPA) in the design of signal-based fault detection algorithms is explored.
The FMEA and the FPA are well known analysis tools, and have been proposed as an
analysis tool in the design Fault Tolerant Control, as well as in FDI algorithms. A new
algorithm for automating parts of the FPA is proposed in this chapter. Moreover, by
introducing a so-called disturbing event in the FPA, it is shown that the robustness of
signal-based FDI algorithms can be analysed.

The chapter includes an FMEA of a general centrifugal pump, meaning that the con-
ceptual faults, expected in centrifugal pumps, are identified and analyzed. The outcome
of the FMEA is a list of possible faults in centrifugal pumps. 11 of these faults are
grouped into 7 fault groups. These 7 faults found the basis for the FDI algorithms de-
signed in this thesis. Using the FPA, different sensor combinations are analysed, aimed
to find a set of signals, which can be used in a signal-based fault detection scheme. One
of these sensor configurations is proven to work on a special designed test setup.
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Chapter 5: A New Approach for Stator Fault Detection in Induction Motors

This chapter introduces a new approach for inter-turn short circuit detection in the stator
of an induction motor. In the design, an adaptive observer approach is used, utilizing
only electrical measurements. The observer is based on a model of the induction motor,
in which a description of the inter-turn short circuit is included. This model is derived
in the beginning of the chapter. With the designed observer it is possible to estimate
the states of the motor, the speed, and the inter-turn short circuit simultaneously. The
observer is shown to work on a special designed motor, where it is possible to simulate
inter-turn short circuit faults. Likewise, it is shown that it is possible to identify the
phase, affected by the inter-turn short circuit. The adaptive observer, used in the pro-
posed design, is formulated in general terms, and could therefore be used in a number
of other applications.

Chapter 6: A New Approach for FDI in Centrifugal Pumps

The topic of this chapter is FDI on the hydraulic and mechanical parts of the centrifugal
pump. The model-based approach is used for this purpose. This means that residual gen-
erators are developed, based on the model of the centrifugal pump, presented in Chapter
3. In the design of the residual generators, subsystems, which are robust with respect
to disturbances and unknown model parts, are identified using Structural Analysis (SA)
(Blanke et al., 2003). These subsystems are then transformed into state space form,
enabling residual observer designs. The transformation from subsystems, identified us-
ing SA, into state space descriptions is novel, and is described in general terms in the
beginning of the chapter.

Chapter 7: FDI on the Centrifugal Pump: A Steady State Solution

In this chapter a FDI algorithm, based on a steady state model of the pump, is developed.
The FDI algorithm is developed using Structural Analysis, in order to obtain three An-
alytical Redundant Relations, each used in the calculation of a residual. The algorithm
is shown to enable detection and identification of five different faults in the hydraulic
part of the pump. Robustness of the algorithm is insured using a set-valued approach,
making it possible to in-count parameter variations in the FDI algorithm.

Chapter 8: Conclusion and Recommendations



Chapter 2

Fault Detection and Isolation in
Pump Systems

The purpose of this chapter is two-folded. Firstly, a short introduction to the most im-
portant ideas and terms used in the area of Fault Detection and Identification (FDI) is
included. Secondly, a state of the art analysis on FDI in centrifugal pump applications
is presented. The first part is included to lighten readers of the thesis not familiar with
the concept of FDI. The second part includes both a state of the art analysis of FDI in
the centrifugal pump itself, and on the induction motor drive by which centrifugal pump
is driven. Moreover, the analysis includes contributions from both the academic world
and products already on the market.

In Section 2.1, where the concept of FDI is introduced, three different approaches to
FDI are considered. First of all, distinguishing between model-based and signal-based
FDI is considered (Astrém et al., 2001), and the main ideas behind both methods are
described. This is followed by an introduction of the parameter adaptation approach,
and finally the concept of residual evaluation is introduced.

In Sections 2.2 and 2.3 state of the art of FDI in respectively induction motors and
centrifugal pumps is considered. A number of different faults and detection methods
have been treated in both the induction motor and in the centrifugal pump. However,
considerable more work is done in the area of FDI on induction motors compared to the
work done on centrifugal pumps. This is mainly because of the widespread use of the
motor type. The state of the art analysis is followed by some concluding remarks, which
end the chapter.
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2.1 Fault Detection and Isolation

To understand the concept of FDI, first it has to be defined what is meant by faults, and
which information is expected to be available for detection of these. To explain this,
let the structure of a system with input§t) € R™, outputsy(t) € R? be defined
as shown in Fig. 2.1. Here, a fault affecting the system is symbolized. byhis

%

—— | System y—>

Figure 2.1: System with inpuis, outputsy and a faultf affecting the system.

fault is interpreted as an unwanted event creating abnormal operation of the system.
Faults can affect the operation of a system in different ways. Normally, these fault
effects are divided into two sub-groups, which are denatedtiplicative faultsand
additive faultsrespectively. Multiplicative faults influence the system as a product, like
for example parameter variations, and additive faults influence the system by an added
term (Isermann and Balle, 1997).

As an example of a system affected by faults, consider the following linear system,
which is affected by both multiplicative and additive faults.

dx — A(65)x +B(0f)u+Eid + Fif

y = C(8)x + D(0;)u + Eod + Faf . 21)

In this systemx () € R™ contains the states,(t) € RP contains the inputs;(t) € R?
contains the outputs, andi(t) € R' contains disturbances, which can be interpreted

as unknown or unmeasurable inputs. This system is affected by the faylts R"
affecting the system by an added term, and the param@jees R* affecting the sys-

tem in multiplicative manner. Here the multiplicative faults are seen as changes of the
parameter values in the system. Besides the multiplicative and additive fault effects, a
fault can change the structure of a system, meaning that the system becomes a so-called
hybrid system, where the state change is caused by the given fault.

Having the above described system in mind the fault detection problem is the task
of detecting that a faulf € F has occurred in a given system, whefeés the set of all
possible faults in the system, i.e. it contains all fault§ end@ ;. The solution to the
fault detection problem is based on the set of measurenyeatsl possibly the set of
known input signalsi. When a fault is detected it is possible to state that something is
wrong in the system but not what is wrong. However, sometimes it is possible to isolate
the fault, meaning that faulf; can be distinguished for the set of possible fatfitin
the system. When a fault is isolated it is possible to state where and what is wrong in
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the system (Chen and Patton, 1999; Gertler, 1998). The problem of both detection and
isolation of a fault is called the Fault Detection and Isolation (FDI) problem. If it is not
only possible to isolate the fauft in the setF, but also possible to estimate the size of
this fault f;, the fault is said to be estimated. The three levels of complexity in the fault
detection problem, described above, are summarized below.

Fault Detection: An abnormality in a system is detected, but the type and size are un-
known.

Fault Isolation: The faultf; is identified in the set of all possible faulfs. Hereby the
type of the fault is known but the size remains unknown.

Fault Estimation: The size of the faulf; € F is estimated.

Different methods can be used for detecting a fgule F. The choice of method
should be based on the type of fault, which has to be detected, and which measurements
are available. Below three main groups of approaches are described.

2.1.1 Signal-Based Approach

In the Signal-Based approach, characteristics in the measured sjgoaigaining in-
formation about the health of the system are utilized (Astrém et al., 2001). A block
diagram of a FDI system based on the signal-based approach is shown in Fig. 2.2. From

f
\/\ _Fault detection and isolation

. r - v
E NN System y p| Signal p| Residual -
processing evaluation
Fault
scenario
database

Figure 2.2: Structure of a signal based fault detection and isolation system (Astrém
etal., 2001).

this figure it is seen that the fault detection algorithm consists of three blocks. In the
first block, signal processingmethods from signal processing theory are utilized to ex-
tract information about the health of the system from the measured signals. The output
from the signal-processing block is sent to a unit consisting of a database and some
sorts of artificial intelligence. In Fig. 2.2 this is thesidual evaluatiorblock and the

fault scenario databasklock. This part of the algorithm compares the output from the
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signal-processing block with predefined data sets from the database, each describing the
characteristics of a given fault. From this comparison the FDI algorithm decides if the
system is affected by a fault and if so, which one it is.

The signal-processing block often consists of frequency spectrum analysis such as
FFT-algorithms, wavelets, or higher order statistic (HOS) tools. However, it could also
be a simple limit check on the measured signal. In the decision unit, i.e. the fault
scenario database and the residual evaluation block, all kinds of methods for data evalu-
ation are used. Of these clustering techniques, neural networks, and fuzzy logic should
be mentioned. All of these are sophisticated methods for data mining. However, in most
real applications simple forms of decision logic are used.

Now considering the advantages and disadvantages of the signal-based method as
the author see it. First of all, a mathematical model is not used in this approach, which is
a huge advantage, as such a model can be difficult and even in some cases impossible to
derive. However, the drawback is the need for data from the system when it is affected
by faults, as these data should be used in the development of the fault scenario database.
Moreover, it can be difficult to ensure robustness of the FDI algorithm, as in theory all
possible operation conditions should be tested, before robustness is ensured. Of course,
simulations can solve some of these problems, but then a model is needed, undermining
one of the advantages of the approach. Considering these characteristics, this approach
must be considered most suitable for systems, which are difficult or in particular cases
impossible to describe with a mathematical model.

2.1.2 Model-Based Approach

The model-based approach utilizes analytical redundancy to extract information about
faults in the system. When using analytical redundancy one utilizes physical bindings
between inputs and outputs and between different outputs of the system to describe nor-
mal operation conditions. The physical bindings are here denoted analytical relations.
Faults are then detected when the analytical relation is not fulfilled. When this is the
case the system is operating under abnormal operation conditions, which are exactly the
definition of a fault. The analytical relations, utilized in this approach, are described us-
ing mathematical models. The relations described by these models are compared to the
physical relations in the real system, revealing abnormal operation if a difference exists.
In Fig. 2.3 a block diagram of a model-based fault detection algorithm is shown. The
first block model based residual filtarses the mathematical redundancy to generate a
so-called residual signal. This residual signal is defined in the following definition.

Definition 2.1.1 This residual signal is a signal with the following characteristics,

[r(t)| >k >0 for f#£0
tlim r(t) =0 for f=0

wheref is a fault in the system andis the residual signal.
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» model -

> -

based res.
filter

r
\
Residual
evaluation

..........................

Figure 2.3: Structure of a model based fault detection and isolation system.

The model-based residual filter is also called a residual generator. For linear systems
the residual generator is well established, and is well described in the literature. Here,
only two books will be mentioned, these are (Gertler, 1998) in which the parity equation
approach is treated, and (Chen and Patton, 1999) in which observer based approaches
are considered. Else, see for example (Patton and Chen, 1997; Frank and Ding, 1997)
and references included. The aim in the design of the residual generator is to be able
to create residuals with properties as defined in Definition 2.1.1, where the residuals are
not influenced by the disturbance on the systgmsee (2.1). When this is possible the
residual generator is said to be robust. Different design approaches have been used to
obtain robustness. Of these should be mentioned, the unknown input observer approach
(Chen and Patton, 1999, Chap. 3), the eigenvalue assignment approach (Chen and Pat-
ton, 1999, Chap. 4), the geometric approach (Massoumnia et al., 1989), and the standard
formulation approach (Stoustrup and Niemann, 2002).

It was stated before that the residual generator for linear systems is well established.
This is not the case for non-linear systems in fact a lot of research is going on in this
field. In (Garcia and Frank, 1997) an overview is given. To mention some newer results,
for example, the geometric approach is extended to the design of residual filters for non-
linear systems in (De Persis and Isidori, 2001), and in (Stoustrup and Niemann, 1998,
2002) the internal model control approach is used to handle the non-linear parts of the
system. Moreover, the derivation of analytical redundant relations, based on structure
analysis, is described in (Blanke et al., 2003). This approach can be seen as an extension
of the parity equation approach to nonlinear systems.
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2.1.3 Parameter Estimation Approach

In the parameter estimation approach parameters are estimated, which contains fault in-
formation. The estimated parameter values are then compared to the expectation values
of these parameters, resulting in a set of residuals, as shown below,

1‘200—07

wheref),, are the expected parameter values @rde the estimated values. The param-
eters can either be estimated by an extended Kalman filter (Del Gobbo et al., 2001) or
by means of adaptive observers (Xu and Zhang, 2004; Jiang and Staroswiecki, 2002).
With both of these approaches the states of the system and the parameters containing
fault information are estimated simultaneously. System identification, as it is presented
in (Ljung, 1999), can also be used to estimate the parameter values of the system online.
This approach is explored in for example (Isermann, 1997).

2.1.4 Residual Evaluation

From the definition of the residual signal given in Definition 2.1.1 the resicdsabuld

be smaller than a predefined threshold vatug/hen no fault has happened in the sys-
tem. However, it can be difficult or even impossible to fing, avhich is smaller thary|

if a fault has happened and larger thejat all times in the no fault case. This is because
the residuat will be corrupted by model errors, un-modelled disturbances, and noise in
real life application. To overcome this problem different methods are developed. Two
of these are mentioned here.

To overcome the model error problem it is possible to derive an adaptive threshold
x(t) on the residual signal. If for example the model is poor under transient phases, the
threshold could be increased during this phase. This is called adaptive residual eval-
uation (Frank and Ding, 1997). To overcome the noise problem statistical test can be
used. Especially the CUSUM algorithm is often used for testing changes in the residual
signals when it is affected by noise (Basseville and Nikiforov, 1998).

2.2 FDI in the Induction Motors

Fault detection and identification in induction motors have gained a lot of attention in
the resent years. Here all kind of faults in induction motors are considered. However, in
(Kliman et al., 1996) it is argued that the main causes of faults in induction motors can
be divided into the following three groups,

40-50% Bearing faults.
30-40% Stator faults.
5-10% Rotor faults.
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Even though most faults fall into one of these three groups, mechanical faults such as
miss alignment and rub impact between stator and rotor are also considered. In the
following two sections detection of mechanical faults are considered first, followed by
an analysis of the used method in detection of electrical faults.

2.2.1 Mechanical Faults in the Motor

As stated before, most mechanical breakdowns of motors are due to bearing faults. This
is especially a problem if a voltage inverter supplies the motor. If this is the case, large
high frequency voltage components will cause circulating current through the bearings.
This current will eventually destroy the bearings. Even though bearing faults are the
most common mechanical faults, also other kind of faults such as for example bend shaft
or rub impact between stator and rotor can happen. For the whole group of mechanical
faults the most used detection schemes fall into two groups,

e Spectrum analysis of motor currents.
e Spectrum analysis of vibration signals.

The current spectrum analysis is explored in (Eren and Devaney, 2001; Schoen et al.,
1995; Benbouzid, 2000). In (Eren and Devaney, 2001) Wavelets are used for analysing
the stator current at start up, to detect bearing faults, and in (Schoen et al., 1995) the
current spectrum, during steady state operation, is used for the same purpose. In (Ben-
bouzid, 2000) an overview is given over different signal analysis methods for current
spectrum analysis. Here such different methods as the FFT, wavelets, and Higher Order
Spectrum (HOS) analyses are considered. The obtained current spectrums are used in
the detection of bearing faults and other mechanical faults.

The spectrum analysis of vibrations is explored in (Li et al., 2000; Chow and Tan,
2000; Stack et al., 2002). In (Li et al., 2000) the signal of vibrations is transformed
into a frequency spectrum, creating attributes used as input to a neural network. The
neural network is then used to map the attributes into fault types. In (Chow and Tan,
2000; Stack et al., 2002) Higher Order Spectrum (HOS) analysis is used to extract fault
information from the signal of vibrations. Also model-based methods have been used
in the detection of mechanical faults. This is explored in (Loparo et al., 2000) where a
mathematical model of the mechanical part of the motor is developed, and used in a FDI
scheme.

In commercial products the analysis of the vibration spectrum is the mostly used
approach for detection of mechanical faults. Companies suSKBsandBriel & Kjeer
offer hand held or stationary vibration analysers, for use by the maintenance staff. Here
the spectrum of vibrations is shown, leaving it to the user to interpret the signal, and
thereby conclude if there is a fault in the motor or not. To help the maintenance staff
supervising the frequency spectrum, it is normally possible to set alarm thresholds on
parts of this spectrum.
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Even though, analysis of vibration signals is considered the most used method for
detection of mechanical faults in electrical motors, advanced motor protection units can
detect mechanical faults to some extend too. Such motor protection units are offered by
for exampleSiemensRockwell AutomatiorandABB. With these motor protection units
it is possible to detect faults such as blocked rotor, and high temperature, which could
be caused by mechanical faults.

2.2.2 Electrical Faults in the Motor

Both stator and rotor faults are denoted electrical faults. These faults are responsible for
around 35-50% of the faults in induction motors. The only referred electrical fault in the
rotor is broken rotor bar. However, in the stator three main fault groups are considered.
These are; inter-turn short circuits, phase to phase short circuits, and phase to ground
faults. Of these the inter-turn short circuit fault has gained most attention. This could
be explained by referring to (Bonnett and Soukup, 1992; Kliman et al., 1996), where it
is argued that phase to phase or phase to ground faults often start by an inter-turn short
circuit in one of the stator phases.

The detection of inter-turn short circuits in a stator is explored in a large humber of
papers. In (Garcia et al., 2004) the voltage between line neutral and the star point of
the motor is used for detection. This is shown theoretical using a model of the motor
in (Tallam et al., 2002). An inter-turn short circuit will cause imbalance in the stator.
This imbalance is used in the detection schemes proposed in (Trutt et al., 2002; Lee
et al., 2003), where the negative sequence impedance is estimated, and used as fault
indicator. When there is an imbalance in the motor a negative sequence current will
be created. This current is used for fault detection in (Kliman et al., 1996; Arkan et al.,
2001; Tallam et al., 2003). In (Arkan et al., 2001) robustness, with respect to imbalanced
voltage supply, is added to the approach by using an estimate of the negative impedance
in the motor. Oscillations in the Park transformed current, due to the motor imbalance
are used for detection in (Cruz and Cardoso, 2001), and in (Kostic-Perovic et al., 2000)
the so-called space vector fluctuations of the current are used.

Also frequency spectrum approaches have be proposed for the detection of inter-
turn short circuit faults (Joksimovic and Penman, 2000; Perovic et al., 2001). In these
FFT as well as Wavelet Package transformations have be used together with some sort
of classifier. Higher Order Statistics (HOS) has also be used for extracting knowledge
about faults in the stator (Chow and Tan, 2000; Arthur and Penman, 2000). In both
the frequency spectrum based methods, and in the HOS based methods steady state
conditions are assumed on the motor. This assumption is relaxed in (Nandi and Toliyat,
2002) where the frequency spectrum of the voltage after having the supply switched
off is used to extract fault information. In (Backir et al., 2001) a parameter estimation
approach is used, also relaxing the steady state assumption.

All the references mentioned until now have been dealing with stator faults, but also
the detection of rotor faults is considered in the literature. For example in (Trzynad-
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lowski and Ritchie, 2000) and in (Bellini et al., 2001) the FFT of the Park transformed
current, is used to extract fault information. However, not only the FFT is used in signal-
based detection of rotor faults. For example in (Ye et al., 2003; Ye and Wu, 2001; Cu-
pertino et al., 2004) the discrete Wavelet and the Wavelet Package transforms are used
for analysing the motor current.

In industry intelligent motor protection units are commercial available. These Motor
protection units can detect ground faults and overcurrent, which again can be initiated
by inter-turn short circuits. These kinds of motor protection units are available from for
exampleSiemensRockwell Automatiorand ABB. Moreover, offline analysis tools are
available from for examplBaker Instrument Companyhich is able to detect inter-turn
short circuits in stators of electrical machines, directly.

2.3 FDIin Centrifugal Pumps

The most referred fault in the hydraulic part of centrifugal pumps is cavitation. Cavi-
tation is the phenomenon, that cavities are created in the liquid if the pressure, at some
points inside the pump, decreases below the vapor pressure of the liquid. When this
phenomenon occurs the impeller erodes and in extreme cases it vanishes totally after
just a short time of duty.

Even though cavitation is the most referred fault other faults are also treated in the
literature. The most important of these are mentioned here,

e Obstruction inside the pump or in the inlet or outlet pipe.

e Leakage from the pump or from the inlet or outlet pipe.

Leakage flow inside the pump.

Bloked impeller.

Defect impeller.
e Bearing faults.

In the two following subsections, detection of caviation is considered first, followed by
an overview of the most interesting approaches for detection of the faults listed above.

2.3.1 Detection of Caviation

The cavitation phenomenon has been known for decades, and is treated in most books
dealing with centrifugal pumps, see for example (Stepanoff, 1957) and (Sayers, 1990).
Even though the phenomenon has been known for a long time it is still a topic of re-
search. Especially detecting cavitation and designing pumps to avoid cavitation has
achieved attention. Here, only the problem of detecting the phenomenon is addressed.

15
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As described before cavitation is the phenomenon of cavities created by vaporiza-
tion of the liquid, due to local pressure drops below the vapor pressure inside the pump.
When the cavities, due to the vaporization, implode large pressure shocks are created.
These pressure shocks will destroy the pump over time. Cavitation has traditional been
defined at the point where the pressure delivered by the pump has dropped 3%. How-
ever, the degradation of the pump has started long before this point. Therefore, only
methods aimed to detect cavitation before the 3% limit are considered here. Different
approaches are proposed for cavitation detection. These are based on different signals,
such as; mechanical vibrations, high frequency pressure vibrations, high frequency cur-
rent oscillations, acoustic noise, and vision.

The mechanical vibration signal is investigated in (Lohrberg et al., 2002; Lohrberg
and Stoffel, 2000), and the power spectrum of the signal of mechanical vibrations is
compared to the power spectrum of the high frequency pressure signal in (Parrondo
et al., 1998). Here it is argued that the pressure signal has the favour of the signal of
vibrations. The high frequency pressure signal is also considered in (Friedrichs and
Kosyna, 2002), where a connection between cavitation inside the pump and pressure
vibrations is established based on experiments presented in the paper. The same is ob-
tained in (Neill et al., 1997) where controlled cavitation tests, in a special designed
pipeline, are explored. More sophisticated methods are considered in (Cudina, 2003;
Baldassarre et al., 1998). In (Cudina, 2003) audio microphones are placed around the
pump, collecting the audio noise created by cavitation, and in (Baldassarre et al., 1998)
avision camera is placed inside the pump filming the bobbles created during cavitations.

In the following subsection references, which treat the fault detection and identifi-
cation problem in a more general framework, are presented. However, in almost all of
these references, the problem of cavitation detection has also been considered.

2.3.2 Performance Monitoring and Fault Detection

In the start of this section a number of possible faults in a centrifugal pump application
are listed. These faults can be as important as cavitation to detect in real life applications.
Therefore, the detection and identification of these faults have also be considered in the
literature. Some of the references concerned with this fault detection and identification
problem are presented in this subsection.

The signal of mechanical vibration has been proposed for general fault detection
in centrifugal pumps in (Surek, 2000; Bleu Jr. and Xu, 1995; Kollmar et al., 2000b).
In (Surek, 2000) it is argued that a change in the level of vibrations of the pump can
be used as an indication for need of maintenance. In (Bleu Jr. and Xu, 1995) a so-
call spick energy approach is proposed for signal processing, and in (Kollmar et al.,
2000b) the FFT spectrum of the vibration signals is used as input to a classifier for fault
identification. In this case the classification is based on machine learning techniques.

The current signal has also been used for detection and identification of a num-
ber of faults in centrifugal pumps (Perovic et al., 2001; Muller-Petersen et al., 2004;
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Kenull et al., 1997). In (Perovic et al., 2001) the current spectrum is used as input to
a fuzzy Logic based classifier. This classifier is used for identification of cavitation,
clogging, and damaged impeller. In (MUller-Petersen et al., 2004; Kenull et al., 1997)
fault detection in submersible pumps is considered, based on different signal processing
philosophies.

Also the model-based approach has been used for fault detection in centrifugal
pumps (Dalton et al., 1996; Liu and Si, 1994; Wolfram et al., 2001). In (Liu and Si,
1994) a linearised model of the pump is used in the design, and the considered faults
are; motor faults and the efficiency of the pump hydraulic. In (Dalton et al., 1996)
also a linearised model of the pump is used. In this case a two-pump system is treated.
Clogging faults and faults in connection with the valves in the two pump system are
considered. In (Wolfram et al., 2001) a nonlinear model of the pump, described by a
Neuro-Fuzzy model, is used in the design. Here, faults such as various sensor faults,
leakage, clogging, cavitation, bearings faults, and impeller faults are considered.

Different protection units are commercial available. For example the monitoring
unit CU3 for protection of submersible application is offered ®yundfos However,
this is not the only commercial available monitoring unit, as 8B andITT offer
monitoring units, tooKSBhas just launched tHeumpExperunit, which enables detec-
tion of cavitation, bearing faults and worn impeller. Moreover, dry running protection
is included. The identification approach is based on a fault tree as described in (Koll-
mar et al., 2000a). LikewisdT T has launched a set of monitoring units with the brand
PumpSmart This monitoring unit is based on power level protection, and does not in-
clude adjustment to different operating points of the pump. With the adjusted alarm
levels it is only possible to detect faults with major impact on the power level. Beside
these advanced monitoring unisBB offers a system for data collection in pump ap-
plication. With this system data measured at any given application location is made
available on a website, and evaluations of trend curves are performed.

Also special sensors for seal protection ex&irgmann a seal producing company,
offers a life protection system for their special designed sealsGaaddfosoffers the
humidity sensot.iqTeg for protecting water lubricated seals. The comp@ilp is also
working in this area, as the publication (Greitzke and Schmidthals, 2000) describes a
proposed seal protection system.

Beside the products mentioned above, most centrifugal pumps with imbedded elec-
tronic control units, do offer some kind of fault detection and protection. Likewise, for
larger pump systems customized designed monitoring systems can be available.

2.4 Discussion
In this chapter the FDI problem is introduced. Two different approached are considered,
these are the signal-based fault detection approach and the model-based fault detection

approach. It is argued that the signal-based approach has its advantages when a model
of the system is not available. However, robustness properties are difficult to establish.
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For the model-based approach it is argued that the advantages are in its ability to obtain
robustness from theoretical consideration, and the drawback is the need for reasonable
good models.

This introduction is followed by a state of the art analysis of Fault Detection and
Identification (FDI) in centrifugal pump applications. Centrifugal pumps are mostly
driven by induction motors, therefore state of the art in the area of FDI in induction
motors is also considered. Here, it is stated that the most common faults in induction
motors are bearing faults. However, from internal data at Grundfos it is known that stator
burnouts are one of the main reason for faults in submersible pumps. Both signal-based
and model-based approaches have been used for detecting stator faults. The signal-
based approaches are mostly concerned in finding fault signatures in the stator current.
The model-based approaches are mostly based on steady state impedance models of the
machine. This basically means that robustness with respect to dynamic changes in the
motor speed and motor current is not considered.

From the state of the art analysis of FDI in centrifugal pumps it is seen that differ-
ent centrifugal pump faults are considered, and that different methods are used for their
detection. However, the model-based approach is fare less used than signal-based meth-
ods. This might be due to the nonlinear nature of the centrifugal pump model. It is well
known that frequency converters, making it possible to optimize the operating point of
the pump, are used more and more often as drives for centrifugal pumps. However, this
means that the detection algorithms should not only be robust with respect to changes in
the hydraulic resistance, i.e. the flow through the pump, but also to speed changes. This
has not be considered in any of the presented papers.
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Chapter 3

Model of the Centrifugal Pump

In this chapter the mathematical model of the centrifugal pump is presented. The chapter
starts by describing the mechanical construction of a standard centrifugal pump. Here it
is argued that the model of the pump can be divided into three subparts,

e The induction motor driving the pump.
e The hydraulics of the pump.
e The mechanical parts of the pump.

The induction motor is modelled using a so-callégmodel of the motor dynamics.
This type of model is extensively described in the literature. The description presented
here is based on (Krause et al., 1994; Kazmierkowski, 1994; Novotny and Lipo, 1996).

The steady state performance of the hydraulics of the centrifugal pump is extensively
described in the literature too, (Sayers, 1990; Stepanoff, 1957) and others. Here this
steady state description is extended to cover the dynamics of the centrifugal pump as
well as the steady state operation, making it particular suitable in model based FDI
algorithms. The same approach is in (Gravdahl and Egeland, 1999) used for modelling
a centrifugal compressor, but here the dynamics are neglected. Dynamics of centrifugal
pumps are treated in for example (Boka and Halasz, 2002).

In this work the model is derived using the control volume approach (Roberson and
Crowe, 1993). The derived model expresses the theoretical performance of the impeller.
To obtain a model describing the performance of a real pump extra pressure losses are
added to the theoretical model (Sayers, 1990; Stepanoff, 1957). The obtained model
describes the performance of a single impeller. However, it is shown that the same
model structure also describes the performance of a multi stage pump.

The mechanical part of the pump is modelled using simple considerations based on
Newton’s second law. The frictions losses in the bearing and seals are modelled by a
simple linear friction term, as the friction losses are very small compared to the torque
necessary the drive the pump, and therefore are not important in the model.
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The first section of this chapter contains a description of the mechanical construction
of the centrifugal pump. The second section describes the induction motor model, and
the third section contains the derivation of the model modelling the hydraulics of the
centrifugal pump. The fourth section presents the mechanical model, and in the fifth
section each of the submodels, derived in the previous sections, are composed into the
final nonlinear state space model of the centrifugal pump. Finally, concluding remarks
end the chapter.

3.1 The Construction of the Centrifugal Pump

In this section the mechanical components of the centrifugal pump are described. This
is done in order to give an overview over the construction of the pump. This description
is included to help the reader to follow the model derivations presented in the following
parts of this chapter.

In Fig. 3.1 a CR5-10 Grundfos centrifugal pump is shown. This centrifugal pump
contains the same set of components as almost all other centrifugal pumps, and is in
this section used as an example of a standard centrifugal pump. In Fig. 3.1 the pump is
sliced revealing the inside of the pump. The CR5-10 pump is a multistage centrifugal
pump, meaning that the pressure is increased using a set of identical impellers, see Fig.
3.1. The impellers are the rotating part of the pump, which increase the pressure by the
utilization of the centrifugal force induced by the rotation. This effect is formalized in
section 3.3.

The pump is driven by an 1.5 [KW] induction motor, which is connected to the pump
by a shaft connection, see Fig. 3.1. This is a typical way to drive centrifugal pumps in
the rang from 50 [W] up till several hundreds [KW]. The pumps considered in this thesis
have the same structure as the one shown in Fig. 3.1.

A signal flow diagram of such a centrifugal pump is shown in Fig. 3.2. Here the
pump is divided into four subsystems. These subsystems are,

e The electrical part of the induction motor. This part converts electrical energy into
mechanical energy.

e The mechanical part of the induction motor and the pump. This part connects the
impeller to the rotor of the induction motor.

e The hydraulic part of the pump. This part converts mechanical energy into hy-
draulic energy.

e The hydraulic application. This part absorbs the hydraulic energy delivered by the
pump.

The first three of these are parts of the centrifugal pump itself, and the last part is the
application in which the pump is placed. As the topic of this thesis is FDI on centrifugal
pumps only the first three parts are considered in the following.
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<+— Electrical motor

Shaft connection

' .«— Centrifugal pump

—= Impellers

.| «— Outlet

Figure 3.1: A multistage centrifugal pump driven by an induction motor.

3.2 Model of the Electrical Motors

In this section modelling of the energy conversion from electrical to mechanical energy
in the induction motor is considered. The presented model is described in the so-called
dq0-coordinates as it is shown in (Krause et al., 1994), but with the coordinate system
oriented as in (Leonhard, 1996; Kazmierkowski, 1994; Novotny and Lipo, 1996). These
four references contain good descriptions of the induction motor model and form the
foundation for the model presented in this section. Only the stator fix@doordinates
are treated in this work. This is so because the observer designs, for which the model is
used in this work, are all based on stator fixed models.

In the model derivations described in this section the following set of assumptions
are used, (Kazmierkowski, 1994),

e The motor is symmetrical and contains three phases.

Only the basic harmonic is considered, while higher harmonics in the field distri-
bution and in the magnetomotive force are neglected.

The distributed windings in the stator and the rotor cage are replaced by concen-
trated coils.

The permeability of the iron parts are assumed infinite, meaning that the effect of
magnetic saturation is neglected, hereby the magnetic circuit becomes linear.
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The Centrifugal Pump

Iabc T
Vabe—| Electrical part Mechanical TI
Te

of the motor part of the » Hydraulic part ———
pump @ ’—> of the pump H

Hydrualic Application
Hydraulic

Q application

\

Figure 3.2: Blockdiagram depicting the connection between the different parts of the
centrifugal pump.

e Iron losses and eddy current losses are neglected.

Itis possible to avoid the assumptions about the harmonics and the winding distributions
by using higher order models. This is done in (Vadstrup, 2002; Toliyat et al., 1991).
However, this leads to complicated high order models. As the electrical faults, under
consideration in this work, mainly affect the fundamental harmonics in the induction
motor, these high order models introduce unnecessary complexity.

Likewise it is possible to include magnetic saturation in the model (Sullivan and
Sanders, 1995). This effect is neglected in this model, as it is expected, that the motor is
controlled, such that the level of magnetization is almost constant in all operating points
under consideration. This is in fact often the case in induction motor control schemes.

3.2.1 The Induction Motor Model in abc-coordinates

Using the assumptions given above the electrical circuit of an induction motor is given
by the circuit shown in Fig. 3.3. In this figure the stator circuits are supplied with three
voltagesv,,, vs, anduvg. and the rotor circuits are short circuited. The coils in both the
rotor and stator are magnetic connected meaning that all coils in the motor must be taken
into account when calculating the flux in a single coil.

Setting up the mesh equations for both the rotor as stator circuits the following set
of equations are obtained.

Vsabe = rsisabc + %

0 =rirqp + % .

(3.1)
The signal vectors in this model are given by
T . . . . T . . . . T
Vsabe = [Usa Ush Usc] lsabec = [Zsa 1sb Zsc] lrabe = [Zra rp Zrc]

msabc = [wsa djsb 'l/)sc]T 1/"7'(1()(: = [wra wrb 'll)rc}T

)
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. i

Figure 3.3: The electrical circuit diagram of the induction motor, placed in the mechan-
ical structure of the induction motor. The three outer circuits are the circuits of the three
phases of the stator and the inner circuit is the rotor circuit.

and the parameter matrices are
rs =71l r.=r.1,

wherer; andr, are the electrical resistances in respectively the stator and rotor coils,
see Fig. 3.3.

The flux linkagesy) ;. and,.,;.. in (3.1) are given by the following expression.
Here the assumption concerning saturation, described in the start of this section, is used.

17bsabc = Lisabe + lm(Zpar)irabc (3 2)
¢rabc == lrirabc + lm (Zper)Tisabc . ’

The parameter matricés andl, are defined by
1, =01+ 1,,(0) 1, =1, 1+ 1,(0),

wherel;s; andl;,. are the leakage inductances in the stator and rotor windings respec-
tively, andl,, is the mutual inductance and is given by
2{) cos(f. + %”)

cos(fe + 25) | (3.3)

cos(GE)4 cos (. :
) cos(6,)

Jr
L (0c) = L |cos(fe + ) cos(fe
cos(fe + ZF)  cos(fe +

wherel,, is a constant anfl. = z,0, is the electrical angle between the stator and rotor
phases, see Fig. 3.3.
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3.2.2 Transformation to Stator Fixeddq0O-coordinates

From the model described in théc-coordinates it is seen that the mutual inductance
matrix (3.3) is a function ok,¢,. This dependency can be removed using a variable
transformation from thebc-coordinates of the stator and rotor variables respectively to
stator fixeddg0-coordinates. This variable transformation is given by

Xsdq0 = quO (O>Xsabc Xrdq0 = quO(_Zper)XTabc 5 (34)

where subscript andr denote the stator variables and rotor variables respectively, and
zpB, is the electrical angle between the stator and rotor circuit, see Fig. 3.3. In this
transformationdl 4, is given by

)

) cos(f + 5=
0+ )

1

2

sin(

quO(e) =

Equations (3.1) and (3.2), describing the electrical and magnetic system of the in-
duction motor respectively, are transformed using the transformation (3.4). Hereby the
following description of the induction motor is obtained,

. d 4
Vsdg = Rslsdq + at 1

. dips
Vso = Tsls0 t+ Zﬁto

. dip,. (3.5)
0=R,iq —1{—1 Tt = 2pwrd g,
0= Trir() + 15;0 )
wherez,w, = dz(;’f”, asé, is a function of time. The flux linkages in these equations
are given by
17[)sdq = Lsisdq + Lmirdq
wsO = llsisO
. . 3.6
Q/Jqu = Lrlrdq + Lmlsdq ( )
¢TO = llrirO .

In (3.5) and (3.6) théq0-space is split intdlg-coordinates and-coordinates of reasons,
which will become obvious in the following. The parameter matriBes R, L, L.,
andL,,, do all have a diagonal structure, and are given by,

R, = diag{rs, s} R, = diad{r,, .}
L, = diag{%lm + lisy 3l + lis}
L, = diag{5 1y, + U, glm + lir}
L, = dlagé%lml, Slm}
I= [—1 0
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Rewriting (3.5) and (3.6), and using the magnetizing curigp} defined such that
it fulfils the equatiorw,.,, = Ly,imq4, the induction motor model becomes

, disdg

STt = — (RS + R;) iqu + (R;, - prrJL;n) imdq + Vsdq (373)
dig .
lis ;to = — Tsls0 + Us0 (3.7b)
/ dimdq D’ / AN
Lm7 =R isqq — (R, — zpw,JL,) imadg (3.7¢)
dip,
llr% = - TerO ; (37d)

where
R, =L, L 'R,L 'L, L, =L, -L,L 'L, L, =L,L 'L, ,

meaning that the new matrices retain the diagonal structure.

Equation (3.7d) shows théin, . ., .o = 0 for every possible operating conditions.
Moreoveri,q is not influencing the rest of the model equations. Therefore, (3.7d) can
be excluded from the final induction motor model.

3.2.3 Grid Connections

The stator windings described in (3.1) can either be connected iroa A-connection
. . — . T
as shown in Fig. 3.4. In this figure only the terminal voltages. = [via  ve  vic]

(a) Y-connection. (b) A-connection.

Figure 3.4: Example of the stator windings connected Y and A-connection respec-
tively. The stator circuit in this figure is the same as the one shown in figure 3.3.

and the terminal currenig,;. = [z’m Teh z’tc}T are measurable. Therefore a relation-
ship between the voltages and currents at the terminals of the motor, and the voltages
and currents in (3.1) must be defined. This relationship is, in the following, established
for aY- andA-connected motor respectively.
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The Y-connected induction motor

In the case of & -connected stator, the mappings between the stator variables and the
terminal variables are given by,

Viabe = Vsabe + 1Ug itabc = Iisabc 3

wherel = [1 1 1}T, anduy is the voltage between the star point of the supply and
the star point of the stator circuit, see Fig. 3.4(a). Transforming these equations to
dq0-coordinates the description becomes,

Vsdq = Vitdg 1tdg = lsdg

Vg0 = V0 — Vo 140 = 150 -

Moreover it is seen from Fig. 3.4(a) that the relationsghip i, + i, + is. Mmust hold
for this circuit, therefore the currentg = ;9 = 0.

Using the expression,, = v, — vg, obtained above, and the fact thg = 0, the
expression of the zero sequence quantities described by (3.7b) becomes,

0 =Vt0 — Vo - (38)

This shows that (3.7b) has no impact on the motor performance, therefore it can be
excluded from the final model of 4-connected induction motor.

From the above argumentation tiieconnected induction motor is modelled by the
following set of equations,

di, . .
L ldjq = — Ry + R iugg + (RL — 2y, JL. ) g + Vidg (3.9a)
/ dimdq /e / / .
Lm dt ZRT.lsdq — (R,. — pr7-JLm) lmdq s (39b)

where the measurable terminal currigj, is given by,

itdq = isdq . (39C)

Remark 3.2.1 From the expression of the star point voltage (3.8) it is seen that the
start point voltage of the induction motog equals the star point voltage of the supply

vo IN the no-fault case. This can be used for fault detectiod4oonnected induction
motors, whenever the star point voltage of the motor is measured. This scheme uses that
fT(vso — wy0)%dt # 0 when a fault has happend in the motor, and in the no-fault case
Jr(vso — vio)?dt = 0 (Tallam et al., 2002).
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The A-connected induction motor

In the case of a\-connected stator the mappings between the stator variables and the
terminal variables are given by,

. T.
Vsabe = KAViabe ltabe = KAlsabc ,

where the linear mappinK A is given by,

Transforming these equationsdg0-coordinates the description becomes,
Vadgo = TagoKaT, k 17000 = TagKAT L
sdq0 = LdqoB&a Ll j,0Vtdqo Lidgo = LdqoBh AL g40lsdqo -

The structures of these linear mappings are,

Vsdg| _ [Bo 0] [Vidg itaq| _ [Ci 0 [isdq
Vs0 0 O0f|wo 140 0 0] |is0]
This shows thab,, = 0 despite of the value of440, andi;, despite of the value of

isqu-
Using the factvso = 0 in (3.7b) it becomes,

ll @ EE ) 0 -
S dt svs
This shows thatim; ., isoc = 0 for every possible operating conditions. Moreowgr
is not affecting the rest of the model equations. Therefore (3.7b) can be excluded from
the final model of a\-connected induction motor.
From the above argumentation theconnected induction motor is modelled by the
following set of equations,

di, . ,
L ‘C‘hflq = — Ry + R)iugg + (RL — 2pw, IL. ) ipag + Bovia,  (3.10a)
di,, i ,
A R — (R = 2 JLL) g (3.10b)

where the measurable terminal currigj, is given by,

itdq = Ciisdq . (310C)
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3.2.4 The Torque Expression

From energy consideration it is shown, in (Krause et al., 1994), that the torque produced
by the induction motor is given by,

. Ol (2p0r),
Te = lzabcToflrabc P

whereigy,. is the current of the stator windings amg,;. is the current in the rotor.
Including the transformations (3.4) into this expression it becomes,

7 Ol (2p0r)
0,

Simplifying the expression and usidg,imnq¢; = Lrirqq + L isqq the following torque
expression is obtained,

T, = (quO(O)ilisqu) (qu0<*zp97‘)7lirdq0) .

T6 = %Zlem (imdisq — imqisd) , (311)

whereL!, = L2 /L., meaning thal.,, is the diagonal element &f

/
m m m m*

3.3 The Hydraulic Part of the Centrifugal Pump

This section is concerned with modelling the hydraulic part of the centrifugal pump.
The hydraulic part of the centrifugal pump consists of the inlet and outlet of the pump,
and the impeller and the diffuser inside the pump. These components are all shown in
Fig. 3.5. The impeller is the rotating part of the pump, which induces a rotational speed
into the liquid. This speed is transformed into a static pressure in the diffuser and volute.
Hereby a pressure difference between the impeller eye and the outlet of the volute is
obtained. This will be formulized in this section.

The model, presented in this section, describes the pressure and torque of the pump
as functions of the flow and speed respectively. This means that the obtained model has
a structure as shown in Fig. 3.6. In this figureis the angular speed of the impeller,

Q, is the volume flow, and{,, andT, are the pressure and torque produced by the pump
respectively.

