
Innovations Syst Softw Eng
DOI 10.1007/s11334-014-0233-3

ORIGINAL PAPER

Semantic metrics for software products

A. Mili · A. Jaoua · M. Frias ·
Rasha Gaffer Mohamed Helali

Received: 5 November 2013 / Accepted: 10 April 2014
© Springer-Verlag London 2014

Abstract Like all engineering disciplines, software engi-
neering relies on quantitative analysis to support rationalized
decision making. Software engineering researchers and prac-
titioners have traditionally relied on software metrics to quan-
tify attributes of software products and processes. Whereas
traditional software metrics are typically based on a syntactic
analysis of software products, we introduce and discuss met-
rics that are based on a semantic analysis: our metrics do not
reflect the form or structure of software products, but rather
the properties of their function. At a time when software sys-
tems grow increasingly large and complex, the focus on diag-
nosing, identifying and removing every fault in the software
product ought to relinquish the stage to a more measured,
more balanced, and more realistic approach, which empha-
sizes failure avoidance, in addition to fault avoidance and
fault removal. Semantic metrics are a good fit for this pur-
pose, reflecting as they do a system’s ability to avoid failure
rather than its proneness to being free of faults.

Une Science a l’Age de ses Instruments de Mesure. A Science is as
Advanced as its Instruments of Measurement. Gaston Bachelard,
1884–1962.

A. Mili (B)
College of Computer Science, NJIT, Newark, NJ 07102-1982, USA
e-mail: mili@cis.njit.edu

A. Jaoua
Department of Computer Science, Qatar University, Doha, Qatar
e-mail: jaoua@qu.edu.qa

M. Frias
Department of Software Engineering, Instituto Tecnologico de
Buenos Aires, Buenos Aires, Argentina
e-mail: mfrias@itba.edu.ar

R. G. M. Helali
College of Engineering, SUST, Khartoum, Sudan
e-mail: Rasha_800@hotmail.com

Keywords Syntactic metrics · Semantic metrics ·
State redundancy · Functional redundancy ·
Error maskability · Requirements flexibility

1 Introduction

1.1 Semantic metrics

Like all engineering disciplines, software engineering relies
on quantitative analysis to support decision making that per-
tains to the management of products and processes. To this
effect, researchers have long been interested in defining and
analyzing metrics that capture properties of software prod-
ucts and software processes, to such an extent that software
metrics have long since outgrown the laboratory stage and
are now the subject of regular textbooks [2,7,9], and com-
mon industrial practice. Most software metrics in use nowa-
days (and certainly the most widely known) are based on
syntactic attributes of software artifacts; as such, they reflect
how a program is represented, but not what a program does;
yet, many important program attributes may have more to
do with the latter than the former. In addition, many soft-
ware attributes of interest are not intrinsic to the software
product and also involve the specification that the software
product is supposed to satisfy; hence if we want metrics to
reflect relevant quality attributes, we need to pay attention
not only to the software product, but also to its specification.
We find it curious that in all the research on the correlation
between software metrics on one hand and fault density, fault
proneness, and fault forecasting on the other hand, no con-
sideration is ever given to specifications; yet a fault is a fault
only with respect to a specification, hence to be comprehen-
sive, software metrics ought to take into account attributes of
specifications along with attributes of programs.

123

A. Mili et al.

In this paper, we introduce a number of software metrics
that reflect semantic properties of software products, and are
independent of the minute details of how products are repre-
sented. In keeping with the E-4 discipline of [7], which is a
refinement of Basili’s GQM paradigm [14], we proceed in a
stepwise manner, as follows:

• Establish In the Establish phase of the E-4 paradigm, one
needs to define the goals of the metrics. In our case, we
are interested to monitor/control product reliability.

• Extract In the Extract phase, one must identify what quan-
tifiable attributes can help to achieve the goals set forth
in the previous phase. In our case, we are interested in
computing quantitative functions that reflect a program’s
potential for fault tolerance; in our approach, this involves
analyzing the program as well as its specification. Our
focus on fault tolerance as a criterion for software quality
stems from two premises:

– In [19], Northrop et al. present the result of a twelve-
month study conducted at the Software Engineering
Institute (CMU, Pittsburgh), with the goal of charting
the research agenda of the software engineering dis-
cipline, in light of the expected emergence of large
scale software systems; referred to as ultra large scale
systems (ULS for short), these systems are expected
to have sizes in excess of 1 billion lines of code. The
ULS panel finds that to control the quality of sys-
tems of this scale, we must reason at a macro-level in
terms of broad system properties, rather than minute
statement-level detail; also, scale and complexity dic-
tate a shift from a focus on fault removal to a focus
on failure avoidance.

– In [20], Patterson and Fox present a joint UC Berke-
ley/ Stanford project titled recovery oriented com-
puting, which argues in favor of controlling software
quality through making error recovery a pervasive
computing paradigm; rather than straining to find
and remove faults in software products (a tedious and
increasingly unrealistic aim, in light of increasing size
and complexity of software systems), this paradigm
advocates providing the system with pervasive means
to recover from errors when they arise.

