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SUMMARY

1. The aim of this mini-review was to describe an underrecognized but important as-
pect of the basal ganglia diseases, the dysfunction of the autonomic nervous system that pa-
tients suffer owing to the degenerative process affecting these structures, mainly Parkinson’s
disease.

2. We analyze the most prevalent autonomic abnormalities in these patients from an
experimental and clinical point of view.
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The basal ganglia are nuclei situated deep in the cerebral white matter in the dien-
cephalon and midbrain. The term usually includes caudate nucleus, putamen, globus
pallidus and related cell groups closely connected to them, the subthalamic nucleus,
and the substantia nigra (Brodal, 1992). In rodents and other animals the caudate and
putamen nuclei are not separated structures and collectively termed striatum or neos-
triatum. For a long time, basal ganglia have been implicated in a wide variety of motor
functions since diseases affecting these structures lead to disturbances of movement
and muscle tone as important features (Brooks, 1995; Graybiel, et al., 1994; Marsden
and Obeso, 1994; Mitchell et al., 1991; Wichmann and DeLong, 1996). However, a
growing body of experimental and clinical evidence suggest that the basal ganglia
not only play a role in motor functions, but also a role in higher mental process; mod-
ulation of pain and control of autonomic activity have been reported (Brown and
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Feldman, 1993; Brown and Marsden, 1990; Kimura, 1995; Pazo et al., 1982; Pazo and
Medina, 1983; Quadri et al., 2000; Schultz, 1994). In this review, we address the exper-
imental and clinical data referred to of the most prevalent autonomic manifestations
in patients with basal ganglia dysfunctions, mainly Parkinson’s disease.

GASTROINTESTINAL FUNCTIONS

The classic monograph of Sir James Parkinson in 1817 (cited by Edwars et al.,
1993 ), described the cardinal features of the disease that now bears his name and
reports autonomic gastrointestinal dysfunction associated with motor disturbances,
mentioning abnormal salivation, dysphagia, and constipation. Hypersalivation, how-
ever, is considered to be the most early and frequent symptom in the 70–78% of the
patients (Bardow et al., 2001; Friedman and Potulska, 2001; Korcyn, 1989; Martignoni
et al., 1995; Pfeiffer and Quigley, 1999). Subsequent studies found evidences suggest-
ing that patients with PD do not hypersecrete saliva, but the contrary they produce
less saliva (Bagheri et al., 1999; Pfeiffer and Quigley, 1999; unpublished observations
from authors).

Experimental studies in rats, in this laboratory, have demonstrated that acti-
vation of peripheral and central dopamine receptors induce salivary secretion. The
peripheral action was mediated by α and β adrenoceptors on the glands (Pazo et al.,
1981, 1982). This peripheral effect was not blocked by haloperidol (Fig. 1). The central
action of levodopa was suppressed both by sympathectomy and haloperidol admin-
istration (Fig. 2). Likewise unilateral lesion of the striatum decreased the salivary
secretion induced by levodopa in close correlation with the size of the lesion. The
largest damage produced a decrease of 62% of salivary response (Fig. 3). Lesion to
the globus pallidus or its output pathways in the H1–H2 field of Forel and lesion to
the lateral mesencephalic reticular formation also reduced significantly the salivary
response to levodopa (Fig. 4). This suggests that outflow from the striatum is medi-
ated by the globus pallidus and fibers in the mesecephalic reticular formation to the
sympathetic preganglionic neurons in the spinal cord. The experimental observations
support the assumption that activation of central dopamine receptors are involved
in salivary secretion, which explains the hyposalivation in Parkinson’s disease as a
consequence of striatal dopamine deficiency (Friedman and Potulska, 2001;
Martignoni et al., 1995). In fact, this symptom has a good response to levodopa
administration in PD patients (unpublished observations). However, we could not
rule out additional peripheral lesions in autonomic ganglia in these patients.

CARDIOVASCULAR FUNCTIONS

The prevalence of cardiovascular dysfunctions in PD patients is less frequent
than gastrointestinal dysfunctions. Some studies have described heart rate variabil-
ity, however, the most frequent disturbance is impairment in blood pressure regu-
lation, manifested as postprandial hypotension, which is frequently associated with
orthostatic hypotension (Golstein et al., 2002; Kallio et al., 2000; Senard et al., 2001).
The reduced sensitivity of the baroreceptor reflex has been suggested to be the
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Fig. 1. Secretory responses to L-dopa and dopamine
as percent of control values. Pretreatment with phen-
tolamine (3 mg/kg, i.v.) plus propranolol (1 mg/kg, i.v.)
blocked the secretory response, while pretreatment with
phentolamine alone reduced the response. Haloperidol
(0.3 mg/kg, i.v.) produced no effect. Data are the means
± SEM of at least five observations. ∗ p < 0.01; ∗∗ p <
0.001 as compared with controls, paired t-test. Abrevi-
ations: ctrl = controls; phen. = phentolamine; prop. =
propanolol; hal.= haloperidol. Modified from Pazo et al.,
1981.

causative factor (Floras et al., 1988; Gribbin et al., 1971; Loew et al., 1995), although
central mechanisms are probably also involved (Loew et al., 1995).