In the literature a polynomial model of the centrifugal pump can be found (Sayers,
1990; Stepanoff, 1957). This model describes the torque load of the centrifugal pump
under steady state operation. Here, the aim is to derive a dynamic model of the pump.
Such a model is needed in the design of FDI observers. Fortunately, it is well know
from the literature that a control volume approach can be used in the derivation of the
dynamics of a hydraulic system (Roberson and Crowe, 1993). This approach is used in
this section to obtain a model describing the dynamics as well as the steady state opera-
tion of the centrifugal pump. The obtained model has a nonlinear but simple structure,
which is usable in model based FDI algorithms.
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Figure 3.5: The mechanical construction of a single stage in a centrifugal pump. To the
left-hand side a top view is shown and to the right-hand side a side view is shown.
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Figure 3.6: Definition of the flows and pressures used in the definition of the losses in
the pump.

It is possible to obtain more accurate models of the centrifugal pump using finite
volume solutions of Navier-Stokes equations. With these solutions it is not only possible
to calculate the pressure between the inlet and outlet of the pump, but also possible to
calculate the pressure distributions inside the pump. However, these solutions include
heavy calculations and are therefore not usable in the design of FDI algorithms.

3.3.1 The Principle of the Centrifugal Pump Dynamics

Before the derivation of the mathematical model of the centrifugal pump is presented,
the operation of the pump is described in informal terms. This includes a description of
the expected dynamic performance of the impeller. In Sections 3.3.2 and 3.3.3 the im-
peller performance is treated formally and mathematical expressions of the performance
is obtained.

In Fig. 3.7 the velocity triangle of the fluid at a given radius inside the impeller
is shown (Sayers, 1990). In this figut is the tangential speed of the impeller, i.e.
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|U| = rw,., Cisthe liquid speed, anW is the liquid speed in proportion to the impeller,
all defined at the same radiusMoreover the liquid spee@ is divided into a tangential
and radial component namét, andC,. respectively.

Cx
U

2

Figure 3.7: The impeller of a centrifugal pump. At a given radidke liquid speed_,

the impeller speedJ, and the liquid speed in proportion to the impeNat are shown.
Moreover the liquid spee@ is divided into a tangential and radial component named
C, andC,. respectively.

The torque acting on the impeller due to the liquid inside the impeller must be equal
to the change of momentum of the liquid inside the impeller. As the liquid at all time is
flowing through the impeller there must be a change of momentum from the liquid flow-
ing into the impeller to the liquid flowing out of the impeller. This change of momentum
is due to the increase in the liquid spe€d — C;, whereC; and C, are the liquid
speed at inlet and outlet of the impeller respectivély. and C, are both functions of
the impeller angular speed. and the volume flowQ;, meaning that the mathematical
expression describing this part must be on the form

T = ft(Qi,wr) )

whereT is the torque componernd); is the volume flow and, is the angular speed of

the impeller. The energy added to the liquid due to this torque component is converted
into static pressure in the diffuser and volute. Therefore the expression of the pressure
produced by the pump must be on the form

H; = fh(Qi,wr) ,

hereH; is the pressure produced by the impeller.
This is not the only phenomenon changing the momentum of the liquid inside the
impeller, as transients in the tangential speed of the quﬁ%d also will change the

30



Section 3.3: The Hydraulic Part of the Centrifugal Pump

momentum. Now recognizing that the velocity triangle in Fig. 3.7 will be fulfilled at
all time, and that the direction of the liquid speed in proportion to the imp&Wers
fixed due to the impeller blades. This means that changes of the tangential speed of
the impellerU will induce changes irC,, and therefore the momentum of the liquid
inside the impeller is changed. Moreov€r, will also change if the radial speed of the
liquid C.,. is changed. This change is explained by the velocity triangle, which has to be
fulfilled all the time. This means that a change in the volume figywill change the
momentum of the liquid inside the impeller, @s is proportional taQ);.

From the above consideration the model describing the torque acting on the impeller
due to the liquid, must be on the form,

Ti :ff(Qlaw7)+ft/(Q’vaT’7%)+ft”(Q77w’r‘a%) 9

whereT; is the impeller torque@); is the volume floww, is the angular speed of the
impeller andf, f; and f; are functions to be decided. In fact in Section 3.3.2 the
control volume approach is used to derived an expression of the torque. Here it is shown
that the torque is described by,

dwr d i

T; = (—ap@? + anw,Q; + aw?) + Ju, — — Ko @ ;

dt dt
whereasz, as1, a0, Jar, andK g are constants described in Section 3.3.2. An expression
of the pressure produced by the pump is derived in Section 3.3.3. Here it is shown that
the pressure expression becomes,

H; = pg(—an2QF + aniw,Q; + anow?)

whereay,s, a1 andayg are constants described in Section 3.3.3.

3.3.2 The Torque Expression

In this section an expression of the torque acting on the impeller is derived using con-
trol volume considerations. In (Roberson and Crowe, 1993, p. 242) a control volume
equation is derived, describing the torque properties of the given control volume. The
obtained equation is (Roberson and Crowe, 1993, p. 243),

ZT]»:/ (rxc)pCodA—i—%/ (rx c)pdV (3.12)
j cs cv

where allT}; are external torques on the control volumés a radius vector, andlis the

fluid speed at the radius vecter C is the fluid speed in proportion to a infinitesimal
control surfacelA anddA is an infinitesimal area vector describing the direction and
size of the infinitesimal control surfackd. Finally p is the mass density of the liquid
anddV is an infinitesimal volume. The subscribesandcv on the intergrals denote

the control surface and the control volume respectively. The first term on the right-hand
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side of (3.12) describes the momentum change due to the liquid flow and the second
term describes the dymanics.

To be able to utilize (3.12) for calculating the torque acting on the impeller, a control
volume must be defined. As only the overall performance of the impeller is of interest
in this work the control volume is chosen as the inside of the impeller, see Fig. 3.8(a).
The controlV is represented by the hatched area with a uniform Higdatd the control

zeon

%%

X
ok

Impeller
outlet

Impeller
inlet

mpeller
blad

(a) The control volume defined on the impeller.(b) The speed triangle at a given point of the im-
The hatched area defines the control volume peller blad.c is the fluid speedy is the fluid speed
with a uniform hight A, and dm is a small in proportion to the impeller, and is the tangential
mass entering and leaving the impeller in tidte  speed of the impeller.

through the aread; and A» respectively.

Figure 3.8: Definition of the control volume and fluid speed inside the control volume.

areasA; and A, are the inlet and outlet surface of the impeller respectively.

At a given radius- = |r| the velocity triangle in Fig. 3.8(b) can be assumed equally
positioned proportional to the radius veciofor all angles ofr. Therefore the cross
productr x c is constant for all angles afand can be expressed by,

rXxXc=rcg, (3.13)

wherer = |r| andc, is defined in Fig. 3.8(b):, is in general a function of the radius
As the liquid is assumed incompressible the inlet mass flow must equal the outlet
mass flow. This means that,
d
/ pCoedA = | pCredA="" (3.14)
A2 Al dt

where% is the mass flowC; is the speed of the fluid at the infinitesimal surfdeeand
dA is an infinitesimal area vector describing the direction and size of the infinitesimal
surfacedA.

From Fig. 3.8(a) it is seen that the infinitesimal voludié equals,

dV = 2zrhdr , (3.15)
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Section 3.3: The Hydraulic Part of the Centrifugal Pump

wherer is the radius at a given slice of the disc forming the impeller with hight
Using (3.13), (3.14), and (3.15) in (3.12), the torque expression is reduced to,

R>

T, = dm (rocza — T1C21) + i?whp/ r2c,(r)dr (3.16)
dt dt R

whereT; is the component of the shaft torque created by the fluid inside the impeller.

In (3.16) the first term on the right-hand side describes the time derivative of the change

of momentum between the liquid entering and leaving the impeller. This term is the

pressure or head producing part and is in the following denoted the steady state torque

term. The second term on the right-hand side describes the torque necessary to change

the speed of the impeller when the mass of the impeller itself is not taken into account.

This term is in the following denoted the transient torque term.

The steady state torque expression

From Fig. 3.8(b) it is seen that the speed= u — ¢, cot(3), whereuw is the tangential
speed of the impeller and is given by= rw,. Moreover, if the area of a slice of the
impeller with radiug- is defined as\,. = 27rh, then the volume flow inside the impeller
is given by@; = ¢, A,.. Using these considerations the following expressions, @fre
obtained,

¢y =u— ¢ cot(B) = rw, — % cot(B) = rw, — Qi cot(B) . (3.17)
r ™
Using (3.17) at the inlet and outlet of the impeller to obtain an expression @ndc,».
Then used these expressions in the first term on the right-hand side of (3.16) to obtain
the following expression for the steady state torque,

T, =p(r3 —17) Qiwr — p (TZ COAtZ(ﬂZ) - C?&ltl(ﬂl)) o

(3.18)

where the mass flovﬂd% is replaced by(@Q;. Equation (3.18) models the steady state
torque load of the impeller.

Beside the torque described by (3.18) and extra torque 1§rm K, w? (Sayers,
1990) is added. This term models the hydraulic friction due to liquid between the volute
and the impeller, see Fig. 3.5. Adding this term the final steady state expression of the
torque becomes,

T, =— aQF + apnw,Q; + apw? (3.19)
where,
79 cot 1 cot
a2 = p ( 2 AQ(ﬁQ) -2 Al(ﬁl)) agl = p (7“3 - T%) ayp = K, .
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The transient torque expression

The transient torque component is given by the second term on the right-hand side of
(3.16). Using (3.17) to describg, in this expression the following expression is ob-
tained,

dwr sz
- K
gt

T, =Jum

3.20
o (3.20)

whereJy;, andK are constants and represent the moment of inertia of the water inside
the impeller, and the effects of flow changes on the impeller torque respectively. These
constants are given by,

Rs Rs

r3dr Kg= p/ rcot(B(r))dr .
Ry

J]uv = 27Thp/

Ry
The first term on the right-hand side of (3.20) describes the change of momentum of the
liquid inside the impeller due to changes in the impeller speed. The second term on the
right-hand side describes the tangential change of liquid speed due to flow changes. As
it is a change of speed in the tangential direction it will affect the transient component
of the shaft torque, as it is shown in (3.20).

The combined torque expression

From (3.19) and (3.20) the final expression of the external torque on the impeller is
found,
dwy dQ;
- K
vt @at

T, = —atQQ? + apwrQ; + atowf + Ju (3.22)

whereT, is the external torque on the impeller.

3.3.3 The Head Expression

In this section an expression of the head is derived from the torque expression (3.18),
presented in the previous section. Head is defined by,

Hy = pgH ,
whereH is the head andi,, is the pressure. The theoretical hddgis given byH, =

P/(Qipg), whereg is the gravity and® = T;w,. is the power. Including this in (3.18)
the following expression is obtained,

2 2
H, = <TQ - 741) w2 — (gZLCOt(BQ) — grilcot(ﬂl)> wrQi . (3.22)
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The head described by (3.22) is the theoretical obtainable head of the impeller. This head
is not equal to the head between the inlet and outlet of the pump due to head losses. The
following types of head losses are expected to influence the theoretical head (Sayers,
1990),

e Slip factor, here named;.
e Shock losses, here namggl
e Friction losses, here nameg.

The slip factor is an empirical factor used to account for re-circulating flow inside the
impeller. The two last head losses are due to friction and shock losses inside the impeller
and at the inlet of the impeller respectively. The head losses affect the theoretical head
as shown in the following equation,

H+ hy+hy = 0,H, (3.23)

whereH is the head between the inlet and outlet of the pump. The shock and friction
losses are given by,

hs = Ks(Qi — Qa)? hy =K;Q7 ,

where @, is the design flow, which is a linear expression of the angular velocity e.i.
Qa4 = Kqw,. K, Ky and K, are all constants. When including these expressions in
(3.23) the model describing the head becomes,

H = —a52Q? + ap1w,rQ; + apow? , (3.24)

where H is the head produced by the pumgp, is the impeller speed, an@; is the
volume flow through the impeller. The parameters in the expression are given by,

T T
any = K+ K¢ ap1 = 0, <2 cot(Ba) — —— COt(ﬂl)) - KK}
gAs g
2 2
ano = 2K Ky — 0. (7"2 - ”) .
g

The slip factoro, in the expression above is, as explained before, an empirical scaling
factor and is in general a non-linear function of the flow and the angular velocity, (Say-
ers, 1990). However, if this factor is assumed constant the paramgters,; anday,g

are also constants.

3.3.4 Leakage Flow and Pressure Losses in the Inlet and Outlet

The model equations derived in the previous part of this section describe the relations
between the speed and flow of the impeller, and the pressure generated by the impeller.
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Chapter 3: Model of the Centrifugal Pump

The impeller is not the only component affecting the hydraulic performance of the pump,
as the fluid also passes through the inlet, the diffuser, the volute and the outlet on its way
through the pump, see Fig. 3.6. To have a complete model of the hydraulic performance
of the pump, leakage flow and pressure losses caused by these components must be
considered.

In Fig. 3.9 the leakage flow, the inlet and outlet flowd),,, and the impeller flovg);
are presented.

v / /
Q

? Outlet  «—p \\\q\‘\;()i/' —, /

‘ H

| , =

i <—Qp Inlet

| %

- — Hyye 9 H - Hinet

Figure 3.9: Sketch of the flows inside the centrifugal purgp.is the main flow com-
ponent and, is the leakage flow between the pressure and suction side of the impeller.

The leakage flowy in this figure is calculated using,
d 2
Kjoa=apgHi — Kiq”,

whereK ; is a constant depending on the mass of the fluid involved in the leakage,
a scaling constant taking into account that the pressure acting on leakage flow is not the
same as the pressure delivered by the impeller, and fifglipodels pressure losses in
the loop of the leakage floy.

The pressure losses;,,;.; and H,,..; In Fig. 3.9, at the inlet and outlet of the
pump respectively, are modelled by adding an extra pressure lossiigimthe flow
Q,. These pressure losses are called casing losses, as the pressure losses are caused by
the casing of the pump.

If each of the pressure losses are symbolized as valves, and the theoretical pressure
pgH, is symbolized as a pump without losses, the diagram in Fig. 3.10 describes the
operation of the centrifugal pump.

Pump model including leakage flow

Including the description of the lekage flewin the expressions of the impeller head and
torque in (3.24) and (3.21) respectively, the following model of the centrifugal pump is
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Figure 3.10: Diagram of the centrifugal pump. The valves describe the losses inside the
centrifugal pump, and the pump symbol symbolizes generated pressure without losses.

obtained,

Ky % pg(—an2(Qp + @) + an1(Qp + Qwy + anow?) — Kig?
H, pg(— ah2(Qp + Q)Q + ahl(Qp + q)wr + ahOw?) - K Q2
T, = —a(@p+ @) + an(Qp + a)wr + auow? + Jur, %5 — Ko (%92 + %) |

(3.25)

where H,, is the pressure generated by the puffipjs the impeller torque an@,, =
Q; — q is the inlet flow of the pump.
Simplified pump model

When the leakage flow in Fig. 3.10 can be neglected a simplified model of the pump
can be used. The leakage flow can be neglected when Assumption 3.3.1 holds.

Assumption 3.3.1 For most centrifugal pumps the following assumptions hold in the no
fault case,

1. The dynamics of the leakage flgvis at least a decade faster than the main dy-
namics of the system, i.87 ~ 0 almost all the time.

2. |q| << |Qp| meaning that), ~ Q;.
3. When 2 does not holf}, ~ a;ow? in (3.25).

When these assumptions hold the effect of the leakage flow on the pump performance is
neglible.
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When Assumption 3.3.1 holds the model (3.25) can be simplified to become,

Hp = pg(_(ahQ + Kc)Q;% + ahlwer + ahsz)

3.26
Ty = —apQ2 + anw,Qp + apw? + Jar, L — Ko . (3.26)

3.3.5 Multi Stage Pumps

To be able to increase the pressure generated by the pump without increasing the diam-
eter of the pump, normally a set of pump stages are connected in series. Hereby the
pressure across the pump becomes,

H=H +Hy+ - +H, (3.27)

wheren is the number of pump stages. If thes@ump stages are identical, meaning
thatH; = H; = --- = H;, andg = ¢ = --- = ¢, the model of a multi stage
centrifugal pump is given by the sum of each stage,

nK ;9% = npg (—an2(Qp + 0)* + an1(Qp + Qwyr + anow?) — nKig?
Hp = npg (_a}LQ(Qp + Q)z + ah,l(Qp + Q)(“JT‘ + ah,Owg) - anQ?) - KéQIQ)
T,=n (_at2(Qp + Q)2 +an (Qp + q)wr + atOW%) +

d
TLJJWU d;;r 771KQ < (%p + %) .

In this modeln K. expresses the pressure losses due to the guidens of the flow from one
stage to the next. Therefore, an extra casing loss fétiis added to model losses at the
inlet and outlet of the pump.

If Assumption 3.3.1 still holds, which is normally the case, this model can be reduced
to,

Hy = pg (— (n(anz + Ke) + K.) Q2 4 napw,Qp + nanow?)

_ 2 2 dw,. dQ
T, = fnathp + nagwrQp + naww; + ndur, G — nKq 3t

From this it is seen that the structure of the model is the same for a serie connected set
of identical stages, as for a single stage centrifugal pump.

Pump curves

Normally centrifugal pumps are described by two so-called pump curves. This is
through for both multi stage and single stage pumps. The two curves depict the vol-
ume flow versus the pressure and the power of the pump respectively. Normally the
curves are only depitch for one particular speed value, which is denoted the norminal
speed. An example of these pump curves is shown in Fig. 3.11.
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(a) Volume flow versus pressure difference. (b) Volume flow versus power consumption.

Figure 3.11: Pump curves describing the performance of a centrifugal pump at nominal
speed.

3.4 The Mechanical Part of the Centrifugal Pump

In this section the mechanical part of the pump is treated, meaning that a model describ-
ing the moment of inertia and the friction losses in the mechanical parts of the pump is
derived. The mechanical parts of interest when modelling the dynamics are:

The rotor of the motor.

The bearings in the motor and pump.
e The impeller.

The shaft Seals.

Using Newton'’s second law the dynamics of the mechanical parts can be described by,

dw
Im 7 T.-1p,
whereT, is the torque produced by the motor (3.1T)js the load torque created by the
impeller (3.26) and mechanical friction losses respectively, and fidgllis the moment
of inertia of the mechanical system.
The moment of inertia of the mechanical paftsis given by the sum of the moment
of inertia of all rotating parts of the pump, i.e. it is given by,

J7n:']r+f]s+Ji-

HereJ, is the moment of inertia of the induction motor rotdy,is the moment of inertia
of the shaft, and/; is the moment of inertia of the impeller.
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If the friction lossesl; of the bearings and shaft seals are assumed lineal/s.e.
Buw,, the load torque is given by,

dw, i dQ, '

T, = Bw, + (—a12Q; + anwrQp + arowy ) + Ju, 7 Qg

In this equation the first term on the right-hand side models the mechanical friction
losses, and the last term models the load torque of the impeller (3.21).

Including the load torque expression in the mechanical equations the model of the
mechanical system is obtained,

dw,
dt

aQp

J
dt ’

=T, — Bw, — (—atQQi + apw,Qp + atowf) + Kq

whereJ = J,, +Jy, . The termdc%“ in the above expression means that the mechanical
system depends upon the dynamics of the hydraulic application. This dependency is in
almost all applications very small, meaning that the following assumption holds for

almost all applications.

Assumption 3.4.11t is assumed that the dynamics of the hydraulic application, in
which the pump is placed, is such that,

)

d
’KQ it

<< |—anQ? + anw,Qp + anw?

at all time. When this assumption holds it means that the application dynamics is so
slow that its effect on the pump dynamics is negliable.

Using this assumption the mechanical expression becomes,

dw,

J
dt

=T. — Bw, — (—anQ) + anw,Qp, + apw;) .

3.5 Final Model of the Centrifugal Pump

The model derived in the previous sections is described on state space form by the fol-
lowing system,

x =f(x) + Gu+ m(x,w)

y=h(x,w). (3.28)

In this system the state vector is,
. . . . T
X = [st lsq tmd lmgq wr] y
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wherei,q andi,, are the motor currents indgy-frame fixed on the statot,,q andi,,, are
the magintizing currents described in the same frame, and finallg the mechanical
speed of the pump.
The inputs of the system consist of the known input veatand the unknown input
vectorw, given by,
U= [Vsa Vsq) ! w= [QP]T

)

wherev,4 andv,, are the supply voltages of the motor described in the s#j¥feame
as the motor currents, and the unknown input is the volumedgwhrough the pump.

Except for the known inputs it is assumed that three variables are measured. These
are the motor currents and the pump pressure respectively. Therefore, the measurement
vectory in (3.28) is given by,

. . T
y= [st lsq Hp}
The matrixG, the vector field€(x) andm(x, w) and the mappind.(x, w) in (3.28)
are presented below,

R.+R; R, . L, ;
- SL/ 1sd + ﬁzmd — ZpWr T/ lmg
R.+R. . L, R, .
— =7 isq T ZpWr T imd + L7 img
_ R . R. . o°
f(x) = T tsd — T tmd t ZpWrimg
m ™

’

Flsq — ZpWrlmd — 771
L7 'sq pYrltmd L7 'mq

13 ; . . . B
j§Zme (Zmdlsq - lmqlsd) - 7‘*}7“

O 0

0 0
G=|0 o m(x,w) = 0

0 0 0

0 0 — 5 f1(Qp, wr)

Z‘sd
h(x,w) = lsq ,
fH(QZNwT)

where the first four rows in the model represent the electrical part of the induction motor
and the fifth row describes the mechanical part of the pump.

In this model the expressiofiy (Qp,w,) describes the pressure produced by the
pump, and the expressiofy(Q,,w,) describes the load torque of the pump. These
expressions are derived in Section 3.3, and are given by,

fu(Qp,wr) = pg <_ah2Q;2; + ap1 Qpwr + ahow,%) (3.29)
fT(Qpa wr) = _atQQIQ; + a’tlprT + atsz 5 '
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whereaps, a1, ang andags, a1, ayg are constant parameters found from the physical
properties of the pump, see Section 3.3.

The model presented above is not valid in the whole state space since the functions
fu(Qp,w,) and f7(Q,,w,) are only valid for positive flow and speed. Therefore, the

state space of interest for this system is giverDoy: {(x, w)|(x1,--- ,24) € R*, 25 €
Ry, w € R}, wherezy, -, x5 are states in the state vector awds the unknown
input signal.

3.6 Discussion

In this chapter a model of the centrifugal pump including an induction motor drive is
derived. The obtained model is a fifth-order lumped parameter system, making Fault
Detection and Identification designs, based on this model, possible. However, the model
is very nonlinear, therefore a linearized version of the model is only expected to work
in a small neighborhood around the point of linearization. The model is composed of
three sub-models describing the electrical part of the motor, the mechanical parts of the
system and the hydraulic parts of the system respectively.

In the derivation of the model the dynamics is taking into account. It is shown that
under two assumptions given in the chapter, and if the mass of the liquid inside the
impeller is added to the mass of the impeller itself, the model of the hydraulics becomes
purely algebraic. This means that the liquid inside the impeller affects the moment of
inertial in the mechanical description of the pump, and that no additional dynamics are
added to the model due to the hydraulics of the pump.

The obtained model or sub-models will in the following be used in the derivation
of FDI-algorithms. Moreover, the understanding of the system obtained through the
model, is used in the design of a test setup, where a number of hydraulic, mechanical
and electrical faults can be simulated.
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Chapter 4

System Analysis and Fault
Modelling

In (Jgrgensen, 1995), (Bggh, 1997) and (Izadi-Zamanabadi, 1999) systematic methods
for developing fault detection, isolation and accommodation algorithms are presented.
These systematic methods include analysis tools aimed to identify faults and their causes
in physical systems. Failure Mode and Effect Analysis (FMEA) and Fault Propagation
Analysis (FPA) are proposed, as a way to start the development of these fault detection,
isolation and accommodation algorithms. These analysis tools will in this chapter be
used to analyse the centrifugal pump, resulting in a list of faults, which are expected to
happend in centrifugal pumps. A subset of these faults are chosen for futher investiga-
tion.

In Chapter 2 two basically different approaches to the fault detection and isolation
(FDI) problem were introduced. The first of these approaches is the signal-based ap-
proach, where a set of events are extracted from the set of measurements on the system.
The second approach is the model-based approach, where a model of the system is used
to extract knowledge of abnormal operation of the system. In Chapter 2 it is argued that
robustness is treated extensively in the second approach, but is hardly considered in the
first approach.

The model obtained using the FMEA and FPA is a logical model connecting faults
in the system with a set of effects chosen by the user. In this chapter a method for using
this model to analyse the robustness of signal based fault detection schemes is proposed.
This is done by defining a set of disturbing events, which are treated in the same way
as the faults in the FEMA and FPA. Hereby a model connecting both the faults and
disturbing events to the chosen set of end effects is obtained. The robustness of the
signal-based fault detection scheme is then obtained by analysing the connection among
faults, disturbing events and end-effects, where the end-effects are chosen as a subset of
the measurable events in the system. To help doing this a set of definitions and theorems
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are developed.

By including the notation of disturbing events in the FPA, the use of the approach
is extended to handle robustness of signal-based fault detection schemes. However, it
does not solve the problem with the manual steps in the analysis. One of these manual
steps is the cutting of loops inherent in the system under investagation (Bggh, 1997).
In this chapter an automated way of handling these loops is proposed, meaning that the
remaining manual step is to setup the event model.

The chapter starts by presenting some preliminaries on the FMEA and FPA and their
use in connection with fault detection, isolation and accommodation in Section 4.1. The
remaining parts of the chapter are devoted to the presentation of the contributions on the
FMEA and FPA obtained in this work. First, the theoretical contributions are presented,
followed by the FMEA and FPA results on the centrifugal pump. In Section 4.2 the
theoretical results are presented. They are obtained using FMEA and FPA for robustness
analysis of signal-based fault detection schemes. In Section 4.3 the results obtained by
using the ideas, developed in Section 4.2, on the centrifugal pump are presented. This
includes a list of faults expected in the system, a FMEA and FPA model of the system,
and an analysis of the signal based detection possibilities. Finally, the chapter ends
with a presentation of test results obtained on a test setup particular developed for this
propose, and some concluding remarks. This is in Section 4.4 and 4.5 respectively.

4.1 Method for Fault Analysis

In (Izadi-Zamanabadi, 1999) a structured method for developing fault detection, isola-
tion and accommondation algorithms is described. The method includes 8 steps where
step numbers 1, 2 and 6 are interesting from a fault detection and isolation point of view.
These steps are shortly described here:

Fault modeling - step 1: In this step a qualitative model of the faults in each componet
of the system is made. This is done by dividing the system into suitable compo-
nents. In each of these components the faults and their effects are identified and
described. This is done using the Failure Mode and Effect Analysis (FMEA).

Fault propagation analysis (FPA)- step 2:1n this step the propagation of the identi-
fied faults through the component of the systems is analysed. The result of this
analysis is a description of the connection between the faults in the system and a
set of interesting effects. This analysis is called Fault Propagation Analysis (FPA),
and is performed by first identifing the functional connection between the com-
ponents of the system, ending with a functional diagram (Bggh, 1997). After that
this diagram is used for the fault propagation analysis.

Detector design - step 6:In this step detectors for detecting the fault in the system are
developed. Different approaches have be used in this step. The state of the art
on the area of fault detection and isolation in pumps is presented in Chapter 2.
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In (Izadi-Zamanabadi, 1999) an extension to this step is proposed using structural
analysis. Structural analysis will also be used in this thesis as a tool for analysing
the model structure of the system before designing residual generators.

In this chapter the two first steps are performed on the centrifugal pump, while the rest
of the thesis is devoted to the last step.

From the above list it is seen that FMEA and FPA are used in steps 1 and 2. These
analysis tools form a systematic way of creating a high level qualitative model of the
system under consideration. The model needs only to be descriptive for the behaviour
under faulty conditions, which allow the model to be simple compared to dynamical
models.

Traditionally the FMEA and FPA have been used for analysing the fault behaviour
of a system, and to identify reconfiguration possiblities. Hereby the conditions for fault
robust control of the given system are obtained (Blanke et al., 2003). However, in this
work the purpose of introducing the FMEA and FPA is different. Here these analysis
tools are used as a first step in developing FDI algorithms. The purpose of using FMEA
and FPA is two folded, as it is used for both identifing the set of most important faults
in the system, and analysing different combinations of sensors for detection possiblities.
These sensor combinations are in this thesis denoted sensor configurations. The first of
these purposes is the normal outcome of a FMEA analysis when used in the design of
fault robust control algorithms (Blanke et al., 2003) and qualitative analysis of products.

4.1.1 Preliminaries: The FMEA and FPA

This section contains a short presentation of the FMEA and FPA, and their utilizations
in developing Fault Robust Control algorithms. This presentation is included for readers
not familiar with these analysis tools, and their use in the area of fault detection and
accommodation.

FMEA is a tool originally developed by reliability engineers to analyse components
of a system for possible failures, and their causes and effects (Blanke et al., 2003).
This tool is for analysing single components of a system, therefore the first step in a
FMEA is to identify these components in the system. Each of the components is then
analysed resulting in a set of tables including information about the failure modes, failure
causes, failure effects and risk assessment for each component. An example of such a
table is shown in Table 4.1.1, where a pressure sensor is considered. The table can also
include risk code and actions required. But this information is not used, when the FMEA
is utilized for designing fault detection and accommodation algorithms, therefore it is
omitted here.

This FMEA table includes information of the importance of each of the faults in the
risk assessmewblumn, and the connection between the failure modes and the failure ef-
fects can be deduced from tRailure modeandFailure Effectcolumn. Mathematrically
this connection can be expressed via the fault propagation matrix defined in Definition
4.1.1.
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Table 4.1: An example of a typical FMEA worksheet (Blanke et al., 2003, Chap. 4). In
this example the result of analysing a pressure sensor is shown.

Item ident. Failure mode | Failure cause| Failure effect | Risk assesst
ment
Pressure seny Clogging Dirt Zero output | High
sor
Broken sup-| Mechanical | Undefined Low
ply wire vibration output

Definition 4.1.1 (Fault propagation matrix) (Blanke et al., 2003, p. 78) For a given
boolean mappindvI,

M:Fx€&—{0,1}

of the finite set of component faultsonto the finite set of effect&s The fault propaga-
tion matrix is defined as follows

1
mg,; = 0

wheref.; is thej*" component irf, € F, ande,; is thei’® component ire. € £.

iffcj:1—>€mj:1
otherwise,

As described in the beginning of this section the FMEA is a component-based anal-
ysis. Therefore only knowledge on each component is gained through this analysis. A
system will, in most cases, contain several components, and faults in one component
can affect other components in the system. Therefore a given fault in one component
can cause total failure in the system due to propagation of the fault effects through other
components in the system. To analyse the propagation of the identified faults, the fault
propagation analysis (FPA) is used. The aim of the FPA is to identify the connection
from the set of all failure modes in the system to a decided set end-effggtsThese
end-effects are normally the set of effects causing mailfunction of the system.

The result of the FPA is a fault propagation model or diagram. The first step in the
derivation of this model is to describe the physical connections of the components anal-
ysed using the FMEA. The model describing these connections is called the functional
model. Using the functional model the propagation of the effects of one part to the ef-
fects on another part is described, and depicted in a FPA diagram. An example of such
a diagram is shown in Fig. 4.1. The propagation of the faults is also described mathe-
matically using propagation matrices defined as in Definition 4.1.1, where parts of the
propagation matrix propagate one set of effects onto another set of effects. In this case
the setF contains the possible input effect vectors @&hdontains the possible output
effect vectors.
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f3
U
83= eend

Comp. 3 —#»

Comp. 1

Figure 4.1: The propagation of failures in a system. The failiyesdf; are propor-
gated through component 3, thereby their end effects are identified-ine.,, .

The result of the FPA is a connection between faults in the system and a decided
set of end-effects. The understanding of the propagation can be used to identify where
in the system faults can be stopped in order to prevent total failure of the system. This
knowledge can then be used in the development of reconfiguration logic for fault ac-
commodation.

In Fig. 4.1 it is emphasized that the connections between the faults in the system
and the end-effects are given by simple propagation through the components of the dia-
gram. Unfortunately this is not always the case, as loops can occure in the FPA diagram
(Blanke et al., 2003, Chap. 4). An example of a FPA diagram with a loop is shown in
Fig. 4.2. Such loops arise due to the physical structure of the system, and can therefore

U

eS=‘eend

—p» Comp. 1

Figure 4.2: Loop example in a fault propagation diagram of a system contaning three
components.

not be avoided in the model. Instead the loops are treated by cutting the connection
somewhere in the loop, and then extend the set of faults with the cutted effects. After-
wards each of the cutted effects are analysed to decide if they could be removed from
the FPA or should be treated as an extra fault.

In the above text it is mentioned that the FMEA and FPA traditionally are used for
designing Fault Tolerant Control systems. But if the end-effects are chosen as a subset
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of the measurable effects in the system, the FPA can be used in the development of
FDI algorithms. An example of this is shown in (Thomsen, 2000). Here the FPA is
used for analysing sensor configurations, revealing the connection between the faults in
the system and the set of measurable signals. Hereby the usability of different sensor
configuration can be analysed. In the following this approach is further developed to
handle robustness with respect to events in the system, which should not be considered
as faults. Finally, the developed approach is used in the analysis of the centrifugal pump.

4.2 Automated FPA

This section is concerned with the theoretical contributions to the FMEA and FPA, when
used in connection with FDI design. Firstly, an algorithm is proposed, which automates
the cutting of loops in the FPA diagram. Secondly, robustness of the chosen signal events
is considered.

4.2.1 The Automated FPA Algorithm

From the FPA diagram in Fig. 4.1 it is seen that a general component of this diagram
has a structure as shown in Fig. 4.3. Hérés a vector containing the possible faults

e e
1 Comp.i —

Figure 4.3: A single component in a FME#,.is the possible failures of the component,
e; is effects affecting the component aeds the effects on the component performance
due tof; ande; respectively.

in the componentg; contains the effects affecting the component, andontains the
effects on the component duefiande; respectively. The component shownin Fig. 4.3
implies that a component in the FPA diagram can be described as defined in definition
4.2.1.

Definition 4.2.1 (Component description)Thei** component; in the systens con-
taningn components, i.eS = |J;-_, ¢;, is described by,

i—1 n
Jj=1 Jj=i+1

where
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Aj s Fix & —{0,1} and A} : €5 x & — {0,1} are propagation matrices on
form described in Definition 4.1.1.

f, € F; = {0,1}™ is the set of faults associated witft component.

e; € & = {0,1}™i is the set of effects associated wjth component.

-+ is the boolean disjunction operatorand- is the boolean conjunction operator
A. Both defined as vector operators.

Remark 4.2.1 In Definition 4.2.1A§ = 0 means that there does not exist a connection
from componenj to component in the FPA diagram. AndMﬁ = 0 means that no
faults affect theé*” component.

Remark 4.2.2 This description is similar to the one used in (Jgrgensen, 1995; Blanke
et al., 2003) except for opertator and matrix notation. In (Blanke et al., 2003, Chap.
4) all the matricesAgci and A7 are lumped into one matriMf. An example of such a
matrix is shown below,

fi fv

e €1
e M/ @ | e :(M{f LY ESS Y M{en)@@ e |,

en en

whereA’, = M/ andA‘ = Mie]_ in Definition 4.2.1.

The component description in Definition 4.2.1 is slightly different from the conventional

one as seen in Remark 4.2.2. The reason for this will be obvious later in this section.
In Definition 4.2.1 a description of each component in the FPA diagram is defined.

Moreover the structure of the diagram is implicit given by the set of propagation matri-

ces, which equalB. An example of a FPA diagram is shown in Fig. 4.1. The structure

of this diagram can be described by a grdphand a grapltz ¢, whereG. contains the

structure of the propagation of the effects in the system,@pdontains the structure

of the propagation from the fault vectafisto the effect vectore; Vi € {1,2,--- ,n}.

The graphs~. andG s are defined as in Definition 4.2.2.

Definition 4.2.2 (Graph representation)A graph representation of a FPA diagram is
defined by two graphs, namely a directed graph (digragh)and a bi-partite graph
G¢. The digraphG. is a graph withn verticesy. Where the vertey; € Y is associated
with the effect vectors;. The edges afr. are defined by the following rule,

¢ Adirected edge exists frops to y; if the matrixAg # 0, where the matrixA{ is
defined in Definition 4.2.1.
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The bi-partite graplG's is a graph withm vertices/ andn vertices). Where the vertex
u; € U is associated with the fault vectérand the vertey,; € ) is associated with the
effect vector;. The edges af ; are defined by the following rule,

e An edge exists between andy; if the matrixAj;j #£ 0, where the matrix&}j is
defined in Definition 4.2.1.

A example of the graphs defined in Definition 4.2.2 are shown in Figs. 4.4 and 4.5.
The above definition defines a general graph representation of the FPA diagram. The
adjacency matrixD, associeated witld7. includes the structure of the FPA diagram,
meaning that loops in the FPA diagram are seen in this matrix. Using this graph repre-
sentation it is possible to define the properties for the system to be on calculable form.
This is formulated in Defintion 4.2.3. Here the calculability is defined from the structure
of the adjacency matrip,, of G..

Definition 4.2.3 (Calculable graph reprecentation) The system described by the
graph representation in Definition 4.2.2 is on calculable form if theertices in)
are ordered, e.i.Y = {y1,y2, - ,yn}, Such that the adjacency matrix. associated
with G, has the following structure,

0 0 .. 0 0 0
da1 0o ... 0 0 0
dsy  dsp ... 0 0 0
De - . . . . . 5
dn—l,l dn—1,2 .. dn—l,n—Q 0 0
dn,l dn,2 e dn,n72 dn,nfl 0 ]

whered; ; € {0,1}. Moreover the vertex representing the end-eféegt; must be the
last vertex inY, i.e. the vertey,, is associated witke..,, 4.

All FPA diagrams with a graph representation as defined in Defintion 4.2.2, which do
not contain loops, can be transformed to this form by changing the order of the vertices
in Y (Shih, 1999).

If the graph representation is on the form defined in Definition 4.2.3 the following
theorem can be used for calculating the connection between faults and end-effects.

Theorem 4.2.1 Let the graph representation of a system be on the form defined in Def-
inition 4.2.3, withn vertrices in)) andm vertices in{. Then by association of the edge

d; ; in D, with A, the connection between the faufts= (f/ i - fg)T and
the end-effect vectar,, is given by,

€, — [Tl T2 . Tn—l I] . Af -f (42)

50



Section 4.2: Automated FPA

where,
Tn—1: 2_1
k—1 .
Ty =Ah +> Toi- AL,
=1
and
Al Al ... Al
Agl A£2 W
Af: .fl .f2 ..f7n
Aj AR o AR

In A the submatrixA;j # 0 if there is an edge from the vertex < U/ to the vertex
Yy €Y eIseAj;] =0.

Proof: If the graphG. of a system, defined as in Definition 4.2.2, is on the form defined in
Definition 4.2.3 the logical structure of the system is given by,

e1:A1-f
62:A1~e1+A?‘f
engf-e1+A§~e2+A§-f
(4.3)

en-1=Af-e1+Af-er+---+AL 5 e o+ A}
en=A7-e1+ A% - ex+---+Ay s-en2+A7_ e, 1 +AY-f

where eachA’ corresponds tal; ; in the adjacency matrixD. of the digraphG., andf =

(fF £ f,fb)T, wherem is the number of components affected by faults.
We search for a solution ef,, on the form,

e,=[T1 Ty -+ Th1 To] -Ap-f (4.4)

whereA ; is given by,
T
Ar=[A)T A3 oapT]
The structure ofA y corresponds to the structure of the adjacency mdijx: 7 — &£ of the
bigraphGy.
From (4.3) and (4.4) it is seen th&Y, propagates the effects from? - f to e,,, thereforeT',

can be found by setting} = 0for all i # n. From (4.3) it is seen that adl; for j < n are equal
to zeros in this case. This implies that,

en =T, A}-f=T-A}-f
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meaning that,
T, =1 (4.5)

T, is found by settingAi; = 0foralli # n — 1. From (4.3) and (4.4) it is seen that all
for j < n — 1 are equal to zeros in this case, and.1 = A}“l - f. This implies that,

en=Th 1 A} ' F=AL_ e,
meaning that,
Trno1= Z—l (4-6)

whereT,,_, propagates the effect vecter_; toe,,.

Choosek € {2,3,--- ,n — 1} and assuming that &I',,_; are known fori < n — k, then
T,._ is found by setting&} = 0foralli #n — k. From (4.3) and (4.4) it is seen that all for
j < n — k are equal to zeros in this case, and , = A’}"“ - f. This means that,

en=Tu i A} " f= (Az_k + T, oy A T, AZii) “en—k

whereT,,_; propagates the effect vecter,_; to e,,. From this equations it is seen that,

Thr = AZ—k + Tn*(kfl) ' Az:;kfl) +o 4+ Toa- AZ:Ilc
k—1 )
Ty = Asz + Z Thi- AZ:Z (47)

=1

which complets the proofJ

The above theorem represents a simple solution for finding the connection between fault
and end-effects in the system. The theorem uses Definition 4.2.3, which is the same
as assuming that no loops exist in the FPA diagram. Therefore, loops must be cutted
before the theorem can be used. This is a well known problem and is described in
(Blanke, 1996; Blanke et al., 2003; Bggh, 1997). In these references it is suggested that
a solution to the loop problem is to cut loops at places, which are sensible in a physical
sense.

However, it can be argued that optimal cuts would be the set of cuts, which maxi-
mizes the number of faults seen in the chosen end-effects. By intuition these cuts would
be placed such that the backward walk from the end-effect to the cut is as long as pos-
sible. As an example see Fig. 4.4, whegas chosen as the vertex associated with the
end-effect vector.

In this figure the edges,, d; andd, form a loop. This loop can be cutted at each
of these edges. But by cuttinfy all faults associated with the vertisgs andys can
be seen in the effects associated with the vegtexThis is not the case if the loop is
cutted at eitherl; or d3. By doing this either all effects associated withandys, or
the effects associated wigh can not be seen in the effectsgf. Whend, is cutted it
is possible to do the backward wajk — y3 — 3., whereas in the other two cases the
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Figure 4.4: An example of the graggh, from Definition 4.2.2. This graph represents
the structure of the FPA diagram.

backward walk would bg, — ys andy, respectively. This confirms the connection
between faults seen in the end-effect and the possible steps in the backward walk.

In the following an algorithm is presented. This algorithm is designed to sort out the
set of vertriceg) and cut edges it such that the possible backward walk<ip are
maximized andD., is on the form defined in Definition 4.2.3. When an edge is cutted it
means that the propagation of an effect vector is removed from the analysis. In (Blanke
et al., 2003) it is argued that the cutted effects should be added to the fault vector, and
thereby treated as additional faults. In the following algorithm this is done by adding
vertices to the sef and edges t@ ; corresponding to each cutted effect. As the set
of verticesl/ corresponds to the faults in the system, the set of cutted effects are hereby
added to the set of faults as argued in (Blanke et al., 2003). The algorithm is given below,
and an example of using this algorithm is shown in the example ending this section.

Algorithm 4.2.1 (The cutting algorithm) Assuming that a system is described by two
graphs, as defined in Definition 4.2.2, withverticesy; € Y andm verticesu; € U,
where) andl{ are ordered sets. LeD; : Y/ — ) be the adjacency matrix associated
with the graphG; and D, : Y — Y be the adjacency matrix associated with the graph
G.. Then the algorithm is as follows:

Initialization: TransformD; and D, such that the vertex i¥ associated with the end-
effecte.,.q is the last vertexy, and for all vertices at position ton — 1in )
remove all vertices with zero colomns i, recusively, and set= n’ such that
the vertexy; is associated witle,,,4, wheren’ is the number of vertices after
removing zero colomns.