Whereas correctness can only be established through a
painstaking detailed analysis process, fault tolerance can
conceivably be achieved by providing the system with high
level error detection, damage assessment, and error recov-
ery mechanisms.

• Evaluate In the Evaluate phase of the E-4 paradigm, one
needs to evaluate the selected metrics to assess their fitness
for the goals established in the first phase. We envision
two venues to evaluate the fitness of our metrics: an ana-

lytical approach, which aims to compute or approximate
quality attributes from semantic metrics; and an empirical
approach, which collects statistical data regarding the link
between our semantic metrics and observations of quality
in software systems.

• Execute In the Execute phase of the E-4 paradigm, one
needs to deploy the selected metrics, once they are vali-
dated, to help achieve the goals set forth in the first phase.
This is part of our future research plans.

We readily acknowledge that because they reflect the
semantics of a program rather than its syntax, our metrics
fail to capture an important attribute, namely the complex-
ity of the program; indeed, complexity is not a feature of the
function of a program as much as it is a feature of its represen-
tation. Complexity may be considered an important attribute
to quantify, for our purposes, because it is usually correlated
with high fault density. But it is only fitting that, because our
focus is on failure avoidance rather than fault removal, our
metrics should reflect fault tolerance rather than fault prone-
ness.

1.2 Related work

Semantic software metrics are not a new idea. In [21], Voas
and Miller argue that software components that have a high
domain size to range size ratio are prone to hide faults, hence
ought to be tested more throughly; accordingly, they intro-
duce the concept of domain to range ratio (DDR) as a soft-
ware metric, and argue that this is a semantic metric, in the
sense that it reflects the semantic properties of a software
component rather than how the component is represented in
source code. In [16] Morell and Murrill broaden the analysis
of Voas and Miller [21] by defining semantic metrics that
do not merely capture the input/output behavior of software
components, but rather reflect their stepwise execution, and
in particular how errors are propagated or masked through-
out an execution. In [17], Morell and Voas further elaborate
on the ideas of Voas and Miller [21] by presenting a frame-
work that allows them to quantify semantic information of
programs, specifically information concerning how program
states evolve throughout an execution. All the metrics used
by Voas et. al are variations on the non-injectivity metric that
we introduce in this paper, applied in the special case where
probability distributions are uniform.

Another school of thought on semantic software metrics is
based primarily at the University of Alabama at Huntsville,
and generates software metrics by analyzing concepts and
relations in source code, most notably object-oriented code,
and inferring quantitative attributes therefrom. In [10], Gall
et al. discuss the introduction of semantic software metrics
that quantify attributes of software artifacts by means of an
analysis of their design documentation and their require-

123

Semantic metrics for software products

ments specifications; to this effect, they perform a natural
language analysis of these documents in a bid to infer the
complexity of a product from its concept and relationship
structure. In [3,8] Etzkorn and her team define entropy-based
software metrics for object oriented software products. The
proposed metrics are reminiscent of Halstead’s software sci-
ence metrics [11], but rather than measure syntactic tokens,
they measure semantic tokens such as concepts and relation-
ships.

The software metrics that we present in this paper are
semantic in the following sense: they view software prod-
ucts as aggregates of spaces, functions and relations; and they
reflect the set theoretic properties of theses spaces, functions
and relations. We conduct our discussion in the context of
C-like procedural programs, but to the extent that other types
of programs (object-oriented programs, functional programs,
logic programs, etc) are built from the same basic compo-
nents, our discussions may apply to them as well.

1.3 Agenda

In the next section, we briefly present the main mathemati-
cal background that we need for this paper, which includes
elements of relational mathematics, elementary concepts of
information theory, and elementary concepts of software
fault tolerance. Then we consider the main phases of software
fault tolerance, namely, error detection, error masking (mak-
ing recovery unnecessary) and error recovery (if recovery
proves necessary), and we see what attributes of a software
product promote/ facilitate the execution of these phases. In
Sects. 3, 4 and 5, we consider these attributes in turn and see
how we can quantify them, thereby producing our suite of
semantic metrics.

2 Background

2.1 Relational mathematics

Our main source for this section is [5], to which the interested
reader is referred, for further details. We consider a set S
defined by the values of some program variables, say x , y
and z; we typically denote elements of S by s, and we note
that s has the form s = 〈x, y, z〉. We use the notation x(s),
y(s), z(s) to denote the x-component, y-component and z-
component of s, respectively. We may sometimes use x to
refer to x(s) and x ′ to refer to x(s′), when this raises no
ambiguity. We refer to elements s of S as program states and
to S as the state space (or space, for short) of the program that
manipulates variables x , y and z. Given a program g on state
space S, we use functions on S to capture the mapping that the
program defines from its initial states to its final states, and
we use relations on S to capture functional specifications that

we may want the program to satisfy. To this effect, we briefly
introduce elements of relational mathematics. A relation on S
is a subset of the Cartesian product S × S. Constant relations
on some set S include the universal relation, denoted by L
(=S × S), the identity relation, denoted by I , and the empty
relation, denoted by ∅.

