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Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is the most prevalent EHEC serotype that has been
recovered from patients with haemolytic uremic syndrome (HUS) worldwide. Vaccination of cattle, the
main reservoir of EHEC O157:H7, could be a logical strategy to fight infection in humans. This study
evaluated a vaccine based on the carboxyl-terminal fragment of 280 amino acids of y-intimin (y-intimin
Cag0) and EspB, two key colonization factors of E. coli 0157:H7. Intramuscular immunization elicited
significantly high levels of serum IgG antibodies against both proteins. Antigen-specific IgA and IgG were

sefg;}iogﬁ”_” also induced in saliva, but only the IgA response was significant. Following experimental challenge with
lﬁtimin ’ E.coli0157:H7, a significant reduction in bacterial shedding was observed in vaccinated calves, compared
EspB to control group. These promising results suggest that systemic immunization of cattle with intimin and
Vaccine EspB could be a feasible strategy to reduce EHEC 0157:H7 faecal shedding in cattle.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Enterohaemorragic Escherichia coli (EHEC) O157:H7 is a major
aetiological agent of diseases in humans, whose clinical spectrum
includes diarrhoea, haemorrhagic colitis and haemolytic uremic
syndrome (HUS), the leading cause of chronic renal failure in chil-
dren in Argentina and several other countries [1,2]. This bacterium
produces Shiga toxins types 1 and/or 2 [3-5], which are responsi-
ble for systemic damage, particularly the vascular endothelium of
the kidney and brain, with severe renal and neurological sequelae
in children and elder people. Current treatment is largely lim-
ited to supportive care, as no specific regimen against an E. coli
0157:H7 infection exists and the use of antibiotics is not recom-
mended because they can cause the release of Shiga toxins from
the bacterium, which can worsen the clinical course [6].

The main reservoir for E. coli 0157:H7 is cattle, which harbour
the bacteria in their intestinal tract [7,8], especially in the lym-
phoid follicle-dense mucosa at the terminal rectum [9]. The bacteria
are usually isolated from healthy animals, although episodes of
diarrhoea have been observed in young animals [10,11]. Faecal con-
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tamination of meat during slaughter, the use of faeces as fertilizers,
and the contamination of drinking water are major ways by which
this organism can enter the human food chain [7,12].

Besides producing Shiga toxins, E. coli 0157:H7 is characterized
by other virulence-associated traits, which enable it to colonize
the intestinal mucosa of humans and animals with a histopatho-
logical lesion known as “attaching and effacing” (A/E) [13]. A large
chromosomal pathogenicity island called the locus of enterocyte
effacement (LEE) is associated with A/E activity [14,15]. The LEE
encodes for a type three secretion system (TTSS) that translocates
into the host cell effector proteins responsible for the A/E lesion. The
AJE lesion is also characteristic of enteropathogenic E. coli (EPEC),
another category of E. coli strains associated with diarrhoea in chil-
dren [13]. The TTSS forms EspA, a filamentous structure through
which effector proteins are translocated into the host cell [16].
Intimin and its bacterially expressed receptor Tir are translocated
by the TTSS in the host cell membrane, leading to the formation
of the AJE lesion. EspB is translocated into the host cell and con-
tributes, in turn, to the creation of a pore in the eukaryotic cell
membrane [17].

Many virulence factors of E. coli 0157:H7 induce an immune
response during the course of natural or experimental infections in
animals and patients with HUS. Oral inoculation of calves and steers
with E. coli 0157:H7 promotes an increase in serum antibody titres
against the 0157 lipopolysaccharide and neutralizing antibodies
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to Shiga toxins [18]. Recently, Bretschneider et al. [19] demon-
strated that cattle respond serologically to intimin and EspB of E. coli
0157:H7 during the course of experimental infection. Antibodies
against these proteins have also been detected in serum during both
human EHEC [20] and EPEC infections [21] and in colostrum and
milk from healthy women [22-25] and cows [26]. In addition, mice
infected with Citrobacter rodentium, a bacterium that shows viru-
lence determinants and pathological effects in mice highly similar
to those of EPEC in humans, develop an immune response against
LEE-encoded proteins, which makes them resistant to bacterial re-
infection [27].

Vaccination with bacterial colonization factors has been pro-
posed as a strategy to prevent E. coli 0157:H7 infection. Various
vaccine formulations have been assayed, both in cattle [28-33] and
in other animal models [34-40], with variable results. In the present
study, we evaluated the efficacy of a systemic vaccine composed of
v-intimin Cpg¢ and EspB, to reduce E. coli 0157:H7 colonization in
cattle.