Step 1: If there are non-zero elements above the diagonal element iittlewlomn of
D, then, set these equal to zero and add the veyter the set of vertice& and
add a colomn inD; corresponding to this new vertgx € ¢/. This new colomn
must have zero elements at positioio »’ and a structure corresponding to the
it" colomn ofD, at positionl toi — 1.
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Step 2: Sort out the vertices at possitidrto s — 1 in Y such that the vertex at position
1 — 1 is the vertex with edges incident to one or more of the vertices at position
ton’ and with fewest edges incident to the vetices at posititry — 1.

Step 3: Seti := i — 1 and go to step 1.

Using this algorithm on a given graph representation, the gréghandG. are forced

to have a structure as defined in Definition 4.2.3. Therefore Theorem 4.2.1 states the
connection between fault and end-effects. The obtained logical expression is on the
form,

€end < A-f. (48)

In this expressiorf contains both the faults in the system, and the effects cutted using
the cutting Algorithm 4.2.1. As it is argued in (Blanke et al., 2003; Bggh, 1997), each
of the cutted effects should be analysed to check if they can be omitted in the analysis,
or should be treated as an additional fault.

Remark 4.2.3 It would be possible to define the two graphs in Definition 4.2.3 such
that each vertex i/ is associated with a single fauft and not a fault vectof;, and
likewise each verted’ is associated with a single effeet and not a vector of effects

e;. This approach is not chosen here as the physical meaning is somewhat lost by doing
that.

In the following example the result of using this algorithm on a small system containing
only four components is shown.
Example

Using Definition 4.2.1 a system containing 4 components is shown in Table 4.2.1. Here

Table 4.2: An example of a system containing 4 compondhtsontains failure modes
ande; contains failure effects in thith component, and&jci andA;i are fault propaga-
tion matrices.

Part Name \Failures Effects Transformations

Cc1 Comp 1 fi el A}l R Aéll
co  Comp. 2 0 e A2

c3 Comp. 3 f3 es3 A?cg, A?, Ag
Cyq Comp 4 fy ey AL}4’ Azll, A%

it is seen that each components described by the propagation matrimeg andA;:.
TheA;'- = 0 is omitted in the system representation.
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The graph representation of the system in Table 4.2.1 is, according to Definition
4.2.2, given by the following two graphs,

L O 0 0 0 0 14
B 0 0 0 _ 0 0 1.3 O
Pr=1 I3.03 0 De = I3; 132 0 0
0 0 1474 141 0 143 0

where the set of verticds = {uy,,up,up,} aNdY = {Ye,, Yess Yes: Yeys +- 1IN these
adjacency matrices the symhb]; corresponds to & in the matrix, and the subscript
1, j denotes the position of vertices joint by the edge before the transformation. Here the
edge is incident from thg'" vertex and incident to" vertex.

In these sets the vertex;, is assosiated with the fault vectéyr and likewise the
vertexy.; is assosiated with the effect vectey. The graphs are shown in Fig. 4.5.

Figure 4.5: The graph&; (Fig. (a)) andG. (Fig. (b)) before edges are cutted.

Now choosees, e.i. y., € ), as the end-effect in the analysis. With this end-
effect the adjacency matrik. of the graph representation is not on the form defined in
Definition 4.2.3. Therefore the cutting Algorithm 4.2.1 is used to cut and sort edges in
G to obtain the form defined in Definition 4.2.3. The first run through Algorithm 4.2.1
is shown below.

Initialization: TransformingD; and D, leads to the following matrix representation.
Hereby the last vertex iy becomes the vertex associated with the end-eéfect

L 0 0 0 0 14 O
oo 0 0 00 0 15
Pr=1 9 0 lajs De = i 0 0 143
0 1z O 131 132 0 0

with U = {uy,, up,,up, } andY = {Ye, s Yes Yeu, Yes }- S€Li = n = 4 meaning
that the last vertex iQ), y.,, is treated in the algorithm.
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Step 1: Cut the edges above tli#¢ diagonal element, add th& vertex of) to i/, and
the cutted edges G, e.i. Dy. This results in,

Ly O 0 0 0 0 14 O
1o 0 0 lgg Lo 0 o0 o0
Pr=1 0 lags las De = ,u; 0 0 0
0 1353 0 0 131 132 0 0

Wlth Z/{ = {ufl I’ ufa 9’ uf4a u63} andy = {ye1 9’ yez 9 y647 y€3}

Step 2: Sorting outD, such that the vertex at position- 1 is a vertex with edges inci-
dent to thei*” vertex, and as few as possible no zero elements above the diagonal
in D.. This results in,

1p11 0 0 0 0 114 0 0

_ 0 0 lp44 134 | 110 0 0
b= 0 0 0 132 De = 0 0 0 0
0 135 0 0 51 0 135 0

withif = {uf17uf37uf47u63} andy = {yenyewyewyes}'

Step 3: Seti := i — 1 and return to step 1. This means that the vegigxs treated in
the next run through the algorithm.

After 5 cycils of the algorithm the following two adjact matrices are obtained,

0 laga 0 14z lag 0 0 0 0
L O 0 0 0 | e 00 0

D=1 "% 0 0 1la3 O De=1"9"0 0 o0
0 0 1353 0 0 0 131 132 O

whereld = {uys,, s, Us,, Uey, Uey } ANAY = {Ye,, Yy, Yeu, Yes }- The resulting graphs
are depicted in Fig. 4.6.

These are on the form defined in Definition 4.2.3, hence Theorem 4.2.1 can be used
to obtain relations between the faults and the end-effects. In this example the following
connection between the extended fault vector and the end-effects is obtained,

e [ATA} A}, ATAJAL (AZAT+ATAIAY ATAIAY- |1,

The remaining task is to analyse each cut to validate the results against the physical
proporties of the system.
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(@) (b)

Figure 4.6: The graphS§ (Fig (a)) andG. (Fig. (b)) after edges are cutted.

4.2.2 Sensor Configuration and Disturbing Events

In the previous section analysis tools was derived, which can establish an expression
between faults and end-effects in a system. Using these analysis tools it is possible to
obtain knowledge about the effects of faults in any component of the system. This is nor-
mally used to identify the effects of the faults on the overall performance of the system.
However, the analysis tools could also be used to identify the connection between faults
and the measurable effects in a given system. If the identification of these connections
is the goal of the analysis, the end-effect should be chosen as a subset of the measurable
effects in the system. This subset should be interpreted as a given sensor configuration,
which hereby is analysed. The result of the analysis can in this case be used to develop
a logical detection scheme based on events extracted from measurements.

If the analysis tools are used for evaluating detection capabilities of different sensor
configurations, it is important to take disturbing events in the system into account. Here
disturbing events are defined as events, which affect the system, but should not be de-
tected. This means that the only difference between faults and disturbing events is that
the faults should be detected and the disturbing events should not. As the only difference
between faults and disturbing events is their interpretation, it is possible to use the anal-
ysis tools presented in the previous section, for analysing system with disturbing events.
This is done by extending the faults vector with the set of disturbing events. Duing this,
the end-effects are given by the following expression,

Cond — (A; Ag)- (;) , (4.9)

wheref is the set of faults in the systerd, is the set of disturbing events, audy,

A, are logical matrices defined as in Definition 4.1.1. This means that (4.9) is only a
factorization of (4.8). The factorization infoandd of the fault vector is formilized in

the following definition.
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Definition 4.2.4 (Faults and Disturbing Events)Define the set of all possible events

in (4.8) asF = |J;_, F; where eachF; is the set of events associated with He
component ana is the number of components in the system. This set can be split into
a set which should be detect¢d C F and a set which should nct; C F, where
FrNFq=0. Fg and F; denote the set of disturbing events and faults repectively.

From (4.9) it is seen that the end-effects are giverfy«— A, - d; in the no fault
case, i.ef = 0. Hereey; is the effect vector generated by t#i& disturbing event vector
d; € F,. Likewise, it is seen that the end-effects are givereby— A -f, + Ag-d;
in the case of the fault vectd € F; and thej*" disturbing event vectad; € Fy. For
a fault vectorf;, to distinguishable from the no fault case all possible effect vectors in
the faulty case;; must be different from all possible effect vectors in the no fault case
€4, 1.e.

ef; 7é €q; Vdi,dj € Fyq (410)

whereey; «— Ay -f, + Ay -d; andey; — Ay - d;. If this expression is true for
all d;,d; € Fqy the given faultfy, is said to be detectable in a logical sense. This is
formalized in the following definition.

Definition 4.2.5 (Logical Robust Fault Detectability) The fault vectof;, € F is log-

ical detectable if the effect vecter,,, in the case of the fault vectdy, is different from

the effect vectog.,,4 in the no fault case. This must be true for all possible combinations
of disturbing events in both the fault and in the no fault case.

From (4.10) it is seen that for a fault to be logical detectable in a robust manner,
it is necessary that at least one of the effects of the fault cannot be corrupted by any
disturbing events. The following theorem states the conditions for this to be possible.

Theorem 4.2.2 (Logical Robust Fault Detectability)_etZ; be the set of vectors with
only 1 element different from zero. L&t € Z; be a vector with only thé'" element
different from zero, and leA ; and A, be defined as in (4.9). LéA 1), ;. be thej, k"
element inA ; and likewise for(Ag); », then the fault described kfy is logically de-
tectable iff,

Ng
Jjef{l,2,-- ne} s (Ap)jr=1andd (Ag);;=0 (4.11)
1=1
wheren, is the number of end-effects and is the number of disturbing events. This

is the same as saying thét can be distinguished from all possible combinations of
disturbing events.

Proof: (Ay);, = 1 implies that thej'" element ofe;, «— A f; is equal to 1 forf, € F;.
Moreover, "7 (Aq4);,; = 0 implies that thej” element ine; «— Aqd is equal to zero for
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alld € F, i.e. thej" element ofe will always be equal to zero in the no fault case. This
again implies that, only faults can affect th&" element ine. Therefore, if thej!" element of
e — Asf + A,d is different from zero it must be due fo f;, will cause thejth element ine to
be different from zero, therefore (4.11) implies tffigis robust detectable.

Now assume that;, # eq, where

ey, —Af-fi+Aq-d (4.12a)
eq— Ag-d. (4.12b)

This implies that there exists an elemgnin ey, ande,, such that thgi*™ element iney, is
different from thej*" element iney. For this to be true thg!" element ine; must be equal to
zero, as the termh ; - d is part of both (4.12a) and (4.12b). Fey to be zero for ald € F; the
§*" row of A4 must equal zero, i.€5_7'¢ (Aq4);,: = 0. Therefore, for thg*" element ofey, to
be different from thej*” element ofe,, the j*" element ofey, must be different from zero. This
implies that(A f); » = 1 for the faultf, to be detectable]

Remark 4.2.4 From Theorem 4.2.2 it is seen thatAf; = (), meaning that no disturbing
events exist in the system, then the demand for detectabifityeduces tdA¢);, =1
forsomej € {1,2,--- ,n.}.

If Theorem 4.2.2 is fulfilled for a given fault in a system, then this fault is detectable
despite of the disturbing events affecting the system.

In some cases not all disturbing events are independent. As an example there could
exist two disturbing eventd, andd,; d; saying that an input to a given component is
increasing andl; saying that the same input is decreasing. In this dasendd, are
mutually excluded otl; = 1 — dy = 0 anddy = 1 — d; = 0. When this is the case
Theorem 4.2.2 is too restrictive.

In general such dependencies between disturbing events can be described by,

dil = 1,d7;2 = 1, 7dia == ]. — djl = 0,dj2 ES 0, adj/; :0 (413)
where there arev disturbing eventsl;, to d;_, which excludes disturbing events;,
to d;,. The following Corollary relaxes the demands for logical robust fault detection,
whenh dependencies on the form (4.13) are assumed.

Corollary 4.2.1 (Logical Robust Fault Detectability) For thect" dependency expres-
sion on the form (4.13), define+ 1 fault propagation matrices, wheke matrices are
formed by setting th&" column equal 0] € {1,2,--- ,a}, and one matrix is formed
by setting thei{", j5",--- , j4* columns equal 0. These matrices form the set,

AC = {A'dﬂ:l ) Ad,im ) Ad,ia ) AdJ} . (414)

If there areh dependency expression there exdstto A;, of this sets each corresponding
to one dependency expression. This means that there le&istf[ﬁzl (a.+1) different
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combinations given by the set,

h
Ahz{AhAh:/\Ac, AceAC}.

c=1

Iff Theorem 4.2.2 holds for a faufi, € Z, for all A, € Ay, then the fault is logical
detectable.

Proof: Before stating the proof a set of disturbing event vectors is defined. From Theorem 4.2.2
it is obvious that all end-effects, which can be affected by disturbing events, will be affected if all
elements ind is equal to 1. Let this worst case vector be givenlhy When there are mutual
excluded disturbing events, as given in (4.13), the vettobecomes too restictive. In this case

the vectors with the maximal possible number of elements equal to one, must form the set of worst
case vectors. Let this set be given by,

D. = {d17d27 e 7d7n}

Examining (4.13) the firstn — 1 vectors must be formed by setting one of the eleménte i,
equal to zero. Then'" vector is formed by setting the elemerjis- - - , j5 equal to zero. From
this it is deduced that there exist = « + 1 independent vectors iP. describing the possible
worst case disturbing event vectors, when the mutual exclusion (4.13) exists. If therg ekist
these mutual exclusions, formihgsets of vector®,, D, - - - , Dy, all possible worst case vectors
can be defined as,

D={d|d=diAdz2A---Adp, whered; € D1, dz € D2, -- ,dy € D}

whereA is the logical "and" operator. Each of the element®ins formed bya. + 1 vectors,
meaning that the total number of vectors becofiiés; (a. + 1).

To prove Corollary 4.2.1 recognise that Theorem 4.2.2 holds foAalle A;,. This implies
that f;. is logical robust detectable with respect to eakh € .A;, which again implies that
e; # eq wheree; «— Affy, + Apd andeq — Apd. A, = A" A, whereA, € A.ison
the form described in the corollary. From the definition&f it is seen that for eacA. € A.
there corresponds exactly ode € D. such thatA.14 = Agd.. Using this the following is true
for eachA; € Ap,

Aply = <;\Ac> 14 = (/}L\Acld) _(C/_\hlAddc> —Ad<c/}_\L1dc) =A.d

c=1 c=1

whered € D. Due to the one to one correspondency betwger D. andA. € A. the above
equation implies that if Theorem 4.2.2 hold for eakh € A;, thenfy, is logical robust detectable
for every disturbing event vectel € D. In the start of the proof it was argued that all worst case
disturbing event vectors are containedlin Therefore f;. is detectable for all possible disturbing
event vectors.

To show sufficiency just reverse the prodi]

Theorem 4.2.2 and alternatively Corollay 4.2.1 states the demands for a fault to be
robust detectable in a logical sense. If this is the case for a set of faults in a system, it
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is interesting to know if the faults in this set can be distinguished from each other i.e.
er, # ey, wheneverf, # f; wherefy, fi € Zy. The following theorem states the
demands for this to be possible,

Theorem 4.2.3 (Logical Fault Identification) LetZ; be the set of vectors with only 1
element different from zero. L&t € Z; be the vector describing theé" fault and let
(A ) denote the:!" column inA ; then the fault described iy can be distinguished
from all otherf € Z; in a logical sense iff,

(Ap) # (Ay)i Vi#k,ie{1,2,--- ,n}. (4.15)

Proof: Two faultsf, andf; (f. # fi, fx,fi € Z) are distinguishable i&;, # ey, where
es, — Afy andey, «— Af;. Letf;, be a vector with only thé'" element different from zero.
Theney, equals thé:'" columninA,i.e. (A)y. Likewise, letf; be a vector with only the'”
element different from zero. Thasy, equals the'” columninA;, i.e. (As);. From this it is
immediately seen that (4.15) implies that, # e;, wheneverf, # f;, wherefy, fi € Zy. This
completes the proof]

Remark 4.2.5 It should be noted that the effects used for fault identification must not
be corrupted by disturbing events. Therefore if there are disturbing events in the system
only the end-effects; associated witth~"?, (A,);; = 0 should be used in Theorem
4.2.3.

Remark 4.2.6 In (Blanke et al., 2003) a methods for defining the logical connection
from the effects to the faults is given, i.— B ©® e where® is a special operator
defined in (Blanke et al., 2003). Using this expression it is possible to identify a given
fault from the measurable effects, whenever Theorem 4.2.3 is fulfilled for the system.

If both Theorems 4.2.2 and 4.2.3 are fulfilled for a set of faults in a system, then this set
of faults are said to be robust identifiable in a logical sense. Whenever this is the case it
is possible to measure a set of effect in the system, and from these measurements detect
and isolate the faults.

Unfortunately for many systems it is not possible to find a set of measurable effects
where both Theorems 4.2.2 and 4.2.3 are fulfilled. However, in many cases Theorem
4.2.3 is fulfilled but not Theorem 4.2.2. In these cases the problem is that the disturbing
events cannot be distinguished from the faults in a logical sense. However, it might
still be possible to quantitatively decouple the disturbing events from the faults using
model-based techniques.

4.3 Pump Applications

In this section first the FMEA technique will be used for analysing the centrifugal pump,
and second the algorithm presented in the previous section will be utilized for analysing

61



Chapter 4: System Analysis and Fault Modelling

sensor configuration on the centrifugal pump. In the first subsection the division of the
system into useful components is described. In the second subsection each of these
components are then analysed for their faults and fault effects. This is done by using
the FMEA. The result of this analysis is a set of possible faults in the system. 7 of
these faults are chosen for further investigation. Using this subset, different sensor con-
figurations are analysed, showing their capability in fault detection and isolation, when
signal-based fault detection methods are used.

The centrifugal pump under investigation in this section should be seen as a general
centrifugal pump, meaning that the faults identified are general centrifugal pump faults.
Therefore in real application only a subset of these faults will occur in practice. Even
though no particular type of pump is chosen in the investigation, a CR5-10 Grundfos
pump is used as an example, whenever it can illustrate the presented ideas.

4.3.1 Component Identification in the Centrifugal Pump

The FMEA and FPA are component based analysis tools, therefore the first step is to di-
vide the system, in this case the centrifugal pump, into suitable components. In (Bagh,
1997) three approaches are proposed for this division. These are the component hier
archy model, the physical structure model, and the functional structure model. In the
first approach, the system is divided into components based on the functionality of the
components, and in the physical structure model, physical components are identified. In
the last approach the functionality of the components is identified, meaning that a model
of the functional connection between the components is obtained.

In this work the physical structure model is used to identify components for the
FMEA, whereas the functional structure model is used for the FPA. In Fig. 4.7 a com-
ponent diagram of the pump is shown. In this diagram 7 physical components are iden-
tified. In Fig. 4.8 each of these components are identified on a CR 5-10 Grundfos pump.

In the middle of Fig. 4.8 the centrifugal pump is shown, and each component, iden-
tified in Fig. 4.7, is shown in separate subfigures. On the top left corner the induction
motor, driving the pump, is shown. In the physical structure diagram this motor is again
divided into an electrical and a mechanical component.

Below the motor, the centrifugal pump is shown. The centrifugal pump is also di-
vided into two components in the physical structure diagram, namely a hydraulic and a
mechanical component. The hydraulic component covers the parts directly involved in
the energy transfer from mechanical to hydraulic energy, and the mechanical component
covers the remeaning parts. The middel figure to the left is a zoom of the hydraulic parts.
Here the impeller and the guide vanes are seen.

On the top to the right the shaft is shown. The CR5-10 Grundfos pump has a short
shaft connection. In other pumps this can be longer and often positioned horisontal and
not vertical as in the CR5-10 case. The two last figures show the inlet and outlet part of
the pump. In some pump applications the inlet part can be equiped with a filter to avoid

62



Section 4.3: Pump Applications

Pump Motor Electrical parts of
the motor
Mechanical parts
of the motor

— Shaft Shaft mechanics

Mechanical parts

— Hydraulics of the centrifugal

pump

Hydraulic parts of
— the centrigfugal
pump

— Inlet parts

—  Outlet parts

Figure 4.7: Physical structure diagram of the centrifugal pump. First the pump is divided
into three components; the motor, the shaft, and the hydraulics. These components are
again divided into 7 components.

large impurities to enter the pump.

The functional connection between the identified components, shown in Fig. 4.7,
is presented in Fig. 4.9. To cover the functionality of the pump two extra non physical
components are added. These are, a component covering the dynamics of the mechanical
parts of the pump, and a component deriving the pressure difference produced by the
pump. Each component is named in Table 4.3.

Each of the components in Table 4.3 will in the next subsection be analysed using
the FMEA.

4.3.2 FMEA on the System Components

Each of the components identified in the previous section, see Table 4.3, is in this section
described with respect to the functionality of the components, the faults in the compo-
nents, and the disturbing events affecting the components. Here a fault denotes an event
causing malfunction of a given component, and therefore should be detected. Whereas
a disturbing event is an event affecting the component, but should not be detected. The
faults and disturbing events, and their effects on each component are analysed using the
FMEA. The full result of this analysis is presented in Appendix A, whereas only the
faults and disturbing events are presented in this section. Beside the faults, disturbing
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Electrical and mechanical
part of the motor.

The shaft

One of the impellers and
Hydraulic and mechanical guide vanes
part of the pump

Figure 4.8: A real pump example of the component chosen for the FMEA. The pump is
a CR5-10 Grundfos pump drived by a 1.5 [KW] induction motor.

events, and their effects on the components, the propagation matrices are presented in
Appendix A.

cy: Electrical part of the induction motor

This component contains the electrical parts of the induction motor driving the centrifu-
gal pump. This includes the grid connections, the stator windings, and the rotor bars.
This component converts electrical energy from the grid to mechanical energy on the
shaft of the pump. The faults identified in the component are,

fem1 Loss of one or more phases of the supply voltage.

fems Short circuit between windings in the motor.
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Figure 4.9: The functional connection between the components used in the FMEA of
the pump system.

Table 4.3: Description if the components in the centrifugal pump.

Comp. | Name
c1 Electrical part of the induction motor
co Mechanical dynamics
c3 Mechanical part of the induction motor
Cq Shaft
cs Hydraulic part of the centrifugal pump
Co Mechanical part of the centrifugal pump

cr Inlet part of the pump
cs Outlet part of the pump
Cy Pressure difference

fema Short circuit to ground.
fems Broken rotor bar.
feme EcCcentric air gab due to bend or misaligned motor shatft.

The main effects of all these faults are higher harminics oscillations in the motor current
and torque respectively.

Beside the faults described above the following set of disturbing events can affect
the component.

dem1 Unbalanced supply voltage.
dem2 INcreased supply voltage.

dems Decreased supply voltage.
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dema Increased supply frequency with constant V/f relationship.

dems Decreased supply frequency with constant V/f relationship.

c2: Mechanical dynamics

This component contains the mass of all rotating parts in the pump. It is introduced
in the functional model to cover the convertion from torque to speed. As it is not a
physical component, but a functional signal transformation, no faults are identified in
the component.

cs: Mechanical part of the induction motor

This component contains the ball bearings and the shaft of the motor. The functionality
of the component is to transfer torque produced by the electrical part of the motor to
the shaft connecting the centrifugal pump and the motor. The faults identified on the
component are:

fmm1 Ware of the bearings in the motor.

fmm2 Rub impact between the stator and the rotor due to a bend or misaligned motor
shaft.

The main effect of these faults is vibrations in the mechanical structure of the motor,
beside that small torque oscillation can occur.
c4: Shaft mechanics

This component contains the shaft and the shaft connection attaching the motor and
pump shaft. The functionality of the component is to transfer the torque on the motor
shaft to torque on the pump shaft. The faults identified on the component are,

fsn1 Broken shaft.
fsn2 Misalignment between the motor and pump.
fsh3 Bend shaft.
The main effect of these faults are mechanical vibrations and, in the case of the last two
faults, torque oscillations.
cs: Hydraulics of the centrifugal pump

This component contains the impeller, the diffuser, the volute, and the guide vanes of
the centrifugal pump. The component converts mechanical energy from the shaft to
hydraulic energy induced into the liquid pumped by the pump. The faults identified in
the component are the following,
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fin Dry running.

fiz Impurities fixed on the impeller, causing inbalance.

fiz Wear of the impeller.

fia Blocked or partial blocked flow field inside the impeller.
fis Blocked impeller rotation.

fie Wear of the sealing ring.

fiz Missing sealing ring.

fis Loss of the impeller.

The main effects of these faults are changes in the value of pressure and the load torque
generated by the impeller at a given flow. Moreover some of the faults can induce pres-
sure oscillations. These pressure oscillations can be either harmonics of the rotational
frequency, or noise like signals covering a larger frequency span.

Beside the faults described above the following set of disturbing events can affect
the component.

d;; Decreased flow through the pump.

di2 Increased flow through the pump.

ce: Mechanical part of the pump

This component contains those mechanical parts of the pump not directly involved in
the energy transformation from mechanical to hydraulic energy (the parts involved in
the energy transformation are contained in compongnrtydraulics of the centrifugal
pump. This means that parts such as the shaft of the pump, bearings inside the pump,
and the casing are included in this component. The functionality of the component is to
secure the hydraulic parts in the right possition, and to lead the liquid to and from the
hydraulic part of the pump. The faults identified in the component are the following:

fmp1 Dry running.

fmp2 Inlet flow equal to zero.

fmps Ware of the bearings in the pump.
fmpa Ware of seals.

fmps Rubimpact between the impeller and the cassing.
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The first two of these faults are connected to the cooling of the pump, and therefore the
main effect of these faults is an increased temperature of the pump. The main effects of
the last four faults are mechanical vibrations and leakages from the pump casing.

Beside the faults described above the following set of disturbing events can affect
the component.

dmp1 Decreased flow through the pump.

dmp2 Increased flow through the pump.

c7: Inlet of the pump

This component includes the inlet parts of the pump, which can contain a suction pipe
and/or a filter. The functionality of the component is to lead the liquid to the impeller.
The faults identified in the part are the following,

fipz Low pressure at the inlet of the pump.
fips Opstruction of the inlet of the pump.

The main effect of these faults is that the inlet pressure to the impeller becomes too low.
Beside the faults described above the following set of disturbing events can affect
the component.

dip1 Decreased flow through the pump.
dip2 Increased flow through the pump.

d;p3  High frequency pressure oscillations.

cg: Outlet of the pump

This component includes the outlet part of the pump, which can contain an outlet pipe
or a riser pipe. The length of this pipe is defined by the two points where the pressure
difference generated by the pump is measured. The component is leading the liquid
from the pump to a given distination. The faults identified in this component are:

fop2 Leakage on the outlet pipe.
fops Opstruction of the outlet pipe.

The main effects of these faults are leakages from the system and decreased pressure
produced by the pump.

Beside the faults described above the following set of disturbing events can affect
the component.

dip1  Decreased flow through the pump.

dip2 Increased flow through the pump.
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cg. Generated differential pressure

This component is not a physical component, but a collection of the pressure effects

affecting the pressure difference across the pump. The component is necessary in the
functional model as the effects on the pressure difference is a function of head losses in
the inlet and the outlet components and the hydraulics of the centrifugal pump.

Sensor components

This work is not concerned with sensor faults, even though it is an important field.
Instead sensors are seen as components, which are able to measure special effects on the
system. Hence, they collect the end-effects used in the sensor analysis.

The list of possible sensors is long, some of the most important, with respect to the
centrifugal pump applications, are the following,

e Current sensors.

e \ltage sensors.

¢ Vibration sensors on the stator and/or the pump mechanics.

e Pressure difference sensor (between outlet and inlet).

e Absolute pressure sensor at the inlet and/or the outlet of the pump.
o Flow sensor at the inlet and/or the outlet of the pump.

e Temperature sensors inside the stator, bearings and/or seals.

e Speed sensors, on the motor and/or the pump shatft.

Of these especially the pressure difference sensor is often used for control purposes.
Likewise, if the speed of the motor is controlable normally expressions of the currents
and the voltages of the motor are also available. If the system is equipped with a surveil-
lance system, a subset of all the sensor information can be available. Unfortunately, this
is only the case in very few centrifugal pump applications.

4.3.3 ldentifying Interesting Faults

Normally, in the FMEA it is common to include risk assessments and frequencies for
the faults expected in the given component. These risk assessments and frequencies are
attached to a given product. In this work no specific centrifugal pump is chosen, instead
the general components forming a centrifugal pump is analysed. Therefore, it has not
been possible to make a risk assessment and even less possible to include frequencies of
the faults. Instead the FMEA has be used to identify a set of common faults in centrifugal
pumps, and their effects on the component under investagation. The obtained set can
then be used as a gross set when analysing a specific centrifugal pump.
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As neither risk assessments nor frequencies are identified for the faults on the cen-
trifugal pump these cannot be used as guidelines for choosing faults for further investa-
gation. Instead a set of fault is chosen using the following criteria:

e The fault must be expected to happen in real life applications.

e It must be possible to simulate the fault on a test-bench without changing compo-
nents in the pump.

The first of these criteria is included to insure the relavance of the faults from an indus-
trial point of view. The second criterion is included to make it possible to simulate the
fault behaviour in real time on a test-bench.

Using these criteria the following set of faults is chosen for futher investagation,

Fault Group Faults Fault Description
Je1 fems Short circuit between stator windings.
fn1 fia Inc. hydraulic resistance inside the pump.
fn2 fip3 Inc. hydraulic resistance at inlet.
Ih3 fie fir Wear of or missing sealing ring
Jm1 Jmps Rub impact between impeller and casing
finl fil fmpl fipl fopl Dry running.
fin2 fip2 Too low inlet pressure. Can cause cavita-
tion.

Of these faultsf;1 , fimp1 . fip1 . fop1 ,» @nd fi,e are input faults meaning that they are
caused by unsuitable operation of the application in which the pump is placed. These
type of faults are also called external faults. Even though these faults are not dirrectly
connected to the components of the pump, they are very important to detect. The reason
is that dry running will destroy the bearings of the pump in a few seconds, and too
low inlet pressure will cause cavitation inside the pump, which again will destroy the
impeller over time.

Beside these faults of course all disturbing events affecting the system must be taken
into account in the following analysis. The disturbing events are,

Dist. Group Dist. Dist. description
de1 demi Unbalanced supply voltage.
des dem2 Increased supply voltage.
des dems Decreased supply voltage.
dea dema Increased supply freq. with const. V/f.
des dems Decreased supply freq. with const. V/f.
dn1 di1 dmp1 dip1 dip1 | Decreased flow through the pump.
dpo dia dmp2 dip2 dip2 | Increased flow through the pump.
dp3 dip3 High frequency pressure oscillations.
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Collecting the chosen fault and disturbing events the following logical fault vector is
obtained,

£, = (f7 d7)" (4.16)
where,

f= (fel fhl fh2 fh3 fml finl fin2) (4 17)
d=(de1 dez dez dea des dpr dpz dpg) . '

In the next section the effects of this fault vector on different measureable signals are
analysed.
4.3.4 FPA on the General Pump System

In Section 4.2.1 it is argued that logical models of the components forming the system
can be described as defined in Definition 4.2.1. Using this definition the component
model of the centrifugal pump, presented in Section 4.3.1, is given in Table 4.4.

Table 4.4: The component description of the centrifugal pump. The structure of each of
the logical matrices is given in Appendix A.

Comp. | Faults Effects Transformations
2 forn  €em A AT
€2 0 Cdy Ag%yn,v A7dr?m7 A(siZ’ A%Jp’ A;iy
c3 from €mm AT AR
Cy fon €esh A;}h, Azy
Cs fz €e; A’;c, A’éh’ A;p
Ce frp €mp A}””, ATP AT
Cr fip €ip A}p
Cs fop €op AOP, A%)p
co 0 edn Adh Adh Adn

Having a model on this form Algorithm 4.2.1 and Theorem 4.2.1 can be used to de-
rived the connection from the faults and disturbing events, to any effect veatdhe
system. Therefore, by identifing all measureable effects of interest it is possible to estab-
lish a connection between faults and disturbing events, and a subset of the measurable
effects. This connection can then be used to evaluate the usability of the given sensor
configuration, when the design of signal-based fault detection schemes is considered.

In the previous section a list of sensors used on centrifugal pumps is presented.
Moreover, it is argued that some of these sensors are only used in special applications.
The most frequently used sensors are the electrical sensors and the pressure difference
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sensor. Therefore these should attend special attention when developing intelligent FDI
algorithms. The electrical and pressure sensors are often used for control purposes in
hydraulic applications, and are therefore often available for other purposes too. This

means that the cost of implementing a supervision system is reduced considerably by
using only these sensors as input to the FDI algorithms.

Beside the sensors just mentioned, the flow sensor is considered. Flow sensors are
normally expensive, but by using the newest micro technology it is possible to reduce
the cost considerably. This means that this sensor will become interesting in even small
centrifugal pump applications. Also a sensor measuring the impeller eye pressure is
considered. The flow sensor and the impeller eye pressure sensor are considered to be
additional sensors and are therefore increasing the cost of implementing the supervision
system.

To summarize; the effects seen in the following sensors are analysed using the FPA,

e Current sensors.

Voltage sensors.

pressure difference sensor (between outlet and inlet).

e Flow sensor.

Impeller eye pressure sensor.

The results of the FPA using these sensors are presented in the following, where each of
the logical matrices are obtained by using Algorithm 4.2.1.

Effects on the electrical part of the motor

The effects measurable using the current and voltage sensors are all found in component
c1 Electrical Part of the Motor The measurable effects on this component are,

Increased current.

€em,il ~

eem,i2 ~ Decreased current.

eemqs ~ Oscillations in the length of the pack transform current.
eem,a ~ Unbalanced stator current.

eemwl ~ Zerovoltage in one or more of the phases.

eemw2 ~ Oscillations in the length of the pack transform voltage.
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The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,

€em,il
€em,i2

€em,i3

(@

(4.18)

€em,id

€em,vl

SO O = O -
O OO == O
OO O OO
OO OO o
SO O = O =
OO O OO
OO O OO
_— O o= OO
OO OO o
OO OO+~ O
OO O OO
OO O OO
OO OO oo
OO OO O
O OO OO

€em,v2

wheref is the fault vector and is disturbing event vector, both defined in (4.17).

Effects on the pressure difference generated by the pump

The effects measuable using the pressure difference sensor are all found in component
¢y Pressure DifferencelThe measurable effects on this component are,

eop,n1  ~ Increased pressure difference across the pump.

eop,n2  ~ Decreased pressure difference across the pump.

eop,ns ~  Zero pressure difference across the pump.

eop,na  ~ Harmonic oscillations in the pressure difference signal.
eop,ns  ~ High frequence oscillations in the pressure difference signal.
eop,n6  ~  Pressure difference across the pump is not defined.

The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,

ednl 000O0O0OUO O[OODOT1O0UO0T10
edh2 01 1110100001001
edhg(_000001000000000<f>
edha 01 0010UO0/000UO0ODO0CO0TO0OTGO]|\d
€dhs 001 0101/000UO0O0T1UO0°TU0
edns 000O0O0OT1UO0/00O0UO0OO0O0UO0O0

(4.19)
wheref is the fault vector and is disturbing event vector, both defined in (4.17).

Effects on the flow measurement

Using a flow sensor it is possible to measure effects on the flow input, meaning that the
effects of the input faults and disturbing events, which are associated with the flow, are
measurable with this sensor. The measurable effects on this component are,
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eq1  ~ Increased flow
eq2 ~ Decreased flow
eq3 ~ Notdefined

The connection between these effects, and the faults and disturbing events in the system
is given by the following logical equation,

eql 0000000000000 T10Y\
eq2H000000000000100(d>
€q3 000001 0/00O0O0GO0GO0GO0O0

(4.20)

wheref is the fault vector and is disturbing event vector, both defined in (4.17).

Effects on the impeller eye pressure measurement

It is well known that the inlet pressure has large impact on the pump performance, as
cavitation will occur if this pressure becomes too low. If cavitation does occure it will
destroy the pump over time. Therefore, by measuring the pressure at the impeller eye it
might be possible to detect decreases in this pressure and thereby detect the possibilities
for cavitation. Moreover measuring the pressure at the impeller eye pressure noise due
to cavitation might be measurable. The effects in the impeller eye pressure are found in
component:; Inlet of the Pummandcs Hydraulic part of the centrifugal pumpvhere

the mean pressure is coming framand the pressure noise due to cavitation is coming
from c5. The measurable effects are,

eent  ~ Noise like pressure oscillations
eens  ~ Impeller eye pressure not defined
e.ns ~ Impeller eye pressure too low

The connection between these effects and the faults and disturbing events in the system
is given by the following logical equation,

Cent 001010 1/00000T100Y\
eeh2<—000001000000000<d>
Cens 0010001/00000GO0GO0O0

(4.21)

4.3.5 Sensor Configuration Analysis

In this section different combinations of the proposed sensors are analysed with repect
to logical robustness and identification. This is done by analysing the logical connection
between the measurable effects in each sensor and the faults in the system. In this anal-
ysis both logical robustness and identification possibilities are considered. The logical
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connections between faults and effects were established for each of the sensors in the
previous section.

The robustness of the different sensor configurations could be analysed using Theo-
rem 4.2.2, but by looking at the description of the disturbing events in Section 4.3.3 the
following mutually exclusive expressions of the disturbing events are recognized,

deo=1 — de3=0 de3 =1 — dea =0
dea =1 — des =0 des =1 — des =0
dpo=1 — dp1 =0 dpp=1— dp=0

asd.o, d.4 anddys are increased voltage, frequency and flow respectivelydandi.s
andd;,; are decreased voltage, frequency and flow. These dependencies are taken into
account using Corollary 4.2.1. When the robustness properties are establised the pos-
sibilities for fault identification of the detectable fault can be analysed, using Theorem
4.2.3.

The results are presented in two logical vect®&s and R;, whereR,. contains
the results of the robustness analysis, &)ccontains the results of the identificability
analysis. Such that,

if the property holds forf; thenr; := 1 ,elser; := 0

wheref; is thej'* component in the fault vectdrandr; is thej'* component in either
R, or R; dependent on which property is analysed. The fault veti®igiven by,

f:(fel i o2 fas fer fim fmz)

where eacly; is described in Section 4.3.3. Three sensor configurations are considered
in the following, these are,

1. Sensors measuring the electrical quantities, e.i. the voltage and current measure-
ments.

2. Sensors measuring the electrical quantities and the pressure difference across the
pump.

3. Sensors measuring the electrical quantities, the pressure difference and the volume
flow.

4. Sensors measuring the electrical quantities, the pressure difference, the volume
flow and the impeller eye pressure.

The results of the analysis of these different sensor configurations are presented in the
following.
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Electrical measurements

Firstly, only the effects in the electrical measurements are considered, e.i. the effects
measurable using the current and voltage sensors. The connection from the faults and
disturbing events, to their effect on the electrical quantities is given by (4.18). This
equation is on the form,

e [A; Ad- [ﬂ

meaning that Theorem 4.2.2 and Corollary 4.2.1 can be used to establish the logical
robust fault detection possibilities. The result of this analysis is shown below,

R,=(0 0 0 0 0 0 0). (4.22)

From R, it is seen that it is not possible to distinguish any of the faults from possible
logical combinations of disturbing events. This means that non of these effects can be
used in a robust signal-based fault detection scheme.

Electrical and pressure difference measurements

Secondly, consider the effects on the electrical measurements and the pressure difference
measurement. These are given by (4.18) and (4.19). The result of this analysis is shown
below,

R,=(0 1 0 0 1 1 0). (4.23)

Here it is seen that 3 of the 6 faults are detectable using signal-based methods.

Normally it is impossible to measure the high frequency components in the pressure
signal using standard pressure sensors. To analyse the detection properties under this
assumption, the high frequency pressure componrgpy,s is removed from the analy-
sis. Moreover it is assumed that the pressure value is always available, meaning that the
effect e, 16 i also removed. The result of this test is shown below,

R.=(0 100 1 1 0). (4.24)

By comparing this result with the result from the analysis including the high frequency
components, it is seen that all the fault information, not corrupted by disturbing events,
is contained in the low frequency parts of the pressure signal.

Electrical, pressure difference and flow measurements

In the third analysis the electrical measurements are combined with both a pressure
measurement containing high frequency components and a flow measurement. These
are given by (4.18), (4.19) and (4.20) repectively. The result of this test is shown below,

R,=(0 1 00 1 1 0). (4.25)

76



Section 4.4: Detection Algorithm for the Centrifugal Pump

Comparing these results, with the results of the analysis where only the electrical mea-
surements and the pressure sensor are considered, it is seen that no addition information
is added using the flow sensor. This is in fact true when only logical combinations are
considered. But, as it will be shown in Chapter 6, The flow sensor can be used for dis-
turbance decoubling, when model-based methods are used. Hereby, it becomes possible
to detect the faulf},3 corresponding to increased leakage flow inside the pump.

Electrical, pressure difference, flow and impeller eye pressure measurements

As the last analysis a pressure sensor measuring the impeller eye pressure is added. This
means that effect in the electrical quantities, the pressure difference, the volume flow,
and the impeller eye pressure are assumed known. These are given by (4.18), (4.19),
(4.20) and (4.21) respectively. The result of this analysis is shown below,

R,=(0 1 101 1 1), (4.26)

Here it is seen that only the faulfs; and f;,; corresponding to inter-turn short circuit

and leakage flow are undetectable. To check the possibilities for identification of the
the 5 detectable faults, the effects not corrupted by disturbing events are analysed using
Theorem 4.2.3. The logical expression of the faults is given by the following expression.

€em,id

€em,vl
€dh3
€dh4
€dh6

€q3

€eh2
€eh3

_H O OO OO oo
OO O OO O oo
O R = POk OO
_H O OO OO oo

—~

[y

~

SO oo OO oo
SO O, OOOo
[N eleNoll =Rl

In this expression the effects, which can be corrupted by disturbing events, are removed.
The result of the detectability analysis is shown below,

Ri=(x 0 0 =z 0 1 0) (4.27)
wherex corresponds to the fault not robust detectable. Here it is seen that only one fault
is distinguishable from the other faults, when all the effects corrupted by disturbing
events are removed.

4.4 Detection Algorithm for the Centrifugal Pump

In this section an example of a robust signal-based detection scheme is developed. The
obtained detection scheme is tested on a test-bench particular developed for this purpose.
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4.4.1 Decision Logic

In the analysis presented in the previous section the system was assumed to be disturbed
by 8 different disturbing events, see Section 4.3.3. If this assumption is relaxed by
removing the disturbing event; the robust detection properbilities are increased. Re-
moving this disturbing event is the same as assuming that the supply voltage is balanced
at all times. Now consider the sensor configuration including the following sensors,

e Current sensors.
¢ \oltage sensors.
¢ Low bandwide pressure difference sensor.
With this sensor configuration the result of the FPA is the following,
R,=(1 100 110 R=(10=z 2 01 x

where ther's in R; indicates that the given fault is not robust detectable (the interpreta-
tion of R, andR; is described in Section 4.3.5). FroR). it is seen that four faults are
logical robust detectable. This means that the following fault vector is detectable using
the considered sensor configuration,

f=(fa fm for fin1) -

The connection between the measurable effects, and the faults and disturbing events is
in this particular case given by the following logical equation,

Cem.i3 1 110 ://}1
eans | = 0 0 0 1 fhl , (4.28)
€dha 0110 ff’i

where the measurable effects not in use are removed. From (4.28) it is easy to see that
the faultsf;,; and f,,,; are indistinguishable as they affect the same measurable effect.
This is also shown irR;. Likewise it is seen irk; that the faultsf.; and f;,,; can be
distinguished from the remaining two faults. This is confirmed by examination of (4.28).
The detection logic is very simple in this case, and is given by,

€em,i3 — fel
€em,is V €dna — [n1 (4.29)
€em,i3 V €dha — fml '
€dns — fin1 -

In this expressioa.., ;3 indicates frequency components of the length of the Park trans-
formed motor currents, where the length of the Park current vector is given by,

||isqu = HquisabCH :
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In this expression the same notation as in Chapter 3 is used. Theegffecbrresponds

to zero difference pressure, when the pump is running. Finally, the effgctcorre-
sponds to low fregency harmonic oscillations in the pressure measurements. Here low
frequency components correspond to frequencies larger than 0 [Hz] and up to 2-4 times
the supply voltage frequency.