Because relations are sets, we apply the usual set theoretic
operations between relations: union (∪), intersection (∩), and
complement (R). Operations on relations also include the
converse, denoted by ̂R, and defined by R̂ = {(s, s′)|(s′, s) ∈
R}. The product of relations R and R′ is the relation denoted
by R ◦ R′ (or R R′) and defined by R ◦ R′ = {(s, s′)|∃s′′ :
(s, s′′) ∈ R ∧ (s′′, s′) ∈ R′}. The domain of relation R is
defined as dom(R) = {s|∃s′ : (s, s′) ∈ R}. The range of
relation R is denoted by rng(R) and defined as dom(̂R). We
admit without proof that for a relation R, RL = {(s, s′)|s ∈
dom(R)} and L R = {(s, s′)|s′ ∈ rng(R)}. The nucleus of
relation R is the relation denoted by nucleus(R) and defined
as R ̂R. The co-nucleus of relation R is the relation denoted
by conucleus(R) and defined as ̂R R.

We say that relation R is total if and only if nucleus(R) =
L and we say that relation R is surjective if and only if
conucleus(R) = L . Given two relations R and R′ that have
the same domain, we say that R is more injective than R′
if and only if nucleus(R) ⊆ nucleus(R′) and we say that
R is injective if and only if it is more injective than I ; the
name more injective may be misleading, given that we are
talking about a reflexive ordering (it should be more injec-
tive than or as injective as), but we adopt it for convenience.
Given two relations R and R′ that have the same range;
we say that R is more deterministic than R′ if and only if
conucleus(R)⊆conucleus(R′), and we say that relation R is
deterministic if and only if it is more deterministic than I .

2.2 Information theory

Our main source for this section is [6], to which the inter-
ested reader is referred, for further details. Given a variable
X on a finite set X (by abuse of notation we use the name
to represent the random variable and the set from which the
random variable may take its values), we let the entropy of
X be the following function:

H(X) = −
n

∑

i=1

πX (xi) log(πX (xi)),

where

• log is the base 2 logarithm,
• X = {x1, x2, x3, . . . , xn},
• πX (xi) is the probability of the event: X = xi .

123

A. Mili et al.

We admit without proof that H(X) ≥ 0; also, we take as a
convention that the expression p log(p) equals zero when p
equals 0, hence we may apply the entropy function to proba-
bility distributions that are not necessarily non-zero for all xi .
Intuitively, the entropy of random variable X represents the
amount of uncertainty regarding the outcome of the random
variable, and takes its maximal value (which is log(n)) when
all the outcomes are equally likely (π(xi) = 1

n for all i).
Given two random variables X and Y on sets X and Y ,

and we let πX and πY be probability distributions of X and Y
over their respective sets; we let πXY be the probability dis-
tribution of the events (X = xi ∧Y = y j) over the Cartesian
product X × Y . Then we denote by H(X, Y) the entropy of
the aggregate random variable (X, Y) over the set (X × Y),
and we refer to it as the joint entropy of X and Y . Using this
definition, we let the conditional entropy of X with respect
to Y be denoted by H(X |Y) and be defined as follows:

H(X |Y) = H(X, Y) − H(Y).

Whereas the entropy of X represents the amounts of uncer-
tainty about the outcome of X , the conditional entropy of
X with respect to Y represents the amount of uncertainty
about the the outcome of X once we know the outcome of
Y . We have an identity to the effect that the joint entropy of
(X, Y) is greater than or equal to the entropy of Y , hence the
conditional entropy is non-negative.

Given a random variable X that takes its values in some
space S, and given a function G on X , we let Y be the random
variable Y = G(X), whose probability distribution is derived
from that of X , i.e.,

πY (Y = y) =
∑

∀x :G(x)=y

πX (X = x).

Then, we have the inequality [6]: H(X) ≥ H(Y). In other
words, applying a function to a random variable reduces its
entropy (due to possible loss of information). If G is total
and injective, then H(G(X)) = H(X).

To conclude this section, we introduce a concept that we
use throughout this paper to assign intuitive interpretations
to our metrics.

Definition 1 We consider a set S and a predicate A on S,
and we let SA be the subset of S defined by elements of S
that satisfy A(s). The bandwidth of assertion A is defined as
H(S) − H(SA).

Consider a set S defined by three integer variables, say x , y
and z. Under the hypothesis of uniform probability distrib-
ution, and assuming that integers are represented by 32-bit
words, the entropy of S is 96 bits. We consider a number of
possible assertions, and compute their corresponding band-
widths:

• We define A(s) as x = y. Then space SA is defined
by variables y and z only. The entropy of SA under
the hypothesis of uniform probability distribution is
H(SA) = 64 bits, hence the bandwidth of A is 32 bits,
which is the width of the two expressions (x and y)
involved in assertion A.

• We define A(s) as x = z ∧ y = z. Then space SA can
be defined by a single variable, say z. The entropy of SA

under the hypothesis of uniform probability distribution
is H(SA) = 32 bits, hence the bandwidth of A is 64 bits,
which is the combined width of the expressions that are
involved in assertion A.