2. Materials and methods
2.1. Animals

All animal experiments were performed with the ethical
approval of the Instituto Nacional de Tecnologia Agropecuaria
(INTA) Animal Welfare Committee. Eight 6-8-month-old conven-
tionally reared male Holstein-Friesian calves were obtained from a
farm in Buenos Aires province, Argentina, and housed at the INTA
Experimental Station. Prior to the firstimmunization and challenge,
calves were confirmed twice to be negative for E. coli 0157:H7 by
enrichment of faecal samples followed by immunomagnetic sep-
aration as described below. Three days before oral challenge, the
calves were allocated in biosafety level 2 rooms and housed in sep-
arated pens according to the immunization group. Calves were fed
alfalfa pellets, with free access to hay and water.

2.2. Production of recombinant E. coli 0157:H7 proteins

Preparation of His-tagged y-intimin Cpgp and EspB was per-
formed as described previously [26]. Briefly, constructs for the
expression of the gene fragment (843bp) encoding the 280
carboxyl-terminal amino acids of y-intimin (y-intimin C,g9) and
the EspB gene were obtained by PCR amplification from the E. coli
strain 146N (0157:H7). The amplified DNA fragments were cloned
into the His-tag expression vector pRSET-A (Invitrogen Corpora-
tion, Carlsbad, USA). The resulting constructs were transformed
into chemically competent E. coli BL21 (D3)/pLysS as described
by the manufacturer. Protein expression was then induced by
the addition of 1 mM IPTG. The amino-terminal His-tagged pro-
teins were purified from the lysates by affinity chromatography on
nickel-agarose columns (ProBond Nickel-Chelating Resin, Invitro-
gen Corporation), eluted under denaturing conditions and dialyzed
in PBS pH 7.4.

2.3. Immunization protocol and oral bacterial challenge

Four calves received two doses of a vaccine composed of the
recombinant proteins EspB (100 pg) and y-intimin Cygo (100 pg)
diluted in 1ml of PBS and mixed with 1ml of mineral oil-
based adjuvant (Montanide ISA206; Seppic, France) and calcitriol
[1a,25(OH)2D3] (2 pg) by the intramuscular route with an inter-
val of 21 days. A control group of four calves that were vaccinated
with PBS plus the adjuvant and calcitriol were included. Fourteen
days after the second immunization, calves were orally challenged
with ca. 1 x 10° colony forming units (CFU) of E. coli 0157:H7 strain

438/99 (stx,, eae-y) in 15 ml of PBS. The challenge strain was iso-
lated from a healthy cow and selected for spontaneous resistance
to nalidixic acid.

The magnitude and duration of faecal excretion of viable E. coli
0157:H7 were followed every other day until 19 days post-
challenge. Two methods were used to increase the probability to
detect E. coli 0157:H7 faecal shedding: (1) bacterial counts were
performed by plating serial dilutions of faeces in duplicate onto
cefixime-tellurite Sorbitol MacConkey agar (Oxoid, Basingstoke,
UK) plates containing 20 pg/ml nalidixic acid (Sigma, St. Louis,
USA) (CT-SMAC); (2) faecal shedding of the microorganism was
also monitored by enrichment at 37 °C for 18 h of rectoanal junction
mucosal swabs in Trypticase soy broth (Oxoid) containing 20 pg/ml
nalidixic acid. About 1 ml of this culture was subjected to E. coli
0157 immunomagnetic separation (IMS) with 0157 Dynabeads
according to the manufacturer’s instructions (Invitrogen Dynal AS,
Oslo, Norway) and the bead-bacteria mixture was spread onto
CT-SMAC. Non-sorbitol-fermenting colonies were tested for E. coli
0157 LPS by latex agglutination (Oxoid). The selected latex-positive
colonies were confirmed by a multiplex PCR for the stxq, stx;, eae
and rfbg157 genes using the primers described elsewhere [41-43].
Briefly, PCR assays were carried out in a 25 pl volume containing
2.5 plofnucleicacid template, 20 mM Tris-HCI (pH 8.4), 50 mM KCl,
2mM MgCl,; 0.6 M concentrations of each primer, 0.2 mM con-
centrations of each deoxynucleoside triphosphate, and 2 U of Taq
DNA polymerase (Invitrogen Corp.). Temperature conditions con-
sisted of an initial 94 °C denaturation step for 2 min followed by 30
cycles of 94 °C for 1 min, 57 °C for 1 min, and 72 °C for 1 min. Ampli-
fied DNA fragments were resolved by gel electrophoresis using
1% (w/v) agarose. Gels were stained with ethidium bromide and
visualized with UV illumination.