442 TestResults

To test the validity of the decision logic, derived in the previous subsection, data sets ob-
tained by simulating faults on a centrifugal pump is analysed. These data are obtained by
running tests on a test-bench particular developed for testing fault detection algorithms
in this project. A sketch of the test-bench is shown in Fig. 4.10. The pump used in the
test-bench is a Grundfos (&) CR5-10 pump.

Figure 4.10: Sketch of the test-bench. The measurements are the electrical quantities,
the pressure differendé,, delivered by the pump and the volume flow through the pump

Qp-

In the tank and pipe system, connected to this pump, the Jale used to model
disturbances in the system. The inter-turn short circuit is simulated by shorting windings
in phasex in the costimized designed stator particular developed for this purpose. Dry
running is simulated by closin§> and openingVs, and rub impact is simulated by
adding an extra force on the shaft. During the test, presented here, this is done by
mounting twist on the shaft, which rubs against the mechanical connection between the
pump and motor. Hereby an oscilating force, similar to the one expected in a pump
during fault f,,,1, is added. Finally, clogging inside the pump can be simulated by the
closing valveV,.. However, this valve simulates clogging of for example an inlet filter,
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Table 4.5: Summing of the test results. Here, the faults denoted inter-turn, Dry-running,
and rub-impact correspondsfg, /.1, andf;,1 respectively. Likewise, and increase in
0is, andoy, corresponds te., i3, andegn4 respectively. Finally, whep;, approximate

zero it corresponds te;,3.

\Normal Inter-turn  Rub-impact  Dry-running

Mis | 2.7366 5.2066 4.6263 2.0450
ois | 0.0037  0.4954 0.0141 0.0041
un | 2.2178 2.2561 1.6402 0.1054
on | 0.0003 0.0006 0.0067 0.0010

and not clogging in one of the channels in the impeller, which was assumed in the logical
analysis. Therefore, results from this test are not considered here.

The measurable effects considered in these tests are affecting the current and the
pressure measurements, therefore only these will be analysed in the following test re-
sults. To evaluate the robustness of the approach, signals obtained on the pump at con-
stant speed and at different positions of val{ieare analysed. The different valve po-
sitions simulates the no fault condition at different hydraulic loads. Results from this
test are shown in Fig. 4.11. From these test results it is obvious that the DC-level of
the considered signals are not usable for fault detection. This was also predicted by the
FPA-analysis performed in Section 4.4.1.

Figs. 4.12, 4.13, and 4.14 depitch the current and pressure signals when the pump
is exposed to the three faulfs,, f..1, and f;,1 denoting inter-trun short circuit, rub
impact, and dry running respectively. The results of these tests are summarized in Table
4.5. In the evaluation of the results, ando;, are used as measurements of the end-
effectse.., ;1 andepq respectively. The end-effeety,s is assumed triggered when
pr = 0.

Considering the results presented in Table 4.5 it is seewthat increased consid-
erably in the case of the inter-turn faylt; and the rub-impact faulf,,;. Comparing
these results with the decision logic in (4.29), and remberingdhais a measure of
the end-effeck,,, ;; it fits perfectly. Likewise, by using; as a measure of they,4
it is seen that the rub-impact faulfs,; is the only fault which increases,. This also
fits the results of (4.29) perfectly. Finally, the only fault forcing close to zero is the
dry-running faultf;,;. As u, = 0 is considered a measure @fy,; this also fits the
results of (4.29).

4.5 Discussion
In the literature it is described how Failure Mode and Effect Analysis (FMEA) and Fault

Propagation Analysis (FPA) are used in the design of Fault Tolerant Control (FTC).
However, these tools are general analysis tools, and could as well be used in the design
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Figure 4.11: Results obtained when running the pump at constant speed and different
positions of valvé/;. The change in valve position simulates different load condition of
the pump.
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(b) Pressure difference across the pump.

Figure 4.12: Results obtained when introducing an inter-turn short circuit in phafse

the induction motor stator. The fault is introduced at time 6.05 [sec] and removed at time
5.75 [sec]. The mean and variance of the two presented signals are calculted from data
between the two indicator lines. During the test the pump is running at constant speed
and with valveV; fixed at a constant position.
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Current [A]

Pressure [bar]

05 I I I I I I I I I
0 5

Time [sec]

(b) Pressure difference across the pump.

Figure 4.13: Results obtained when introducing a rub-impact fault on the pump. Here,
the pump is affected by the fault during the whole data series. The mean and variance of
the two presented signals are calculated from data between the two indicator lines. Dur-
ing the test the pump is running at constant speed and with Valfi&ed at a constant
position.

of Fault Detection and Identification (FDI) alogrithms. In this chapter these algorithms
are used as analysis and design tools in the design of signal-based FDI algorithms.

In the first part of the chapter some theoretical considerations on using FPA in the
design of signal-based FDI are considered. It is well known that some workarounds are
necessary in the FPA when loops occur in the system model. Normally, this is handled
by cutting the loops and then treat the cutted effects as additional faults in the system. In
this chapter an algorithm for identifing the optimal cuts in the loops is developed. From
the result obtained using this algorithm it is easy to find the connection between the
faults in the system and any set of end-effects. This can be done by using a theorem also
prestented in this chapter. Hereby the step of cutting loops in FPA is fully automated,
meaning that the only manual work necessary in the FPA is to set up the event model of
the system. The developed algorithm can be used in the design of FTC as well as FDI.

One of the main concerns in the design of FDI algorithms is how to handle dis-
turbances in the system. This is necessary to avoid generating fault alarms. To treat
this problem in the frame work of the FPA, it is proposed to define a set of disturbing
events. These disturbing events are treated as faults in the FPA analysis, meaning that
the connection between faults as well as disturbing events can be established using the
automated FPA. When this connection is established the connection between disturbing
events and end-effect is used to identify those of the end-effects, which will be corrupted
by disturbing events. Hereby it is possible to find the end-effects, which can be used for
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Figure 4.14: Results obtained when introducing a dry running fault at the test setup.
The fault is introduced at time 3.5 [sec] and removed at time 10 [sec]. The mean and
variance of the two presented signals are calculated from data between the two indicator
lines. During the test the pump is running at constant speed and with Wafieed at a
constant position.

fault detection in a robust manner. A theorem for doing this is developed in the chapter.

In the second part of the chapter the FMEA and FPA are used in an analysis of
a centrifugal pump. First the FMEA is used to identify all faults expected to happen
in a centrifugal pump. This result can be used when a fault detection scheme should
be developed, as it contains information about the faults, which should be expected in
a centrifugal pump. In the presented analysis a list of possible disturbing events are
also included. The results of the FMEA are used in the FPA to analyse different set
of measurable end-effects for their fault detection capabilities. The analysed end-effects
are all measurable by conventional sensors, meaning that only voltage, current, pressure,
and flow sensors are considered. This analysis shows that the sensor configurations
analysed have pure detection capabilities, when all identified disturbing events are taken
into account. However, by relaxing the number of disturbing events a robust signal based
detection algorithm is developed, using only current and pressure measurements. This
algorithm is tested on a test-bench, where it is shown to work as expected.

83



Chapter 4: System Analysis and Fault Modelling

84



Chapter 5

A New approach for Stator Fault
Detection in Induction Motors

Stator faults are according to (Kliman et al., 1996) the most common electrical faults
in electrical motors. Moreover according to (Bonnett and Soukup, 1992) most of these
faults start as an inter-turn short circuit in one of the stator coils. The increased heat due
to this short circuit will eventually cause turn to turn or turn to ground faults, and finally
lead to a breakdown of the stator, (Wiedenbrug et al., 2003) and references included. The
time, from an inter-turn short circuit has occurred to breakdown of the stator, can be very
short. In (Gerada et al., 2004) it is argued that the time from an inter-turn short circuit
has occured to the temperature in the short circuit exceed the breakdown temperature of
the insulation can be as small as 1 to 2 [sec].

Inter-turn short circuits are caused by several different influences on the stator. For
example mechanical stress during assembling or during operation can create scratches
in the insulation, which again can cause short circuits. If the motor is placed in wet
environment, moisture can cause flow of current from scratch to scratch, which can
make a hot spot and thereby destroy the insulation. Moreover, if the motor is supplied
with a PWM voltage source, partial discharges due to very high amplitude alternating
voltage between the turns can degrade the insulation over time and cause a short circuits.

In the literature different approaches are proposed for detection of inter-turn short
circuits. In (Cruz and Cardoso, 2001) the stator currents are transformed using the Park
transformation. Second order harmonics in the length of the transformed current vector
is then used for fault detection. In (Cash, M. A. et al., 1997; Garcia et al., 2004) oscilla-
tions in the voltage between the line neutral and the star point of the motor are used as
a fault indicators. This is also shown in (Tallam et al., 2002) using a model of a faulty
motor. In (Lee et al., 2003) estimation of the negative impedance of the motor is used
as a fault indicator, and in (Arkan et al., 2001) the negative sequence current is used for
the same purpose. In (Briz et al., 2003) high frequency voltage injection in the supply
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voltage is utilized to create a response on the motor current. This response contains
information of the inter-turn short circuit fault.

In this chapter a model-based approach is proposed. The proposed approach is based
on a model of the induction motor including an inter-turn fault in the stator. Different
approaches for modelling inter-turn short circuits in the stator windings are found in the
literature. In (Joksimovic and Penman, 2000) a higher order model is used. This model
is an extension of the model presented in (Luo et al., 1995). This type of model is used
for simulating higher order effects in the motor, but the obtained model is of high order.
The inter-turn short circuit fault has its main harmonics in the lower frequency range.
Therefore observers designed on the basis of this type of model will be of unnecessary
high order for this kind of fault. In (Williamson and Mirzoian, 1985) a steady state
model of both inter-turn and turn-turn faults in an induction motor is developed using a
low order model. In (Tallam et al., 2002) a transient model of the same order as the one
presented in (Williamson and Mirzoian, 1985) is developed. This model describes an
Y -connected induction motor with an inter-turn short circuit in phase

In this chapter an adaptive observer is proposed for estimation of the inter-turn short
circuit fault. Theoretical considerations on adaptive observers can for example be found
in (Besancon, 2000; Rajamani and Hedrick, 1995; Cho and Rajamani, 1997). Based on
these contributions a new observer scheme is proposed, specially designed for handling
bi-linear systems. The observer is formulated in general terms, hence is usable in other
applications. The proposed observer is capable of simultaneously estimating the speed
of the motor, the amount of turns involved in the short circuit, and an expression of the
current in the short circuit. The observer is based on a model, developed particular for
this purpose. This model is based on the same ideas as the model described in (Tallam
et al., 2002). However, the model developed in this chapter is valid for Yetnd
A-connected induction motors, and does includes both inter-turn and turn-turn short
circuits. Moreover, the model has a more useful structure compared to (Tallam et al.,
2002). Using three copies of the designed adaptive observer the phase affected by the
inter-turn short circuit is identified using an approach described in (Zhang, 2000).

As a model-based approach for fault estimation is proposed in this chapter, the chap-
ter starts by deriving a model of the induction motor with an inter-turn short circuit in
Section 5.1. This model is in Section 5.2 used in the design of the proposed adaptive
observer. In Section 5.3 test results from tests on a customized designed motor are pre-
sented. Finally concluding remarks end the chapter.

5.1 Model of the Stator Short Circuit

As described in the introduction, this chapter is concerned with detection of inter-turn
short circuit faults. In this work the model-based approach is used, meaning that a
model of the motor is needed in the derivation of the FDI algorithm. The derivation of
this model is considered in this section, meaning that a model of an induction motor
including a stator fault is derived.
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A turn-turn short circuit denotes a short circuit between windings in two different
phases of the stator, see Fig. 5.1. Here a short circuit between plasab in a
Y-connected and A-connected stator is shown.

isb/
+
: sb
'
c
+ iSC
(a) Short circuit between turns in phasand (b) Short circuit between turns in phasand
bin aY-connected stator. b in a A-connected stator.

Figure 5.1: Simplified electrical diagram of a three phdssonnected and\-connected
stator with a turn-turn short circuit between phasandb.

An inter-turn fault is, in contrast with the turn-turn fault, a short circuit between
windings in the same phase coil. However, an inter-turn fault can be treated as a special
case of the turn-turn fault, as it can be modelled by assuming that no turns, of for ex-
ample phasé, are involved in the short circuit. However, it can be argued that this is a
rather limited model assumption for the inter-turn fault, because the short circuit always
must be connected to the end point of the phase coil in this case. But, if the electrical
circuit is assumed linear, all short circuits in a coil can be represented by a short circuit
connected to the end point of the given coil. This new short circuit must of cause have
the same amount of turns as the real short circuit.

In the following, a model of an induction motor, including a turn-turn short circuit
between phase andb, is developed. The model is developed under the assumption that
the short circuit does not affect the overall angular position of the coil in the motor.

5.1.1 The Y-connected Motor inabc-coordinates

First theY-connected motor is considered. Setting up the mesh equations it the
connected motor shown in Fig. 5.1(a) and rearranging these equations, a model de-
scribing a motor with a short circuit between phasagndb is found. Using the matrix
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notation presented in Chapter 3 this model is given by the following set of equations,

A, e
Vsabe = T (isabc - 'Y'Lf) + % (51a)
di
’YTVsabc = rflf + Zf% (51b)
: d rabc

0 =rpirqpe + % (51C)

1/}sabc = ls(isabc - 7Zf) + lm(e)irabc (Sld)
1lbrabc = lTiTabc + lm (9)(isabc - '7Zf) 5 (51e)

where (5.1a) and (5.1d) describe the voltages and the flux linkages in each of the stator
phases, (5.1c) and (5.1e) describe the voltages and the flux linkages in each of the rotor
phases, and finally (5.1b) describes the current in the short circuit. In these equations
Vsape CONtains the voltages across each stator phase, is the current running into
each stator phase, amgis the current in the short circuit. The matriags r,, 15, 1.,
andl,,(#) have the same form as in the case of a motor with no faults. These matrices
are given in Section 3.2.1.

The vectory in (5.1a) to (5.1e) represents the position and the amount of turns in the
short circuit. The vector is, in the case of a short circuit between phasdb, given by

vy=[1a —w 0", (5.2)

wherey, is the amount of turns affected in phas@ndy, is the amount of turns affected
in phase by the short circuit. The inductor and the resistor in (5.1b) are given by

lf = (’Ya(l - 7@) + ’Vb(l - ’Yb)) lis, rf = (’Ya(l - ’Ya) + 'Yb(l - rYb)) rs + 71 (53)

wherer, is the stator resistancg, is the leakage inductance of the stator, anis the
resistance in the insulation break.= oo means that no short circuit has occurred and
r; # oo means that a leakage current is flowing. The evolution from cotor; =0

is very fast in most insulating materials, meaning that the value cén be assumed to
equal eithero or 0 in most cases.

5.1.2 TheA-connected Motor in abc-coordinates

To set up the model of thA-connected induction motor the same procedure as used in
the case of & -connected motor is used.

Setting up the mesh equations for theconnected motor depicted in Fig. 5.1(b)
and rearranging these equations, a model describin§tbennected motor with a short
circuit between phaseandb is obtained. Using the same matrix notation as used in the
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previous section the following set of equations is obtained,

d
Vsabe = Ts (isabc - 'Ylf) + % (54&)
. di

YV sape = reip + lfd—gc (5.4b)

. A,
0 = rrirape — e 5.4c
Trlrgbe + 7 ( )
11bsab(; = 18 (isabc - 'YZf) + lm (e)irabg (5.4d)
wrabc = 17‘i7’abc + lm(a)(isabc - "Ylf) . (549)

This model has the same structure as the one modelling4t@nnected motor. More-
over the parametess, r,, ¢, L, 1., 1,,, andl; in this model have the same values as in
the model of théY -connected motor. The only difference is the veeganodelling the
amount of turns involved in the short circuit, which in this case is given by

y=lw w 0. (55)

5.1.3 Transformation to a Stator fixeddqO-frame

Comparing the models developed in the two previous sections it is seen that the model
of theY-connected and\-connected motor has the same structure. This model structure
will in this section be transformed to a stator fixég)-frame.

Using thedq0-transformationT' 44 (0) presented in Section 3.2.2 the models pre-
sented in (5.1) and (5.4) are transformed into the following,

Vsdg = Rs(isdq - qu’ylf) + ddg’l;dq
Vso = Ts (7;50 - éTg’ﬂf) + d:ﬁfo
0= Ryirag + 200t — 200,30, 4 (5.6)
0=rpiq+ dlgizo
LG = —rrig + Y T Veaq

where the flux linkages are given by

¢qu =L, (iqu - quﬂyif) + Lmirdq

Y0 = lis(iso — 5T viy)
. : ‘ 5.7)
d’rdq = Lrlrdq + L, (lsdq - qu’ﬂf)
wTO = llrirO .

In these expressioriF,, contains the two first rows ardl, contains the last row of
T 4q40. The parameter matrices in this modkl, R, L, L,., andL,,, do all have diagonal
structures, and are given in Section 3.2.2.

From (5.6) and (5.7) it is seen that it is convenient to define a new current vector
i’sdqO = 15490 — Taqoyis. This current equals the amount of the stator current, which
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generates air gab flux. Rewriting (5.6) and (5.7) using the same procedure as described
in Section 3.2, and introducing the curréf)t , the induction motor model becomes,

s/
, di

L éfq =—(Rs + R;)i;dq + (R} — 2pwrJ L7, )imdg + Vsdg
di .
ll;i 50 = —rily 4 Uso (5.8)
L, 725‘1 = R'/ri;dq - (R) - prTJL/m)imdq
UG = —rsis + 7 T Vadqo »

where
R/ =L, L 'R,L 'L, L, =L, -L,L 'L, L, =L,L 'L, ,

meaning that the new matrices retain the diagonal structure.

5.1.4 Grid Connections

In the model presented in (5.8) the voltageg,o and the currents, 4,0 are defined as

the quantities related to each phase in the motor. These are in general not measurable,
therefore the connection between these quantities and the quantities of the terminal of
the motor must be establised. This is done in Section 3.2.3 in Chapter 3 for an induction
motor without stator faults. In the following the connection established in Section 3.2.3

is used to obtain the final model of the and A-connected induction motors with an
inter-turn short circuit in the stator.

The Y-connected Case

From Section 3.2.3 the relationships between the phase quantities and the measurable
quantities are given by

Vsdq = Vitdg 1tdg = lsdg

Vg0 = V0 — Vo 140 = 150 ,

where quantities with subscriptare related to the phases of the motor, and quantities
with subscriptt are related to the terminals of the motor, and are therefore measurable.
Moreover in theY-connected casg, = i;0 = 0. Introducing these relationships in
(5.8) the model of the'-connected induction motor with a stator short circuit becomes

di’

L, ;:q = —(Rs + R} )iy, + (R} — 2pw, L, )imdg + Vidg (5.9a)
di’so -/
lis 5 = Tsiko + (vio — o) (5.9b)
dip, ) -
Ly, ldtdq =Ry, — (R, — 2w JL, imdg (5.9¢)
di , -
lj»Tg = —rsig + v T 3o (Viago — Vo) , (5.9d)
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and the measurable currents are given by
itdq0 = i;qu + Taq07viy - (5.9¢)

From (5.9e) it is seen that, = —%(7,1 — )iy @siyy = 0 in the Y-connected case.
Using this expression in (5.9b), and using the obtained expression to elimjpatey,
in (5.9d) a new expression of the short circuit currgnts found. This expression is
given by

Ly%t = —Ryip + 47Ty Viag , (5.10)

WhereT;q1 is a matrix consisting of the two first columns’li‘gqlo, andL; andR; are
scalars and are given by

Ly =15+ 500 = 1)hs Rp=ri+ 5(va —)°rs -

The final model of thé¥ -connected induction motor then becomes

dil,, ) .
L, (R, ROy, + (R — 2pnT L iy + Vidg
L., dl%éq = R;i/sdq — (R} = zpwr Ly, )imag
, -1
Lf% —Ryiy —|—")’Tquthq
itaq = 154, + Taqvis

(5.11)

where'y:(ya —%% O)T.

The A-connected Case

From Section 3.2.3 the relationships between the phase quantities and the measurable
quantities in theA-connected case are given by,

Vsdg — BU 0 Vidg itdq _ Cz 0 isdq
Us0 0 0] | w0 110 0 O0f |is0]’

here again quantities with subscripare related to the phases of the motor, and quanti-
ties with subscript are related to the terminals of the motor, and are therefore measur-
able. Introducing these relationships in (5.8) the model ofAtheonnected induction
motor with a stator short circuit becomes

di’

L ;td‘l = —(Ry + RL)ily, + (RL — 2, JL imaq + BuViag (5.12a)
d'l
Lis ;;0 — (5.12b)
’ dimdq Y ’ /N
Lo dt = Nplsgq — (R, — szTJLm)lmdq (5.12¢)
di ‘ _, [B,
PoE = ey [ v (5.12)

91



Chapter 5: A New approach for Stator Fault Detection in Induction Motors

and the measurable currents are given by
itdq = [Cl 0] (i/sdq() + qu()'yif) . (5128)

In the A-connected case the curréfyy = i50 — %(’ya — v)is. From (5.12b) it is seen
thati’, — 0 ast — oo, meaning that,, — %(% — )iy ast — oo. This shows that
the circulating current in thé\-connected motor will be proportional to the current in
the short circuit ;.

The final model of theA-connected induction motor with a short circuit fault be-
comes

di’ . .
L= = —(Rs + R’lr')llsdq + (R}, — zpw,rJL7 )imdg + Boviag
di, . .
L;n ldd;q = R;J;dq - (R;n - Z;DWTJL;”)Imdq
Uy = —rpip + 7 Ty Buvigg
itqgq = Cillsdq + C;Tygviy

(5.13)

wherey = (o W O)T in the A-connected case, aril’.lgq1 consists of the two first
columns 01’1‘07;O as in theY-connected case.

5.1.5 Torque Expression

An expression of the torque developed by an induction motor, not affected by faults,
is derived in Section 3.2.4. In the following the same approach is used to derive an
expression of the torque developed by an induction motor affected by a turn-turn short
curcuit fault in the stator. This torque expression is based on the same idea as used in
(Tallam et al., 2002). From (Krause et al., 1994) the torque produced by the induction
motor is given by

1Oy (0)
Te:zplf fae i,

(5.14)

wherei, is the current in the stator windings ahds the current in the rotor. In the case

of a stator with faults, the current in each part of the faulty windings must be defined.
In the case of a stator with a single turn-turn short circuit between phase b, the
currentsi; andi, are given by

1 = [Zsa lsa — Slgr‘(P)ll)Zf 1sb  lshb — Slgr‘(PYZ)Zf Zsc]
. . . . T
1, = [lra lrb Zrc] ’

where~; and v, are the first and second elements~inrespectively. The matrix
14 (2p0r) is the mutual inductance matrix between the stator and ratgy,(z,6;)

92



Section 5.2: An Adaptive Observer for Inter-turn Fault Detection

is in the case of a turn-turn fault between phasendb given by,

(1= 7a)cos(®)  (1=7a)cos(f+ ) (1= 7a)cos(® - 3)

Ya cos(6) Yo cos(f + 2F) Yo cos(f — 2F)
(8 = b |(1—w)cos(®0— ) (L—w)cos(8) (1) cos(d+ %)
Yp cos(6 — 2F) b cos(f) ¥p cos(6 + 2F)
cos(f + 2F) cos(f — 2¢) cos(0)

The torque expression in (5.14) can be rearranged to become

7 O (2p00)

90 lrabe 5 (515)

T, = Zp (isabc - ’72)‘)
where~ is given by (5.2) and (5.5) in thé- andA-connected cases respectively.(0)
has the same structure as in the no fault case, and is given in Section 3.2.1.

Transforming the torque expression in (5.15) using the transformatigm and us-
ing thatL,,imnqq = Lrirdg + Limisdg, the following torque expression is obtained,

3 (s ./ c
T, = §Zme (zmdzsq — zqusd)

whereL! = L? /L,, meaning thal/, is the diagonal element &f/,,.
Remark 5.1.1 By examining the electrical model of an induction motor with an inter-
turn short circuit (5.11) or (5.13) and the torque expression given above, it can be seen
that no torque ripples should be expected, if the load is constant at a given speed and
the motor is supplied with a balanced three phase sinusoidal voltage.

5.2 An Adaptive Observer for Inter-turn Fault Detec-
tion

According to (Bonnett and Soukup, 1992) most stator burnouts start as an inter-turn
short circuit in one of the stator coils. The increased heat due to this short circuit will
eventually cause turn to turn and turn to ground faults and finally lead to a burnout of
the stator. In (Gerada et al., 2004) the time, from an inter-turn short circuit has occured
to an insulation breakdown due to heat, is investagated on a 15 [KW] motor. Here it is
shown that this time slot can be as short as 2 [sec]. This means that a fast and reliable
detection scheme is necessary, but also that the most important of the inter-turn and the
turn-turn faults are the inter-turn faults. Therefore, a detection scheme, which can detect
inter-turn short circuits in the stator of an induction motor, is considered in this section.

The considered detection scheme is based on the model developed in the previous
section. This model is used in the derivation of an observer which can estimate the inter-
turn short circuit faults. Only inter-turn short circuits in phasare considered, as three
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identical observers, which can detect faults in phadeandc respectively, can be used
for identification. The approach used for this is described at the end of this section and
is based on (Zhang, 2000).
In the model developed in the previous section an inter-turn short circuit in phase
is modelled by setting;, = 0 in the vectory. Doing this the parameter3; and L in
both theY - and A-connected motors can be expressed by

Ry = f(va)rs + 7 Ly = f(va)lis ,

where f(v,) equalsy,(1 — 27,) and~,(1 — 7,) in the Y- and A-connected cases
respectively. In section 5.1.1 it is argued that the resistan the expression oR; is
almost always either equal t® or 0. Therefore the assumption that= 0 is almost
always true if a short circuit has occurred. Using this and considefjias a state in the
system the model of both thé andA-connected motors with an inter-turn short circuit
can be expressed as

o/
, di

Lsd_ 41 = —(Ry + R))ily, + (R} — 2pwr L, )imdg + BuVidg
/ Imdg __ 13! / / .
Ly, djz‘: = R:lsdq - (IRT _vjprJLm)lmdq (5.16a)
A e A el I C) O} B Vidg
Ve _
ar =0
where the measurable outputs are given by
2y
itag = C; (i;dq + [Soa} if) . (5.16b)

The only differences between the model of theand A-connected induction motors
are the structures @, C;, andf(~,). In theY-connected casB, = C; = I and in
the A-connected casB, andC; are given in Section 3.2.3 of Chapter 3.

The model in (5.16) represents an induction motor with an inter-turn short circuit in
the stator. However, by setting, = 0 a motor not affected by a fault can be modelled.
This is true because setting = 0 represents a short circuit involving 0 turns, which
have the same effect on the motor performance as when no short cicuits have occured.
To ensure the validity of this model the te% must be bounded whep, — 0. The
term is given by

Va Va

f(Va) Ya(l = ava) ’

wherea equals% and1 in theY - andA-connected cases respectively. From this expres-
sion it is seen thaa;f% is bounded on the sdty, : 0 < v, < 1}, which contains all
possible values of,,.

A surprising fact when modelling the no fault case by setting= 0 is that the fault
currentiy is not equal to zero in the no fault case. This is because the model expresses
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the limit of the fault current wher, — 0, when the no fault case is modelled in this
way. The model is still correct in the no fault case, as the fault current only affects the
remaining model in the output expression (5.16b), and here the fault current is multiplied
with ~, which is equal to zero.

From (5.16) it is seen that the model of the induction motor contains one unknown
variablew,, which represents the speed of the rotor. If this variable is modelled as an
unknown but constant parameter, an adaptive observer approach can be used for state
estimations, and thereby estimation of the fault. The design of this adaptive observer is
considered in Section 5.2.1. The design of the feedback gain in the adaptive observer
is considered in Section 5.2.2, and finally the identification of the phase affected by a
given inter-turn short circuit fault is considered in Section 5.2.3.

5.2.1 The Adaptive Observer

An adaptive observer exists for the system in (5.16) if it can be transformed into the
adaptive observer form defined in Definition 5.2.1. This definition is a bilinear version
of the general nonlinear definition given in (Besancon, 2000).

Definition 5.2.1 Consider a system on the form

92 — A(u,0)z + Bu

oy (5.17)

wherez(t) € R™ contains the states of the systenit) ¢ R? contains the meassurable
outputs,® € RF contains unknown but constant parameters &hd= [I O}. This
system is said to be on bilinear adaptive form if,

1. A(u,0) is bounded for alp € Dy C R* andu(t) € U C R™, whereDy is the
parameter space and is the input space,

2. the se(A(u, 8), C) is an observable pair for evel§ € Dy andu(t) € U,
3. Ay, (u) to Ay, (u) are linear independent matrices for evaryt) € U,
4. Im{Ay,(0)}Ker{C} =0 Vie{1,2,---,k},

where
k
A(1,0) = Ag(u) + > _0iAg,(u).
i=1

Remark 5.2.1 ltem Number 4 in Definition 5.2.1 means that the only states, which can
be directly affected byg;, are the measurable states, and ti#§, (u) has the following

structure
!
) = [ A0
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due to the structure of = [I 0].

For systems on the form defined by Definition 5.2.1 an adaptive observer exists accord-
ing to the following proposition.

Proposition 5.2.1 For a system of the form defined in Definition 5.2.1 an adaptive ob-
server exists and has the following form,

42 _ A(u,0)z+ Bu+ K ~ Cz
= A(w0)z + Bu+ K(w)(y - C2) (5.18)

GE = KiZ Aei(u) (y — Cz) vVie{l, -k},
wherex; > 0, € {1,---,k} are design constantsA (u, 8) is a copy of the system
matrix defined in Definition 5.2.1 andlj, (u) is a submatrix given by

pn = [4)

If there exists d(u) stabilizing the system for evefly € Dy andu € U, i.e. there
exists aP (0) fulfilling the following Matrix Inequality (M),

(A(u,0) — K(u)C)TP(G) +P(0) (A(u,0) —K(u)C) <0

—P(0) <0. (5-19)

Proof: Defining the state estimation error@s = z — 2, and the parameter estimation errors as
ey, = 0; — 0;, the dynamics of the errors become

é. = (A(u,0) —K(u)C)e. + >, Ay, zey,
o, = —kiz' Aje. Vie{l,2,--- k},

where it is used thaty, = —6; asf; = 0. This error equation can be reformulated by defining
the following parameter error vector and matrix,

T N N ~ ~
€g — [egl €, e egk} Ag(Z) = [Aglz A92Z s Agkz] .
Using this vector and matrix in the description of the error system it becomes,

&] - [0 Kwo) Ave)] fe]

co —KAo(2)" 0 | leo
- LIJ g} {(A(ufo)‘;(;;u)c) AHO(Z)} {20} , (5.20)

I
0

[eZT e;{]T and let the following quadratic function be a Lyapunov function candidate for the
error system (5.20),

v=el {P(G) 0} e ,where [PE)O) (I)} ~0.

T
wherex = diag{k1, k2, , kn }, Meaning that{(l) ,ﬂ = { ,ﬂ > 0. Now definee =
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Taking the derivative along the trajectory of (5.20) and recognizing that

(o N R O[O

foralle € R’f*’“. This is true as the matrix in the expression is skew symmetric. Moreover,
%ﬁf') = 0 asf = 0. Using these statements the derivative of the Lyapunov function candidate
becomes,

V=el <(A(u, 9) — K(u)C)" P(6) + P(8) (A(u,0) — K(u)C)) e. .

This shows thae, — 0 ast — oo if (5.19) is fulfilled for everyu € U and@ € Dy. To show

that the error of the parameter estimate also tends to zero the La-Salle’s theorem is used (Khalil,
2002). This theorem can be used to state that an error system as (5.20) is asymptotic stable if the
only positive invariant space with respect to (5.20HnC R"™* ise = 0, whereE is the space

of all error vectorse, which makeV = 0. Now consider (5.20) whel = 0,

é. = Ag(2)es = X1, Ag,zey,
&y =0.

This shows that the positive invariant spaces given bye. = 0 andEf:1 Ay, zep, = 0. From
Definition 5.2.1 itis known thafAys,, Ay, , - - - , Ag, } are linearly independent. Therefore, there
must exist time series(t), t € [to, to + T, which guarantees that"_, Ag,zeq, = 0 implies
thatey = 0. This leads to the following persistently of excitation demand,

to+T
3o, a2, T allg/ Ag(z(t))" Ag(2(t))dt < ol .

to

O

Using a nonlinear transformatioh on (5.16), this system is transformed into a form,
which fulfills Definition 5.2.1. The transformatio® : x — z maps the original states
T T
x = [i’sdq i is %} (5.21)
into the new states € R, and is given by
2
. %a | -
llsdq + [30 :| if
. e, [2y
B(x) = | L Ll + i+ 1L 01| 20
2 .
3alf

Ya
Lsf(Ya)

When this transformation is used on system (5.16) itis transformed into a bilinear system
on the form,

% =(Ag+w-A,, +v54A,,,)z+ Bu

G (5.23)
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where the input vecton = v,4,, the output vectoy = i,4,, and the matrices in (5.23)
are given by

r RAR. 1, 7
-L, 'R, +R.) —-L/, 'R, L.7'R. I " L.| 0o
0
Rs — Ts
AO = LI _1R 0 |:Lfm l15:| 0
m S O

0 0 —5 0
i 0 0 0 0]

2

. 00 0 3L

2pd =2, JLLTLL 000 0
A 0 0 00 A 0 0 o |

S 0 0 0 vea = { 8“]

0 0 00 00 0 .

ls

00 0 0

| A
/S -1
B= " B, C=C;[I 0 0 0].
0

If w, is treated as an unknown but constant parameter, system (5.23) fulfills Definition
5.2.1 except for the observability condition wheyy = 0. However, it can be argued
that, when the induction motor is running, the fraction of time whepe= 0 tends to
zero. This is so becausg, passes zero but does never stay there during normal oper-
ation. Therefore the system described by (5.23) is observable at all the times, meaning
that Definition 5.2.1 is fulfilled.

As (5.23) fulfills Definition 5.2.1 an adaptive observer is given by Proposition 5.2.1.
This observer becomes

2 — (Ag+ OrAy, 4 VsaAy,,)z + Bu+ K(u)(y — Cz)

dE T s
Oa:§ G =rly—Cz)'A,, 2 (5.24)
x=® 1(z).

In this designK (u) is the stabilizing feedback gain afid< « is the adaptation gain.
x should be chosen such that the adaptation speed is suilglple. should be chosen
according to Proposition 5.2.1. The calculatiorfdfu) is considered in the following
section.
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5.2.2 Calculation of the Observer Gain

Proposition 5.2.1 states thatla(u) must exist, which guarantees that the following
Matrix Inequality (MI) is fulfilled,

(A(u,8) — K(u)C)" P(8) + P(0) (A(u,8) — K(u)C) < 0 (5.25)
-P() <0 '
forallu € U and@ € Dy. In the induction motor case this is the same as saying that the

MI must be fulfilled for all possible values of; andw,..

Before the design of the induction motor case is considered a general approach for
analysis and synthesis of the observer gain is given. This analysis and synthesis approach
is restricted to the subset of systems defined in Definition 5.2.1, and werg) is
given by

k m
A, 0) =Ag+ ) 0:A;i+ ) ujAry; (5.26)

i=1 j=1

meaning tha# (u, 0) is affine with respect ta and@. Here Im{ A ; } (" Ker{C} = 0 for
alli € {1,---,k} must be true for Definition 5.2.1 to be fulfilled. Moreovéx(u, 6)
must be bounded, which is the case for (5.26) when®yesndl{ are bounded sets.

Analysis

First the analysis of stability is considered when a candidat&far) is given. Assume
thatK(u) has a structure such that it can be writterka(s1) = Ko + 37", u,;Kj;, i.e.

it is affine with respect taw. If this is the case the Ml in (5.25) is affine with respectito
Moreover, assume that the setandD, are on a form such that the set of unknowr®

in (5.25) can be descibed by a convex hull (Scherer and Weiland, 1999), see Appendix
B.2. Let this convex hull be given by

A= CO{A()} , Ag = {(u, 0) | u; € {Qj,ﬂj},ei S {Qiagi}} R
whereu; andw; j € {1,---,m} are elements i/, forming a convex hull ori/.
Likewise,d, andd; i € {1,--- , k} are elements iy forming a convex hull orD,.

With this choise ofK(u) and Ay, (5.25) can be reformulated as a Linear Matrix
Inequality (LMI). This means that feasibility of this LMI on the sAl, is a proof of
stability of the adaptive observer (5.18), with the choB&m). The LMl is given by the
following expression (Scherer and Weiland, 1999, Prop. 2.40), see Appendix B.2,

(A(u,0) — K(u)C)T P(8) + P(8) (A(u,0) — K(u)C) < 0

—P(0) <0 (5.27)
14?1:’z + PiAi - 0 s
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which must be fulfilled for al{u, @) € Ap and alli € {1,--- ,k}. In this LMI P(0) is
on the formP(0) = P, + Zle 0;P;.

The feasability of this LMI states that the adaptive observer in Proposition 5.2.1
is stable for the giveK(u). However, if there are limits on the change rate of the
supply signals, this rate limit can be incorporated in the stability analysis, relaxing the
condition. To see this, lai be contained in the sek given by

A =co{Ay} , Ag =cofu|a; € {\,N}}
and letP in (5.27) be an affine function of bo#h andu. Then the stability condition

can be formulated by the following LMI (Scherer and Weiland, 1999, Prop. 2.43), see
Appendix B.2,

(A(u,0) — K(u)C)" P(6,u) + P(0,u) (+) +P(0,A) < P
~P(6,u) <0 (5.28)
ATP, +PA; = 0,

wherex denotes a copy of the contents of the previous bracke®fdu) is on the
formP(0,u) = Py + Zle 0:;P; + >, u;P k. The LMI must be fulfilled for all
(u,0) € Ag,xe Agandalli € {1,--- ,k+m}.

Remark 5.2.2 The LMI's presented in (5.27) or (5.28) are not the only LMI formulation

for stability analysis of (5.18). The problem can also be transformed to the standard
formulation used in the robust control community. Doing this performance demands
defined in the frequency domain can be included in the analysis. However, this approach
is not prestented here, as it is the author oppinion that (5.27) and (5.28) are easier to
follow, due to the straightforward connection to Lyapunov stability.

Synthesis

The LMI presented in (5.27) and (5.28) can only be used for analysis, bePaissa
function of@ € Dy andu € U. However, introducing the restriction thRtis constant
over Dy andi{, the LMI is made solvable foK (u) = Ko + >~ u;K;. Introducing
this restriction in (5.25) it becomes

(A(u,0) —K(u)C)" P+ P (A(u,8) — K(u)C) < 0

P <0, (5.29)
which must be fulfilled for all(u,8) € A,. Using the transformations; = K;P

j€{0,1,---,m}, (5.29) can be rewritten to become

T
(P (AO +yk HkAi) - LOC) + ( *)+
T
5.30
Z;n:luj (PAk+j_LjC) + <*) <0 ( )
-P <0,
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wherex denotes a repetition of the contents of the previous bracket. This expression is
affine inP andL; j € {1,--- ,m}, meaning that if a solution exists f@& andL; it
can be found using the LMI (5.30)P has full rank, meaning that the transformation
L; = K,P is solvable for allK; j € {1,--- ,m}.

The assumption th&(0) is constant for alb, is the same as saying that the param-
eters in@ can change arbitrary fast. However, the parameélene assumed constant in
the design of the adaptation part of the observer, meaning that conservatism is introduced
by this calculation oK (u).

Observer Gain in the Induction Motor Case

The only unknown parameter in the induction motor case is the spgedeaning that
0 = w,. Likewise, there is only one input making the system bilinear, namglyi.e.
u = v,q. Based on this the convex hull for this system is given by

A = CO{AO} ) A() = {(vsde’l“) | Vsd S {Qsdaﬁsd}awr S {ﬂmwr}} 9

wherev,; < 0 < U4 andw,. < 0 < @,. In Section 5.2.1 it is argued that the induction
motor system is not observable wheyy = 0. Therefore, the Ml (5.25) can never have
a solution onA. Itis also argued that,; only goes through zero and never stays there.
Therefore, the fraction of time whekg,; = 0 tends to zero. Using this argument it is
only necessary to check stability in the §etq | v,y < vsa < Tsq}\ 0. This can be
done by reformulating the Ml (5.25) obtaining the following LMI,

(A (vsds wr) — K(v54)C)" P(w,) + Pw,) (%) <0
(A(=vsa,wr) — K(—0:a)C) P(w,) + Pw,) (%) <0 (5.31)

wherex denotes a copy of the contents of the previous bracketAdng,;, w,) = Ag +
wrA,, + vsqA,,,. The matriceAy, A, , A, 4, B, andC in the above LMI are all
defined in Section 5.2.1. This LMI should be feasible on the set given by

A0 = {('Usdywr) | Vsd S {6,53(1},&)7« S {ETWQT}} €> O

for the adaptive observer to exist. For the induction motor used in the tests presented at
the end of this chapter the conservatism imposed in the synthesis is too restrictive, i.e. no
solution can be found. However, it is still possible to check stability for a gién, ;)

without introducing conservatism in the analysis. This is done by using the analysis
approach presented by the LMI (5.28), taking limits on the change rate of the supply
signalv,g into account. Utilizing this approach the stability of the observer with a given
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feedback gaifK (vsy) is checked by the LMI,

(A(vsg, wr) — K(v50)C)" P(wy, vsa) + P(wr, vsq) (%)
+P(0,054) <Py (5.32a)
—P(wy,vsq) < 0 (5.32b)

(A(—vgq,wy) — K(—vsd)C)T P(wy, —vsq) + P(wy, —vsq) ( %)
+P(0,95q0) <Py (5.32¢)
~P(w,, —vsq) < 0 (5.32d)

AT P, +P, A, =0 (532
AT P, +P, A, =0, (5320

VUsd

wherex denotes a copy of the contents of the previous bracketAgnd;, w,) = Ag +
wrA,, + vsqA,,,. The matriceAy, A, , A, 4, B, andC in the above LMI are all
defined in Section 5.2.1. This LMI should be feasible on the set given by,

{(Usdar[}sdywr) ‘ Vsd S {eyisd}»i)sd € {Aax}awr S {Qrawr}} € > 0

for the adaptive observer to exist. In the LMI the inequalities (5.32a) to (5.32d) are
introduced to check stability of the two regions definedlby. v,y andvsg < 0 re-
spectively. The inequalities (5.32e) and (5.32f) are introduced to guarantee convexity
of (5.32a) and (5.32c) with respect to the parameteand the input,,. The analysis
approach presented by the LMI (5.32) is utilized in the design of the observer, used in
the tests prestented in Section 5.3.