• We define A(s) as x = 0 ∧ y = 10 ∧ z = 20. Then
space SA is a singleton, whose entropy is zero, hence the
bandwidth of A is 96 bits, which is the combined width
of the expressions that are involved in assertion A.

As another brief example, consider the binary representation
of ascii characters in a byte; seven bits out of eight are used to
represent data, and the eighth bit is used for parity checking.
We let S be the set of 8-bit patterns and we let A be the parity
test, which can be written as

parity(b1..b7) = b8.

The bandwidth of this assertion is H(S) − H(SA), which is
8−7 = 1 bit. Indeed, assertion A is an equality between two
1-bit expressions.

2.3 Fault tolerance methodology

Our main source for this section is [13], to which the inter-
ested reader is referred, for further details. We consider a
program g on some space S, of the form

g = {g1; L: g2};

where g1 and g2 are subprograms and L is a label preceding
g2. We let R be a relation on S that represents the specifi-
cation that g must meet, and we let s0 be an arbitrary initial
state of g.

• A fault in program g is a feature of g that precludes it
from satisfying its specification (in the sense of [15], for
example).

• An error of the program at label L for initial state s0 is a
state that is distinct from the expected state at this label; a
fault may or may not cause an error at label L , depending
on the initial state s0; when a fault does cause an error,
we say that it has been sensitized by the initial state s0.

• A failure of program g occurs whenever the error that
arises at label L causes the program to fail to produce a
correct (with respect to R) final state for initial state s0.
An error at label L may cause a failure of the program, in

123

Semantic metrics for software products

which case we say that the error has been propagated; it
may also cause no failure, in which case we say that the
error has been masked.

We say that program g is fault tolerant if and only if it has
provisions for avoiding failure after faults have caused errors.
We consider three phases in the fault tolerance process:

• Error detection, when the program detects an inconsis-
tency that indicates that the program state is erroneous.

• Damage assessment, when the program analyzes the cur-
rent state to determine whether it is maskable (in which
case recovery is unnecessary) or recoverable (in which
case recovery is necessary and sufficient) or unrecover-
able (in which case recovery is insufficient).

• Error recovery, when a recovery is invoked to map the
recoverable state into a maskable state and let the compu-
tation resume from label L .

As an illustration, consider the space S defined by a natural
variable, let the specification be relation R defined by

R = {(s, s′)|s′ mod 3 = s2 mod 3},
and let g be the program

g = {read(s); s=2*s; L: s = s mod 6;
write(s);}

The intent of the programmer was for g to compute the fol-
lowing function:

G = {(s, s′)|s′ = s2 mod 6},
which would have been correct with respect to R (in the sense
of [15]), since G and R are both total, and G ⊆ R, as shown
below:

s′ =s2 mod 6 ⇒ s′ mod 3=(s2 mod 6) mod 3=s2 mod 3.

But the programmer wrote the statement s = 2*s instead
of the statement s=s*s, creating a fault. This fault may or
may not be sensitized, depending on the input value.

• For s0 = 2, the fault is not sensitized, since the expressions
2*s and s*s return the same value for s = 2.

• For s0 = 6, the fault is sensitized, causing an error (s = 12
rather than s = 36 at label L), but the error is subsequently
masked (since 12 mod 6 = 36 mod 6 at the end of the
program).

• For s0 = 3, the fault is sensitized, leading to an error (s =
6 instead of s = 9 at label L); the error is subsequently
propagated, causing a failure (s = 0 instead of s = 3 in
the final state); in this instance, program g fails to behave
according to its intended function G, but does not fail with
respect to its specification R, since s2

0 mod 3 = 9 mod 3 =

0 = 02 mod 3; hence, strictly speaking, it satisfies its
specification for s0 = 3.

• Finally, for s0 = 4, the fault is sensitized, leading to an
error (the state at label L is s = 8 rather than s = 16); this
error is propagated, leading to a final state that is distinct
from the expected final state (the output is s = 2 rather
than s = 4); this final state violates the specification, since
2 mod 3 �= 4 mod 3; in this case, the program fails to
compute the expected final state, and also fails to satisfy
the specification of the program.

The same fault may cause different chains of events, depend-
ing on the input. To be fault tolerant, a program must make
provisions for error detection (to recognize when the poten-
tial of a failure may arise), error masking (to limit cases when
recovery is necessary), and error recovery (to map a recov-
erable state into a maskable state, and let the computation
proceed). In the next three sections, we introduce three met-
rics that reflect to what extent a program is likely to support
these three capabilities; in Sect. 5, we introduce a metric that
reflects to what an extent a specification tolerates that pro-
grams deviate from their intended behavior.

3 Error detection: redundancy

Broadly speaking, redundancy is the property of using more
data than is needed to represent some information. Whereas
redundancy is usually defined in terms of duplicating ele-
ments of data (bits, words, etc), we model it instead as an
algebraic property of the representation function, i.e., the
function that maps information onto data. We distinguish
between two types of redundancy in a program: state redun-
dancy and functional redundancy.