In order to monitor antibody responses, serum, saliva and fae-
cal samples were collected before each vaccination, before the oral
bacterial challenge, and 19 days post-challenge, when the calves
were euthanized. Samples of the ileum, cecum, colon, and rectoanal
junction were examined for E. coli 0157:H7 by direct plating and
IMS as described above. Similar intestinal segments were collected
for histopathological examination.

2.4. Antibody response

Immediately after their collection, serum samples were stored at
—20°C.Faecal samples were suspended 1:2 (w/v)in sodium acetate
buffer (pH 4.5, 10 mM) containing 0.1% (w/v) Protease Inhibitor
Cocktail (Sigma-Aldrich Co., Saint Louis, USA), the mixture was cen-
trifuged once at 2500 x g for 20 min to sediment larger particles and
once at 15,000 x g for 30 min; the supernatant was collected and
stored at —20 °C until its analysis [ 19]. Saliva samples were stored at
—20°C until their analysis, when they were centrifuged at 1000 x g
for 10 min. Serum samples were analyzed for the presence of IgG
and IgA antibody responses against y-intimin C,gp and EspB by an
enzyme-linked immunosorbent assay (ELISA) described previously
[40]. Briefly, 96-well Nunc-Immuno MaxiSorp assay plates (Nunc,
Roskilde, Denmark) were coated overnight at 4°C with 100 pl of
either «y-Intimin Cygp or EspB at 10 ug/ml dissolved in PBS pH 7.4.
After washing with PBS pH 7.4 containing 0.05% Tween 20 (PBS-T),
non-specific binding sites were blocked with PBS-T containing 3%
skim milk for 1h. Serial two-fold dilutions of sera in PBS-T were
added (100 pl/well), and plates were incubated for 2 h. For each
plate, two wells were incubated with PBS-T alone (negative con-
trol), and a known positive sample was included. Each sample was
analyzed in duplicate. After washing in PBS-T, wells were incu-
bated for another hour with 100 ul of sheep anti-bovine IgG or
IgA conjugated with horseradish peroxidase (Bethyl Laboratories,
Montgomery, USA), atdilutions of 1:8000 for IgG and 1:3000 for IgA,
in PBS-T. Plates were washed four times with PBS-T. Then, ABTS
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[2,2’-azino-di (3-ethyl-benzthiazoline sulphonic acid)] (Amresco,
Solon, USA) substrate in citrate-phosphate buffer pH 4.2 plus 0.01%
H,0; (100 pl/well) was added. Reactions were stopped after 10 min
with 100 pl/well of 5% SDS and read at 405 nm (OD4p5) in a BioTek
ELx808 microplate reader (BioTek Instruments, Winooski, USA).
The antibody titre was expressed as the reciprocal of the end-point
dilution resulting in an OD4g5 above the cut-off value. The cut-off
value was calculated as the average plus two times the standard
deviation of the optical densities of the samples measured on day
0.

The amount of EspB- or +y-intimin Cygg-specific IgA or IgG
present in saliva and faeces was determined by a capture ELISA
as previously described [40]. To compensate for variations in
the efficiency of recovery of secretory antibodies between ani-
mals, the results were expressed as mean OD4gs5 of undiluted
samples normalized to 1 ng of total IgA or IgG present in the sam-
ple, respectively. For this, plates coated with sheep anti-bovine
IgA or IgG (Bethyl Laboratories) as capture antibody were fur-
ther incubated with serial dilutions of the samples or a bovine
reference serum (Bethyl Laboratories). As secondary antibody,
HRP-conjugated sheep anti-bovine IgA or IgG was used, respec-
tively. Plates were developed as described above.