Remark 5.2.3 In the above text it is argued that the observer is stable for all values of
the voltagev,, between-v,4 andv,y [V] except forv,g = 0, and all speeds between

w, andw, [rad/sed], if the LMI (5.32) is feasiable. This is not the same as saying that it

is possible to estimate the fault and speed at zero speed, due to demands for persistence
of excitation, see the proof of Proposition 5.2.1.

Remark 5.2.4 Fault tolerant control can be obtained using the current vedfgr, es-
timated by the proposed observer, as input to the current controllers in a traditional
motor control system. This current is the part of the stator current producing air gab
flux. Therefore, by using this current the control is not affected by the short circuit.

This current vector is given by the two first terms of the state vector (5.21),
which is calculated using = &' (z), where® is defined in (5.22).

5.2.3 Identification of the Faulty Phase

According to (Zhang, 2000) isolation between different faults can be obtained using a
set of adaptive observers. Here it is shown that the estimatordgauit y — y is an
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indicator of the correctness of the model used in the observer design. This means that
when only one of the observer faults approximate zero it indicates that the fault modelled
by this particular observer has happened in the system. This approach can, in the case
of the induction motor, be used if three identical observers are designed, each detecting
a stator winding fault in one of the three phases. This is considered in the following.

The adaptive observe?, in (5.24), is capable of estimating an inter-turn fault in
phasea. However, the same observer can be used to estimate a fault in jphage
by using another phase sequence as argument in the transforflgiiprTo estimate a
fault in phase the following transformation must be used,

Visdqo = quOVsbca isqu = quOisbca ,

wherez peq = [msb Tse xsa]T andz € {v,i}. When these signal vectors are used
as input to the observer in (5.24), the observer can estimate faults in phasd is
therefore called,. Likewise, an observad,. for estimating inter-turn faults in phase

is found by using yet another phase sequence resulting in the following transformations,

Visdqo = quOVscab isqu = quOiscab .

Using these transformations in the approach presented in (Zhang, 2000) the overall struc-
ture of the fault identification and estimation algorithm becomes as depitched in Fig. 5.2.
Here the error signals,,, e,; ande,. are used for identification of the phase affected
by a inter-turn fault, anck,, x;, andx, are the estimates of the states including the
estimates of the fault current and the fault sizey.

The affected phase is in this work identified by comparing the square error, of each
error signale,,, e, ande,., with a predefined threshold value. The square error is
calculated using! e;.

Remark 5.2.5 The approach used here is based on a predefined threshold value. This
threshold must be chosen as a trade-off between how small a fault can be detected and
robustness in the system. However, the problem of choosing this threshold can be over-
come by comparing the square error of the three error sigegls e, ande,.. If the

levels of these error signals are alike no fault has occurred, and if a fault has occured

it is identified by the signal with the smallest square error. However, using these ap-
proaches you cannot be sure to identify the correct fault, you will just identify the fault
most likely to have occured among the modelled faults.

5.3 Test Results
In this section the identification and estimation approaches described in the previous

section are tested on an induction motor setup, where inter-turn stator faults can be sim-
ulated. The electrical circuit of the stator is shown in Fig. 5.3. The motor used in the
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Figure 5.2: The structure of the identification algorithm for identification and estimation
of inter-turn short circuits. Here,,, e,;, ande,. are used for identification of the
affected phase, ankl,, x;, andx, are the estimates of the states including the estimates
of the fault current; and the fault sizey.

tests is a 1.5 [KW] customized Grundfos motor, supplied with a Danfoss frequency con-
verter. The speed, the three phase currents, and the three phase voltages are available at
the test setup. The voltage to the motor is controlled using a linear voltage to frequency
relation, with a voltage boost at low frequencies. All tests are preformed at supply fre-
guencies around 3 z] to avoid too large short circuit currents and thereby burnout of

the motor during the tests. The tests are performed with the induction motor connected

in a A-connection as it is shown Fig. 5.3. However, similar results can be found for a
Y-connected motor in (Kallesge et al., 2004c).

In the first, of the two following subsections, the identification capabilities of the
proposed algorithm are tested. In the second subsection the estimation capabilities of the
adaptive observer are tested. In these tests the algorithm is tested against three different
operating conditions. These are,

e Constant speed at 2%i[z] supply frequency and balanced supply voltage.

e Speed changes at every 1 second between 25 anff 40gnd balanced supply
voltage.

e Constant speed at 25i[z] supply frequency and a 5 % voltage decrease in phase
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Figure 5.3: The electrical circuit of the stator in the test setup. Two points of phases
andb and their end points are available at the terminal box.

a, meaning that the supply voltage is unbalanced.

5.3.1 Test of Identification Capabilities

In this subsection the identification capability of the identification algorithm, presented
in Section 5.2.3, is tested. Three tests are performed, each testing one of the three
operating conditions described above. In each of the tests a short circuit of 5% of the
windings is introduced in phaseandc respectively. The results of the test with constant
speed and balanced supply are shown in Fig. 5.4, the results of the test with speed
changes and balanced supply are shown in Fig. 5.5, and finally the results of the test
with constant speed and unbalanced supply are shown in Fig. 5.6.

All the tests show that the phase, in which the fault is introduced, can be recognised
by the level of the observer error signal. From all three tests it is seen that this error
signal is considerable lower for the observer modelling the particular fault. However, it
is also seen that the level of the observer error signal is changing in the case of a fault,
even in the observer modelling the particular fault. This is especially a problem in the
case of a fault in phase see Figs. 5.4 and 5.5. This unexpected behaviour is due to an
inherent imbalance between the phases in the costumer-designed motor used in the tests.
The phenomenon is not so dominant in Fig. 5.6, where the supply voltage is unbalanced.
This is because the unbalance in the voltage does account for some of the imbalance of
the phases.

From Fig. 5.5, presenting the results of the test with the speed changes, it is seen
that the error signal is in average larger and is oscillating compared to the two other
tests. This is due to the violation of the constant speed assumption in the design of the
adaptive fault observers. However, it is still possible to recognize the phase, in which
the fault is introduced, using the observer error signal.

Comparing the results of Figs. 5.4 and 5.6 it is seen that, beside of the problem with
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Figure 5.4: The mean square error of the obser¢grsO,, and O, respectively. In
this test the speed is constant and the supply voltage is balanced, and faults are imposed
seperately in phaseandc.

the inherent imbalance in the phases, the results are comparable. This shows that the
algorithm is able to handle unbalanced supply conditions, which also was expected as
no assumption were put on the supply voltage in the design. This means that the observer
can manage any distortion of the supply voltage as long as it does not introduce too large
oscillations in the speed.

5.3.2 Test of Estimation Capabilities

In this subsection the estimation capability of the adaptive observer, derived in the pre-
vious section, is tested. The observer is tested under the three different operating con-
ditions described in the start of this section. In each of the tests the algorithm is tested
with no short circuit, 5% of the windings short circuited, and 25% of the windings short
circuited in phase.. The results of the test with constant speed and balanced supply
are shown in Fig. 5.7(a) and 5.7(b). The results of the test with speed changes and bal-
anced supply are shown in Fig. 5.8(a) and 5.8(b), and finally the results of the test with
constant speed and unbalanced supply are shown in Fig. 5.9(a) and 5.9(b).

All the tests have shown that the observer is stable. From the first test, presented in
Fig. 5.7(a) and 5.7(b), it is seen that the speed is estimated without any bias. It is also
seen that there is a bias on the estimated fraction of turns in the short circuit. This bias is
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Figure 5.5: The mean square error of the obser@srs©,, and O, respectively. In
this test the speed is variating and the supply voltage is balanced, and faults are imposed
seperately in phaseandc.

partly due to noise on the measurements, partly due to mismatch between the real motor
parameters and the motor parameters used in the observer, and partly due to the initial
imbalance between the three stator phases. This bias is repeated in each of the three
tests.

Results from the second test, presented in 5.8(a) and 5.8(b), show that the observer
is capable of estimating the wanted quantities despite of speed changes. Still it is seen
that the speed changes affect the estimated amount of turns in the short circuit. This is
because of the constant speed assumption used in the design. Itis, however, still possible
to use the estimate of the fault.

From the results of the last test, presented in 5.9(a) and 5.9(b), it is seen that an
unbalanced supply of 5% is not affecting the performance of the observer.

5.4 Conclusion

An adaptive observer for simultaneous estimation of the motor states, the speed, and
the amount of turns in an inter-turn short circuit is proposed. The observer is tested

on a customized designed induction motor. The tests have shown that the observer can
estimate an inter-turn fault despite of speed changes and unbalanced supply conditions.
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Figure 5.6: The mean square error of the obser¢ers0,, andO,. respectively. In this
test the speed is constant and the supply voltage is unbalanced, and faults are imposed
seperately in phaseandc.

This makes the estimation scheme usable in inverter feed induction motor drives, or in
motor applications supplied by a bad grid. Using three of these observers it is shown
that it is possible to identify the phase affected by a given inter-turn short circuit.

The adaptive observer is based on a model of an induction motor including an inter-
turn short circuit. This model is a simplification of the model presented in the start of
this chapter, as the derived model describes the motor behaviour in both the inter-turn
and the turn-turn short circuit cases. Moreover, the model describes the motor when it
is connected in & -connection as well as A-connection.

Comparing the approach presented here with traditional approaches, the main ad-
vance is that the obtained observer is based on a dynamic model of the system. This
means that the detection capabilities are not affected by dynamic changes in the elec-
trical system. The main drawback of the proposed approach is the need for the motor
parameters. However, in the cases where the approach is used in a frequency converter
application, this problem can be solved by parameter identification methods at start up
(Rasmussen, 1995).

The proposed adaptive observer can be used for fault-tolerant control of the induction
motor, as the impact of the inter-turn short circuit is estimated. This is so because it is
possible to obtain control in the case of an inter-turn short circuit, meaning that it is
possible to control the process, driven by the motor, to a fail-safe mode, or to reduce the

108



Section 5.4: Conclusion

Scaled current
)

0.3 T

VESI
— Veea

Fraction in short circuit

01 I I I I I
0 2 4 6 8 10
time [sec]

(@) The top figure shows the estimation of the scaled curygii and
the bottom figure shows the estimated and real amount of windings af-
fected by the short circuit.

220~

N

o

S
T

e

1

S
T
I

speed [rad/sec]
5
3
T

speed error [rad/sec]

time [sec]

(b) The top figure shows the estimated and the measured speed and
the bottom figure shows the error between the estimated and measured
speedue.

Figure 5.7: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is constant and the supply voltage is balanced.
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Figure 5.8: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is variating and the supply is balanced.
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Figure 5.9: The results from tests of estimation capabilities of the adaptive observer. In
this test the speed is constant and the supply voltage is unbalanced.
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level of the current in the short circuit, and thereby increase the time from the occurrence
of the inter-turn short circuit to a stator burnout.
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Chapter 6

A New Approach for FDI in
Centrifugal Pumps

The topic of this chapter is FDI on the hydraulic and mechanical part of the centrifugal
pump. The model-based approach is used for this purpose, meaning that a set of residual
generator are developed, each based on the centrifugal pump model presented in Chapter
3. The centrifugal pump model is highly nonlinear, which is why methods based on
a linearization of the model will, in general, fail to work on a larger area around the
operating point of the linearization. Therefore nonlinear methods should be considered,
when the operating point is changed frequently or is unknown. In a lot of applications
this is infact the case.

Beside robustness with respect to the operating point, it is important that the algo-
rithms do not depend on knowledge of the application of the pump. This means that the
developed algorithms should work in spite of the hydraulic system in which the pump
is placed. The Structural Analysis (SA) (Blanke et al., 2003; I1zadi-Zamanabadi, 2001,
Izadi-Zamanabadi and Staroswiecki, 2000) is a tool designed to identify subsystems,
which are independent of the rest of the system. Therefore this tool will be chosen for
identification of subsystems, which can be used for FDI on the centrifugal pump in a
robust manner.

The common way to obtain residual generators from subsystem identified using SA
is to derive Analytical Redundance Relations (ARR) (Blanke et al., 2003). Unfortu-
nately, in general the derived ARR’s are functions of the derivatives of the measurements
in the system. These are normally not known and are difficult to calculate. To overcome
this problem a novel method to derived state space realizations of the subsystems iden-
tified using SA is developed in this chapter. Using this method the obtained state space
realizations are decoupled from any unknown algebraic variables or inputs. Therefore,
the decoupling problem is solved and the only remaining problem is to design a stable
residual observer.
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The chapter starts by presenting some preliminaries on SA in Section 6.1. Then the
state space realization, developed in this work, is described in Section 6.2. After that FDI
on the centrifugal pump is considered. This is done by presenting the model of the pump
in Section 6.3, followed by the results obtained using SA in Section 6.4. One of the re-
sults of the SA is that the system can be splitted into two cascade connected subsystems,
of which only the second is affected by the mechanical and hydraulic faults considered
in this chapter. Therefore only an observer has to be considered for the first subsys-
tem. This observer must observe the connecting variables between the two subsystems.
The design of this observer is described in Section 6.5. In Section 6.6 the design of the
residual observers are considered. These observers are based on results obtained using
SA on the second subsystem, and the realization theory developed in Section 6.2 of the
chapter. Test results obtained on an industrial test-bench, which has been particularly
developed for this purpose, are presented in Section 6.7. Finally, concluding remarks
end the chapter.

6.1 Preliminaries: Structural Analysis

Structural Analysis (SA) is the study of the system properties, which are independent
of the actual values of the parameters. Only links between the variables and parameters
are represented in this analysis. These links result from the operating model and are
called relations or constraints. They are independent of the operating model and are
thus independent of the form under which this operating model is expressed (qualitative
or quantitative data, analytical or non-analytical relations). The links are represented
by a graph, on which a structural analysis is performed (Blanke et al., 2003; Izadi-
Zamanabadi, 2001; Izadi-Zamanabadi and Staroswiecki, 2000). In this section some of
the most important definitions and theorems of SA are presented. The presentation is
based on (Blanke et al., 2003).

In SA a system is described by a set of variatlleand a set of constrain®& Each
constraint inC describes the connection between a subset of the variabfgsnmean-
ing that the equations and differential equations describing the system form the set of
constraints. The definition of a system of this form is given below.

Definition 6.1.1 (System structure)Blanke et al., 2003) A systesnis defined by two
setsC and Z, where,

e Z is the set of variables in the system.
e Cis the set of constains in the system connecting the variables of the system.

The following three assumptions must hold on the constrdinits S for the SA al-
gorithms to work. Before these assumptions are presented, let Q(c) denote the
varibles constrained byand letrn. = |Q(c)| be the number of variables in
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Figure 6.1: Structural representation of the connection between set of equations denoted
constraintc; to ¢4, and the set of variabled = {u, x1, 1,22, 22}. HereX = {u} is
the known variable, anl = {x1, &1, x5, 22} is the set of unknown variables.

Assumption 6.1.1 (Blanke et al., 2003, Ass. 5.1) Any algebraic constraiatC defines
a manifold of dimension, — 1 in the space of the variableg(c).

Assumption 6.1.2 (Blanke et al., 2003, Ass. 5.2) All the constraint€iare compati-
ble.

Assumption 6.1.3 (Blanke et al., 2003, Ass. 5.3) All the constraint®iare indepen-
dent.

The structural model of, defined in Definition 6.1.1, is a model describing the connec-
tion between the variablésand the constraints i@ by a bi-partite graph. This graph is
defined in the following definition.

Definition 6.1.2 (Structural model) (Blanke et al., 2003, Sec. 5.2) The structural
model (or the structure) of the systef@i, Z) is a bi-partite graph(C, Z, £) where
& C @ x Zisthe set of edges defined by:

(ci,25) € Eifthe variablez; € Z appears in the constain € C.

An example of such a bi-partite graph is shown in Fig. 6.1. Both a graphical and a table
representation of the the graph are shown here. Using the bi-partite graphs defined in
Definition 6.1.2 the structure of the model equations forming the set of consttaiats

be analysed. Two important properties in this analysisReachabilityand Matching

These are defined in the following definitions.

Definition 6.1.3 (ReachabilityBlanke et al., 2003, Def. 5.8) A variabig is reach-
able from a variablez; if there exists an alternated chain from to z- in the graph
(€,2Z,&). A variablez, is reachable from a subsé&f C Z\{z,} if the existsz; € X
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such thatz, is reachable fronx;. A subset of variable3, is reachable from a subset of
variablesz, if any variable ofZ, is reachable fron¥ .

Definition 6.1.4 (Matching) (Blanke et al., 2003) A matchingt is a subset of the
edge<t such that the endpoints of the edges have no common vertices, i.e.

Ve, ej € M ey = (a,b), ej = (o, 8), thena # a, b # (.

Definition 6.1.5 (Complete matching)Blanke et al., 2003) A matching is called com-
plete with respect t€ if |M| = |C| holds. A matching is called complete with respect
to Z if M| = |Z].

When there exist a complete matching with respect to the unknown varidbtesz

in the system, it means that, in almost all cases, these variables can be eliminated by
rewriting the system equations. To ensure this property the notation of calculability is
used. Calculability is defined in the following definition.

Definition 6.1.6 (Calculability) (Izadi-Zamanabadi and Staroswiecki, 2000) Lgt

i = 1,---,p,--- ,n be variables, which are related through a constraint e.g.
ci(z1, ++ , 2n)- The variablez, is calculable if its value can be determined through
the constraintc; under the condition that the values of the other variables; =
1,---,n, j # pare known.

When a matching of an unknown variable is done under the calculability constraint it
is possible to calculate the given unknown variable in the space where the calculabil-
ity condition is fulfilled. Unfortunately, this is not enough to state that a matching,
where all the unknown variables are calculable, implies that all unknown variables can
be eliminated. This fact will be considered later when the notation of causal matches is
considered.

To connect the definitions given above to a system description as known from system
theory, let a dynamic syste be described by the following set of equations,

(if . d:f (Xd,Xa,u)
) Cn 0 = m, (X4, Xq, 1)
S eh Yy = h (Xdax(lv u) ’ (61)
Gd : Td = Xd

where the set of variables = x; U x4 Ux, UuUy. Z can be decomposed into a
set of unknown variable¥ = x4 U x4 U x, and a set of known variablé§ = u U y.
The constaint€ of system (6.1) are given by the set= €; U C,,, U €, U Cq. The
structural model of this system is shown in Table 6.1. H&ré";, M;, H; are boolean
matrices describing the connections between the variabbesd the constaints. I is
the identity matrix andX is a diagonal matrix denoting that; can only be calculated
form x4 up to an unknown but constant offset.
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Table 6.1: Incident matrix of a structural graph. This structural graph is a graph of a
minimal over-constrained system, which can be a subsystem of a larger system.

YT W K] X X
f, 0 G I F  F
m, 0 M3 0 M1 M2
h, | I Hs; | 0 H, H
d, | 0o o | I X o0

The structural model presented in Table 6.1 of the sysferan have, but does not
always have, one of following three properties,

Definition 6.1.7 (Over-constrained graphjBlanke et al., 2003, Def. 5.9) A graph
(€,Z,¢) is called over-constained if there is a complete matching on the varigbles
but not on the constaini.

Definition 6.1.8 (Just-constrained graph{Blanke et al., 2003, Def. 5.10) A graph
(€,Z, &) is called just-constained if there is a complete matching on the varidbles
and on the constaints.

Definition 6.1.9 (Under-constrained graphjBlanke et al., 2003, Def. 5.11) A graph
(€,Z, &) is called under-constained if there is a complete matching on the cons€aints
but not on the variableg.

In the cases where the syste&nails to conform to any of the three above properties,
it can be proven that there exists a unique decompositio$ iofo three subsystems
(Blanke et al., 2003),

8t =(Ct,Z")
80 = (@0, z+ U 20
8§~ =(€-,2tuz2’uz),

whereC = G- URURTr andZ = 2~ U 2% U Z*. For this decomposition the sub-
systems(C*, 21), (€Y, 29), and(C~,Z~) are over-constrained, just-constrained, and
under-constrained respectively. On the over-constrained and just-constrained subsys-
tems the notion of causality is important, as it is used to state the conditions for structural
observability. Causality is defined in the following definition.

Definition 6.1.10 (Causality)(Blanke et al., 2003) A subsystem is called causal if there
exists an alternating chain froy; € X to 2; € X for all reachablex; € X and this
chain is composed of only calculable matchings.
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A special and very important over-constrained subsystem is defined in the following
definition.

Definition 6.1.11 (Minimal over-constrained subsystem]lzadi-Zamanabadi, 2001,
Def. 4) A minimal over-constrained subsyste$f,., = (Cpin, Zmin) IS @n over-
constrained subsystem with the following property:

‘emi,n| =1+ |xmin‘ (62)

whereX,.;r» € Zmin are the unknown variables contained in the set of constraints
Gmi'n- Additionally, Gmin C cand Z’mi,n CcZ.

Such a minimal over-constrained subsystem contains information enough to derived ex-
actly one residual. Therefore, if a set of minimal over-constrained subsystems is identi-
fied in a system, and the matchings, which define each of these subsystems, are causal,
a set of residual generators can be derived. When the residual generators are derived
by eliminating all unknown variables in the subsystem they are called Analytical Re-
dundant Relations (ARR). If each of these residual generators are sensitive to different
subsets of the faults affecting the system this can be used for fault identification. This is
formalized in the following two theorems.

Theorem 6.1.1 (Structural observability) (Blanke et al., 2003, The. 5.2) A necessary
and sufficient condition for system (6.1) to be structural observable is that, under deriva-
tive causality

1. all the unknown variable¥ are reachable from the known ones,
2. the over-constrained and the just-constrained subsystems are causal,
3. the under-constrained subsystem is empty.

For systems which are structural observable as stated in Theorem 6.1.1, and where the
over-constraint subsystem is non empty, it is always possible to identify a number of
minimal over-constraint subsystems, as defined in Definition 6.1.11.

Let one of the constraints € C be corrupted by a fault. Let the unknown variables
containted in the constraint be given 8y, = Q(¢). Then the following theorem states
the conditions for the fault corrupting the constrainto be monitorable or detectable.

Theorem 6.1.2 (Monitorability) (Blanke et al., 2003, The. 5.3) Two equivalent neces-
sary conditions for a faulp to be monitorable are:

(¢) X, is structural observable - according to Theorem 6.1.1 - in the system

(C\{e},2),

(i1) ¢ belongs to the structurally observable over-constrained part of the system
(€,2).
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Algorithms exist, which can decompose a syst&ninto all possible minimal over-
constraint subsystems. For each of these minimal over-constraint subsystems the con-
nectionn. = n, + 1 holds, wheren. = |€| is the number of constraints and = |X| is

the number of unknown variables in these constraints (Izadi-Zamanabadi, 2001; |zadi-
Zamanabadi and Staroswiecki, 2000). It is possible to derive an Analytical Redundant
Relation (ARR) for each of these subsystems. Each of these ARR can be used to gen-
erate one residual, which is sensitive to a subset of the faults in the sgs&tanke

et al., 2003). The connection between the subsystem used in the derivation of a given
ARR and the faults is described by Theorem 6.1.2.

6.2 Realization

Realization denotes the task of finding a description of an over-constrained subsystem,
identified using SA, which can be used for residual generation. A straightforward way
to find such a residual generator, is to solve the set of constri@jrfteming the sub-
system, for the unknown variabl@sin this set of constraints. The solution obtained
using this approach is an Analytical Redundant Relation (ARR) (Blanke et al., 2003).
Unfortunately in general the obtained ARR’s are functions of the derivatives of the mea-
surements, which are in general not calculable due to measurement noise.

To overcome the problem with the derivatives in the ARR'’s, a new approach is devel-
oped here. The main idea is to find a state space description of the subsystem identified
using SA, meaning that the subsystem can be described on the form,

4z _ £ (z,y,u)
dt
gz(y> u) =h, (Za Yy, u) ) (63)

wherez contains the states of the system, anandy contain the known signals in the
system. If a state space description (6.3) exists it can be used in the development of an
observer, which enables residual generation. The decoupling of unknown inputs has not
to be considered in this observer design, as this problem is already solved using SA and
the realization techniques presented here.

Assuming that an over-constrained subsystem identified using SA is described by
the following set of equations,

f, (x4, Xq, 1)
m, (Xq,Xq, W)
h, (x4,%4,0)
X

Sy , (6.4)

Xq
0

y
dxd

dt

s

wherex,(t),%4(t) € R", x,(t) € R, u(t) € R? andy(t) € R%. f,, m,, andh, are
sufficiently smooth mapsf,, is denoted a map, as thg is considered a free variable
constraint by the derivative constrai%ijlgi = Xy, in SA. Finally,u andy are the known
input and output signals respectively, ang x4, andx, are unknown signals.
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Let the subsystem, identified using SA, be given(ByZ), then each equation in
(6.4) is given by a constraint i@. Likewise, the variablea,y € X andxy, x4,x, C X
are the known and unknown variables respectively. These variables form thei set
Z = X U X. The graph representation of this system is shown in Table 6.2, where

Table 6.2: Incident matrix of a structural graph. This structural graph is a graph of a
minimal over-constrained system, which can be a subsystem of a larger system.

‘ Yy oou ‘ Tqg Tg T,
f. |0 G I F I
mg, 0 M3 0 ]\/.[1 MQ
h, |I Hs | 0 Hy Hy
d, | 0 0 I X 0

G, F;, M;, H; are boolean matrices describing the connection between the variables
and the constaints. I is the identity matrix andX is a diagonal matrix denoting that
x4 can only be calculated for,; up to a constant offset.

In the following a method is presented, which can be used to obtain the state space
description (6.3) from the over-constraints subsystem (6.4). To obtain this state space
description all the unknown algebraic variablgsmust be eliminated, or in other words
a state and/or output transformation must be found such that the unknown sigaaés
decoupled from the residual output. When such a state space description exists a residual
observer or residual filter of the following form can be obtained,

% = fz(i’y7u) - k(ZaYau)(gz(yvu) - hz(i;}’yu))
r= q(gz(Y7 u) - hz(27y7 u)) .

Here it is assumed that a stabilizing feedb&c&an be found. In the above equation

is the set of residual outputs,is a set of known signals defined as input in the original
system,y is the set of known signals defined as outputs in the original systenmz and
contains the states of the residual filter. If the subsystem is a minimal over-constraint
subsystem the residuabecomes a scalat This is infact normally the case.

In the following, first an output transformation is considered, eliminating a part of
the algebraic variables,. The remaining algebraic variables are eliminated using a
state transformation. This is considered in Section 6.2.2. Finally, the two elimination
approaches are composed into one algorithm in Section 6.2.3.

6.2.1 Output Transformation

In this subsection the eliminations of the algebraic variakjgsising only the algebraic
constraints of system (6.4), is considered, i.e. the set of constraints formed layd
h, are used. If the causal match, found using SA, shows that a subset of the variables in
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X, denotedx,; and a subset of the variables denotedx,; are matched using, and
h,. Then there must exist an explicite solution to these variables wsingndh,,. Let
this solution be given by,

Xa1) _ 81(Xd2, Xa2, ¥, 11)
Xd1 g2 (XdQ, Xa2,Ys Ll) ’

wherex,, x4 are partitioned such that, = (xI, xaTQ)T, xq = (X} x§2)T. This
proves the following lemma.

Lemma 6.2.1 Letx, = (xZ; xfg)T andx, = (x3; x}fz)T be partitioned such that
X,1 andxg; are the unknown variables matched by the set of constraipts) h,,, then
there must exist explicite solutions fog; andx,;. Let these solutions be denoted by,

Xal = 81 (ng, Xa2,Y, u) (6 5)
Xq1 = g2(Xd2,Xa2,y, 1) , '

The above Lemma states that a solution exists for a subset of the algebraic vatjables
and a subset of the state variablesin the system, without introducing derivatives of
any known variables, i.e. variables 3. This solution can be used for elimination of
these variables. Moveover under the following assumption an output transformation can
be found, which has the property that the known and unknown variables in the output
expression are separated.

Assumption 6.2.1 1t is assumed that the expressigs in Lemma 6.2.1 exists and can
be rewritten to become,

ho(xq) = go(y,u)  , xa= (x5 x5)" . (6.6)

Assumption 6.2.1 states that the algebraic variables matched by the algebraic constraints
m, andh, can be eliminated using these. For linear systems, this is the same as assum-
ing that disturbances in the output equation are decoupled using a transformation of the
output, e.i.Qy = QCx + QE;d whereQE; = 0.

Under Assumption 6.2.1 the following theorem can be used to derive a state space
description where all unknown algebraic variables are contained in the differential equa-
tions.

Theorem 6.2.1 (Output Transformation)If a causal match exists on an over-constrained
subsystem on the form given in (6.4), then if Assumption 6.2.1 holds for this system, it
can be rewritten to the following form,

dXa — f (x4,Xq2,y,0)
S, di, — Jo\Xd> Xa2, ¥, 6.7
{go<y,u>—ho<xd>, (6.7)

wherex,, is a vector of algebraic variables.
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Proof: Using Lemma 6.2.1 and Assumption 6.2.1 the set of constraints h,, can be rewritten
to become,

Xa1 = 81(Xd2,Xa2,y, W)
6.8
ho(xd) = go(y7 ll) ) ( )

wherex, = (x4, xaTQ)T andxq = (xj; xdTQ)T. Using the first expression (6.8) to eliminate
the variables,; in f; in (6.4) it becomes,

d;Td = fo(xd7x025yvu)'

Choose the second expression in (6.8) as the output equation, system (6.7) is obfained.

In some cases all the algebraic variables in the vextoare match using the set of
constraintan, U h,.. When this is the case all the algebraic variables can be eliminated
using the output transformation given in Theorem 6.2.1. This is stated in the following
corollary.

Corollary 6.2.1 (Output Transformation) If a causal match exists on an over-
constrained subsystem on the form given in (6.4), then if Assumption 6.2.1 holds for
this system and all algebraic variblas are matched usingn, andh,, then the system

can be rewritten to become,

. ditd = f,(xa,y, 1)
So: { go(y,(il) — by (x) . (6.9)

6.2.2 State Transformation

The theorem and corollary, presented in the previous subsection, deal with the elim-
ination of the algebraic variables, using the algebraic constraintsand the output
mapsh,. In general, it is not possible to eliminate all algebraic variables using these
constraints. In order to eliminate the remaining algebraic variables a state space trans-
formation is required, hence proposed. To be able to perform the state transformation
it is required that system (6.7) admits a simpler form as specified by the following as-
sumption.

Assumption 6.2.2 The state space description of system (6.7) is of the following form

dxd

=fl(x4,y, 1) + Go(X4)Xa2
dt VNG 6.10
g,(y. u) = hy(xa) , (6.10)

whereG,(x4) is a(n x l2) matrix with full column rank for alk,; € Dy, . Itis assumed
thatn > [, wherel, is the number of elementsin,.
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Later, in the proof of the main theorem in this subsection, it will be shown that, for the
over-constrained subsystengs, has full rank always.

The elimination of the algebraic variablgs, in (6.10) are dealt with in the follow-
ing Lemma.

Lemma 6.2.2 Eliminating algebraic variables,, from the state space description of
system (6.10) results in a new system on the form

D(xq) 5t = f)(x4,y,0) , (6.11)

whereD is an (n — l3) x n matrix of function ofk, with full row rank.

Proof: Let the state space system (6.10) be scaled by an arbfttaryn) matrix D(x4), which
is full rank for allxy € Dx, C R™. UsingD on (6.10) the system becomes,

D(x4) %4 = D(xq)f} (x4, y, 1) + D(x4)Go(Xa)Xa2 -

dt
Design the scaling matril such that the following condition is fulfilled,
0
D(Xd)GO(Xd) = |:I :| . (612)
la Xlo
The solution can easily be found using the Gauss-Jordan elimination method on the system,
0
[ Ian ‘ Go(Xd) ] — |: D(Xd) ‘ |: I :| :| .
logXxlo

When the scaling matri® is used on the system, it becomes,

D(xq) %t = D(xa)fs(xa,y, 1) + {OVH”X’Z} Xaz - (6.13)
L, <1y

In this expression the firgt, — I2) rows are independent of,2. This means that,. has been

eliminated in this part of the system. Using the first— [2) rows in (6.13) the final expression is

obtained,

D(Xd)dditd = D(Xd)f(/)(xd7 Y ll) = f(/)(xdv Yy, ll)

The matrixD(x,) is formed by the firstn — k2) rows of the matrixD (x,). O

The following additional assumption, that is required to prove the main theorem, is
introduced.

Assumption 6.2.3 The following condition for system (6.10) is fulfilled:
Spar{ 2= (x4)"} U Ker{G,(xa)"} (6.14)

must sparRk”™ for all x4 € Dy, .
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Remark 6.2.1 A linear version of (6.10) is given by the following state space model

% = Axy+ Bu+ Gx,o

o (6.15)

Comparing this expression with (6.10) it is seen t@@g(xd) and G,(x4) in (6.10)
corresponds tadC and G in (6.15) respectively. Using these relations Assumtion 6.2.3
implies that ranfCG} = rank{ G}, which is exactly the demand for existence of an
unknown input observer for linear systems (Chen and Patton, 1999, chap. 3).

In the following the main theorem of this section is presented. Using this theorem it is
possible to eliminate the remaining algebraic variaklgsin system (6.10).

Theorem 6.2.2 (Realization)By a state transformation, system (6.10) can, under as-
sumption 6.2.3, be transformed into a new system of the following form

% = fz (Z, Yy, u) = “(Xd)fé(xd; Y, u)|xd=‘Il(z,y,u) (616)
8ol (y7 Ll) = hz(z7 Yy, Ll) = hol (Xd)|xd:‘11(z,y,u) .

The inverse state transformatisy = ¥(z,y, u) is obtained as the local solution to

<goz (;', u)) _ <h£2'( S:;)) , (6.17)

with output map organized as
8o1 (ya u) hol (Xd)
o\Y> = ho = .
& (y U) (Xd) < (go2(y7u)> (ho2(xd)
The transformation. = ®(x,) is given by the partial differential equation (p.d.e.),

~ oP

p(xqa)D(xq) = %y’ (6.18)

whereD is given by Lemma 6.2.2 andx,) is als x Iy scaling matrix with full rank
forall x; € Dy, C R™.

Proof: The proof is done in two steps. In the first step it is shown thatallcan be eliminated
in (6.10). In the second step it is shown that under Assumption 6.2.3 there exists a transformation
transforming system (6.10) into (6.16).
Step 1:First it is shown that (6.10) is on a form such that Lemma 6.2.2 can be used in the
elimination of the unknown algebraic variables,. To show this, it must be proven th&t, (x4)
has full column rank and that the number of rows exceed the number of columns.
System (6.7) is by definition a over-constrained subsystem with the set of constraints=
d, U f, U h, and the set of unknown variabl&s,:, = x4 U x4 U x42. Using Definition 6.1.7
the following property must hold for (6.7)

do| + [fo] + [ho| = [%al + [xal + [xa2| + &,
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where| - | is the number of elements in the given vector @nds the set of differential constraints
(arranged in a vector) as described in Section 6.1. By definjtigh = |x4|. Moreover, some
of the elements ix,; must be matched using,. Let these elements be denoteg,. Since all
constraints irh, are matched we haJ&q: | = |h,|, and we get

Ifol = [xaz| + [%a2| + &, (6.19)

wherex, = (xdT1 xdTZ)T. Under Assumption 6.2.2 (6.7) is restricted to be on the form (6.10).
Here the number of columns (@&, are given bylz = |x,2| and the number of rows are given by
If;| = |f,|, which is strictly larger thamx,2|, see (6.19). Moreover from the match obtained from
SA itis known thatx,2 can be calculated usirfy, which implies thaiG, must have full column
rank. Therefore, using Lemma 6.2.2 system (6.10) can be rewritten to,

ﬁ(xd)% = ?(;(Xd7 Y u)

g(y,u) = ho(x4) . (6.20)

A method for calculatindD is given in the proof of Lemma 6.2.2. Multiplying the differential
equation (6.20) with the scaling matrix we obtain an expression f(%.f

d ~ d =
& = nlxa)D(xa) T = plxa)E)(xa,y, ) - (6.21)

From this equation it is seen thdtis given by the p.d.e.

o®

E 11(xa)D (xa).

Step 2.:Next it is shown that there exists an expression on the form

(goz(;’:u)) — (%?E{’Z?) 7 (6.22)

whereg,2(y, u) = h,2(x4) contains a subpart of the rows g (y, u) = h,(x4). This expres-
sion must be solvable for all; in the system, i.e. a local solution must exists. For this to be true
the inverse function theorem states that the Jacobian determinant of (6.22) must be different from

zero, e.l.
Ohoo(x4)
i (h02(Xd)) _ 0%y (6.23)
Ixa \ ®(xa) p(xa)D(xq)
must have full rank for atkq € Dx,. B
Using the proof of Lemma 6.2.2 it can be deduced that $fafxa)D(xa))"} =
Spa{D(x4)"} = Ker{G.(x4)" }, and thafD(x,) has full row rank for alkcs € Dx,. Using
Assumption 6.2.3 it is guaranteed that there exists, &2 C h, such that%(:d) span the,

dimensional row space not spannedibyx,). This implies that the matrix in (6.23) has full rank
for all x4 € Dy, i.€. (6.22) can be solved fory. Let the solution ok, be given by

xq = ¥(z,y,u).
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Using this expression in (6.21) the final model becomes

% = H(Xd)fé(Xd, Y, u)‘xd:‘l’(z,y,u)

8ol (y7 u) = h01 (xd7y7 u)|x=\IJ(z,y,u) .

Remark 6.2.2 The question arise about the existence of the solutioa ®(x) that
satisfies (6.18). IR? the problem can be formilized by

e =nxDE) & (5 &) =ax) (hi(x) da(x))

which implies that,

22 9*® _ Oudy _ Ouds _ 0
6(1:181'2 awlaﬁljg - 81‘2 8.’1;1 -

This expression can be solved fer(in the R? case) using the intergrating factor ap-
proach (Nagle and Saff, 1996, chap. 2). Wheis known® can be found by simple
intergration (this approach is used in the example in Section 6.2.4).

The expression described above, cakinbe described by

V&;(x) = [p(x)f(x)li

wherei denotes thé'" row in (6.18). Using thév operator the following expression
can be obtained

VxV®,;(x) =V x [pux)fx)];=0
Unfortunately, no procedure exists for findipgx) in R3.

Remark 6.2.3 In general the existence of a solution to the p.d.e. (6.18) can be treated
using Frobenius theorem (Isidori, 1995). A discussion on this approach is found in (Frisk
and Aslund, 2003), which treats the solution to problems similar to (6.18).

6.2.3 Elimination Algorithm

To summarize the results obtained in the previous two subsections, an algorithm is
prestented below. This algorithm presents the steps necessary to obtain a state space
description of (6.4).

1. First use Theorem 6.2.1 to eliminate a subset of the unknown algebraic variables
x,. If all the algebraic variables can be eliminated using this approach Corollary
6.2.1 states the final solution. If this is not the case go to step 2.
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2. Check if Assumptions 6.2.2 and 6.2.3 holds for the system. If it holds go to step 3,
else it is not possible to transform the system into a state space description using
the approach given here.

3. Use Theorem 6.2.2 to obtain the state transformadforand derive the trans-
formed system.

4. Finally, to design a residual observer, find a stabilizing feedback for the trans-
formed system. This is not treated here.

In this section ideas for developing residual observers using over-constrainted subsys-
tems found using SA are presented. Even though deriving residual observers were the
aim of the section, it is possible to use the same ideas to identify subsystems which can
be used in the development of reduced order observers. The following theorem can be
used to formulate a necessary condition for this to be possible.

Theorem 6.2.3 (Observability and over-constraint subsystems) a system given by

& =1fx)

y = h(x)

is observable for alkk € D, then there exists an over-constrained match of the unknown
variablesX = x U x using the system constrairts=h U f U d.

(6.24)

Proof: A necessary but not sufficent condition for system (6.24) to be observable is,

Fx)) _
rank(%(XQ =n Vx € D, .
This implies that, when (6.24) is observable themalk € {1,---,n} are containted in either

f or h. This implies that there exist a match of all. When this match exist; can be match
using the differential constraints. The length of bottf andd is n, and the number of unknown
variablesX is 2n. Therefore, there exigh| more constraints than unknown variables, i.e. the
system is over-constraint. This completes the prddf.

Remark 6.2.4 Theorem 6.2.3 states that if system (6.24) is observable, then there exist

and over-constrained match on the system. Reversing this argument, it can be said
that if there does not exist an over-constraints subsystem, then there does not exist an
observable state space description of the system.

Remark 6.2.5 The arguments presented in this section does not garantee the existence
of a residual observer or a reduced order observer, as the stability of an observer imple-

mentation is not considered here.
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6.2.4 Ex: Satellite Case

According to (De Persis and Isidori, 2001) a point mass model of a satellite is described
by the set of constraints given in (6.25),

g p=v

co bzpwzfﬁlp%JrGguler

c3 qb:w

ca i =g +92§ (6.25)
cs 1 oYyL=p

6 1 Ya2=20¢

cr L o Ys=w

and four derivative constraints of the forin= 2. In this model(p, ¢) denotes the
position of the satellite in polar coordinates on the planés the radial velocityw is
the angular velocity and,, u, are the radial and tangential thrust, respectivélis the
fault signal andi represents a disturbance signal. The paramétexsdd, are supposed
to be known, constant and different from zero. The constraint® c, describe the
dynamics of the satellite and the constrairtgo c; describe the measurement system
on the satellite.

The structural graph of the satellite system (6.25) is shown in Table 6.3. From this

Table 6.3: The structure table of the satellite systermeans uni-directional relations
and1 means bi-directional relations, where uni-directional means that the given variable
is not calculable from the relation, see definitions in (Izadi-Zamanabadi, 2001). The
symbolsl] show a matching for a part of the system.

Known Unknown Faults
i y2 ys wi up | d b $ b p v & p w /
c2 1 1 1 1 1
dy 1 X
do 1 X
c3 1 1
ce 1 1
dy 1 X
c1 0o 1
cq 1 O 1 1 1 1
ds D X
cs 1 O
c7 1 U

table it is seen that a match exists, which includes the constraint affected by thg. fault
Therefore the subsystem formed by this match can be used for fault detection. Moreover
the subsystem does not contain the disturbahead is therefore robust with respect to
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this disturbance. The match is given by the following set of constraints
€ = {di,ds,c1,c4,c5,c7}.

Considering the theory developed in Section 6.2, the set of equations describing the iden-
tified subsystem must be described as in (6.4). The state, algebraic and output vectors
are therefore given by

xa=(p @) xa=v y=(n w),

and the vector field and vector functions are given by

v p
fm< 20w u> mz:O hz<>
*T‘Fezf w

Form these expressions it is seen that the the vectorffieftust be used for the elimina-
tion of x,,. f, can be put on the forrf{ (x4, u) + G,(x4)x,, meaning that Assumption
6.2.2 is fulfilled. Duing this the expression becomes

<Z> - <92(L;) T (_12:) v (6.26)

Hence, Lemma 6.2.2 can be used to obtain the m&ras it is shown in the following
by choosing

_ (di1(xa) di2(xa)
D(xd)_< dgl(x;l) d22(Xj)>’ (6.27)

we computd)(xd)% = D(x4)f! (x4,u) + D(x4)G,(x4)x, and obtain

(
dxq d12(Xd)92u2) ( 11(Xq) — 2d12(xq “’>
D — = L L. 6.28
(xa) dt <d22(Xd)92p2 * 1(xa) — 2d22(x4) % (6.28)
In order to fulfill condition (6.12) we choose:

dll(Xd) = 2w dlg(Xd) =p dgl(xd) =1 d22(Xd> = 0 .