3.1 State redundancy

Given a program g on space S, it is fair to say that in gen-
eral, not all elements of S represent valid program states.
For example, if we need to define a variable to represent
the age of an employee, we typically use the type integer,
even though we actually use a limited range of integers, say
between 0 and 120; also, if we want to record the birth date of
an employee and her/his age, along with today’s date, then we
have the identity that the sum of the birth year and the age in
years equals the current year. We introduce a representation
relation, say ρ, which maps valid program states into their
representation in S. The simplest representation relations are
those that are

• total (each state value has at least one representation),
• deterministic (each state value has at most one represen-

tation),

123

A. Mili et al.

• injective (different states have different representations),
and

• surjective (all representations represent valid states).

Not all representation functions satisfy these four properties—
in practice hardly any satisfy all four, in fact.

• When a representation relation is not total, we observe a
partial representation (for example not all integers can be
represented in computer arithmetic).

• When a representation relation is not deterministic, we
observe an ambivalent representation. Consider the repre-
sentation of signed integers between −7 and +7 using a
sign–magnitude format; zero has two representations, −0
and +0 [12].

• When a representation relation is not injective, we observe
loss of precision (for example, real numbers in the neigh-
borhood of a representable floating point value are all
mapped to that value).

• When a representation relation is not surjective, we
observe redundancy (for example, in a parity-bit represen-
tation of characters, not all bit patterns represent legitimate
characters).

For the purposes of our discussions, we equate redun-
dancy with non-surjectivity; for the sake of simplicity, we
limit our discussion to representation relations that are deter-
ministic, total, and injective—whence each state value has
exactly one representation (by virtue of totality and deter-
minacy) and different state values have different repre-
sentations (by virtue of injectivity). Under this assump-
tion, we refer to representation relations as representation
functions.

We are interested to quantify the redundancy of the state
of a program. To this effect, we need to distinguish between
the actual state space of the program, which we define as the
set of states that the program may be in, and the declared
state space of the program, which is the set of values that
the declared program variables may take. We let ρ be the
function that maps each actual state onto its representation as
an aggregate of values of the declared variables. We define
the state redundancy of the program state by means of the
representation function, as follows.

Definition 2 Let g be a program, and let � be the set of
actual states of g, and S be the set of declared states of g.
If we let ρ be the representation function that to each actual
state σ assigns its representation in S, then we define the
redundancy of ρ as:

κ(σ) = H(S) − H(ρ(σ)).

By virtue of Sect. 2.2, we know that if ρ is total, determin-
istic and injective, then H(ρ(σ)) is equal to H(σ); hence,

when the representation function is total and injective, its
redundancy can be written as:

κ(ρ) = H(S) − H(σ).

Typically, the set of declared states is fixed for a given pro-
gram block (which is the scope of typical variable declara-
tions), but the set of actual states varies as the program pro-
ceeds through its execution; hence the redundancy of a state
representation may vary from one step to the next through
the execution of a program. The following Proposition pro-
vides that the state redundancy of a program increases as the
program proceeds from one state to the next.

Proposition 1 Let g be a deterministic program on space
S and let σ be a state of the program at some step in the
execution of g, and σ ′ be a subsequent state. Then the state
redundancy of program g at state σ ′ is greater than or equal
to the state redundancy of state σ .

Proof Since g is deterministic, (σ ′) is obtained from (σ)

by application of a function. We have seen in Sect. 2.2 that
application of a function to a random variable decreases
or preserves the entropy, hence H(σ ′) ≤ H(σ). Whence,
κ(σ ′) ≥ κ(σ). ��

Hence as the program proceeds from its initial state to
its final state, state redundancy increases monotonically with
each state transformation; an adequate representation of the
state redundancy of a program is the interval defined by the
state redundancy of its initial state, and the state redundancy
of its final state. Each of these bounds has an interesting
interpretation:

• The state redundancy of the initial state reflects the gap
between the minimal bandwidth required to store the
program state and the actual bandwidth reserved to that
effect. The programmer has some latitude to control this
quantity by trying (or not trying) to codify the state of the
program in as few variables as possible.

• The state redundancy of the final state reflects the maxi-
mum bandwidth of relationships that hold between pro-
gram variables as a result of the execution of the program.

Whence the following definition.

Definition 3 Let g be a program, and let � be the set of
actual states of g, and S be the set of declared states of g.
We let the state redundancy of program g be denoted by κ(g)

and defined as the interval

κ(g) = [κ(σI)..κ(σF)],
where σI is the program’s initial state and σF is its final state.

By abuse of notation, we use the same symbol (κ) to repre-
sent the state redundancy of a state representation, and the

123

Semantic metrics for software products

state redundancy of a program. According to the formula of
this definition, the redundancy of the states of the program
evolves through the interval as the execution of the program
proceeds from the initial state to the final state.

As an illustration of this definition, we consider a simple
program that reads two integers included between 1 and 1,024
and computes their greatest common divisor.

{int x, y; cin << x << y;
// initial state
while (x!=y) {if (x>y) {x=x-y;} else
{y=y-x;}}
// final state
}

The declared state space of the program includes two integer
variables, which we assume to be of width 32 bits; hence we
find

H(S) = 2 × 32 bits = 64 bits.