Experimental observations suggest that the extrapyramidal system could be
implicated in the regulation of the cardiovascular system. Electrical or chemical

Fig. 2. Secretory responses to L-dopa as percent of con-
trol values. Parasympathetic decentralization (PD) did
not modify the secretory response to L-dopa while su-
perior cervical ganglionectomy (SCG) reduced the re-
sponse in about a 50%. Similar results are observed after
i.v. administration of haloperidol (hal). Controls (crtl) are
the secretion of contralateral submandibular gland. Data
are means± SEM of at least five observations. ∗ p < 0.05
when compared with controls, paired t-test . Modified
from Pazo et al., 1981.
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Fig. 3. Schematic drawing of striatal lesions (grey areas) in (A)
and globus pallidus in (B) that produced a significant reduction of
salivary secretion in response to L-dopa. For (A) 62.4 ± 4.9, n = 5,
p < 0.02 and for (B) 65.8 ± 2.3, n = 5, p < 0.01, when compared
with the contralateral side (100%), paired t-test. Outlines and levels
adopted from Koning and Klippel, 1963. Modified from Pazo et al.,
1982.

Fig. 4. Schematic drawing of the lesioned effective sites that
produced a significant reduction of the salivary secretion in re-
sponse to L-dopa. In (A) the fields of Forel and in (B) the lat-
eral reticular formation. Grey light areas are examples of some
lesions that left salivary response unmodified (ineffective). For
(A) 58.8 ± 3.9, n = 4, p < 0.02 and for (B) 53.9 ± 6.9, n = 8,
p < 0.01. Outlines and levels adopted from Köning and Klippel,
1963. Modified from Pazo et al., 1982.
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Fig. 5. Schematic representation of the areas explored
with microinjections (10µg/0.5µL) of carbachol within
the caudate nucleus of the cat. The rostral areas pro-
duce elevation of the blood pressure while the caudal
areas reduce the blood pressure. Outlines and levels
were adopted from Snider and Niemer, 1961. Modified
from Pazo and Medina, 1983.

stimulation of the substantia nigra pars compacta in rats enhanced dopamine re-
lease in the striatum and elicited proportional hypertension and tachycardia. This
effect was blocked by intrastriatal microinjection of haloperidol (Lin and Yang, 1994;
Linthorst et al., 1990). Similar results were observed in awake cats (Ångyan, 1991).
A relationship has also been described between activity of nigrostriatal pathway
and arterial baroreceptors (Yang and Lin, 1993). Deafferentation of barorecep-
tors decreased striatal dopamine concentration and tyrosine hydroxylase activity
(Alexander et al., 1984). In rats spontaneously hypertensive, the microinjection
of apomorphine, an agonist of dopamine receptors, facilitated reflex bradycardia
elicited by systemic injection of adrenaline. The striatal lesion inhibited this reflex
(Lin et al., 1982; Wu et al., 1984). Studies in our laboratory, in cats locally anesthetized
and paralyzed, microinjections of a cholinergic agonist, carbachol, into the striatum
produced biphasic effects on blood pressure. When the injections were made in the
rostral aspect of the nucleus hypertension was induced, whereas injections in the
caudal parts of the striatum induced hypotension (Pazo and Medina, 1983; Fig. 5).
The above experimental evidence supports a direct association between nigrostri-
atal system and cardiovascular functions. It could be the basis on blood pressure
alterations in Parkinson’s disease as the result of changes in the sensibility of arterial
pressoreceptors and blood pressure lability (Golstein et al., 2000).

BLADDER FUNCTIONS

Clinical studies have indicated that neurogenic bladder dysfunction may oc-
cur in patients with extrapyramidal disease, particularly Parkinsonism, however its
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Fig. 6. Cystometrogram (A) of spontaneous contraction of the bladder before and during elec-
trical stimulation (55 µA, 100 Hz) of the dorsomedial striatum (bars beneath the record). Note
the induced contractions of the bladder when the striatum was stimulated. Record (B), mean
blood pressure. In (C) and (D) cystometrograms of the micturition reflex obtained by infusion
of saline solution into the bladder before (C) and during (D) electrical stimulation (line below
the record) of the dorsolateral striatum (55 µA, 100 Hz). Head arrows indicate start of the in-
fusion that finished when the bladder began contraction. Note the increased excitability of the
micturition reflex (bladder hyperreflexia) by stimulation of the striatum. Modified from Pazo,
1976.