According to (6.13) we get

D(xq) = (2w p),
and system (6.20) as:
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The transformatiorP can therefore, according to Theorem 6.2.2, be found by solving
the following p.d.e.

oP

oy = XD xa) = plxa) (2 ).

Choosing the integrating factpr(x,;) = p the solution to the p.d.e. becomes
®=wp’.

When ® exists and Assumption 6.2.3 is fulfilled then the state transformabias,
according to Theorem 6.2.2, given by the explicit solution to,

(%)= ()

wherey; = p is one of the output constraints, see (6.25). The solution to this equation

becomes,
(o)== (")

Using this transformation the state space representation of the identified subsystem be-
comes,

S'{ Z = Oayrus
" ys=2/(43)

A residual observer for this system could be

. { z = Oayrus + k(ylys — z)
r= Q(y%y?) - Z) )

wherek andq are design constants. The obserg¢eis exactly the same observer as
obtained in (De Persis and Isidori, 2001) using the geometric approach.

6.3 System Model

In this section the model of a general hydraulic application including a centrifugal pump
is presented. Moreover, five faults, which are assumed to affect the centrifugal pump,
are included in the model. Only quantities measurable at the pump site are assumed
measured in this application. In the case, studied in this chapter, this means that the
pressuref,, and the flow@), of the pump, and the supply voltage.,. and current
isqpe Of the motor are assumed known.

In Chapter 3 a model describing a centrifugal pump driven by an induction motor
was derived. From this model it is seen that the input to the pump is the supply voltage
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.

-
-

—

Application
vsabc

Centrifugal
,_> pump H,

Figure 6.2: The centrifugal pump placed in a hydraulic application. The inputs to the
centrifugal pump are the supply voltage,;. and the volume flov®),, and the output is

the pressure differencl,. The inputs to the application are a set of unknown inplts
and the pressure difference of the pufdp, and the output is the volume flog,,.

Vsabe and the volume flov),,, and the output is the pressure differedtgedelivered by

the pump. This input/output structure is depicted in Fig. 6.2 where it is connected to a
general hydraulic application. The inputs to this application are a set of unknown inputs
d and the pressure differendé, of the pump, and the output is the volume fl6yy.

The model of the system, depiced in Fig. 6.2, is formalized in the following subsections.

6.3.1 The Model of the Centrifugal Pump and its Application

It is assumed that the application is a dynamic system, which can be modelled by a set
of first order ordinary differential equations. The structure of a model describing such a
system is shown below,

B0 = £a(xq, Hy,d)
QP: hA(XQ) )

wherex is a vector containing the states of the hydraulic application and the wé&ctor
represents the unknown inputs to this applicatiéf), and @, are the pressure output
and the volume flow of the centrifugal pump respectively.

The model of the centrifugal pump, presented in Chapter 3, is connected in a feed-
back loop with the application model, as it is depiced in Fig. 6.2. This results in the
following model,

(6.29)

%: fx(xda u, d)
y: hI(Xd) 9
where the state vectery is given by,
. . . . T
Xq = [isd isq imd img Wr X§] ,
and the input vecton and the output vectay are given by,

u=[va vs)  y=l[isa iy H Q.
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Finally, the unknown input vectaod is the same vector as the unknown input vector
prestented in (6.29). The vector fielgd of the system is described by the following set
of equations,

R4+R,. | R.. L, !
T 1sd + ﬁzmd — ZpWr T/ lmg + ﬁvsd
Rs+R.. . oL R . 1
— L7 lsq T ZpWr T imd + Tilmg T 17 Vsq
" R.. R, n .
£, (xg 0, d) = £ lsd = T ima + 2primg

’

r : R,
77 tsq — ZpWrlmd — 7 tmgq

%%ZpLgy[ (imdisq - Z'mqisd) - %WT‘ - fT(h(XQ)a wr)
fa(xq, H,d)

wherefy (Q,w,) and fr(Q, w,) are given by,

fu(Q,wr) = —an2Q? + an1 Qw, + apow?

6.30
fr(Q,wy) = —apQ? + an Qu, + apw? (6.30)

The output map of the system is given by,
lsd
h,(x) = lsq
fu(ha(xq),wr)
This model represents the behaviour of the system when no fault has occured. In the
following the effect of faults on the centrifugal pump is described.
6.3.2 Fault Models
Five faults are considered in this chapter, these are,
1. clogging inside the pump,
2. increased friction due to either rub impact or bearing faults,
3. increased leakage flow,
4. performance degradation due to cavitation,
5. dry running.

The first three faults are internal faults caused by impurities in the liquid and wear re-
spectively. The fourth fault, cavitation, is caused by too low inlet pressure, meaning
that the fault is external. Finally, the last fault, dry running, is a phenomenon caused by
faults in the surrounding system, hence it is also an external fault. Even though it is not
a fault in the pump, this fault is important to detect as sealing rings and bearings will be
destroyed when the pump is running without water for only a few seconds.
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The mentioned faults all affect the hydraulic part of the pump. The performance of
the hydraulic part of the pump is modelled By, and fr. These functions describe
the pressure and the torque produced by the pump respectively. Moreover the flow
measurement is part of the hydraulic description of the pump. Introducing the faults
described above, the description of the hydraulics of the pump becomes,

H;D = fH(vaT’) - KfQ2 - Cch.fc - thfd
Tp = fT(vaT) + ABwr - Cctfc - Cdtfd

ys =Q — K;\/H, .

In this fault modelK; € R, represents clogginghB € R, represents rub impact,

K; € R, represents increased leakage flgw,c R, represents cavitation, ang €

R, represents dry runnning. The first three signals model the faults accurately, while
the last two terms are linear approximations.

6.4 Structural Analysis

As stated in Section 6.1 the structural analysis is the study of the system properties,
which are independent of the actual values of the parameters. Only links between the set
of variablesX and the set of constraintare represented in the analysis. In this work

the use of SA is two folded, as it is both used for identifying two cascade connected
subsystems, and to identify subsystems which can be used for residual generations.

The system is splitted into two cascade connected subsystems to facilitate the deriva-
tion of residual generators. This is possible as the faults considered in this work only
affect the second subsystem, meaning that only this subsystem must be considered when
deriving residual generators.

As the SA is working on the two set$, Z these must be defined for the pump
application before the results of the SA can be obtained. This is done in the Section
6.4.1. After that the splitting of the system is considered in Section 6.4.2. Finally this
section ends with identifying subsystem for residual generation in Section 6.4.3.

6.4.1 Variables and Constraints of the System

The constraint® of the hydraulic system are identified from the model presented in
Section 6.3. These constraints are given by
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[ T Lglsd = _(Rs + R;)%d + A 4 vy

ca ¢ Llisgg=—(Rs+ R)isq + Az + vy

c3 leimd =—-A; + R;Z’sd

cs + Llyimg=—A2+ Rlig,

cs Jw, =T, — Bw, =T,

Cg : XQ :fA(XQ,Hp,UQ)

cr A1 = Rlima + 2pwr Ll img

cg Ay = Rlimg — 2pwr Ll ima (6.31)
cyg T, = %ZPL;,L (4mdlsq — tmqlsd) '
Cio Hp = _ahQQ2 + athpwr + ahowg

o Ty = —a12Q5 + a1 Qpwy + ayow;

Ci2 Qp = hA(XQ)

€13 Y1 = lsd

cia Yo = lggq

Ci5 t ys = Hy

ci6 Ya=Qyp,

where the constraints andcg are included to make the constraint{do ¢, independent.
Hereby Assumption 6.1.3 is fulfilled globally (Blanke et al., 2003).

In (6.31) the constraints; to ¢4 andc; to cg describe the electrical part of the
induction motor,c;5 describes the mechanical dynamics of the pump,@ndkscribes
the dynamics of the hydraulic applications, c1o andc;; describe the torque generated
by the induction motor, the pressure difference generated by the centrifugal pump, and
the load torque of the centrifugal pump respectivety, describes the volume flow
through the pump and finally; 3 to ¢;4 describe the measurements on the system.

Two extra constraints can be deduced by differentatingnd cg with respect to
time. Doing this the following additional constraints are obtained,

. A — DI . /o ;o
car ¢ A1 = Ryimd + 2pwr L] img + Zpwr Ly, img

. 6.32)
. _ ! . ! g ! ( *
cgg  As = Ritmg — 2pwr Ly, tma — 2pwr L, imd -

Beside the constrains presented above, there is a differential constraint for each variable
14, meaning that a constraint on the form,

drg; .
iy (6.33)

exists for each element i,. In this expression denotes thé'” element ink,.
From the constraints presented in (6.31) and (6.32) the set of variables are identified.
These are given by,

Z=%x4UxgqUx,UulUy
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whereX = x4 U x4 U x, are the unknown variables, which must be matched, and
X = u Uy are the known variablex,, x,, u, andy are given by,

. . . . T T
Xd = [st lsq tmd Tmq Wr Al A2 XQ]

x.=[H, Qp Tp dT]T u = [vgg vsq]T y=1[n v us y4}T

6.4.2 Cascade Connected Systems

From the model of the system presented in Section 6.3 it is seen that the system is non-
linear. Therefore, traditionally a nonlinear transformation is required to enable a design
of a residual observer (Garcia and Frank, 1997). This transformation is not easy to find
due to the nonlinear nature of the system. Moreover, developing Analytical Redundancy
Relations (ARR'’s), using for example Groebner basis (Cox et al., 1997) for variable
eliminations, have not given any usable result. This is also due to the nonlinear nature
of the system. Therefore, the system is divided into two cascade-connected subsystems
by using structural consideration on the system (Blanke et al., 2003; Izadi-Zamanabadi
and Staroswiecki, 2000).

Using SA it is shown that it is in fact possible to make this split. By analysing the
relation describing the electrical part of the induction motor, it is seen from Table 6.4 that
these constraints form an over-constraint system, see Definition 6.1.7. Therefore from
Theorem 6.1.1 the system is structural observable, meaning that the set of cofistrains
form an observable subsystem for almost all parameters. This set is given by,

(‘-)'e = {d17dg,dd7,dd8,C1,CQ,C3,C4,C7,08,097C(17,Cd8,0137614} ) (634)

C. is defined as the first subsystem. The remaining relations are defined as the second
subsystem, meaning that the constrains of this subsystem are given by,

Cm = {ds,ds, cs, cg, c10, €11, C12, C15, C16 } - (6.35)

The connecting variables between the two subsystems are in this work defined as the
estimates of., and7,, and will in the following be denoted, andZ’, respectively.

It is also seen from the column at the right hand side of Table 6.4 that the faults
treated in this chapter are not affecting the relations in the first subsystem. Therefore, it
is only necessary to consider the second subsystem when designing residual generators
for FDI on the system. Hence, the fault detection algorithm can be divided into two parts
as shown in Fig. 6.3.

Using the relations describing the first part, an adaptive observer is designed. This
observer observes the variablegsand7, connecting the two parts. The design of this
observer is considered in Section 6.5. But first SA is used to identify minimal over-
constrained subsystems (see Definition 6.1.11) in the system formed by the constraints
C,,- The obtained results are presented in the following subsection,
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Table 6.4: The structure table of the systenimplies that the given variable is not cal-
culable using the constraint but does appear in the constraint (Izadi-Zamanabadi, 2001).
The symbold] show a matching for the first part of the system.

—

—

—

Faults

Unknown
Y1 Y2 Y3 Y4 UsdVsq|UQ XQ XQ Tp Hp Qp Te wr wp imdimqimdimq Al AQ A Ao isd isq tsd isq Kf K; AB fe fa
1
1
1
[l

— -

Known

c6
cs
cy
cs

dg
c10
ds
c13
c14
d3
dy
co
Cds
car
c3
4
cr
cg
da1
daz
c1
c2
d1
do
c14
c1s
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y Observer _T_ FDI
b First € >
[ p| subsystem % > Second >
r ,—> subsystem
H |—>

Figure 6.3: The division of the fault detection algorithm. In the first subpart the model
of the electrical part of the motor is used, and in the second subpart the models of the
mechanical and hydraulic parts of the system are used.

6.4.3 Structural Analysis on the Second Subsystem

The SA is in this section used for identification of four minimal over-constrained sub-
systems. Each of these subsystem can be utilized for detecting a subset of the faults
in the centrifugal pump. The second subsystem is described by the set of constraints
G in (6.35). Beside these constraints two extra constraints are defined to describe the
connecting variables, and7.. These constraints are given by,

In Table 6.5 the graph of the second subsystem is shown. Here the two extra constraints
are added.

Table 6.5: The structural model of the second subsys$ignobtained in Section 6.4.2.

Known Unknown Faults

y3 ya Or Te |ug %o xg wr Tp wr Hy Qp Te | Ky Ki AB fe fa
c6 1 1 1 1
d@ 1 X
c10 1 1
ds 1 X
cs 1 1 1 1
co 1 1 1 1 1 1
cs 1 1 1 1 11
c1s 1 1
cig | 1 1
c14 1 1 1
c16 1 1

Using the definitions and procedures described in (Blanke et al., 2003; Izadi-
Zamanabadi, 2001), four minimal over-constrained subsystems are identified. The set
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of constraints contained in each of these system are given by,

Cm1 = {d5705709,614,015,616}

Cna = {Cs, C13, C14, C15} (6 36)
Cmz = {ds, cs5, ¢, 9,13, C15,C16} '
Cma = {ds, cs5,¢8,C9, €13, C14,C16} -

From these four minimal over-constrained subsystems, it is seen that the conglyaints
cg, andcy are not contained in any of the matchings. These constraints describe the
application in which the pump is placed. Therefore, when these are not used in a match
it means that the matching is independent of the application model, and therefore no
knowledge about the application is necessary for the algorithm to work.

Looking at the column to the right in table 6.5 the faults affecting each of the sub-
systems?,,; can be identified. The connections between the faults and the subsystems
are shown below,

Co1 : {K1, AB, fe, fa}
Cimz : {Ky, Ki, fe, fa}
Cma {KfaAviwfd}
em4 : {KfaKl7ABafC7fd} .

These connections show that the given faultsStracturally monitorablérom the given
set of constraints, see Theorem 6.1.2 (Blanke et al., 2003).

From the connection in (6.37) it is seen that the fagiltend f; are indistinguish-
able from a structural point of view, meaning that isolation of these faults is impossible
using residual generator built on these sets of constraints. Moreover, it is seen that no
additional information is added usiri},s. Therefore the set,

{emlv em?a em?)}a

contains the obtainable information about the faults in the system. The last rélation
could be used for validation in a robust fault detection scheme.

(6.37)

6.5 Observer for the Motor Part

In Section 6.4.2 it is shown, using SA, that the model of the centrifugal pump can be
splitted into two subsystems, where the first systestriscturally observablesee The-

orem 6.1.1 (Blanke et al., 2003). When this is the case the behaviour model of the
system is also observable for almost all parameters (Blanke et al., 2003). Therefore, it
should be possible to derive an expression of the measurements and their derivatives for
calculating the connecting variables.

Unfortunately, the derivatives of the measurements are not known. Therefore, an
observer solution is investigated in this section. In the first part of the section a state
space description of the system is derived from the constr@intdn the last part an
adaptive observer for observing the connecting variables is presented.
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6.5.1 Realization of the set of Constraint$,

One approach for developing an observer to observe the speed and torque is to derive a
dynamic description of the set of constraints using the theory presented in Section 6.2.
The obtained dynamic description can then be used in the design of an observer.

In Section 6.4.2 the set of constrairtts is identified. This set forms a match of
the two connecting variables, andT,.. From Table 6.4 it is seen that the constraint
cg is used to match the variablg,, which is not used in any other constraintsdn
Thereforecy is not necessary in a match of the spegdHowever, it is seen that, when
the speed is matched, can be used to calculaig, as all variables excefit. is matched
in cg. Therefore, when an expression for calculatingis derived, then the derivation
of an expression for calculatirif, is just a matter of form.

Based on the above argumentation only the calculation,.af considered in the
following. In Remark 6.2.4 it is argued that an observable state space description only
exists if the given subsystem is over-constrained, which is not the case for tfg set
Therefore, by adding an extra constraintpmaking the new set over-constraint and
removingcg, the following set is obtained

C. = (Cc\cy) Uds , (6.38)

which fulfills the demand of existence given in Remark 6.2.4. The neW’sistformed
by the following constraints,

cp L’Sisd = —(RS + R/T)isd + A1 + vyg

co 1 Lligg=—(Rs+ Rl)isq + As + vy

c3 L;nimd =—A + R;isd

cs 0 Llimg=—As+ Rlig,

cr Ay = Rlima + zpwr L img

cs Ay = Rlimg — 2pwr Ll ima

c13 Y1 = isd

cia Y2 = lsq _

car Al = R’T?md + zpwr L] g + zprLﬁn?'mq
cqs - Ay = Rlimg — 2pWr Ly imd — Zpwr Ll imd -

In this set the unknown variables; U x, and the known variables U y are given by,

Xd = [Z.sd isq tmd Ay AQ:IT Xa = [qu Z'mq Wy WT]T
T T
u= [vsd vsq} y= [yl y2]

Comparing the set (6.38) with the general system given by (6.4) the vectof fjdlte
algebraic mapsn, and the output maps, are constructed using the set of constraints
{c1,¢2,¢3,¢q7,Cas}y {ca,cr,cs}, and{cis, c14} respectively. According to Theorem
6.2.1 and the match shown in Table 6.4, it is possible to eliminate a subset of the alge-
braic variables,, in the system using the vector functiafy,. From the match presented
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in Table 6.4 it is seen that the two algebraic variablgsandi,,, should be eliminated
usingm,. By eliminating these the following system is obtained,

B = £1(xd,Xa2, 1)

20 (y) = oy (X, X0s) | (6.39)

wherex,s = [wy wr}T and,

R +R,
L 7hZSd + L/ Al + L/ Vsd

R+R
L’ 77/5q+ L' A2+ L/ Usq

1 Ry -
fO - _L/ Al + 715(1

R! R.?.
— Ay + Trisq — zprLmzmd — zpwr(RTzSd — Al)

0 (R/ + zgwg LR/ ) Tond + zpwr%zAQ — A
go=n| ho= P
Y2 isq

The next step in the derivation of a state space description is to use the approach de-

scribed in Theorem 6.2.2 to eliminate the algebraic variaklgsin (6.39). Unfortu-

nately, doing this the expression becomes huge, making it very difficult to find the state

transformation®, see Theorem 6.2.2. This makes the obtained expression useless.
However, by eliminating the variables i,> in two steps an useful expression

is obtained. To see this firsd,. is eliminated in (6.39), and then the state trans-

formation T : x,w, — x4 IS used to transform the obtained system. Here=

lisa isq imd z‘mq]TandT is given by

isd

lsq

T(x,w,) = Tmd
Rl ima + 2pwr L) img
Rlimg — zpwr Ll imd

Doing this the traditional description of the electrical part of an induction motor is ob-
tained, i.e. the transformed model has the following form

dl = Iz X7 w’l"vu
=k ((X) ) (6.40)
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where
Rs+R, . R, . Ly, 1
T “lsd 1 ﬁlmd - prrﬁlmq + ﬁvsd
R.+R. . I A R’ . 1 .
— o7 lsq t ZpWr T md + Trlmg T T Usq isd
fx(x7wrau) = s R. . R’TS . ° h:v(x) = i .
7 tsd — 7Zmd + ZpWrlmgq sq
m m

Lil;;isq - prrimd - Lil{;im,q
As the second step the approach presented in Theorem 6.2.2 is used ones again. This

time to eliminatew,. in (6.40). Hereby the following state space description is obtained,
% = fz (Z7 u/)

Y= ha(z, W) (6.41)

wherez € D, C R® andu’ = [v,g vy yQ]T. The vector fielcf, and the nonlinear
maph., in this expression are given by,

/
f.(z,u') =
R, R QL%ngngrZzzL’sysz’SQy%
-2+ \/ I + Vsq
*RsyQ + Usq
R.L'+R.L’ R. o R RiA\/2L!, 25— 234222 L,y2— L, 2y3z1
72 r s r=m » + T a5 r oy + i m 2 s s 2
LiLy, 3T I 2 T I, P22 L, L

’ _ .2 ’ _T12,2
hz(zau/) = (LLISZ _ \/2L7nz3 22-‘,-5;2[/53/2 Ls y2) .
The system (6.41) is a state space realization of the set of consttaintghere all
algebraic variables are eliminated. The speed of the motor can be calculated from the
states of (6.41) using the following expression,

R! . R/ L'
2 22+vsq—Lgy2—<Rs+ Lrins-i-RL)yz

Zp \/2L;71 z3—23+22o L) y2— L/, 2y2 )
from which it is seen that,. is a function ofy,, which in general is not known. Even

though this expression is not usable for estimating the spegethe following remark
on this system should be considered.

Wy =

Remark 6.5.1 If an observer can be found based on system (6.41), then this observer
is a residual observer for the induction motor, which is independent of the speed

In this section it is argued that it is not possible to estimate the speed of the motor without
knowing the derivative of at least one of the measurements. However, it is also shown
that the subsystem identified using SA corresponds to the electrical part of an induction
motor, see (6.40). Therefore, all the methods, described in the literature, for speed
and torque estimation based on the electrical model can be used. In the following the
adaptive observer, developed in Section 5.2.1, is utilized for estimating the connecting
variables, i.e. motor speed and torque.
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6.5.2 The Adaptive Observer

In most pump applications the speed is either constant most of the time or changing
slowly over time. Therefore the speed can be assumed constant in the observer design,
meaning that an adaptive observer can be used for estimating the states and speed of the
motor simultaneously. This approach, of course, has the drawback that, when transient
phases occurs, short time errors in the estimated signals must be expected.

Considering the motor description (6.40) obtained in the previous section, it is seen
that this system can be rewritten to be on the following form

%‘ =(Ag+w-A, )x+Bu

e (6.42)

where the state vecter, the input vecton and the output vectagy are given by

X = [st lsq  tmd qu}
T

u = [vsd vsq] y= [isd Z.sq]T

)

and the matrices in (6.42) are

R +R!, R/, ,
I 0 A 00 0 —zke
0 __ R.+R] 0 R, o s
Ay = ) L. , I A, =0 0 277 0
i 0 -z 0 oo 0 g
0 % 0 _% 0 0 —z 0
1
5y
o £ [t o000
B = ) C= [0 10 o]
0 0

If the speed is assumed constant, this system is a linear system with one unknown but
constant parameter. Using the transformatios Tz given by

1 0 0 0
0 1 00

—7 010

0 -—-L+ 01

I

m

the system (6.42) is tranformed to the adaptive observer form defined in Definition 5.2.1
in Section 5.2.1, wheré (u,0) = A(#) and@® = w,. This means that an adaptive
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observer is given by Proposition 5.2.1. Using this proposition the adaptive observer for
the induction motor becomes

=(Ap+w,AL )z+Bu+K(y —C'z)
O, : d‘z’r =k(y — C'z )TAZTQ (6.43)
f( =Tz,

wherez € R* contains the observer states, ands the estimated speed. The matrices
in the observer are

Al =T 'A,T A, =T'A, T
B/ = T_IB CI - CT 5

and A/ is a matrix composed by the two first rows Af, . K and« are design
constantsK is chosen such that the LM| (5.27), descnbed in Section 5.2.2, is feasible,
andx is chosen such that the convegence speeg. @f suitable.

The connecting variables between the two subsystems are the speed and torque. Of
these only the speed is directly available from the observer (6.43). However,d4sing
the torque can be calculated whenever the states of the motor are known. When the
estimates of the states are usgdecomes,

2, / o < < <
cg : Te=15zL,, (zmdzsq — zqusd) ,

whereigg, isq, ima andi,,, are estimates of states in the original system presented in
(6.42).

This observer is, as mentioned in the beginning of this subsection, developed under
the assumption that the speed is constant%g?. = 0. This assumption is not correct
during transient phases, therefore it is expected that problems can arise when transients
occur in the speed.

6.6 Observer Based Fault Detection and Isolation

In this section one ARR and three residual observers are designed. These are based on
the four minimal over-constrained subsystems identified in Section 6.4.3. The design
of the observers is partly based on the theory presented in Section 6.2, and partly based
on a proposition presented in this section, which states the stability condition for the
observers. Results obtained using the developed residual observers on the test setup are
presented in Section 6.7.

6.6.1 The Residual Generators

Looking at the constraints forming the s8> = {cs, c13, c14,¢15} it is seen that no
differential constraints are included in this. Therefore an ARR obtained from this set
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does not include derivatives. The ARR is given by,
To = —anayi + ap1@rYa + anow: — ys - (6.44)

It is also possible to obtain ARR'’s from the seéls,;, C,,3 and C,,.4, but because a
differential constraint is used in each of these sets, it is necessary to use derivatives of
the output in these cases. To avoid this, three residual observers are developed in the
following. The constraints contained in the s€ts;, C,,3 andC,,4 are given by (6.36),

and are reproduced below for convenience,

Cm1 = {ds, cs5, 9,14, C15,C16}
Cmz = {d5a05708709701370153016}
em4 = {d57 Cs, Cg, C9, C13,C14, 616} 9

where the constraints are given by,

d5 : Wy = dgg

¢s  Jw, =T, — Buw, —T,

Cs : Hp = 7(1}12622 + athpwr + ahOw?
g Tp=—apQ,+anQpuw, + arow?
ci3 :  y3=H,

Clg Yg = Qp

Ci5 ("Air = Wy

Cig - Te = Te .

Comparing the set8,,:, C,,3 and C,,4 with the structure of (6.4), the vector fiefd
is formed by the constraint;, the mapm, is formed by a subset dfcs, ¢y}, and the
maph,, is formed by a subset di:; 3, c14, ¢15, ¢16}. Using Corollary 6.2.1 on these sets
it is shown that the sets,,1, C,,3 andC,,4 all can be transformed to systems with the
following structure,
% =axq + fo(xq,v1,u) + e1(xq,v1,u,f) (6.45)
g(v1,v2,u) = h(xg) + e (g, v1,v2,u,f) , '

where the state of the systemy = w,, the inputu = T, the outputsvy,ve €
{&r,y3,y4}, andf is a vector containing the fault signals. This shows that the alge-
braic variables in systeri,,,;, C,,3 andC,,,4 can be decoupled using a transformation

of the output equations only. For the three obtained systems the following assumption
holds.

Assumption 6.6.11t is assumed that in the case where no faults have occurred, i.e.
f = 0, the output may in (6.45) can be solved far, locally. Let this solution be given

by,
xq = g(v1,v2,u) . (6.46)
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Using the above assumption the following proposition describes a residual observer
for the system described by (6.45).

Proposition 6.6.1 Under Assumption 6.6.1 the following observer is a residual ob-
server for systems described by (6.45),

CT;Z = a‘j:d + f$(§(v17v27u)a Ulau) + k(g(vh’UQau) - jjd) . (647)
r= q(g(UhU%U) - i‘d)

The residual observer is asymptotical stable-# 4 < 0. The fault input to this observer
is given by,

ff :(f:r(xdavlau) - f’I‘(Id +§$f,U1,u)) + 61(Id,1)1,u,f) — kéxf s

where f; is a derived fault signal, which is strongly detectable. In the expressign of
the signaldz ;s is given by,

sz =h~"(g(v1,v2,u) — ea(za, v1,v2,u,f)) — G(v1,02,u) .

Proof: In the no fault cas€ = 0 the observer error equation becomes,

é = (axq + fo(za,v1,u)) — (aZq + fo(za,v1,u) + k(za — Ta))
é=(a—ke (6.48)

where (6.46) is used in the observer expression (6.47), meaning(that., v) = z4. Equation
(6.48) shows that the error dynamic of the observer is asymptotical stable i < 0.
The expression of the derived fault sigrfalis obtained in the following by introducing the
fault signals in the error equation of the observer. First, an expression of the fault when mapped
throughg is obtained. To this end define the functignas,

gy (v1,v2,u) = g(v1,v2,u) — ex(xa, v1,v2,u, f) = h(za)

From this expression it is seen that the functignmust be used to obtain a map from the mea-
surement®; andvs to the stater, if a fault f has occured, i.e.

Ta = §f(’u1,'02,u) = hil(g(vlvv%u) - 62(.’Ed,’01,1}2,u, f))

Definedz s andzy asézy = xq — x5 anddx s = g¢(y1, y2, u) — g(y1, y2, u) respectively. Using
these signals the observer error equation, in the faulty casé,sd), becomes,

€ =ae + fz(xthylau) - fz(mf7y17u) + el(m7yl7f) - kj(xf - i‘)
€ :(a’ - k)e + (fz(a“d7y17u) - fI(wd - 6:rf7y1,u)) + el(xvyhf) - ké—mf (649)

From this expression the following nonlinear expression of the fault can be identified,

ff :(fz(xd7y1au) - fﬂﬂ(md + 6$f7y17u)) +el(x7y17f) - k(sl‘f
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Chapter 6: A New Approach for FDI in Centrifugal Pumps

Including this fault expression in the error equation (6.49) it becomes,
e=(a—k)e+ ff
r=qe

From this expression it is seen that the derived fault sigipés strongly detectabled

Remark 6.6.1 The derived faultf; is strongly detectable using this observer. This is
not the case for the faults ify as the nonlinear expression ¢f can equal zero even
though one of the entries ihis different from zero.

Remark 6.6.2 The observer described by Proposition 6.6.1 is designed under the as-
sumption that a perfect model exists, and that the measurements are not affected by
noise. This is, of course, not fulfilled in real life applications. To overcome this the gain

k of the observer is chosen such that errors due to small model mismatchs and noise will
be suppressed.

Using Corollary 6.2.1 and Proposition 6.6.1 on the three over-constrained subsystems
Gy Cms, andC,, 4, the following three residual observers are obtained,

0. { JeGt = —Bia — fr(ya, o) + T+ k1 (&r — 20) (6.50)
= q (Or — Za)

O : { J% = *B?d - fT(ng(d)Ta y3)ad)r) + Te + k3 ((‘DT - iri) (6.51)
13 = g3 (0 — Zq)

O : { J4d — _Bg, — fT(y47g4(y3yy4)) + T+ ka (94(ys, ya) — &) (6.52)
74 = 44 (94(y3,Y4) — La)

wherek; is designed according to Proposition 6.6.1 ani chosen such that the resid-
uals have a reasonable value in the case of faults. The fungtiggiven by

J1(Qpswr) = —apQ3 + an Qpw, + anw;

and the functiongs andg, are derived from the output mdpin (6.45), and are given
by,

an@r + /a2 @2 — dapz(y3 — ano?)

93(@r,y3) = %ars
—an1ys + /a3 y3 + dano(ys + anay?)
94(193, y4) = 2ano :

These expressions are valid fof, y4 € R, when the parameters of the pump used in
the test are considered. Therefore the expressions are valid in the statevsp@ce
R4, which is exactly the state space in which the model is valid, see Section 3.5.
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Section 6.7: Test Results

6.7 Test Results

The final FDI algorithm is obtained by composing the adaptive observer developed in
Section 6.5, and the residual generators developed in Section 6.6. The structure of the
FDI algorithm is depitch in Fig. 6.4. In this algorithm the adaptive observer is used for

:I\_
Vsabe— > Motor £ L ARR and T,
: - an
isabe » Observer > Residual —»r,
H ’ Observers >y
P > — 4
Q

p

Figure 6.4: The final detection algorithm. The first part is the motor observer described
in Section 6.5, and the second part is composed of the ARR and residual observers
described in Section 6.6.

estimating the connection variables andT,, based on the supply voltage.,. and
the motor current,,;.. These connection variables are then, together with the flow and
pressure measuremaf} andH,, used as input to the residual generators.

This detection algorithm is in the following tested on a Grundfog k%) CR5-10
pump. This pump is placed in a tank system as depicted in Fig. 6.5. In this tank system

Figure 6.5: Sketch of the test setup. The measurements are the electrical quantitatives,
the differential pressuréf, delivered by the pump and the volume flow through the
pUMpQ,.

the valveV; is used to model disturbances in the system. Clogging inside the pump is

147



Chapter 6: A New Approach for FDI in Centrifugal Pumps

modelled by the valvé/. and dry running is modelled by closiig and opening/s.
Rub impact is modelled by adding an extra force to the shaft and cavitation is modelled
by closing valvel;, gradually. Leakage flow is modelled by openivig

Test results have shown that the sensitivity to the fafltand f; of the observer
O.nq is very low. Infact it is so low that changes due to the faults are smaller than
changes due to noise and parameter variations. Moreover in Section 6.4.3 it is shown
that the obtainable fault information is included in the residuals,, andrs. Therefore
only these residuals are considered in the test presented in this section.

Since the tests are performed on a real system, noise is expected on the residuals. To
overcome this problem a CUSUM algorithm (Basseville and Nikiforov, 1998) is used to
detect changes in the mean of the residuals and thereby detect the faults. The CUSUM
algorithm is shortly described in Appendix B.1. In the following, outputs of the CUSUM
algorithms are denoteB, to D3, whereD; is the decision signal of; and so forth.

All test results are shown in Fig. 6.6, Fig. 6.7 and Fig. 6.8. First robustness
with respect to the operating point is tested. In this test both the position of the valve
V1 and the speed of the pump are changed during operation. During the test the valve
is changed in three steps from medium to maximum opened. The speed of the pump
is changed between 2380 and 2910 (rpm) each 2 (sec) during the test. The result of
this test is shown in Fig. 6.6(a), wherg to r; are shown in the top figure and the
decision signald, to D3 in the bottom figure. The test shows that the three residual
generatores are robust with respect to the tested operating points, but also that there are
some dependency to the operating point, see top figure of Fig. 6.6(a), This is partly due
to problems with the flow sensor at zero flow and partly due to dependency between the
parameters and the operating point.

Figures 6.6(b) to 6.8(b) show test results concerning isolability of the five faults
considered in this chapter. All these tests are performed Withalf opened and an
angular speed of approximately 2650 (rpm). Compaiihg D-, and Ds in the five
figures it is seen that the faults are distinguishable except for cavitation and dry running
shown in Fig.6.8(a) and Fig. 6.8(b) respectively. This was expected as the structural
analysis in Section 6.4.3 already had predicted this.

6.8 Discussion

The first topic of the work presented in this chapter is realization of over-constrained
subsystems identified using Structural Analysis (SA). It is well known that there is a
straightforward connection between Analytical Redundant Relations (ARR'’s) and mini-
mal over-constrained subsystem. Unfortunately, the obtained ARR’s are in general func-
tions of the derivatives of the measurements, which are difficult to calculate when the
measurements are corrupted by noise.

To overcome this problem a new method for rewriting a subsystem identified using
SAto a state space description is developed. The obtained state space description has the
property, that the only unknown variables are the states of the system. The state space
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Figure 6.6: Test results from test of the developed algorithms on the test setup. The

top figures shows the obtained residuals and the bottom figures shows decision signals
obtained from CUSUM algorithms.
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Figure 6.7: Test results from test of the developed algorithms on the test setup. The
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description can then be used for derivation of residual observers. In the design of these
observers decoupling of unknown inputs has not to be considered, as the only unknown
variables are the states of the system. The method is tested on a satellite model, showing
that a residual observer can be obtained using this approach. Moreover the method is
used to develop residual observer for the centrifugal pump application, which is the
second topic of the chapter.

The second topic of the chapter is fault detection and isolation in a centrifugal pump
placed in an arbitrary hydraulic application. An algorithm, which is capable of detection
and isolation of five faults in a centrifugal pump, is developed. The proposed alogrithm
is independent of the application in which the pump is placed. This makes the algorithm
robust and usable in a wide range of applications, such as submersible application, waste
water application, and heating application.

Tests have shown that it is possible to distinguish between four of the five faults un-
der consideration, using three chosen residuals. But it is also shown that the algorithm is
sensitive to the operating point. This is partly due to dependency between the operating
point and the parameters in the model and partly due to flow sensor problems at zero
flow. Even though the algorithm has a small inherent dependency of the operating point,
it still performs considerably better than algorithms built on a linearized model, when
the operating point is changed.
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Chapter 7

FDI on the Centrifugal Pump: A
Steady State Solution

In this chapter Structural Analysis (SA) is utilized to derive Analytical Redundant Re-
lations (ARR’s), which can be used for fault detection. The concept of SA is described

in Section 6.1 in the previous chapter. The obtained ARR’s are based on a steady state
model of the pump. Here a steady state model denotes a model describing the pump
under constant speed, pressure and flow conditions. The developed detection algorithm
is only using electrical measurements on the motor, and the pressure and flow measure-
ments on the centrifugal pump. The electrical measurements are in this case Root Mean
Square (RMS) measurements of the voltage and current, the voltage frequency, and the
electrical angle between the voltage and current. These measurements become constant
when the system is running under steady state conditions, and can therefore be sampled
at any given sample rate, provided the steady state conditions. Therefore, by using only
these measurements the microprocessor load of the derived algorithm can be chosen
freely. Moreover, the steady state measurements of the electrical signals are sometimes
made available by modern motor protection units. All in all this makes the algorithm
suitable for implementation in cost sensitive products.

The obtained algorithm is robust with respect to parameter variations and the oper-
ating point of the pump respectively, making it usable in real life applications. In the
development of the FDI algorithm, the approach, presented in Section 6.4, of dividing
the system into two cascade-connected subsystems is used. This is done to avoid two
large residual expressions. The first of these subsystems consists of the electrical part
of the induction motor driving the pump, and the second subsystem consists of the me-
chanical and hydraulic part of the pump. Theoretical considerations regarding to Struc-
tural Analysis (SA) are, among others, found in (Blanke et al., 2003; Izadi-Zamanabadi,
2001).

The faults, which only affect the second subsystem, are detected using Analytical
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Redundancy Relations (ARR’s). These relations are obtained through the utilization of
structural analysis (Blanke et al., 2003) and the Groebner basis algorithm (Cox et al.,
1997). Using this approach the obtained ARR'’s are polynomial. This is utilized in
the development of a detection algorithm, which is robust with respect to parameter
variations. Theoretical results on using the Groebner basis are given in (Staroswiecki
and Comtet-Varga, 2001). Moreover, an overview of model-based methods using ARR’s
is given in (Staroswiecki, 2000).

This chapter starts by presenting the steady state model of a centrifugal pump placed
in an arbitrarily hydraulic application. This is done in Section 7.1. Structural analysis on
the derived steady state model is considered in Section 7.2, which includes; the division
of the system into two suitable subsystems, derivation of an expression for calculating
the connecting variables, and ARR expressions for fault detection. In Section 7.3 a
method for robust fault detection using ARR's is considered. Section 7.4 presents some
test results obtained on the industrial test bench, which also was used to obtain the test
results presented in Chapter 6. Finally concluding remarks end the chapter.

7.1 Steady State Model of the System

In this section, the model of the centrifugal pump derived in Chapter 3, is reformulated

to describe the pump under steady state conditions, only. The section is divided into
three subsections, where the first one is concerned with the steady state model of the
motor. The second one is concerned with the steady state model of the mechanical and
hydraulic parts of the pump, and finally the last one is concerned with fault modelling.
The obtained model will in the following be used in the derivation of a FDI algorithm
based on low bandwidth measurements, such as Root Mean Square (RMS) measurement
of the electrical quantities.

7.1.1 Steady State Motor Model

The model of the induction motor is described in Section 3.2. In this section both a
model of aY-connected and A-connected motor is derived. The obtained models are
prestented in (3.9) and (3.10) respectively. Comparing these models it is seen that the
following equations describe the motor in both cases,

L%t —— (R, + R} hagg + (R — 2p0r L) findg + Vadg

1 dimdg _ 17 / AN
Lm, dt . _RTISd(I - (R7 - ZPWTJLm,) Imdgq -

(7.1)

The variablesr ., is44, andi,,q, are in general unknown. However, in tifeconnected
case the measurable electrical quantities at the terminals of the ipgtand v,q,
equalsisq, andv,g, respectively. In theh-connected case these currents and voltages
are given by the transformatiotig,, = C;isqq andvsq, = B, v, respectively, see
Section 3.2.3.
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To obtain a steady state model of the motor, a transformation of the motor states is
used. This transformation takes the states described in the stator fixed reference frame
X4q and transform these to an arbitrary frame. In this case the arbitrary frame rotates
with the frequency of the supply voltage.. The new states are denotef) . The
transformation is given by, = T(6.)xg,, wheref. is the angle between the stator
fixed frame and the arbitrary rotating franik.is given by

cos(f.) —sin(f,)
6

T(0e) = sin(f.) cos(f.) |’

(7.2)

whered, is a function of time. Using this transformation to transfoviy,, is44, and

imdq, @ new model is obtained with the property that all states are constant during steady
state operation. Setting the derivatives of the states equal to zero, the following steady
state model of the motor is obtained,

—we L I5y = —(Rs + RISy + (R L5,y — zpwr L, 15 ) + VG
we LISy = —(Rs + RIS, + (RLI5 + zpwr L I5,) + Vi
—Weln g = =(Bp 05 = Zpwr Ly L) + RIS
wEL;nIfnd = 7(R;“Ifnq + ZPWTL;nIrEnd) + R;Ifq .

Defining IS, = 0 in the above model, meaning that the rotating reference frame is

aligned with the curreni,, the final steady state model of the motor is obtained,

—we LISy = (R I3 g — zpwr L 0 7) + VG
O = 7(RS + R;«)Ifq + (R;"Ifﬁq + ZIJWTL'ImI:;Ld) + ‘/seq (7 3)
7w€L;nI7enq = 7( 1/" fnd - ZPWTL;nIfnq) .
weL;nIfnd = _(R;I;q + ZPWTL;nITend) + R/TISGq .