As for σI , it consists of two integer values ranging between
1 and 1,024; hence we find

H(σI) = 2 × log(1,024) bits = 20 bits.

We derive the state redundancy of the initial state as:

κ(σI) = 44 bits.

For the final state, the declared state space is the same, but
the actual range of states is now reduced to a single value
between 1 and 1,024, since variables x and y are identical.
Hence we find:

κ(σF) = 64 bits − 10 bits = 54 bits.

The state redundancy of this program is the following inter-
val:

κ(g) = [44 bits..54 bits].

3.2 Functional redundancy

Whereas state redundancy reflects the excess data in the rep-
resentation of a state, and can be used to check consistency
conditions within the variables of a state, functional redun-
dancy reflects the excess output data generated by a program
function, and can be used to check (partially or totally or mul-
tiply) whether the function has executed properly. Whereas
the redundancy of a state is equated with the non-surjectivity
of the representation function (mapping actual states to their
representation), the functional redundancy of a program is
equated with the non-surjectivity of the program function
(mapping initial states to final states, or inputs to outputs).

Definition 4 We consider a program g on space S, and we
let G be the function defined by g on S. We let S be a random
variable that takes its values in set S, and we let Y be a random
variable that takes its values in the range of G. The functional
redundancy of program g is denoted by φ(g) and defined by:

φ(g) = H(S) − H(Y)

H(Y)
.

Intuitive interpretation The functional redundancy of a pro-
gram g is the ratio of the excess information that represents
the output of g prorated to the entropy of the output produced
by g. The functional redundancy of a program g may be used
to check (partially or totally) the correctness of the output pro-
duced by the program, or even to generate the correct output
(past the value of 2, through TMR voting for example). So,
if φ(g) = 0, there is no scope for checking any property; if
0 < φ(g) < 1 then we can check part of the result against
redundant information; if φ(g) > 0, then H(G(S)) × φ(g)

represents the bandwidth of assertions that may be checked
on the functional properties of G. For example, if program g
computes the values of five integers, and φ(g) = 0.2, then
there may be sufficient redundancy to check that one of the
five values is computed correctly. Triple modular redundancy
[1] corresponds to a functional redundancy value of 2; more
generally, N-ary modular redundancy corresponds to a func-
tional redundancy value of (N −1). Again, knowing the value
of φ(g) does not tell us how to use the redundant informa-
tion; but if we can identify it and use it, it can tell us whether
we are using all the available redundant information.

Fig. 1 Increasing the output space, preserving the range

123

A. Mili et al.

Fig. 2 Functional redundancy

Note that when we duplicate, triplicate, or otherwise mul-
tiplicate a function (as is done traditionally to enhance error
detection and error correction capability), we increase the
size (whence, typically, the entropy) of the output space,
while preserving the size and entropy of the range of F .
Specifically, if we take a function F on S and duplicate it,
we obtain a function, say �, which has the same input space
as F , and the same domain as F . However, the output space
of � is S2, and the range of � is

{〈s, s〉|s ∈ rng(F)},
which is homomorphic to rng(F). See Fig. 1.

To illustrate the significance of this formula, we consider
the table of Fig. 2. We let the reader contemplate in what
sense the relations observed in this table reflect one’s intu-
ition about the properties one wants to see in a redundancy
function. In this table, we denote by B5 (stands for 5-bit

integers) the set defined by:

B5 = [0..31].
Note that all the calculations made in Fig. 2 assume a uni-
form probability distribution on the domain of F ; if we had
a non-uniform distribution, we would have a larger value
of redundancy. Note also a relation that holds between the
redundancy of a function and the redundancy of its duplica-
tion:

φ(〈F, F〉) = 2 × φ(F) + 1.

One way to interpret this is to observe that when one dupli-
cates function F , one duplicates the redundancy of F , plus
one copy of the core information of F . Another posible inter-
pretation can be made by rewriting the formula as follows:

φ(〈F, F〉) = 2 × (φ(F) + 1) − 1.

123

Semantic metrics for software products

The latter formula can be interpreted as follows: the redun-
dancy of the duplicate function equals the total information
carried out by each instance of the function (which is the
redundancy plus 1), minus 1 (to account for the fact that we
are counting excess information). Note also (by comparing
F3 and F4, for example) that as the range of the function
increases (from 0..3 to 0..15) its redundancy decreases (less
surjectivity).

4 Error masking: program non-injectivity

Whereas state and functional redundancy enable us to detect
errors, maskability enables us to mask them, i.e., produce a
subsequent state that bears no trace of the error. What makes
this possible in practice is the non-injectivity of programs,
i.e., their ability to map distinct states into a single image.
The following definition offers a way to quantify the non-
injectivity of program functions.

Definition 5 Let g be a program on space S, whose function
is G. Let X be a random variable that takes its values in
the domain of G and let Y be defined as Y = G(X). The
non-injectivity of program g is denoted by θ(g) and defined
by:

θ(g) = H(X |Y).

We have observed in Sect. 2.2 that conditional entropies
are non-negative, hence θ(g) ≥ 0.