In addition, pools of serum and saliva samples of both vac-
cinated and control groups were examined by Western blot to
confirm the specificity of the antibody response measured by
ELISA. One dimension SDS-PAGE was carried out in a 12.0% poly-
acrylamide gel under reducing conditions [44], loading 2.5 g
v-intimin C,g9 or EspB proteins per lane, respectively. Pro-
teins were electrophoretically transferred from the gel onto
0.45 pm nitrocellulose sheets (Amersham-Pharmacia, Germany)
for immunoblotting as described by Towbin et al. [45]. Nitrocel-
lulose strips were blocked with 5% nonfat dry milk in PBS pH 7.4,
for 2 h under agitation, washed three times with PBS-T, and incu-
bated for 2 h with dilutions of serum (1:4000) or saliva (1:4) from
immunized and control groups, respectively. After three washes,
the membranes were incubated for 2 h with HRP-conjugated rabbit
anti-bovine IgG or IgA (Bio-yeda, Rehovot, Israel) diluted 1:1000 in
PBS-T. The blots were revealed with 4-Cl-1-naphthol (Pierce, Rock-
ford, USA). Western blotting was performed on pre-immunization
and post-immunization samples, from each immunization group
to confirm the specificity of the antibody response.

2.5. Histological studies

Tissues were fixed in neutral buffered 10% formalin for 24-48 h,
embedded in paraffin, sectioned, and stained with haematoxylin
and eosin for routine histology.

2.6. Statistical analyses

Faecal shedding counting data were logq transformed and ana-
lyzed as a repeated measures design [46] using Proc Mixed of SAS
(SASv.9.1; SAS Institute Inc., Cary NC, USA). Fixed effects were treat-
ment, and linear, quadratic, and cubic terms for time of measure
interacting with treatment. Animals were considered independent
random variables. The covariance structure for the repeated mea-
sures within animals that gave the best fit displayed heterogeneity
of variance across times. The values of each treatment and the dif-
ference between treatments at any given day were calculated as
estimable linear contrasts [47]. A similar procedure was used to
test the difference between vaccinated and control animals for the
logarithm of shedding during the complete experiment, as origi-
nally proposed by Bono et al. [48]. The procedure of Kenward and
Roger [49] was used to correct the degrees of freedom of all lin-
ear hypotheses. ELISA data within each immunization group and
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Fig.1. Coomassie blue-stained polyacrylamide gel of purified y-intimin C,g0 (A) and
EspB (B) antigens used in immunizations.

between groups were performed with the Student’s t-test. In all
cases P values of <0.05% were considered significant.

3. Results
3.1. Purification of recombinant proteins

EspB and y-intimin Cpgp proteins were analyzed by SDS-PAGE
and Coomassie blue staining, and single bands of the predicted
molecular weight were observed (Fig. 1).

3.2. Immune response elicited after intramuscular immunization
with EspB and y-intimin Cygp

The systemic immunization of 6-8-month-old calves with two
doses of EspB and y-intimin C,gg antigens formulated with ISA206-
D3 induced a strong and significant increase in serum IgG titres
against both proteins after the first immunization (P<0.05) but not
IgA antibodies (data not shown). IgG-antibody titres showed a 13-
fold increase on day 21 and remained at the same level throughout
the experiment (Fig. 2). A small but not significant increase in EspB
and y-intimin Cygg-specific IgG titres was observed in the control
group after E. coli 0157:H7 oral administration.

Mucosal anti-EspB and anti-y-intimin C,gg IgA and IgG antibod-
ies were quantified in saliva and faecal samples. Specific salivary
IgA antibodies against both proteins showed a significant 4-7-
fold increase after the first immunization but were undetectable
on day 19 post-challenge (P<0.05) (Fig. 3). Salivary anti-EspB and
anti -y-intimin C,g¢ IgG antibodies were also detected but the
increase after vaccination was not significant (Fig. 4). The bacte-
rial challenge did not result in any detectable increase in salivary
antigen-specificIgG or IgA antibody responses. The specificity of the
immune response was confirmed by western blot analysis of pools
of antisera and saliva from vaccinated and control groups (Fig. 5).
Faecal IgG or IgA response to both antigens was not detected (data
not shown).

3.3. Effect of systemic immunization on E. coli 0157:H7 shedding

Two weeks after the second immunization, animals were orally
challenged with 10° CFU of E. coli 0157:H7. Bacterial shedding post-
challenge was calculated quantitatively by direct plating of serial
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Fig. 2. Serum IgG responses in calves vaccinated with y-intimin C,go and EspB measured by ELISA. (A) Antibody titres against y-intimin C,s0. (B) Antibody titres against
EspB. Results are presented as mean log, of IgG titres and SEM is indicated by vertical lines. A significant increase in serum IgG against the two antigens was observed at the

moment of the second immunization (P<0.05).
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Fig. 3. Saliva IgA response in calves vaccinated with y-intimin C,g9 and EspB measured by ELISA. (A) Antibody titres against y-intimin Cpg0. (B) Antibody titres against EspB.
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A
2.5