The torque expression of the motor is given in (3.11) and repeated here for the sake of
convenience,

Te = isz;n (imdisq — imqisd) .
Using the transformatiofl’, given in (7.2), a torque expression of the new variables is
obtained. The expression becomes

ﬂ:;%mxmgw. (7.4)

Equations (7.3) and (7.4) form the model of the induction motor during steady state op-
erations. However, the electrical quantitieg, V7, andIg, are not directly measurable.
Therefore, a connection between these quantities and the measurable quantities must be
established. The measurable quantities are the RMS values of the supply ¥aliage

and currentl,.,,, s, the supply frequency, and the electrical angle between the voltage
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and current. The anglep is in this case defined as the angle between the voltage vec-
tor Vi, = [Vig Vtg]T, and the current vectds;,, = [0 Ifq]T, where subscript
denotes quantities available at the terminals of the motor. The Euclidean length of the
vectorsVy, andIf, is connected to the RMS values of the measurable electrical quan-
tities by [V, | = V2Vms and|I5, | = V/2Im,. Using the RMS values,.,,,; andl,,s

and the angl@ the voltaged/,5 andV5, and the current;, can be calculated using

ted = *ﬂ%ms sm(d)) Vvtz = \/§Vrms COS((i)) Iteq = \/§Irms : (75)

In the case of & -connected motor the electrical quantities at the motor termirigls
Vig, and I, and the quantitied’s;, Vi, andIg, in (7.3) are equivalent. However, in
the case of aA-connected motor the transformation matridg@s and C; have to be
considered. These matrices are defined in Section 3.2.3. It can be shown that

1

-1

B, = \/gTA Ci = ETA ’

whereTa is a rotation matrix. Using these expressions in (7.1) to obtain the steady
state model, it is seen that (7.3) can be used to model the steady state operation of the
motor when it is connected inA-connection if the following scalings of the electrical
guantities are used,

1

ted:\/g ta V;Z:\/gvtz f§q=\/§

I, . (7.6)

7.1.2 Steady State Pump Model

The hydraulic and the mechanical parts of the pump are derived in Section 3.4 and
Section 3.3 respectively. Moreover, a model of a general hydraulic application is given
in Section 6.3.2. In Section 3.4 it is shown that the mechanical part is described by the
following differential equation,

dw,
dt

whereT, is the torque produced by the motay, is the speed of the shaft, af{) the
load torque produced by the pump. Under steady state operation the speed is constant,
i.e. ¥ — 0, meaning that the steady state model of the mechanical part becomes,

dt
0=1T, — Bw, — fr(Qp,wr) . (7.7)

The hydraulic parts of the pump is considered as the parts involved with the energy
transformation from mechanical to hydraulic energy. In the model derived in Section
3.3 this energy transformation is described by two maps given by

T, = fr(Qp,wr) Hy = fu(Qp,wr) , (7.8)

J =T, — Bw, =T,

156



Section 7.1: Steady State Model of the System

whereT}, and H,, are the load torque and pressure produced by the pump respectively.
The arguments of the mags and f in (7.8) are the volume flow)),, and the speed of
the pumpw,.. The mapsfr and fg are given by,

fu(Qp,wr) = pg (—an2Q2 + an Qpw, + anow?)
.fT(Qpa WT) = *atQQg + atlQpWr + atowg .

A general model of a hydraulic application of a centrifugal pump is given in Sec-
tion 6.3.1. Here it is argued that such a model, in most cases, can be described by the
following state space model,

xq=fa(xq, Hp,d)
Qp=ha(xq) ,
wherex is the state vector of the application mod&l, and(,, are the pressure and
volume flow of the centrifugal pump, antlis a vector containing some unknown input
signals to the application. If itis assumed that the derivative of the statesjuals zero
during steady state operation, the steady state model becomes,
0= fA(XQ, flp7 d)

Qp=ha(xq) - (7.9)

7.1.3 The Fault Models

In Section 6.3.2 five faults are included in the centrifugal pump model. These faults are
all affecting the hydraulic part of the pump. The faults are,

1. clogging inside the pump,

2. increased friction due to either rub impact or bearing faults,
3. increased leakage flow,

4. performance degradation due to cavitation,

5. dry running.

In the model of the system used here, the hydraulic part of the pump is modelled by
the mapsfy, fr and the flow measurement. Introducing the faults described above, the
description of the hydraulic part of the pump becomes,

H, = fu(Q,w;) — K;Q* — Cenfe — Can fa

T, = fr(Q,w;) + ABw, — Cer fe — Car fa

ys =Q— K\ /H, .
In this fault modelK; € R, represents clogginghB € R, represents rub impact,
K; € R, represents increased leakage flgwe R represents cavitation arfyg € R
represents dry runnning. The first three signals model the faults accurately, while the last
two terms are linear approximations.
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7.2 Structural Analysis

In this section Structural Analysis (SA) is utilized to identify subsystems, which can be
used for fault detection. Moreover, the results obtained in Section 6.4, on the division
of the system into two cascade connected subsystem using SA is utilized here, too. This
is done to avoid too large residual expressions. The equations forming the steady state
model, derived in the previous section, are collected in (7.10). Here the four motor equa-

C1 : 7(4}@[//5[56(1 = A1 + V;ed

cy 0=—(Rs + RIS, + Az + V5,
ez o —wely, I, = —A

¢t wll I8, = —Ay+ RLIE,

cs 0=T, - Bw, - T,

c 0 =fu(xq, Hp,up)

cr Ay =R, — zpwr Ly I,

cg Ay = ?lrlth + zpw, L I (7.10)
cg Te = 52p L (Iquﬁld)

clo Hy, = —ap2Q + an Qpwr + anow?
ci1 ot Ty, = —a12Q3 + a1 Qpuwy + aow;
c12 Qp = ha(xq)

C13 Yl = Isq

Ci4 Y2 = We

Ci5 Y3 = Hp

ci6 - Yi=Q,

tions in (7.3) are split into six equations to avoid using redundant structural information
in the SA.

The graph representation of the constraints in (7.10) is shown in Table 7.1. From
this table it is seen that the set of constaitis= {ci, ¢z, ¢3, ¢4, ¢7, ¢, c13,c14} fOrms a
match on the unknown variables contained in these constraints. Therefore, this part can
be considered as a subsystem, with two outputandT,. These outputs are denoted
the connecting variables between this subsystem and the remaining parts of the system.
The set of constraint§, is in the following denoted the first subsystem, whereas the
remaining set of constraint,, = {cs, cs, c10, ¢11, C12, ¢15, c16} IS denoted the second
subsystem. This division of the system is equivalent to the division described in Chapter
6.

In Section 7.1.3 it is argued that the faults considered in this section only affect the
hydraulic part of the pump. The hydraulic part of the pump is describefi,hy+ and
the expression of the flow measurement. These expressions are given by the constraints
c10, €11, andeyg, which are included i®,,, only. Therefore, only the second subsystem
G, is affected by the faults considered in this chapter, meaning that only this part must
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Section 7.2: Structural Analysis

Table 7.1: The structure table of the centrifugal pump system under steady state condi-
tions. The symbol&] show a matching for the first part of the system.

Known Unknown

Y1 YQ Ved V:‘q Y3 Y4 XQ UQ Tp Hp Qp Te Wr If;zdlfnq A1 AQ I;‘q We
c6 1 1 1
c12 1 1
cs 1 1 1
c11 1 1 1
c10 1 1 1
c15 1 1
ci6 1 1
cs 1 1 1 1
c9 O 1 1
cr 01 1 1
c4 O 1 11
c3 O 1 1
c1 1 O 11
co 1 1
C13 l |:|
c14 1 ]

be considered when FDI is applied.

7.2.1 Calculating the Connection Variables

The SA showed that the connecting variahlesand T, should be calculable using the
set of constraints,

Ce = {c1,2,¢3,¢4,C7,¢9,C13,C14} -
Rewriting these constraints the following expression of the speésl obtained,
LWL + Lw Ve — RLRJIS, + RLVE

5 59 T_°d 7.11
Lo (e LLTE, + VE) ’ (711

stsq

W

whereVs,, Vi, I, = Y1, andw. = Y3 are assumed known. The torqil is also

obtained by rewriting2,, resulting in the following expression,

7 Sl R = Vi) 7.12)
2w,
As in the above expressidr, I, = Y1, andw, = Y are assumed known in the torque
expression.

In the speed and torque expression (7.11) and (7.12) the voltgges;, and the
currentg, are calculated using the RMS values of the supply volteiges, supply
currentl,.,s, and angle between the voltage and curigntefined in Section 7.1.1.
This is done using (7.5), and in the case dfaonnected motor (7.6).
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7.2.2 Structural Analysis on the Second Subsystem
The second subsystem is described by the set,
Cm1 = {cs, 6, C10, €11, €12, €15, C16} -

Beside these constraints two extra constraints are added to model the estimation of the
connecting variables, and7.. These constraints are given by

C17
C18

(7.13)

8

)

Table 7.2 is a representation of the graph describing the structure of the second subsys-
tem. In this table the column at the right hand side is added to show the connection
between the faults in the system and the constraints. Using SA three minimal over-

Table 7.2: The structure table of the second system. The first two columns describe
the structural connection between the constraints and the known and unknown variables
respectively. Whereas the last column describes the connection between the constraints
and the faults in the system.

Known Unknown Faults

Y3 Yi Te & |xg ug Tp Hp Qp Te wr | Kf K; AB fe fq
c6 1 1 1
c12 1 1
cs 1 11
c11 1 1 1 1 11
c10 1 1 111 11
ci5| 1 1
c1e 1 1
c17 1 1
c18 1 1 1

constraint subsystems are identified. These are given by the following three sets,

Cm1 = {05701170167017;018}
Cimz = {5, c10, c11, €15, €16, €17} (7.14)
Cm3 = {c10, €15, C16, C18} -

The connections between these sets and the faults in the system are given by
ernl : {KhABa fcvfd}

GmZ : {Kf7AB7 fcafd} (715)
e’rn3 : {Kvalafcvfd} .
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Section 7.2: Structural Analysis

7.2.3 ARR'’s of the Pump

The constraintgg andc; o, describing the application in which the pump is placed, are
not included in any of the set of constrairits,;, C,,2, andC,,3s. Hence, any ARR
based on these sets will not be affected by the application in which the pump is placed,
i.e. it will be robust with respect to the application of the pump. The next step in the
development of an ARR is to eliminate all unknown variables in this set. Although it
could be done by hand, here the Groebner basis algorithm is used to guarantee residual
expressions that are on polynomial form. The polynomial characteristic is utilized in
next section to derive an algorithm, which takes parameter variations into account. In
(Staroswiecki and Comtet-Varga, 2001) the Groebner basis is also used as a part of an
algorithm to obtain ARR'’s.

The ARR obtained using the Groebner basis algorithm on theCsetsC,,», and
Cmn3 are used to establish residual expressions on the following form,

Tp, = fpz (yPi)Tapi (0101) (&S {17 273}

whered,, is the parameter vector anyg, is the measurement vector. In this expression
both a,, (8) andf,, (y) contain polynomial functions. In the following the parameter
and measurement vectd?s, andy,,,, and the polynomial vector functiofs, anda,,

are given for each set of constraifts, C,,2, andC,,s.

ARR based on the set of constraint£,,,;

The set of constraint§,,,; contains the following parameters and measurements de-
scribed on vector form,

0y, = (a2 an atO)T Yo = (Te wr Y4)T )

The polynomial vector function§,, anda,,, are given by

]. Te - Bwr
a2 Y2
apl (01?1) = —ay fpl (ypl) = Y4i)r
—agQ w,2

ARR based on the set of constraint€,,,»

The set of constraint8,,,» contains the following parameters and measurements de-
scribed on vector form,

Op, = (a2 an1 apo a2 an atO)T Yoo = (Te wr YB)T-
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The polynomial vector function;, anda,,, are given by

apz (0;02 ) =

‘1}%2
a%z
Ah2a11 Rl — Q203 + 2435010 — 2ap2a10a12
a1(0) + a2 (0) ’

2 2
2ap20a42a40 + Ap2a3] — 2ap0050 — AR1A¢2041

2ap2a42
where
a1(f) = atQ(Qioam + apoap1a41 — ath}Qﬂ)
a2(0) = ana(agyans + aanant — anoai; — 2anoar2amn)
and

Bzwf —2BT . w, + TE2
Y32
Bw? — Tewf
fpl (yP1) = w4
Ysw?
—YgTe + BngT

ARR based on the set of constraint€,,,3

The set of constraint8,,s contains the following parameters and measurements de-
scribed on vector form,

0, = (an2  am aho)T Yps = (wr Y3 Y4)T :

The polynomial vector functions, anda,,, are given by

1 Ys
— Qa2 Y2

Apg (91’3 ) - as fPS (yind) = Y4i)r
ao w2

T

7.3 The Robust FDI Algorithm

The ARR’s developed in the previous section depend on the parameters describing the
pump. As the application treated in this work is a real system the model parameters are
not matching the real parameters exactly over the whole operating range of the pump.
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Moreover, the density of the liquid is not constant due to temperature changes and im-
purities in the liquid. This density affects the value of the parameters in the hydraulic
model of the pump given by (3.29). Therefore, parameter variations must be taken into
account, for the developed algorithms to be robust and thereby usable in real applica-
tions.

7.3.1 Robustness with Respect to Parameter Variations

The residuals are in this case calculated using functions on therfernfi(y)”a(0) as

seen in Section 7.2.3. In these equations 0 when the parameter vectér= 6, and

no fault has occured in the system. Hékgis the parameter vector used in the design

of the residual generators. Robustness is now formulated as the problem of handling
the residual generation problem wheére ®, where® is the set of possible parameter
values includind@,. This means that = 0 is not necessary fulfilled in the no fault case
anymore. However, in all real life systems it is assumed:thabounded on the s€.

One way to treat the parameter variation problem, sketched above, is the use of a set-
valued approach, as presented in for example (Tornill et al., 2000; Idrissi et al., 2001).
When using this approach a set of possible residual values is obtairieid.nbt in this
set it can be concluded that there is a fault in the system in spite of parameter variations.
This is formalized in the following definition,

Definition 7.3.1 The set of possible residual valuRshas the following properties,
¢ |f the system is not affected by faults iee= 0 then0 € R.

e If 0 ¢ R then there are faults in the system iee£ 0
wheree is a given fault vector an® C R is a connected set.

Now letr = ¢(y, 0) be an ARR describing the behaviour of a given system, where
contains the measurements ahdontains the parameters in the ARR. For this ARR

only equald) in the no fault case, if the structure and parameters of the system are known
exactly. When, for such a system, parameter uncertainties are taken into account the set
of possible residual® defined in Definition 7.3.1 is given by the following lemma,

Lemma 7.3.1 If the set of possible paramete®is a compact set, given by

© =1{010;=10;,0;], i=1,--- ,n}, (7.16)
where@ € R"™, and the residual functiop : ) x ® — R is continuous or® for all
y € Y C R™, then the set of possible residual values, in the no fault case, is defined by
the maximum valugé and minimum value of R. These maximum and minimum values
are given by
T ey 0)

— mi 0) .
r gggg(y, )
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This is a well known fact from mathematical analysis and the proof can be found in
(Apostol, 1974). Using this lemma the boundarie®Rafan be calculated. Unfortunately

it is not straightforward to calculate these maximum and minimum values. However,
in the case treated in this work the functigrcan be separated into a function of the
parameters and a function of the measurementg(iye.0) = f(y)”a(8). When this is

the case it is easy to see that one set of boundaries on the residRaikssgiven by

T < Tmaz = Z glea(z){ (al(e)fl (y))
i=1

k

> = .
r T’"L’LTL — 119%18( ( )ft( ))
From these expressionitis seenthatanly =1, - - - , k is a function of the parameters
6. The maximum and minimum af; can be calculated offline, leaving only a sign check

of f; to be done online. This is expressed in the following lemma.

Lemma7.3.21f r = f(y)Ta(#) wherea and f are two vector functions, which are
continuous on respectivel® and ), then an upper (lower) boundary &f(r) is given
by

T < Tomaz = § Ti,max T < Tmin = § Ti,min »
7 7

where
. _ { fi(y) maxgeco (a;(0)) if fi(y) >0
bmax fi(y) mingeo (a;(0)) otherwise
A { fi(y) mingee (a;(0)) if fi(y) >0
e fi(y) maxgceo (a;(6)) otherwise.

The upper and lower boundaries, found using this lemma, are fast and easy to calculate
online, as the hard part of the calculations can be done offline. Unfortunately, the found
upper and lower boundaries are in general not very tight. However, if the residual ex-
pression = ¢(y, €) is affine with respect to the parametéran exact solution exists.

If g is affine with respect to the parametérg can be rewritten to be come,

r=g(y,0) = Go(y) + Gi(y)0 . (7.17)

For an expression of this form the upper and lower boundaries can be found on an
interval set® using interval algebra (Boukhris et al., 1998). Using this approach the
exact maximum and minimum values of (7.17) can be calculated, in the no fault case,
using the following lemma.
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Lemma 7.3.3 For the parameter affine system (7.17) the maximum and minimum values
of the residual seR can be calculated exactly, and are given by

Go(y) + Gi(y)0o + |Gu(y)| (6 — 60)
Go(y) + Gi(y)00 + |Gi(y)| (8 — 69) ,

7
r

wheref, = (6 +0).

This is a well-known fact from interval analysis (Boukhris et al., 1998; Moore, 1979).
In the following, Lemma 7.3.2 and 7.3.3 are used to calculate an upper and a lower
boundary of the residual expressions found in the previous section.

All the residual expressions derived in Section 7.2.3 are on the form

r="£(y)"a(0),

where botha andf are vector functions with only polynomial nonlinearitiesdrand

y. As this is a nonlinear expression, Lemma 7.3.2 could be used to find upper and
lower boundaries of the residual set. However, these upper and lower boundaries are in
general far from the real maximum and minimum value®ofvhich is also the case in
centrifugal pumps. Therefore, the linear dependency between the parameters is extracted
using a first order Taylor Series expansiom). This Taylor Series expansion is given

by
a(8) =a(Bo) + [£2(60)] (8 — 60) + O(0 — ) .

When this expression is used in the residual equation the residual is calculated by the
sum of two terms = r; + ro. These terms are given by

r(y) = (£(y)"a(00)) + (F()" [5(60)]) 6 (7.18a)
ro(6,y) = £(y)" (0(8)) . (7.18b)

wheref = 6 — 6,, and@, is chosen such th#, = %(5 — 0). Itis immediately seen
that (7.18a) has the same structure as (7.17), meaning that Lemma 7.3.3 can be used
to calculate the maximum and minimum valuesrgfin the no fault case. This does
however not form the boundaries pecause of the higher order ter®& — 6,). The
dependency on of these terms is described by (7.18b). This expression is a nonlinear
expression on the form treated in Lemma 7.3.2, which therefore gives the upper and
lower boundaries on this expression.

Using interval algebra it is easy to find the boundaies &fm the boundaries of
r; andrg. This is formalized in the following algorithm, which is used for robust fault
detection.
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1. Ateach new samplg computef(y), Go(y) = f(y)Ta(6,) and
Gi(y) =f(y)" [3& (60)].

2. Compute the maximum and minimum valugsand r; using
Lemma (7.3.3).

3. Compute the boundarieg ,,;, andre .. using Lemma 7.3.2

4. Compute the boundaries of the residual set using,

> Tmin = r + TO,min
< Pmaz =T+ TO,max

SIS

5. Compute the decision signBl using,

D= 0 if Tmin S 0 S Tmax
~ 1 1 otherwise

Remark 7.3.1 This algorithm can calculate the boundaries of the residual set of one
single residual expression. However, parameter dependencies between residuals, when
more than one residual is considered, are not taken into account. Therefore, the identi-
fication of incipient faults can create problems in some cases.

Interpretation of the algorithm

The idea of the algorithm is to find the possible variation on the residual value, which
can be caused by parameter divergence form the nominal parameter values. This is
illustrated in Fig. 7.1.

A

}rO,max
L }ro,min
U — —_

min]

)
X

)
| =|3

>

1=

L/

Figure 7.1: lllustration of the different boundary values in the proposed algorithm.

To the left of Fig. 7.1 the set of possible parameter val@es shown. At each
measurement vectgy; this set of parameter values is mapped into a set of possible
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residual values. In the right-hand side figure of Fig. 7.1 this set is definedrhyNow
considering the developed algorithm. The residual set defined,by in Fig. 7.1 is
calculated in step 2, antb in, 70.maz are calculated in step 3. These values sum up
to a set defined by,,.in, rmaz, Which is in general conservative compared to the real
residual set defined hy, 7. If » = 0 is not in between, 7 or alternative not in between
Tmin,» Tmaz It 1S guaranteed that a fault has happened in the system.

7.4 Test Results

The final FDI algorithm is obtained by composing the steady state motor equations given
in Section 7.2.1, and the ARR expressions developed in Section 7.2.3. The motor equa-
tions are used in the first subsystem to calculate the connecting variables, see Fig. 7.2.
The ARR expressions are used in the second subsystem to obtain residuals for FDI. To
obtain robustness in the residual generation the interval approach, described in Section
7.3, is imposed on each ARR expression. The structure of the whole FDI algorithm is
depitch in Fig. 7.2.

YrmS T—e
Ims ———™ Motor > interval |— o1
® ——w» Equations | Algorithm
COS() —»| @ ,—> based on To2
" ARRs [——»r
. |—> p
Q

Figure 7.2: The final detection algorithm. The first part consists of (7.11) and (7.12)
used for calculating the connecting variables. The second part consists of the interval
algorithm described in Section 7.3.

In this algorithm the first part consists of (7.11) and (7.12), which are used for cal-
culating the connecting variablés and7,. These calculations are based on the RMS
values of the supply voltadé.,,,s and current.,..., cos(¢) whereg is the angle between
the supply voltage and current, and the frequency of the supply valtageee Section
7.1. The connection variables. and7. are then, together with the flow and pressure
measurement, and H,, used as input to the second subsystem, which consists of the
residual generators.

This detection algorithm is tested on the same test setup as the algorithm described
in Chapter 6. Meaning that it is tested on a Grundfos(K3%V) CR5-10 pump placed
in a tank system as depicted in Fig. 7.3. In this tank system the Valig used to
model disturbances in the system. Clogging inside the pump is modelled by the valve
V. and dry running is modelled by closifig and openind/’s. Rub impact is modelled
by adding an extra force to the shaft and cavitation is modelled by closing Valve
gradually. Leakage flow is modelled by openilig In the tests shown here a low
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Figure 7.3: Sketch of the test setup. The measurements are the electrical quantities, the
differential pressurdd,, delivered by the pump and the volume flow through the pump

Qp-

bandwidth but precise flow sensor is used. This flow sensor is chosen, as this type of
sensor is often used in real industrial applications.

First robustness with respect to the operating point is tested. In this test both the
position of the valvd/; and the speed of the pump are changed during operation. During
the test the valve is changed in three steps from maximum opened to almost closed. The
first step change is done at time 26.3 [sec] and the second step change is done at time
52.3 [sec]. The speed of the pump is changed between approximately 2030 and 2580
(rpm) each 13 [sec] during the test. The result of this test is shown in Fig. 7.4. In the
three lower figures the residual s&s, to R,,3 are shown by their boundaries at each
time instant, and in the top figure the speed changes are shown. The test shows that
after each transient phase, zero is included in all the three residual sets, i.e. zero is in
between the residual boundaries for each residual set. This shows that the algorithm is
not capable of handling transient behaviour, which was expected. More important, it
shows that the algorithm is robust with respect to the operating point of the pump.

Figures 7.5 to 7.7 show test results concerning isolability of the five faults considered
in this chapter. All these tests are performed wWithhalf opened and an angular speed
of approximately 2350 (rpm). In each of the figures the residualBgtsto R,3 are
shown by their boundaries in the top figure, and the decigignto D,3; are shown
in the bottom figure. The tests show that all the five faults considered in this chapter
are detectable using the three residual sets. Moreover, comparing the decision signals
it is seen that all the fault signatures given By, D,2, and D,3 are distinguishable
except from the cavitation and dry running fault, i.£.and f;. This was expected as
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Figure 7.4: Robustness test. The top figure shows the speed steps, and the three lower
figures show the residual boundaries for each of the three residud sete R 3.

the structural analysis in Section 7.2.2 already had predicted this.

Both the appearance and the disappearance of the considered faults, except from
the dry running faultf,;, are detected. From Fig. 7.7 the problem of detecting the
disappearance of the dry running fault is seen. This problem is due to air bobbles in the
system imposed by the dry running fault, which disturbs the flow sensor used in this test.

7.5 Discussion

The topic of this chapter is fault detection in a centrifugal pump based on steady state
measurements only. Here the steady state measurements are Root Mean Square (RMS)
measurement of the voltage and current, the voltage frequency, the electrical angle be-
tween the voltage and current, and the pressure and volume flow of the pump. Three
residuals are derived form the steady state model of the pump, using Structural Analy-
sis and Analytical Redundant Relations (ARR’s). The faults under consideration in this
chapter are only affecting the second subsystem. Hence the ARR’s are only developed
for this part. The connecting variables between the two subsystems are calculated using
a steady state model of the motor.

Structural analysis has been used to analyse the system. As a result of this analysis
the system is divided into two cascade-connected subsystems simplifying the derivation
of the Analytical Redundancy Relation (ARR) considerably. The first subsystem con-
sists of the induction motor model, and the mechanical and hydraulic parts of the pump
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(b) Detection of the faulfs; leakage flow.
Figure 7.5: Test results. The top figures show the residual boundaries for each of the

three residual setR, R, andR3. The bottom figures show the decision signalg
Do, andD3.
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Figure 7.6: Test results. The top figures show the residual boundaries for each of the

three residual setR, R, andR3. The bottom figures show the decision signBig
Do, andDg.
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Figure 7.7: Test results showing detection of the fgyldry running. The top figures
show the residual boundaries for each of the three residual&et®, andR3. The
bottom figures show the decision signéls, D-, andDs.

form the second subsystem. The approach of dividing the system into two cascade-
connected subsystems was also utilized in Chapter 6. Parameter variations are only
considered for the second subsystem, with the drawback that the algorithm can handle
only parameter variations in the hydraulic part of the pump. However, the possibility
of handling parameter variations in the hydraulic part can be used to obtain a simple
and logical way of setting alarm levels for a user of the system, as these can be defined
directly on pump curves, as those shown in Section 3.3.5.

The residuals obtained from the ARR’s are made robust with respect to parame-
ter variations in the centrifugal pump model by using the set-valued approach. It is
shown that linearization of the parameter function can be used to calculate relatively
tight boundaries of the residual in the centrifugal pump case. Using the set-valued ap-
proach the set of possible residual values are changed as a function of the operating
point of the pump. This could be compared to a residual with an adaptive threshold. The
presented method has the advantage of connecting the physics of the pump and the set
of residuals in a straightforward manner.
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Chapter 8

Conclusion and
Recommendations

In this thesis different aspects of Fault Detection and Identification (FDI) in centrifugal
pumps were considered. Special focus was put on the robustness of the FDI algorithms.
In this connection an analysis method for analysing robustness in signal-based fault
detection schemes was proposed. In most model-based fault detection schemes, robust-
ness considerations are a part of the design. Therefore, the possibilities of using these
approaches on the centrifugal pump were investigated too, ending up with three new FDI
algorithms. Here, a small example of connecting these algorithms into one FDI scheme
is given. This example is followed by a conclusion and a number of recommendations
for further research.

8.1 Algorithm Example

In the thesis four different FDI algorithms were considered. One of these was based on
the signal-based approach, and the remaining three on the model-based approach. In
the design of the three model-based algorithms, a subset of the following 6 faults were
considered.

1. Inter-turn short circuit in the stator of the induction motor.

. Clogging inside the pump.

2
3. Increased friction due to either rub impact or bearing faults.
4. Increased leakage flow.

5

. Performance degradation due to cavitation.
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6. Dry running.

In chapter 5 the detection and identification of the inter-turn short circuit were consid-
ered, and in Chapters 6 and 7 the remaining five faults were handled. The difference
between the two algorithms in Chapters 6 and 7 lies in their ability to handle transient
behaviour in the system. The algorithm derived in Chapter 6 was based on a dynamic
description of the pump and was therefore able to handle transient behaviour. The al-
gorithm derived in Chapter 7 was on the other hand based on a steady state model and
therefore had inherent problems during transient phases.

Composing the algorithm derived in Chapter 5 with the FDI part of the algorithm
derived in Chapter 6, the final FDI scheme is obtained. This FDI scheme is capable of
detecting and identifying the 6 different faults in the centrifugal pump. The composition
of the two algorithms is shown in Fig. 8.1.
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Figure 8.1: The composition of the adaptive observer, designed for inter-turn short cir-
cuit detection, and residual observers, designed for fault detection and identification in
the mechanical and hydraulic part of the centrifugal pump.

In Fig. 8.1 the block denoted adaptive observer, contains the observer used for de-
tecting stator faults. The output from this observer is the estimates of the electrical states,
the speed, and the inter-turn short circuit. The estimates of the electrical states are used
for calculating the torque, meaning that the adaptive observer is capable of estimating
both the speed, the torque, and the inter-turn short circuit fault.

The inputs to the block, denoted residual observers in Fig. 8.1, are the measured
pressure, the measured volume flow, and the estimates of the speed and torque. The
output of the residual observer block is the three decision signals described in Chapter
6, meaning that the information of the mechanical and hydraulic faults are available.

In Chapter 7 residual generators, designed using the steady state model of the me-
chanical and hydraulic parts of the centrifugal pump, are described. These residual gen-
erators could also be used for residual generation in the block, denoted residual observer
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in Fig. 8.1. However, by using these residual generators, problems will arise during
transient phases.

8.2 Conclusion

The following conclusions are drawn on the accomplishments and contributions of the
thesis:

e The dynamics of the centrifugal pump were considered in the development of the
centrifugal pump model in Chapter 3. Two assumptions were given, under which
algebraic maps can be used for describing the energy conversion from mechani-
cal to hydraulic energy, and the pressure of the centrifugal pump. Moreover, the
dynamics of the hydraulic part can be described by an added mass to the impeller,
which is corresponding to the mass of the liquid inside the impeller. This means
that, when the mechanical and hydraulic part of the centrifugal pump is consid-
ered, the dynamics of the pump is described by a first order system. The algebraic
maps describing the energy conversion and the pressure generation are polyno-
mial of second order. This makes the model of the system a nonlinear lumped
parameter model. As the model is a lumped parameter model, it is well suited for
use in model-based designs, both when it comes to control and to FDI.

e The most used methods for FDI in centrifugal pumps are, according to the state
of the art analysis, presented in Chapter 2, based on the signal-based approaches.
Normally robustness is not considered when FDI algorithms are derived using
signal-based approaches. Therefore, it was found that a method, which can be
used for robustness analysis, was needed. In Chapter 4 a combination of the Fail-
ure Mode and Effect Analysis (FMEA) and Fault Propagation Analysis (FPA) is
proposed for the robustness analysis of signal-based FDI algorithms. The pro-
posed method can be used in the design, as well as in the analysis. In addition
to the robustness analysis method, an algorithm for automating one of the manual
steps in the FPA was proposed. Using the improvements of the FMEA and FPA,
the proposed analysis method was used to analyse different sensor configurations
on the centrifugal pump. Also it was used in the design of a detection scheme,
based on one particular sensor configuration. Test results on an industrial test-
bench showed that 3 out of 7 chosen faults could be detected in a robust manner
with this sensor configuration. This showed the usability of the proposed analysis
and design method. However, the result obtained in Chapters 6 and 7 showed that,
using the model-based approach, 5 different faults were detected using the same
sensor configuration. This shows the drawback of the signal-based approaches
when used on centrifugal pumps.

e One of the faults considered in this work was the inter-turn short circuits in the
windings of the induction motor driving the pump. In the state of the art analysis
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in Chapter 2, it was argued, that this fault is often the initiator of a stator burnout.
To understand the nature of the inter-turn short circuit fault, a dynamic model
of the fault was derived in Chapter 5. A model was established for ¥etnd
A-connected induction motors. One remarkable result was shown by this model,
namely that torque ripple should not be expected when an inter-turn short circuit
has occurred. That is, if the motor is supplied with a balanced sinusoidal supply
voltage, and a constant torque load. This fact was indirectly shown in the test,
presented in the end of Chapter 5, as the level of oscillations in the real speed did
not change when introducing the inter-turn short circuit fault.

In Chapter 5, the model of the induction motor, including an inter-turn short cir-
cuit, was used in the derivation of an adaptive observer. In real applications, only
the electrical quantities are normally available. Therefore, the derived adaptive
observer was only using these quantities. The obtained observer was capable of
estimating an inter-turn short circuit fault in one of the phases, the electrical states,
and the speed of the induction motor simultaneously. The design of the observer
was based on a dynamic model of the induction motor, with the speed assumed
constant. Therefore, the observer was capable of detecting the faults during tran-
sient behaviour, when the constant speed assumption was not violated too much.
This makes the algorithm very useful in real applications. Especially for induction
motors supplied with a frequency converter, as transients are expected to occur
frequently in these applications. The drawback of the algorithm is the need for
the motor parameters, which are not always known in real life applications.

In Chapter 3 it was shown that the model of the centrifugal pump is highly non-
linear, meaning that model-based approaches, based on nonlinear models, should
be considered when the operating point of the pump is changed frequently or is
unknown. This is actually the case in many centrifugal pump applications. Here,
Structural Analysis (SA) was chosen as the first step in the derivation of residual
generators. The only straightforward way to use the results of the SA, in order
to obtain residual generators, is the derivations of Analytical Redundant Relations
(ARR’s). These ARR'’s can, and in general do, contain derivatives of the measured
signals. To overcome this problem, a novel realization approach was proposed in
Chapter 6. With this approach, it is possible to obtain a nonlinear state space de-
scription from the results of the SA. The obtained state space description does not
include unknown variables, except for the states of the system. The approach was
tested on three applications; a satellite case borrowed from (De Persis and Isidori,
2001), the induction motor, and the hydraulic part of the centrifugal pump. The
realization method is based on a solution to a partial differential equation, which
is the main problem with this approach. This is, however, a known problem con-
cerning nonlinear state transformations on general nonlinear systems, as it is the
case in the proposed realization approach.

e Based on the results obtained using SA and the realization approach developed in
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Chapter 6, three residual observers and an ARR were derived for the centrifugal
pump. Tests, on a test-bench developed particularly for this purpose, were per-
formed, showing the capabilities of the observers and the ARR. The tests showed
that the observers and the ARR were robust, with respect to changes in the operat-
ing point of the pump. Moreover, the tests showed that 5 different faults, affecting
the hydraulic and mechanical parts of the pump, were detectable with this ap-
proach. This shows the superiority of the model-based approach compared to the
signal-based approach, when it comes to robustness.

¢ In Chapter 6, the algorithm, developed for detecting faults in the mechanical and
hydraulic part of the centrifugal pump, was based on a dynamic model of the sys-
tem. This means that the involved signals were expected to have a bandwidth
covering the dynamics of the system. These high bandwidth signals are often not
available in real life centrifugal pump applications. However, low bandwidth sig-
nals are often available. Therefore, an algorithm based on a steady state model
of the centrifugal pump was proposed in Chapter 7. This algorithm was shown
to be able to detect 5 different faults in the mechanical and hydraulic parts of
the centrifugal pump. The algorithm was made robust with respect to parameter
uncertainties, using a set-valued approach. The need for only low bandwidth sen-
sors and the robustness considerations, makes the algorithm appropriate for im-
plementation in cost sensitive applications, where the necessary sensors already
are available.

8.3 Recommendations

The following topics are not covered in this thesis, but it is believed that future investi-
gations could be beneficial.

¢ In Chapter 5 an adaptive observer is designed for simultaneous estimation of the
electrical states, the speed, and the inter-turn short circuit of the induction mo-
tor. In the design proposed here, the parameters of the motor are assumed known.
However, an adaptive observer is used. Therefore it should be possible to find
a transformation of the induction motor model, making it possible for the adap-
tive observer to adapt to the motor parameters. If this is possible, the proposed
algorithm becomes parameter independent.

e In Chapter 5 also a Linear Matrix Inequality (LMI) approach was used for both
analysis and synthesis of the observer gain in the proposed adaptive observer. It
could be interesting to include the concept of LMI regions in the proposed analysis
and synthesis. Hereby, it would be possible to state demands on the damping ratio
in the system, as well as the convergence rate.

¢ In Chapter 6 a new concept, for realization of subsystems identified using Struc-
tural Analysis, was presented. This concept should be further investigated. Es-
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pecially Assumption 6.2.3, stating the condition for the existence of a state space
transformation, should be considered.

e In Chapter 7 a detection scheme, based on the steady state model of the pump,
was proposed. Because of the steady state model, transient phases can force the
residual to be different from zero, even in the no fault cases. Therefore, means for
detecting these transient conditions, must be established before implementing the
algorithm in real life applications.

e A set-valued approach was proposed for obtaining robustness in the residual gen-
eration in Chapter 7. This approach utilizes interval models. Extending the set-
valued approach, to include interval models of each fault case, it might be possible
to state which fault has happened in a robust manner. Hereby robustness is intro-
duced in the identification of incipient faults.

178



Bibliography

Tom M. Apostol. Mathematical Analysis, second editiodhddison-Wesley Publishing
Company, Inc., 1974. ISBN 0-201-00288-4.

M. Arkan, D. K. Perovic, , and P. Unsworth. Online stator fault diagnosis in induction
motors.|EE proceedings on electrical power applications, Vol. 148, N@@®1.

Neil Arthur and Jim Penman. Induction machine condition monitoring with higher
order spectralEEE Transaction on Industrial Electronics, Vol. 47, N¢2800.

S. Backir, S. Tnani, T. Poinot, and J. C. Trigeassou. Stator fault diagnosis in induction
machines by parameter estimatiolEEE, International Symposium on Diagnostics,
Grado, Italy, 2001.

Antonio Baldassarre, Maurizio De Lucia, and Paolo Nesi. Real-time detection of cav-
itation for hydraulic turbomachine®eal-Time Imaging 4, Page 403 - 411698.

Michele Basseville and Igor V. NikiforovDetection of Abrupt Changes - Theory and
Application www.irisa.fr/sigma2/kniga/, 1998.

Alberto Bellini, Fiorenzo Filippetti, Giovanni Franceschini, Carla Tassoni, and Ger-
ald B. Kliman. Quantitative evaluation of induction motor broken bars by means of
electrical signature analysi$EEE Transaction on Industry Applications, Vol. 37, No.
5, 2001.

Mohamed El Hachemi Benbouzid. A review of induction motors signature analysis as
a midium for faults detectionlEEE Transactions on industrial electronics vol. 47 no.
5, 2000.

Gildas Besancon. Remarks on nonlinear adaptive observer d&si@EVIER, System
& Control Letters, Vol. 41, No. £2000.

Sgren Abildsten BgghFault Tolerant Control Systems - a Development Method and
Real-Life Case StudyPhD thesis, Aalborg University, Department of Control Engi-
neering, 1997.

179



Bibliography

Péter Boka and Gabor Halasz. Dynamic behaviour of centrifugal puRtpseedings
of the XXlst IAHR Symposium on Hydraulic Machinery and Systems, Lays00&

Mogens Blanke. Consistent design of dependable control syst@omsrol Eng. Prac-
tice, Vol. 4, No. 91996.

Mogens Blanke, Michel Kinnaert, Jan Lunze, and Marcel Starowidgiignosis and
Fault-Tolerant Contral Springer Verlag, 2003. ISBN 3-540-01056-4.

Julien Le Bleu Jr. and Ming Xu. Vibration monitoring of sealess pumps using spike
energy.Sound and Vibration, Vol. 29, No. 12995.

Austin H. Bonnett and George C. Soukup. Cause and analysis of stator and rotor
failures in three-phase squirrel-cage induction motdEEE Transaction on Industry
Applications, Vol. 28, No.,41992.

A. Boukhris, D. Mandel, and J. Ragot. Data validation using interval algél&\CC
International Conference on Control, CONTROL'9®98.

Fernando Briz, Michael W. Degner, Antonio Zamarron, and Juan M. Guerrero. Online
stator winding fault diagnosis in inverter-fed ac machines using high-frequency signal
injection. IEEE Transactions on Industry Applications, Vol. 39, N¢ 2003.

Cash, M. A., Habetler, T. G., and Kliman, G. B. Insulation failure prediction in in-
duction machines using line-neutral voltaglsEE Industry Applications Conference,
Thirty-Second IAS Annual Meeting, IAS ;9B97.

Jie Chen and R. J. PattoRobust Model-Based Fault Diagnosis for Dynamic Systems
Kluwer Academic Publishers, 1999. ISBN 0-7923-8411-3.

Young Man Cho and Rajesh Rajamani. A systematic approach to adaptive observer
synthesis for nonlinear systemEEE Transactions on Automatic Control, Vol. 42, No.
4,1997.

Tommy W. S. Chow and Hong-Zhou Tan. Hos-based nonparametric and parametric
methodologies for machine fault detectidieEE Transaction on Industrial Electron-
ics, Vol. 47, No. 52000.

David Cox, John Little, and Donal O’Sheddeals, Varieties, and Algorithms, An
introduction to computational algebraic geometry and comutative algeBminger-
Verlag Inc., 1997. ISBN 0-387-94680-2.

Sergio M. A. Cruz and A. J. Marques Cardoso. Stator winding fault diagnosis in three-
phase synchronous and asynchronous motors, by the extended park’s vector approach.
IEEE Transaction on Industrial Applications, Vol. 37, Ng2B01.

M. Cudina. Detection of cavitation phenomenon in centrifugal pump using audible
sound.Mechanical Systems and Signal Processing, Vol. 17, N20@3.

180



Bibliography

Francesco Cupertino, Elisabetta de Vanna, Luigi Salvatore, and Silvio Stasi. Analysis
techniques for detection of im broken rotor bars after supply disconnecti6BE
Transactions on Industry Applications, Vol. 40, Nq.Z004.

Tracy Dalton, Ron J. Patton, and J. Chen. Application of eigenstructure assignment to
robust residual design for FDIUKACC International Conference on Control, CON-
TROL '96 1996.

Claudio De Persis and Alberto Isidori. A geometric approach to nonlinear fault detec-
tion and isolationIEEE Transaction on Automatic Control, Vol. 46 No 2001.

Diego Del Gobbo, Marcello Napolitano, Parviz Famouri, and Mario Innocenti. Expe-
rimantal application of extended kalman filtering for sensor valitati&EE Transac-
tions on Control Systems Technology, Vol 9. N@Q01.

Levent Eren and Michael J. Devaney. Motor bearing damage detection via wavelet
analysis of the starting current transieiBEE Instrumentation and Measurement Tech-
nology Conferenge2001.

P. M. Frank and X. Ding. Survey of robust residual generation and evaluation methods
in observer-based fault detection systendsurnal of Proces Control, Vol. 7, No, 6
1997.

Jens Friedrichs and Giinter Kosyna. Rotating cavitation in a centrifugal pump impeller
of low specific speedTransactions of the ASME, Journal of Fluid Engineering, Vol.
124, No. 22002.

Erik Frisk and Jan Aslund. Lowering orders of derivatives in non-linear consistency
relations - theory and simulation examples. Technical Report LiTH-R-2547, Dept. of
Electrical Engineering, Linkdping University, Sweden, 2003.

Pablo Garcia, Fernando Briz, Michael W. Degner, and Alberto B. Diez. Diagnostics
of induction machines using the zero sequence voltRgaceedings of the IEEB9!"
IAS Annual Meeting, Seattle, Washingtan04.

E. Alcorta Garcia and P. M. Frank. Deterministic nonlinear observer-based approaches
to fault diagnosis: A surveyControl Eng. practice, Vol. 5 No.,4997.

C. Gerada, K. J. Bradley, M. Sumner, P. Wheeler, S. Pickering, J. Clare, C. Whitley,
and G. Towers. The implications of winding faults in induction motor driv&eceed-
ings of the IEEBE39!" IAS Annual Meeting, Seattle, Washingtaa04.

Janos J. Gertler.Fault Detection and Diagnosis in Engineering Systenidarcel
Dekker, Inc., 1998. ISBN 0-8247-9427-3.

Jan Tommy Gravdahl and Olav Egeland. Centrifugal compressor surge and speed con-
trol. IEEE Transactions on Control System Technology, vol. 7, Nb989.

181



Bibliography

S. Greitzke and C. Schmidthals. Principles and application of a diagnosis system for
mechanical sealf2ump Users International Forum 2000, Karlsryt2900.

Janati Idrissi, Olivier Adrot, and Jose Ragot. Multi-fault detection of systems with
bounded uncertaintiesProceedings of the 40th IEEE Conference on Decision and
Control, Orlando, Florida USA2001.