To justify this definition, we proceed in two steps: first,
we assume a uniform probability distribution over variable
X ; then the entropy of X given Y measures the amount of
uncertainty we have about the initial state of g if we know
its final state; this quantity is a natural representation of non-
injectivity, in the sense that the more initial states map to the
same image, the bigger the entropy. Second, we consider the
question: why does a non-uniform probability distribution
represent smaller non-injectivity? The answer is that with
a non-uniform probability distribution, fewer possible input
values have a higher probability of occurrence, culminating
in a smaller set of inputs mapping to a single output, hence
a less injective behavior.

Intuitive interpretation The non-injectivity of program g
is expressed in Shannon bits and represents the bandwidth of
error that the program can potentially mask. For example, if
the program handles integer variables of width w each, and
the non-injectivity of g is w bits, the program may potentially
mask the loss of an integer variable; for the same amount
of injectivity, the program may also recover from the viola-
tion of an assertion whose bandwidth is w (e.g., an equality
between two integer expressions); if the non-injectivity is
2w, the program can potentially mask the loss of two inte-
ger variables, etc. Knowing the value of the program’s non-
injectivity does not tell us what variables may be lost, nor

which assertion may be violated, but gives us some indica-
tion of the magnitude of error that can be masked without
outside intervention.

Proposition 2 Let g be a program on space S, whose func-
tion is G. Let X be a random variable that takes its values
in the domain of G and let Y be defined as Y = G(X). The
non-injectivity of program g can be written as:

θ(g) = H(X) − H(Y).

Proof According to [6], H(X |Y) = H(X, Y)−H(Y), where
H(X, Y) is the joint entropy of X and Y . Given that we
consider deterministic programs, Y is a function of X , hence
H(X, Y) = H(X). ��

We illustrate the concept of non-injectivity by means of
some simple examples. Let us consider a program g on space
S defined by three integer variables, say i , j and k.

• If g = {i=i+1;}, then θ(g) = 0. Ignoring the pos-
sibility of overflow, this program is injective, hence
H(X) = H(Y). If the state prior to execution of g is
erroneous, so will the state after execution of g.

• If g = {i=j+k}, then θ(g) = w, where w is the breadth
of an integer variable, since H(X) = 3w and H(Y) =
2w. This means that program g has the potential to mask
the loss of an integer variable. Indeed it does: if i had the
wrong value prior to execution of g, then that error will
be masked by g.

• If g = {i=0; j=1; k=10;}, then θ(g) = 3w, where
w is the width of an integer, since H(X) = 3w and
H(Y) = 0. This means that program g has the potential
to mask the loss of three integer variable. Indeed it does:
if i , j and k had the wrong values prior to execution of
g, then these errors will all be masked by the time g has
executed.

In practice, we need to derive rules that allow us to com-
pute the non-injectivity of a program by analyzing its source
code. The rules would proceed by induction on the structure
of the program, with one rule for each program construct. As
an example, we present below the rule for the sequence.

Proposition 3 The non-injectivity of a sequence of programs
is the sum of their non-injectivities:

θ(g1; g2) = θ(g1) + θ(g2).

Proof We let X , Y , and Z be the random variables repre-
senting the state of the program before g1, between g1 and
g2, and after g2. We have: θ(g1) = H(X) − H(Y), and
θ(g2) = H(Y) − H(Z), hence θ(g1) + θ(g2) = H(X) −
H(Y)+ H(Y)− H(Z), which simplifies to (H(X)− H(Z),
which is θ(g1; g2). ��

123

A. Mili et al.

The base case of the inductive process is the assignment
statement, which can be handled as shown in the examples
above. The most challenging inductive rule would be the
iteration rule, for which we envision to use the concept of
invariant relations introduced in [18]; this matter is currently
under investigation.

Whenever we know the function of a program, we can
compute its non-injectivity without going through the induc-
tive statement-by-statement analysis, as we illustrate in the
following example. We consider a sorting program that sorts
integer arrays of size N . For the sake of simplicity, we assume
that the space of this program is limited to the array (no index
variables, booleans, etc). We also assume that all initial arrays
are equally likely to occur, hence we have a uniform prob-
ability over X . As for Y , it is the set of sorted arrays. We
find:

θ(g)

= {by Proposition 2}
H(X) − H(Y)

= {by virtue of the hypothesis of uniformity}
log(|X |) − log(|Y |)

= {arithmetic}
log

(|X |
|Y |

)

= {There are N! random permutations for each sorted array}
log(N !).

This expression is known to be approximated by N log(N)−
N for N sufficiently large; for N = 1,024, for example, we
find θ(G) = 1,024×9 = 9,216 bits of maskable error band-
width. In effect, the types of errors that a sorting routine can
mask are all the errors whereby an array is permuted without
loss of original values.

In Sect. 3.1, we have found that state redundancy (which
measures error detection capability) increases as the pro-
gram proceeds from one state to the next. In this section, we
find that non-injectivity (which measures masking capabil-
ity) decreases as the program proceeds through its execution.