incidence is low (Murnaghan, 1961; Porter and Bors, 1971). The most frequent mic-
turition disturbance is urgency and few cases of urinary incontinuence. Urodynamic
studies in these patients have revealed involuntary contraction of the bladder during
filling (Bonnet et al., 1997; Murnaghan, 1961; Sakakibara et al., 2001). This detru-
sor hyperreflexia (Martignoni et al., 1995; Pavlakis et al., 1983) causes urgency and
frequency of micturition or incontinence (Chaudhury, 2001; Klutzow et al., 1989).
Experimental studies suggest that the basal ganglia are related to bladder contrac-
tion. Electrical stimulation of the substantia nigra, subthalamic nucleus, and globus
pallidus in the cat inhibits the micturition reflex (Lewin et al., 1967; Lewin and Porter,
1965; Porter et al., 1971). In the rat, electrical stimulation of the dorsomedial striatum
elicited vesical contractions and increased excitability of micturition reflex (bladder
hyperreflexia; Pazo, 1976; Fig. 6), whereas stimulation of the ventromedial striatum
and globus pallidus inhibits detrusor contractions and increases micturition reflex
(Fig. 7). Similar results were reported in the cat (Gogate et al., 1974). Bladder hy-
perreflexia was also observed in marmosets and monkeys made parkinsonian by
systemic administration of MPTP (Albanese et al., 1988; Yoshimura et al., 1998). In
these monkeys the administration of dopamine D1agonist SKF 38393 suppressed de-
trusor hyperreflexia, whereas D2 agonist bromocriptine augmented the micturition
reflex (Yoshimura et al., 1998). This was confirmed with experiments in which the
inhibition of bladder contraction induced by substantia nigra stimulation was sup-
pressed by intracerebroventricular administration of D1antagonist SCH 23390 and
the inhibition of bladder contraction was facilitated by intraventricular application
of SKF 38393 (Yoshimura et al., 1992).
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Fig. 7. Cystometrogram (A) of spontaneous contraction of the bladder before and during
electrical stimulation (55µA, 100 Hz) of the ventromedial striatum. Stimulation started at 1 and
finished at 2. Note the inhibition of bladder contraction during stimulation. Record (B), mean
blood pressure. Cystometrograms of micturition reflex, in (C) micturition reflex before striatal
stimulation and (D) during electrical stimulation of the ventromedial striatum (line below the
record). The infusion (arrow head) of saline solution into the bladder started at the arrow head
and finished when the bladder began contraction. Note the inhibition of the detrusor contraction
when the striatum was stimulated. Modified from Pazo, 1976.

Studies performed in patients with Parkinson’s disease and urinary symptoms
found a correlation between urinary dysfunction and the reduction in the dopamine
binding of transporter in both striatum, as determined by SPECT. The decrease was
more marked in the caudate nucleus (Sakakibara et al., 2001). These experimental
and clinical findings support the assumption that detrusor hyperactivity is due to
decrease of D1dopamine receptors stimulation in the striatum as consequence of the
degenerative process in the substantia nigra pars compacta.

THERMOREGULATION

Clinical reports in idiopatic Parkinson’s disease have shown abnormal ther-
moregulation, which consists of heat intolerance and hypothermia (Appenzeller
and Goss, 1971; Gubbay and Barwick, 1966) and it was attributed to dysfunction
of the autonomic nervous system. The underlying basis were defective thermoregu-
latory mechanism in PD patients, such as reduced or absent sweating response when
their core temperature was increased or peripheral vasodilatation reflex impairment
when the skin was heated (Appenzeller and Goss, 1971; Fischer et al., 2001). The
somatosympathetic reflex, a sweating reflex associated with thermoregulation, was
also found to be abnormal. Its latency was prolonged and its amplitude reduced. On
the basis of these clinical findings, it has been postulated an inappropiate activation
of the sympathetic nervous system as the cause of the thermoregulation disability in
PD patients (Djaldetti et al., 2001; Fischer et al., 2001)

Nevertheless, there are no data on experimental studies in animals about the pos-
sible role of the basal ganglia on thermoregulatory functions. However, it was recently
reported a significant decrease in the metabolic rate in the striatum of volunteers
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during systemic hypertermia (Nunneley et al., 2002). While the functional importance
of this finding still has to be determined, it provides a link between basal ganglia and
mechanisms of thermoregulation, which could be affected in PD patients.

CONCLUSION

Dysfunction of the autonomic nervous system is an underrecognized but impor-
tant aspect of the basal ganglia disease. Clinical and experimental evidences support
the involvement of these structures in the regulation of some autonomic functions. In
Parkinson’s disease, the best studied disease, the most frequent autonomic dysfunc-
tions are those affecting the gastrointestinal, cardiovascular, urinary, and thermoreg-
ulatory systems. Gastrointestinal manifestations, mainly salivary secretion, reflect
a failure of the sympathetic nervous system, according to experimental and clini-
cal observations. Cardiovascular abnormalities are considered to be a sympathetic
neurocirculatory failure from generalized sympathetic denervation. This abnormal
sympathetic function is believed to be also responsible for the thermoregulation im-
pairment observed in PD patients. Urinary dysfunction could probably be the result
of direct action of the basal ganglia on micturition centers in the midbrain according
to experimental and clinical findings.
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