R. Isermann. Supervision fault-detection and fault-diagnosis methods - an introduction.
Control Eng. Practice, vol. 5, No.,3997.

R. Isermann and P. Balle. Trends in the application of model-based fault detection and
diagnosis of technical process&ontrol Eng. Practice, vol 5, No.,3997.

Alberto Isidori.Nonlinear Control Systems, third editio8pringer-Verlag, 1995. ISBN
3-540-19916-0.

Roozbeh Izadi-Zamanabadhault-tolerant Supervisory Control - System Analysis and
Logic Design PhD thesis, Aalborg University, Department of Control Engineering,
1999.

Roozbeh Izadi-Zamanabadi. Structural analysis approach for fault diagnosis and dis-
turbance decoupling. Technical report, Institute of Electronic Systems, Aalborg Uni-
versitet, Denmark, 2001.

Roozbeh Izadi-Zamanabadi and Marcel Staroswiecki. A structural analysis method
formulation on fault-tolerant control system desigmoc. of the39'" IEEE Conference
on Decision and Control, Sydney, Austrajl2000.

Bin Jiang and Marcel Staroswiecki. Adaptive observer design for robust fault estima-
tion. International Journal of Systems Science, Vol. 33, N@092.

Gojko M. Joksimovic and Jim Penman. The detection of inter-turn short circuits in the
stator windings of operating motortEEE Transaction on Industrial Electronics, Vol.
47, No. 52000.

Rikke Bille Jgrgensen.Development and Test of Methods for Fault Detection and
Isolation PhD thesis, Aalborg University, Department of Control Engineering, 1995.

Carsten Skovmose Kallesge, Vincent Cocquempot, and Roozbeh Izadi-Zamanabadi.
Model based fault detection in a centrifugal pump applicatiSBubmitted in 2004 to
IEEE Transactions on Control Systems Technal@fp4a.

Carsten Skovmose Kallesge and Roozbeh Izadi-Zamanabadi. A realization approach
for residual expression§&ubmitted to the joint 44th IEEE Conference on Decision and
Control and European Control Conference ECC 202605.

182



Bibliography

Carsten Skovmose Kallesge, Roozbeh Izadi-Zamanabadi, Vincent Cocquempot, and
Henrik Rasmussen. Model based fault diagnosis in a centrifugal pump application
using structural analysi®roceedings of the IEEE International Conference on Control
Applications, Taipei, Taiwgr2004b.

Carsten Skovmose Kallesge, Henrik Rasmussen, Pierre Vadstrup, and Roozbeh Izadi-
Zamanabadi. Estimation of stator winding faults in induction motors using an adaptive
observer schemeProceedings of the IEEB9*" IAS Annual Meeting, Seattle, Wash-
ington, 2004c.

Marian P. KazmierkowskiAutomatic Control of Converter-Fed Drive®WN-Polish
Scientific Publishers, Warszawa, 1994.

T. Kenull, G. Kosyna, and P. U. Thamsen. Diagnostics of submersible motor pumps by
non-stationary signals in motorcurrefthe 1997 ASME Fluids Engineering Division
Summer Meeting, FEDSM’'971997.

Hassan K. KhalilNonlinear Systemd?rentice-Hall, Inc., 2002. ISBN 0-13-067389-7.

G. B. Kliman, W. J. Premerlani, R. A. Koegl, and D. Hoeweler. A new approach
to on-line turn fault detection in ac motor$EEE Industry Applications Conference,
Thirty-First IAS Annual Meeting, IAS '98.996.

D. Kollmar, D. H. Hellman, and S. Brodersen. Intelligent standardized chemical
pumps, a chance for pump use®@mp Users International Forum 2000, Karlsryhe
2000a.

D. Kollmar, D. H. Hellman, and F. W. Hennecke. An early failure detection system
emerging from laboratory into plantPump Users International Forum 2000, Karl-
sruhe 2000b.

Dragica Kostic-Perovic, Muslum Arkan, and Peter Unsworth. Induction motor fault
detection by space vector angular fluctuatidraceedings of the IEEE" IAS Annuall
Meeting 2000.

P. C. Krause, O. Wasynczuk, and S. D. Sudhéffalysis of Electric MachinerylEEE
Press, 1994,

Sang-Bin Lee, Rangarajan M. Tallam, and Thomas G. Habetler. A robust, on-line turn-
fault detection technique for induction machines based on monitoring the sequence
component impedance matrikEEE Transactions on Power Electronics, Vol. 18, No.

3, 2003.

Werner Leonhard.Control of Electrical Drives Springer-Verlag Berlin Heidelberg
New York, 1996. ISBN 3-540-13650-9.

183



Bibliography

Bo Li, Mo-Yuen Chow, Yodyium Tipsuwan, and James C. Hung. Neural-network-
based motor rolling bearing fault diagnosiEEE Transactions on industrial electron-
ics vol. 47 no. 52000.

Linfan Liu and Jennie Si. Faultisolation filter design for linear systdmigital Avion-
ics Systems Conference, 13th DASC., AIAA/IEERA4.

Lennart Ljung. System Identification, Theory for the User, Second editi®rentice
Hall Inc., 1999. ISBN 0-13-656695-2.

Henrik Lohrberg and Bernd Stoffel. Measurement of cavitation erosive aggressiveness
by means of structure born noid€&AC 200Q 2000.

Henrik Lohrberg, Burkart Voss, Bernd Stoffel, and Manfred Glesner. Impeller inte-
grated measurement of cavitation erosive aggressiveihe=shatronic, Vol. 12, No.,8
2002.

Kenneth A. Loparo, M. L. Adams, Wei Lin, M. Farouk Abdel-Magied, and Nadar
Afshari. Fault detection and diagnosis of rotating machinéBEE Transactions on
industrial electronics vol. 47 no.,2000.

Xiaogang Luo, Yuefeng Liao, Hamid A. Toliyat, Ahmed El-Antably, and Thomas A.
Lipo. Multiple coupled circuit modeling of induction machinéBEE Transactions on
Industry Applications, Vol. 31, No, 2995.

Mohammad-Ali Massoumnia, George C. Verghese, and Alan S. Willsky. Fault de-
tection and identification.|EEE Transactions on Automatic Control, Vol. 34, No¢. 3
1989.

R. Miiller-Petersen, Th. Kenull, and G. Kosyna. Condition monitoring of pumps by
motor current analysis in a field tesBump Users International Forum 2004, Karl-
sruhe 2004.

Ramon E. MooreMethods and Applications of Interval Analys&iAM, Philadelphia,
1979. ISBN 0-89871-161-4.

Kent R. Nagle and Edward B. SaffFundamentals of Differential Equations and
Boundary Balue Problems, Second editioAddison-Wesley, 1996. ISBN 0-201-
80879-X.

Subhasis Nandi and Hamid A. Toliyat. Novel frequency-domain-based technique to
detect stator interturn faults in induction machines using stator-induced voltages after
switch-off. IEEE Transactions on Industry applications, Vol. 38, No2002.

G. D. Neill, R. L. Reuben, E. R. Brown, and J. A. Steel. Detection of incipient cavi-
tation in pumps using acoustic emissidfroceedings of the Institution of Mechanical
Engineers, Vol. 211, Part,A997.

184



Bibliography

D. W. Novotny and T. A. Lipo.Vector Control and Dynamics of AC Drive©xford
University Press Inc., New York, 1996.

Jorge L. Parrondo, Sandra Velarde, and Carlos Santolaria. Development of a predic-
tive maintenance system for a centrifugal pundournal of Quality in Maintenance
Engineering, Vol. 4, No.,31998.

R. J. Patton and J. Chen. Observer-based fault detection and isolation: Robustness and
applications.Control Eng. Practice, Vol. 5, No0.,4.997.

S. Perovic, P. J. Unsworth, and E. H. Higham. Fuzzy logic system to detect pump faults
from motor current spectrdEEE, Industry Applications Conference Thirty-Sixth IAS
Annual Meeting2001.

Rajesh Rajamani and J. Karl Hedrick. Adaptive observers for active automotive sus-
pensions: Theory and experimetEEE Transactions on Control Systems Technology,
Vol. 3, No. 1 1995.

Henrik RasmussenSelf-tuning Torque Control of Induction Motors for High Perfor-
mance ApplicationsPhD thesis, Aalborg University, Department of Control Engineer-
ing, 1995.

John A. Roberson and Clayton T. Crowngineering Fluid Mechanics, Fifth Edition
Houghton Mifflin Company, 1993. ISBN 0-395-66161-7.

A. T. Sayers.Hydraulic and Compressible flow TurbomachinddcGraw-Hill Book
Company, 1990.

Carsten Scherer and Siep Weiland. Lecture note disc course on linear matrix inequal-
ities in control, version 2.0. Technical report, Delft University of Technology, Delft,
The Netherlands, 1999. Available on the homepage of Carsten W. Scherer.

Randy R. Schoen, Thomas G. Habetler, Farrukh Lamran, and Robert G. Bartheld. Mo-
tor bearing damage detection using stator current monitodiB&E Transactions on
industry Applications vol. 31 no., 6995.

Mau-Hsiang Shih. Solution of the boolean markus-yamabe probléeivances in
Applied Mathematics, Vol. 22, No, 1999.

Jason R. Stack, Ronald G. Harley, and Thomas G. Habetler. An amplitude modulation
detector for fault diagnosis in rolling element bearing@oceedings of 28th Annual
Conference of the IEEE Industrial Electronics Soci@g02.

M. Staroswiecki. Quantitative and qualitative models for fault detection and isolation.
Mechanical Systems and Signal Processing, Vol. 14, N20@0.

M. Staroswiecki and G. Comtet-Varga. Analytical redundancy relations for fault de-
tection and isolation in algebraic dynamic systewgtomatica, Vol. 37, No.,2001.

185



Bibliography

A. J. StepanoffFlow Pumps, Design and Applicatiodohn Wiley & sons, 1957. ISBN
047182137 3.

Jakob Stoustrup and Henrik Niemann. Fault detection for nonlinear systems - a stan-
dard problem approachProceedings of the 37th IEEE Conference on Decision &
Control,, 1998.

Jakob Stoustrup and Henrik Niemann. Fault estimation - a standard problem approach.
International Journal of Robust and Nonlinear Control, Vol. 12, No2@02.

Karl Astrém, Pedro Albertos, Mogens Blanke, Alberto Isidori, Walter Schaufelberger,
and Ricardo Sanz.Control of Complex SystemsSpringer-Verlag, 2001. ISBN 1-
85233-324-3.

Charles R. Sullivan and Seth R. Sanders. Models for induction machines with magnetic
saturation of the main flux pathEEE Transactions on Industrial Applications, Vol 31,
No. 4, 1995.

D. Surek. Pump monitoring by measurement of the case vibratithanp Users
International Forum 20002000.

Rangarajan M. Tallam, Thomas G. Habetler, and Ronald G. Harley. Transient model
for induction machinces with stator winding turn faulSEE Transactions on Industry
Applications, Vol. 38, No.,2002.

Rangarajan M. Tallam, Thomas G. Habetler, and Ronald G. Harley. Stator winding
turn-fault detection for closed-loop induction motor drivéSEE Transactions on In-
dustry Applications, Vol. 39, No, 2003.

Jesper Sandberg Thomsen. A fault tolerant electronic steering system for a fork lift
truck. Technical report, Institute of Electronic Systems, Aalborg Universitet, Denmark,
2000.

Hamid A. Toliyat, Thomas A. Lipo, and J. Coleman White. Analysis of a concen-
trated winding induction machine for adjustable speed drive applications part 1 (motor
analysis).IEEE Transactions on Energy Conversion, Vol 6, NaL291.

Sebastian Tornill, Teresa Escobet, and Vicenc Puig. Fault detection using interval
models.SafeProcess '2000, IFAC, Budapead00.

Frederik C. Trutt, Joseph Sottile, and Jeffery L. Kohler. Online condition monitoring
of induction motorslEEE Transactions on Industry Applications, Vol. 38, Na2@02.

Andrzej M. Trzynadlowski and Ewen Ritchie. Comparative investigation of diagnostic
media for indiction motors, a case of rotor cage falEEE Transaction on Industrial
Electronics, Vol. 47, No.,2000.

186



Bibliography

Pierre Vadstrup. Multiwinding modelling of induction motors. Technical report,
Grundfos Mangement A/S, 2002. Internal technical rapport at Grunfos, not available.

E. Wiedenbrug, G. Frey, and J. Wilson. Impulse testing and turn insulation deterio-
ration in electric motors.IEEE Pulp and Paper Industry Technical Conference,’03
2003.

S. Williamson and K. Mirzoian. Analysis of cage induction motors with stator windings
faults. IEEE Transactions on Power Apparatus and Systems, Vol. Pas-104, Issue. 7
1985.

Armin Wolfram, Dominik Fussel, Torsten Brune, and Rolf Isermann. Component-
based multi-model aproach for fault detection and diagnosis of a centrifugal pump.
IEEE Proceedings of American Control Conference, ACC-2Q001.

Aiping Xu and Qinghua Zhang. Nonlinear system fault diagnosis based on adaptive
estimation.Automatica, Vol. 40, No.,2004.

Zhongming Ye and Bin Wu. Online rotor bar breakage detection of three phase induc-
tion motors by wavelet packet decomposition and artificial neural netWaEE 32nd
Annual Power Electronics Specialists Conferer@01.

Zhongming Ye, Bin Wu, and A. R. Sadaghian. Current signature analysis of induc-
tion motor mechanical faults by wavelet packet decompositiBREE Transactions on
Industrial Electronics, Vol. 50, No. 62003.

Qinghua Zhang. A new residual generation and evaluation method for detection and
isolation of faults in non-linear systemsternational Journal of Adaptive Control and
Signal Processing, Vol. 14, No, Z000.

187



Bibliography

188



Appendix A

FMEA Tables Describing Faults
In the System

This appendix contains tables describing the fault modes of the pump system. The pump
system is in Chapter 4 devided into 7 components. These are,

e Electrical part of the induction motor.

Mechanical part of the induction motor.

e Shaft.

Hydraulic part of the centrifugal pump.

Mechanical part of the centrifugal pump.

Inlet of the pump.

e Outlet of the pump.

In each Section of this appendix one of the above components is analysed. This means
that a FMEA table is given and that the disturbing events affecting the component are
listed. The FMEA tables contain the following information; theme of the fault mode

the causes of the fayliand thethe effect of the fault Here, the general components,
forming a centrifugal pump, are analysed. This means that no failure information of a
particular product is used. This information is necessary to include risk assessment and
frequency of the faults in the FMEA, and are therefore omitted here. The tables and
matrices in this appendix are the results of the FMEA described in Chapter 4.
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Chapter A: FMEA Tables Describing Faults in the System

S%» | Park transformed current
Electrical part of -
the motor ——» Winding temperature
Motor speed —® Motor torque

Figure A.1: The input/output structure of the electrical part of the induction motor.

A.1 Electrical part of the induction motor

The input/output structure of this part is shown in Fig. A.1, and the identified faults in
the component are shown in the following FMEA table,

[ Electrical Part of the Motor |

Fault Modes Fault Causes Possible Effects
f Loss of one of more e Broken Fuse. eem,i3  Oscillations in the
eml length of the pack transform
Fault on th I ble.
phases of the supply voltage.| ® Fauitonthe supply cable current.

e poor connections. ]
P eem,v1 Z€rovoltage in one

or more of the phases.

Inputs

eem,v2 Oscillations in the
length of the pack transform
voltage.

eem,t3 1St harmonic torque
oscillations.

fems Short circuit between | e Moisture or water in the eem,i3 Oscillations in the
windings in the motor. motor. length of the pack transform

e Mechanical stress. EUrent

e High motor temperature. | €em,T'1 Increased
) temperature inside the motor.
e wear-out failure on the

inter-turn insulation.

fema Short circuit to ground.| e Moisture or water in the eem,i3 Oscillations in the
motor. length of the pack transform

e Mechanical stress. current.

e High motor temperature. | em-i4 Unbalanced stator
current.

e wear-out failure on the turn

to ground insulation. eem,1 _InCreased

temperature inside the motor.

eem,t3 1St harmonic torque
oscillations.
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Section A.1: Electrical part of the induction motor

Parts

fems Broken rotor bar. e Poor production. eem,i3  Oscillations in the
length of the pack transform
current.

e Mechanical stress.

eem,t4 higher harmonic
torque oscillations.

femé Ecgentric air gab due tq e Poor production. eem,i4a Unbalanced stator
gsgfc: or misaligned motor e Mechanical stress. current.

eem,t3 1stharmonic torque
oscillations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

Com — AY o + A eq, (A.1)

em

where the fault vectof.,,, and the effect vectas,,,, equals,

fém = ( feml fem2 femS fem4 femS femG )T

€em = ( €em,il €em,i2 €em,i3 €em,i4 C€em,wl €Eem,v2

T
€em,T1 €em,tl €em,t2 €Eem,t3 E€em,t4 )

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixA$™ in (A.1) is just a matrix representation of the connections
between the faults and the effects described in the FMEA table presented in this section.
The propagation matriA g™ is defined below,

0100000\"
em [ 1000000
@ = 0010000

0010000

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,
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Chapter A: FMEA Tables Describing Faults in the System

Disturbing events Causes Effects
dem1 Unbalanced supply e poor grid. eem,i3 Oscillations in the
voltage. length of the pack transform

Fault on the supply cable.
* PRl current.

e poor connections. o
P eem,v2 Oscillations in the

length of the pack transform
voltage.

eem,t3 1St harmonic torque
oscillations.

dem2 Increased supply e Changes in the supply grid. | e, ;1 Increased current.

voltage. e Decreased grid load

combined with too small grid
for the load.

de2 Decreased supply voltage.le Changes in the supply grid. | e.,,;2 Decreased current.

e Increased grid load combined
with too small grid for the
load.

Including these disturbing events in the fault vector, it becomes,

o= (£,7 et dew )

Likewise the matrixA ™ is extended with rows according to the above table.

A.2 Mechanical dynamics

The input/output structure of this part is shown in Fig. A.2. As described in chapter 4

Load torque
i L Y

Mechanical
dynamics

P Motor speed

Motor torque

Figure A.2: The input/output structure of the part modelling the dynamics of the rotating
parts of the pump.

this component is included in the analysis to cover the signal structure of the system,
when building the functional model of the centrifugal pump. This means that no faults
are identified in the component.

The propagation matrix representation of the component is given by the following
logical expression,

edy — A% ecn + A% e + Aley, + AfVe; + Al e, (A.2)

m mm
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Section A.3: Mechanical part of the motor

The resulting effect vectas, in this expression is given by,

T
€qy = ( €dy,nl €dyn2 €dyn3 Cdyn4d )
where the effects in this vector are,

eqyn1 ~ Increased speed.

eqyn2 ~ Decreased speed.

edyn3 ~ lstharmonic speed oscillations.
edyna ~ higher harmonic speed oscillations.

The propagation matrice&,, Adv A%, A% andA% in (A.2) are defined below,

00000001000
Ay | 00000000100
em 000000DO0O0OT10
00000O0OOOO0 1

0100000

A _| 1000000

mm 0010000

0001000
00000DO0O0O 0O

Adv_ [0 00000000
=1 000001010
000000101
000000110000
Adv_ [ 000001000000
i 00000O0DOOT1O000
00000DO0DO0OOT1O00
010000000

Adv | L OO 000000
mp 001000000
000100000

A.3 Mechanical part of the motor

The input/output structure of this part is shown in Fig. A.3, and the identified faults in
the component are shown in the following FMEA table,
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" q P Mechanical vibrations
otor spee Mechanical part :
e
of the motor ——P» Bearing temperature
——» Load torque

Figure A.3: The input/output structure of the mechanical part of the induction motor.

[ Mechanical Part of the Motor |
Fault Modes Fault Causes Possible Effects

Frmi  Ware of the bearings e Ware-out faults due to a emm,t4 higher harmonic
mm

in the motor. long running period. torque oscillations.
e Impurities in the bearings. | emnm,71 Increased bearing
e Water in the bearing oil. temperature.
emm,v2 INcreased higher
harmonic vibrations.
2]
IS
Q | fmm2 Rubimpactbetween | e Production fault. emm,t1 Increased torque

the stator and the rotor due to|
a bend or misaligned motor
shaft.

load from mechanical parts in

e Overload due to suddent
the motor.

blocked rotor.
emm,t3 1Stharmonic torque
oscillations.

emm,v1 INcreased 1st
harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

Cmm A?ZZL fmm + Ag;/medy (A3)
where the fault vectof,,,,, and the effect vectas,,.,, equals,

fmm = ( .fmml fmm2 )T

T
€mm = ( Emm,tl  Emm,t2 CEmm,t3 Emm,t4 Cmm,T1 Emm,wl Emm,v2 ) .

A description of each fault and effect is found in the above FMEA table. The fault
propargation matribxA’;'™ in (A.3) is just a matrix representation of the connections
between the faults and the effects described in the FMEA table presented in this section.
The propagation matriA 7™ is defined below,

100000 0\"
wm | 0100 00 0
@ =1 0010010

0001001
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Section A.4: The shaft mechanics

A.4 The shaft mechanics

The input/output structure of this part is shown in Fig. A.4, and the identified faults in

" g P Mechanical vibrations
M} Shaft mechanics ——» Load torque
P Impeller speed

Figure A.4: The input/output structure of the shaft part.

the component are shown in the following FMEA table,

[ Shaft Mechanics |
Fault Modes Fault Causes Possible Effects

funa Broken shaft. ® e p 55 Zero shaft speed.

fsn2 Misalignment between | e Overload due to sudden esh,+1 1st harmonic torque

the motor and pump. blocked rotor. oscillations.
" e Faultintroduced during esh,w1 Increased 1lst
= production. harmonic vibrations.
e e Fault introduced due to poo
repair.
fsn3 Bend shaft. e Overload, due to for esh,+1 1st harmonic torque
example blocked rotation. oscillations.

esh,p1 Increased 1st
harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

eqn — AY £ + Ajleq, (A.4)
where the fault vectof,;, and the effect vectas,;, equals,
T
fmm. = ( fshl fsh2 fsh3 )
T
Cmm = ( €sh,s1 €sh,s2 €sh,s3 €sh,s4 €sh,s5 Emm,itl Emm,l )
A description of each fault and effect is found in the above FMEA table. The fault

propargation matrixAj{lh in (A.4) is just a matrix representation of the connections
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Chapter A: FMEA Tables Describing Faults in the System

between faults and the effects described in the FMEA table presented in this section.
The propagation matriAfl’; is defined below,

1000000\
wm | 010000 0
@ =1 001000 0

0001000

A.5 Hydraulics of the Centrifugal Pump

The input/output structure of this part is shown in Fig. A.5, and the identified faults in

Impeller speed | M Mechanical vibrations
Electrical part of

Eye pressure | e moFt)or - Torque load

Inlet flow P Impeller pressure

Figure A.5: The input/output structure of the part describing the hydraulics of the cen-
trifugal pump.

the component are shown in the following FMEA table,

[ Hydraulics of the Centrifugal Pump |
Fault Modes Fault Causes Possible Effects

2] . .
= : e Error in the hydraulic e; Zero pressure.
g| /i Dryrunning. system in whicr):the pump is o P
= placed €it3 Zero torque load from
’ the impeller.
fi2 Impurities fixed on the e Impurities in the water. e; h4a Harmonic pressure
impeller, causing inbalance. oscillations.

e;+4 1stharmonic torque
oscillations.

e;¢+5 higher harmonic torque
oscillations.

e;»1 Increased 1st harmonic
vibrations.

eiv2 Increased higher
harmonic vibrations.
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Section A.5: Hydraulics of the Centrifugal Pump

Parts

fiz

Wear of the impeller.

e Sand and other impurities in
the water.

ei,n2 Decreased pressure.

ei,na Harmonic pressure
oscillations.

e; 2 Decreased torque load
from the impeller.

e; ¢4 1stharmonic torque
oscillations.

e; 5 higher harmonic torque
oscillations.

e;»1 Increased 1st harmonic
vibrations.
ei w2 Increased higher

harmonic vibrations.

fia Blocked or partial
blocked flow field inside the
impeller.

e Larges obstical in the liquid|

e;,n2 Decreased pressure.

e;,na Harmonic pressure
oscillations.

e;+2 Decreased torque load
from the impeller.

e; ¢4 1stharmonic torque
oscillations.

e;¢+5 higher harmonic torque
oscillations.

Increased 1st harmonic

€401
vibrations.
e;,v2 Increased higher

harmonic vibrations.

fis Blocked impeller
rotation.

e Sand and other impurities i
the water.

e;,nh3 ZEeropressure.

e;+1 Increased torque load
from the impeller.

fie

Wear of the sealing ring.

e Long running time / normal
wear.

e Overheated, due to for
example dry running.

e; n2 Decreased pressure.

e; +2 Decreased torque load
from the impeller.

fiz Missing sealing ring.

e Production error.

ei,n2 Decreased pressure.

e;+2 Decreased torque load
from the impeller.
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fis Loss of the impeller. e Production error. e;,n3 ZEro pressure.
e Mechanical vibrations. ei,t3 Zero torque load from
the impeller.

The propagation matrix representation of the component is given by the following logi-
cal expression,

e; — A:Lfl fl‘ + Aihesh + Aépeip (AS)
where the fault vectof; and the effect vectas; equals,
T
fi=(fa fio fis fu fis fie fir fis)

ei:(ei,hl €i,h2 €i,h3 €ihda €ih5 €itl €it2 €it3 €4

T
€its vl Ciw2 )

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixA’; in (A.5) is just a matrix representation of the connections be-
tween the faults and the effects described in the FMEA table presented in this section.
The propagation matrices?;, andA’  are defined below,

[
sh —

OO O OO O
cNeNeNeNel >
SO = OO OO
S OO R EFE OO
O OO OO oo
SO O OO O
SO O OO+ O
SO R OO0 OO
S ODOoO O~ OO
SO R OO O
SO OO~ OO
[N eNell o NN}

Al =

p

OO OO oo
[N ool el
SO OO O =
[N oll =]
oo o~ OO
OO OO oo
OO OO =O
SO O OO
OO OO oo
OO OO OO
SO OO OO
(e Nol =]

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,
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Section A.6: Mechanical Part of the Pump

Disturbing events Causes Effects

d;1 Decreased flow through | ¢ Changes in the hydraulic e;,n1  Increased pressure.
the pump. system in which the pump is

placed e;+2 Decreased torque load

from the impeller.

di2 Increased flow through e Changes in the hydraulic e; n2 Decreased pressure.
the pump. system in which the pump is

placed e;+1 Increased torque load

from the impeller.

Including these disturbing events in the fault vector, it becomes,
T
fi = ( f{T di1 dio )
Likewise the matrixAjci is extended with rows according to the above table.

A.6 Mechanical Part of the Pump

The input/output structure of this part is shown in Fig. A.6, and the identified faults in

:mg?%’ipeed Mechanical vibrations
" Mechanical part Cassing Temp.

Mech. vibrations of the pump Torque load

Imp..pressure . > Leakage flow

Figure A.6: The input/output structure of the part including all mechanical components
in the pump, not directly involved in the pressure generation.

the component are shown in the following FMEA table,

[ Mechanical Part of the Pump |

Fault Modes Fault Causes Possible Effects
: Error in the hydraulic e Increased bearing
Dry running. * Inthe | Emp,tpl
Fmp1 y 9 system in which the pump is | temperature.
placed.
[2]
E
E | fip2 Inletflow equal to zero.| e Error in the hydraulic emp,tp1 INCreased bearing
P p,tp
system in which the pump is | temperature.
placed.
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Chapter A: FMEA Tables Describing Faults in the System

fmp3 Ware of the bearings in| e Sand in the liquid. emp,t3 1St harmonic torque

the pump. e Wear out due to long runing| ©scillations.

time. emp,t4 higher harmonic
torque oscillations.

emp,tpl INCreased bearing
temperature.

emp,w1 INcreased st
harmonic vibrations.

2]
<
Q| finpa Ware of seals. e Over heated seals, due to fore,,, 41  Leakage flow from
example dry running or zero | the pump.
flow.
e Wear out due to long runing
time.
fmps Rubimpact between e Dirte fixed between the emp,t1 INcreased torque load
the impeller and the cassing. | rotating and stationary parts gf from the mechanical parts of
the pump. the pump.

e Bend shaft due to overload,| e,,p,¢3 1st harmonic torque
cause by for example large oscillations.

obsticals in the liquid. empo1 Increased Lst

harmonic vibrations.

The propagation matrix representation of the component is given by the following logi-
cal expression,

emp — A?Z)p £p + Al ey, + A", (A.6)

where the fault vectof,,,, and the effect vectos,,, equals,

T
fmp = ( f’mpl fmp2 fmp?) fmp4 fmp5 )

T
Cmp = ( Emp,tl  Emp,t2 CEmp,t3 Cmp,itd CEmp,T5 Empvl Empw2 Empql )

A description of each fault and effect is found in the above FMEA table. The fault
propargation matrimmfp in (A.6) is just a matrix representation of the connections
between the faults and the effects described in the FMEA table presented in this section.
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Section A.7: Inlet Part of the Pump

The propagation matriceS”,” andA;"” are defined below,

10000000\
0100000 0
0010000 0
A" =1 000100 00
0100000 0
00000O0O0 0
0000000 0
00000O0TO0GO0)\"
0000000 0
00000000 0
00000T1T10
00000O0T10
Amp_ | 0000000 0
i 0000000 0
00000O0O0 0
00000O0O0 0
0000000 0
0000010 0
00000O0T10

A.7 Inlet Part of the Pump

The input/output structure of this part is shown in Fig. A.7, and the identified faults in

Inlet flow
=
Inlet part of the ——p» Impeller eye pressure
Inw» pump —— P Pressure drop at inlet

Figure A.7: The input/output structure of the part including the component forming the
inlet of the pump.

the component are shown in the following FMEA table,
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Inlet part of the pump

Fault Modes Fault Causes Possible Effects
: Application error. eip.e1 The pressure at
ip1  Dry running. ° ip,e _ _
£ fipr Dry 9 impeller eye is not defined.
Q.
< eip,n1 The pressure drop at
the inlet part is not defined.
fip2 Low pressure at the inle{ e Poor dimensioned system. | e;;, .2 To low impeller eye
of the pump. o Low water level in the inlet | Pressure.
tank or well.
12}
I
o
fipa Opstruction of the inlet | e Clogging inthe inlet part, |e;p .2 To lowimpeller eye
of the pump. due to impurities in the water.| pressure.
eip,n2 The pressure drop at
the inlet part is increased.

The propagation matrix representation of the component is given by the following logi-

cal expression,

) g
eip — Afip fip

where the fault vectof;, and the effect vectas;, equals,

fi, = ( fim

fip2 fip3 )T

(A.7)

T
eip:(eip,el €ipe2 €ipe3 €iphl Eiph2 eip,hB)

A description of each fault and effect is found in the above FMEA table. The fault

propargation matrixA’” in (A.7) is just a matrix representation of the connections

between the faults and the effects described in the FMEA table presented in this section.
To cover the disturbances affecting this component, the fault vector is extended with

a set of disturbing events. These are,

l

Disturbing events |

Causes |

Effects

d;p1 Decreased flow through
the pump.

e Changes in the hydraulic
system in which the pump is
placed.

eip,n3 The pressure drop at
the inlet part is decreased.

dip2 Increased flow through
the pump.

e Changes in the hydraulic
system in which the pump is
placed.

eip,n2 The pressure drop at
the inlet part is increased.
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Section A.8: Outlet part of the Pump

d;p3 High frequency pressure
oscillations.

e High frequency pressure
noise, due to for example
cavitation in valves.

eip,e3 High frequency
pressure oscillations at the
impeller eye.

Including these disturbing events in the fault vector, it becomes,

fip = ( f{pT dipr  dip2  dip3 )T

Likewise the matrixA}fp is extended with rows according to the above table.

A.8 Outlet part of the Pump

The input/output structure of this part is shown in Fig. A.8, and the identified faults in

Figure A.8: The input/output structure of the part including the component forming the

Leakage flow )
Inlet flow >

Outlet part of the

pump

outlet of the pump.

the component are shown in the following FMEA table,

P Pressure drop at outlet
———p» Outlet flow

Outlet part of the pump

Possible Effects

Fault Modes Fault Causes
: Application error. eop h1 The pressure drop at
Dry running. * op,h . .
£ Jop1 Dry 9 the outlet part is not defined.
E' eop,q1 The outlet flow is not
defined.
fop2 Leakage onthe outlet | o Waer of the outlet part. eop,q2 The outlet flow is
» |_PiPE- descreased.
5
o
fops Opstruction of the outlet) e Clogging in the outlet part, | e, n2 The pressure drop at
pipe. due to impurities in the warter| the outlet part is increased.
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The propagation matrix representation of the component is given by the following logi-
cal expression,

op op
€op — Afop fop + ATV €mp

(A.8)

where the fault vectof,, and the effect vectos,, equals,

fép:( fopl f0p2 fopS )T

T
€op = ( €op,hl  €op,h2 €op,h3 €op,ql €op,q2 )
A description of each fault and effect is found in the above FMEA table. The fault
propargation matrixA;ifp in (A.8) is just a matrix representation of the connections
between the faults and the effects described in the FMEA table presented in this section.
The propagations matriA? is defined below,

mp

op
AT,

|
SO OO OO oo
OO OO OO OO
OO OO OO OO
SO DODDODOD O OO
— OO OO0 o oo

To cover the disturbances affecting this component, the fault vector is extended with
a set of disturbing events. These are,

| Disturbing events

l

Causes

Effects

dip1 Decreased flow through
the pump.

e Changes in the hydraulic
system in which the pump is
placed.

eop,h3 The pressure drop at
the outlet part is decreased.

dip2 Increased flow through
the pump.

e Changes in the hydraulic
system in which the pump is
placed.

eop,h2 The pressure drop at
the outlet part is increased.

Including these disturbing events in the fault vector, it becomes,

T
for = (8,7 dopr dops )

Likewise the matrixA;’:p is extended with rows according to the above table.
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Impeller pressure »
Inlet pressure drop » Outlet part of the Difference pressure
Outlet pressure drog. pump

Figure A.9: The input/output structure of the part modelling the dynamics of the rotating
parts of the pump.

A.9 Difference pressure

The input/output structure of this part is shown in Fig. A.9. As described in chapter
4 this component is included in the analysis to cover the signal structure of the system
when building the functional model of the centrifugal pump. This means that no faults
are identified in the component.

The propagation matrix representation of the component is given by the following
logical expression,

€y = A?hei —+ A;iphezp + Ag]’:eop (Ag)
The resulting effect vectas,;, in this expression is given by,

T
€dh = ( €dh,h1  €dh,h2 €dh,h3 €dh,h4a €dh,h5 €Edh,h6 )

where the effects in this vector are,

eop,n1  ~ Increased pressure difference across the pump.

eop,n2  ~ Decreased pressure difference across the pump.

eop,ns ~  Zero pressure difference across the pump.

eop,na  ~ Harmonic oscillations in the pressure difference signal.
eop,ns  ~ High frequence oscillations in the pressure difference signal.
eop,n6  ~  Pressure difference across the pump is not defined.
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The propagation matrice&{", Af", andAd" in (A.9) are defined below,
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SO O
o O OO
o O O
o O O

e}
e}
S o oo
e}

01 0 00O
100 0 0O
000 0O0O
0 00 0O0°FO
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Appendix B

Mathematical Tools

This appendix contains a short presentation of two mathematical tools used in this thesis.
These are a CUSUM alogithm, and some notes on Linear Matrix Inequalities (LMI).

B.1 The CUSUM Algorithm

The cumulative sum (CUSUM) algorithm is a statistical tool to identify changes in the

statistical properties of a signal. The algorithm is described in (Basseville and Nikiforov,
1998, Sec. 2.2). This presentation is based of one particular version of the CUSUM
Algorithm also presented in (Basseville and Nikiforov, 1998).

The CUSUM algorithm is based on the log-likelihood rdﬁM which can be

used to measure the likelihood of two different hypothds(@andHl descrlbed by the
parameteb, i.e.

HO : 6:60
H1 : 9:91

These hypotheses can be tested using a recursive algorithm called the CUSUM algo-
rithm. One from of this algorithm is given by,

Doy (Yk) Do (Yk) (B.1)

H pel(yk)
0 if gr_1+1In Por (o) <0

gk =

{ gk;-l"’l pel(yk) if gk—1+hl p91(E‘/k> >0

wheregy = 0. The interpretation of the variablg, compared to the hypothedif, and
H,, is given by the decision signal,

_J it ge=h
D= { 0 otherwise
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Chapter B: Mathematical Tools

whereh is a predefined threshold value. IIf = 1 the hypotheseél, is most likely to
have occurred and otherwise bf= 0.

In this work the CUSUM algorithm is used to statistical evaluation of residual sig-
nals. Here it is assumed that the residual signals are normal distributed, meaning that
their distribution is given by,

1 _ (yﬂf)Q
pu(y) = e 27
oV 2T

wherey is the mean value of the residual. Therefore it can be deduced thgty = 0

in the no fault case, and = p; # 0 in the faulty case. It is assumed that the variances
of the residual signals are known and do not change due to faultsy irethe above
expression is constant and known. When these properties are fulfilled the log-likelihood
in the CUSUM algorithm (B.1) is given by,

. 2 2
P W) (e —p)® oy (yk—%)

Do (Ur) 202 202 o2

The signalg, in the CUSUM algorithm (B.1) is bounded from below By In the
algorithm used in this work the signgj is also bounded from above ly resulting in
the following algorithm,

0 if gkfl_%(yk_%l)ﬁo

gk = { h it g1 — S (e—%)>h (B.2)
gr—1 — % (yp — %) otherwise

This algorithm is a discrete algorithm. However, only continuous systems are considered

in this work. Therefore, for the sake of cosistency a continuous version of (B.2) is given

below. Heres(t) = —£4 (y(t) — &) is used.

(B.3)

dg _{ 0 if (gt)=0As(t)<0)V(g(t)=hA0<s(t))
dt ~ | s(t) otherwise

whereA andV denotes the logicaindandor operator respectively.

B.2 Linear Matrix Inequalities

In this appendix some general remarks on Linear Matrix Inequalities (LMI)’s and there
use in connection with parameter variating systems are presented. The presentation is
based on (Scherer and Weiland, 1999). First the consept of LMI’s is defined, followed
by three proporsitions dealing with stability of parameter variating system. These pro-
porsitions are in Section 5.2.2 used in the analysis and synthesis of the feedback gain in
the proposed adaptive observer.
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A LMl is an expression on the form,

m
F(x) = Fo + ZwF <0 (B.4)
=1
where
e x=[z1 w2 --- xn]isavectorof real numbers.
e Fy, .- ,F,, are real symmetric matrices, i.&;, = F/ € R"*",i=1,---,m

for somen € Z,.

e The inequality< 0 in (B.4) means positive definite, i.a1’ F(x)u < 0 for all
u € R". Equivalently, the largest eigenvalueBfx) is negative.

This is stated in slightly more general in the following definition.

Definition B.2.1 (Linear Matrix Inequality) (Scherer and Weiland, 1999, Sec. 1.3) A
Linear Matrix Inequality (LMI) is an inequality,

F(X) <0 (B.5)

whereF is an affine function mapping a finit dimensional vector sp¥ct® the set
S§"={M | M =MT € R"*"}, n > 0 of real symmetric matrices.

The feasibility of the LMI defined in Definition B.2.1 denotes the existence of at least
oneX which fulfills (B.5). Likewise the LMI is infeasible if such aK does not exist.
If an affine performance function on the forr(iX) is defined, algorithms exists which
can solve the minimization probleminx ¢(X) constrainted by (B.5).

LMI's as defined in Definition B.2.1 can be used for checking stability of linear
systems with unknown and variating parameters. Such a system is shown below,

x = A(8(t))x (B.6)

where the state matriA (d(¢)) is a function of the real valued parameter veéom all
physical system this parameter vector belongs to a boundeN,det. § € A.

Suppose that the state mat((t)) is an affine function of the parameters, i.e.
A(d(t) = Ao+ Z;“:l d;(t)A, for all 6 € A, then (B.6) is refered to as aaffine
parameter dependent mod&uppose that the unknown parametgrg = 1,--- .k in
this expression are bounded on an interval,d;e< [9;, 6. If the unknown parameters
are bounded on this interval tisernersof the uncertainty region is given by the set,

AO:{6:(51,~-~ ;5k) |5j€{éj,gj}} (B?)

Then the uncertainty regioA = co{A}, whereco denotes the convex hull of the
generatorg) (Scherer and Weiland, 1999).

The stability of (B.6), whenA(4(t)) is an affine parameter dependent model, is
formulated by an LMI in the following proposition.
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Proposition B.2.1 (Scherer and Weiland, 1999, Sec. 2.4) if (B.6) is an affine parameter
dependent model then it is quadratically stable if and only of there eRists 0 such
that

A(5)"P +PA(S) <0
forall § € Ay, whereA, contains the generators of the convex hull, e = co{ Ay }.

This proposition is motivated by the Lyapunov stability criterion. When Proposition
B.2.1 holds, system (B.6) is stable for arbitrary fast variationd.oHowever, if the
parameters are unknown and bounded on a set, but not variating Proposition B.2.1 is to
restricted, i.e. system (B.6) can be stable fodadt A even though Proprosition B.2.1
does not hold.

The following proposition states the stability conditions for (B.6) if the parameter
vector is assumed constant, ide= 0.

Proposition B.2.2 (Scherer and Weiland, 1999, Page 62) If (B.6) is an affine parameter
dependent model andl C R* is the uncertainty set given & = co{A,}, whereA

is defined in (B.7), then system (B.6) is affinely quadralically stable if there exist real
matricesPy, - - - , P, such that,

AO)TP(O) +P(OA(S) <0  Vde Ay (B.8a)
P()~0 VéeA (B.8b)
ATP;+P;A; =0 forj=1,--- k (B.8c)

Here, A(6) = Ao + Zle J;Aj; andP(d) = Py + Z;“:l 9,P;. Moreover, in that
caseV (x,d) := x P (d)x is a quadratic parameter-dependent Lyapunov function for
the system.

Proposition B.2.1 states the stability conditions for system (B.6) for abitraly variating
parameters) € A and Proposition B.2.2 stated the stability condition for the same
system when the paramet&is A are constant. The following proporsition states the
stability conditions in the case where the parameters are variating, but with a limet on
the variation rate, i.ed; = \; € [\i, A;]. If each variation rate is limited to this set, the
cornersof the uncertainty region of the variations rates is given by,

AO = {>‘ - ()‘13 T 7)\k) | Ai € P‘ZaAv]} (Bg)

Then the uncertainty regioA = co{Aq} is the set of possible variation rates of the
parameter$. When the variation rates are limited on this set the following proposition
states the stability conditions for system (B.6).

Proposition B.2.3 (Scherer and Weiland, 1999, Page 64) If (B.6) is an affine parameter
dependent model andl C R is the uncertainty set given & = co{A,}, whereA
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is defined in (B.7), then system (B.6) is affinely quadralically stable if there exist real
matricesPy, - - - , P such that,
AB)TP(8) +P(O)A(S) +P(N) <Py  Vde Agand € Ay (B.10a)
P@) >0 Vel (B.10b)
ATP;+P;A; -0 forj=1,---,k (B.10c)
Here, A(d) = Ay + Zle d;A; andP(9) = Py + 25:1 0;P;. Moreover, in that

caseV (x,d) := xTP(d)x is a quadratic parameter-dependent Lyapunov function for
the system.
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