= Vaccinated

1 Control
2.0

OD5/ug of total IgG

0 21 35

f t f

1° Dose Booster Challenge

54 Days

1.5+ 3 Vaccinated
9@ 3 Control
©
S 1.0
—
o
o
=
8 0.57
NS
[m)]
(o]
0.0 ﬁ_
0 21 35 54 Days
1° Dose Booster Challenge

Fig. 4. Saliva IgG response in calves vaccinated with y-intimin C,g0 and EspB measured by ELISA. (A) Antibody titres against y-intimin Cyg. (B) Antibody titres against EspB.
Results are presented as mean OD4o5 of undiluted samples normalized to 1 g of total IgG. SEM is indicated by vertical lines. The response to y-intimin C,s9 and EspB increased

on day 21 in vaccinated animals as compared with control calves.

dilutions of faeces as well as by broth enrichment of rectoanal
mucosal swabs followed by IMS during the 19-day post-challenge
period. Specimens containing less than the detection limit (E. coli
0157:H7 found only by enrichment) were assigned a value of 10.
Negative specimens by both methods were assigned a value of 1.
No calf had diarrhoea after inoculation. Calves of the placebo group
were successfully colonized by E. coli 0157:H7. This is supported
by the observation that bacterial shedding was detectable at least
until day 11 following oral inoculation in all the animals. Fig. 6B
shows the trend in the estimates of the level of log1o (CFU/g) for con-

trol and vaccinated animals on any day. The animals of the control
group displayed a larger value of bacterial shedding. The differ-
ences between the animals in the control and vaccinated groups
were significant (P<0.05) up to day 13. Later, the difference became
smaller and not significant. Total bacterial shedding, expressed as
the area under the curve, was estimated to be 22.2 for the vacci-
nated animals and 35.7 for the control group, showing a significant
difference (P<0.05). At necropsy, E. coli 0157:H7 was not recov-
ered from any intestinal sample from animals of both groups. The
individual values of bacterial excretion can be seen in Fig. 6A. In
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Fig. 5. Western blotting of EspB and +y-intimin Czgo with pools of serum (A) or
saliva (B) samples, demonstrating the specificity of the immune response mea-
sured by ELISA. (A) Serum IgG; (B) saliva IgA. Lanes 1 and 2, pre-immunization
samples reacting with EspB and y-intimin Cygo, respectively; lanes 3 and 4, post-
immunization samples reacting with EspB and y-intimin C,s0, respectively. Serum
and saliva samples were diluted 1:4000 and 1:4, respectively.

most animals of both groups, no bacteria were detected after day 17
post-challenge.

3.4. Histopathology

No histological changes consistent with attaching and effacing
lesions or adherent bacterial layers were seen in intestinal sections
of either group of animals at necropsy on day 19 post-challenge.

4. Discussion

Many efforts have been directed to the development of vaccines
against enteric pathogens that are able to induce strong mucosal
immune responses capable of preventing intestinal colonization.
In this sense, immunization of cattle to reduce E. coli 0157:H7
shedding should be aimed to block the adhesion and coloniza-
tion process, thereby reducing the risk of microbial transmission
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Fig. 6. Faecal shedding of E. coli 0157:H7 of calves immunized with EspB and -
intimin Cugp. (A) Dot plot of logio CFU/g data for each calf over the entire trial
period. In most animals of both groups, no bacteria were detected after day 17 post-
challenge. (B) The modeled faecal excretion of E. coli 0157:H7 shows the trend in the
estimates of the level of log;o (CFU/g) £ SEM for control and vaccinated animals at
any day of the experiment. The animals of the control group displayed a larger value
of bacterial shedding. The differences between the animals in the control and vac-
cinated groups were significant (P<0.05) up to day 13. Later, the difference became
smaller and not significant. One animal in the control group had a random pattern
of measures, thus increasing the heterogeneity of the variance. This also explains
why curves cross each other on day 15. Total bacterial shedding, expressed as the
area under the curve, was estimated to be 22.2 for the vaccinated animals and 35.7
for the control group, showing a significant difference (P<0.05).

to other susceptible hosts. As reported, intimin is a major anti-
gen of bacteria producing attaching and effacing lesions and a key
virulence factor that allows strong binding of E. coli 0157:H7 to
the rectal mucosa of calves [53-55]. Thus, intimin and other LEE
encoded type Il secreted proteins, including Tir, have been tested
as vaccine antigens in cattle, with variable results [31-33]. With
respect to EspB, although its central role in E. coli 0157:H7 coloniza-
tion of the intestinal epithelium has been demonstrated [56,57],
this protein has not yet been evaluated as antigen in E. coli 0157:H7
vaccines for cattle.

In this study, we demonstrated that two doses of a systemic
vaccine containing the carboxyl-terminal domain of vy intimin and
EspB reduces bacterial colonization and shedding following chal-
lenge with E. coli 0157:H7 in cattle. The immunization induced
high serum IgG antibody titres and a mucosal response consist-
ing of both IgA and IgG antibodies against the two antigens. These
results are consistent with previous observations that antibodies
against intimin are capable of blocking E. coli 0157:H7 adherence
to cultured cells [58,59]. In other studies, systemic vaccines that
elicit seric and mucosal IgG antibodies against TTSS antigens have
demonstrated the ability to protect streptomycin-treated mice or
cattle against E. coli O157:H7 colonization [31,34]. The possible
explanation for the reduced bacterial shedding observed in the
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current study could then be the presence of IgG and IgA antibodies
in the intestinal mucosa. Although copro-antibodies were unde-
tectable despite the appropriate processing of faecal samples, we
hypothesize that the detection of anti-EspB and anti-y-intimin C,g¢
IgA and IgG in saliva would be related to the presence of specific
antibodies also in intestinal mucosa. Vaccination studies where
samples were taken by rectal swabbing for antibody determina-
tion have shown that systemic immunization of cattle produced
similar antibody responses in different mucosal secretions [39].

The published efficacy of systemic vaccines to elicit a mucosal
IgA response is variable [31-34]. Although the IgA response
after intramuscular immunization is induced mainly in systemic
lymphoid tissues, an increased homing of antigen-specific IgA-
secreting cells (ASC) to the gut-associated lymphoid tissue has been
observed when the antigen is supplemented with 1a,25(0H)2D3
[60]. It has been shown that this steroid hormone can enhance
the antigen-specific IgA response in serum as well as in mucosal
secretions after intramuscular immunization. This molecule is the
active metabolite of vitamin D, a lipophilic steroid hormone classi-
fied as a Th2-immunomodulating adjuvant [61]. In our study, the
addition of 1a,25(0OH)2D3 to the vaccine formulation could shift
the immune response to EspB and y-intimin Cygg, favouring an
antibody response and stimulating mucosal immunity. We also
speculate that calves could be mucosally primed to both proteins.
It has been shown that prior to mucosal priming it is required to
generate an intestinal antigen-specific IgA response to systemic
immunization [62,63]. In a previous study, we found that 77% of
colostrum samples from cows from farms in Buenos Aires con-
tained IgG antibodies against EspB and ~y-intimin Cyg¢ [26]. These
data indicate a high exposure of cattle to either E. coli 0157:H7
or other E. coli strains encoding highly homologous EspB and -
intimin proteins.

We observed the highest circulating antibody response at chal-
lenge. However, although the seric IgG antibodies remained high
through the whole experiment, mucosal antibodies apparently
decreased after the second immunization, until it became almost
undetectable on day 54. The time between the second immuniza-
tion and the next sampling may have been too long to detect a
possible increase in mucosal antibodies.

The time-course of the excretion showed an initial increase fol-
lowed by a sharp drop in bacterial shedding. A similar pattern of
excretion has been observed in older calves or adult cattle [50-52]
but not in very young (1-2 months) calves, which shed E. coli
0157:H7 for longer periods after experimental inoculation [50]. The
absence of histopathological lesions in the intestinal samples was
expected if it is considered that the inoculum bacteria were recov-
ered on day 19 post-challenge only from one animal of the control
group, indicating low intestinal levels of E. coli 0157:H7, probably
insufficient to observe AJE lesions.

5. Conclusions

Cattle vaccination would be a feasible pre-slaughter interven-
tion key to reduce E. coli 0157:H7 faecal shedding and a good
strategy to lower the risk of contamination for humans. Our results
ina cattle infection model suggest that systemic immunization with
two doses of a vaccine containing recombinant intimin and EspB
could reduce E. coli 0157:H7 colonization and shedding in cattle.
Further field trials are needed to evaluate the efficacy of the vaccine
to reduce bovine E. coli 0157:H7 carriage under natural conditions.
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