Proposition 4 Let program g on space S be a sequence of
subprograms g1, g2, …,gn, and let
i , for 1 ≤ i ≤ n be
defined as follows:

i = {gi , gi+1, ...gn}.
Then,

∀i : 1 ≤ i < n : θ(
i) ≤ θ(
i+1).

Proof This Proposition stems readily from Proposition 2, by
observing that
i can be written as
i = {gi ;
i+1}. By

virtue of Proposition 2, we have: θ(
i) = θ(gi) + θ(Gi+1).
From the discussions of Sect. 2.2, we know that θ(gi) is
non-negative. ��

The interpretation of this Proposition is straightforward: as
the program proceeds from one state to the next, it has fewer
and fewer future functions to apply, hence fewer and fewer
options to mask possible errors. In conjunction with Propo-
sition 1, this Proposition shows an interesting dilemma about
successive states generated as the program proceeds through
its execution: As the program proceeds from one state to
the next, it becomes increasingly easy to detect errors (due
to increasing state redundancy), but increasingly difficult to
mask them (due to decreasing non-injectivity of remaining
program functions).

5 Error recovery: specification flexibility

As we saw in Sect. 2.3, a program may fail to compute its
intended function and yet still behave according to the spec-
ification it is intended to satisfy. In this section, we wish to
quantify the amount of flexibility that a specification allows;
we present the following definition.

Definition 6 We consider a specification R under the form
of a binary relation on some space S, and we let X be a
random variable that takes its values in the domain of R and
Y be a random variable that takes its values in the range of R
in such a way as to maintain the condition (X, Y) ∈ R. The
non-determinacy of specification R is denoted by χ(R) and
defined by:

χ(R) = H(Y |X).

A specification is all the more non-deterministic (flexible)
that the conditional entropy of its output states for a given
input state is greater; bigger entropies are equated with larger
sets of possible outputs, and more uniform probability dis-
tribution of the occurrence of these outputs.

Intuitive interpretation the non-determinacy of a specifi-
cation is expressed in Shannon bits and represents the band-
width of deviation of candidate programs from their intended
function that does not violate the specification. For example,
if state S includes integer variables of width w and we find
that the non-determinacy of R is w, then we can lose up to
one integer variable and still satisfy the specification.

As an illustrative example, we consider the following
specification on space S defined by three integer variables,
say i , j , and k.

R = {(s, s′)|k = 2i + j ∧ i ′ = i + j ∧ j ′ = i − j}.
We let X be a random variable that ranges over the domain
of this relaton (i.e., the set of states such that k = 2i + j)

123

Semantic metrics for software products

and we let Y be a random variable that takes its values in
the range of this relation, in such a way as to maintain the
relation (X, Y) ∈ R. We must compute the non-determinacy
of this specification using the formula:

χ(R) = H(X, Y) − H(X).

We observe that the inverse of R is deterministic, since it can
be written as:

̂R =
{

(s, s′)|i ′ = i + j

2
∧ j ′ = i − j

2
∧ k′ = 3i + j

2

}

.

Hence X is a function of Y , and H(X, Y) = H(Y). So that
the non-determinacy of R can be written as:

χ(R) = H(Y) − H(X).

Assuming uniform probability distribution, we find χ(R) =
3w − 2w = 1w, which means that candidate programs may
lose one integer variable and still satisfy specification R;
indeed, specification R does not dictate any final value for
variable k, allowing candidate programs to lose that variable
without violating the specification.

As a second example, we consider the specification that
we had introduced in Sect. 2.3. This specification is defined
on space S of natural variables, and is defined by:

R = {(s, s′)|s′ mod 3 = s2 mod 3}.
We note that the domain of R and the range of R are both
equal to S, and we let X and Y be random variables that range
over S in such a way as to maintain the property:

Y mod 3 = X2 mod 3.

We compute the non-determinacy of relation R using the
expression:

χ(R) = H(X, Y) − H(X),

using the uniform probability distribution of X and Y . We
find, H(X, Y) = 2w − log(3), and H(X) = w. Hence,

χ(R) = w − log(3)

assuming of course that w ≥ 2, else the program cannot
compute the remainder of the division by 3. Assuming that
the width of a natural number is 32 bits, this formula finds that
the non-determinacy of this relation is 30.415 bits, which is
very high considering that the output is an integer of 32 bits.
But consider the vast latitude that this specification offers: if
s′ is a correct final state, then so are s′ + 3k for any k.

In general, we need to find a way to compute the non-
determinacy of a specification by induction on the structure
of the specification, much in the same way as we envision
to compute the non-injectivity of a program (re: Sect. 4).
But whereas for non-injectivity we do induction on pro-
gram structures (sequence, alternation, conditional, iteration)
using assignment statements for the basis of induction, for

non-determinacy we envision to use induction on specifi-
cation structures (intersection, union, lattice operators [4])
using elementary relations as a basis of induction.

6 An illustrative example

We illustrate the foregoing metrics on a simple example,
namely the following sorting program.

#include <iostream>
#include ‘‘rand.cpp’’

using namespace std;

// constants
int N = 100;
int Maxval = 400;

// functions
void loaddata ();
void sort();
void flusha();

// state variables
int a[100];

int main ()
{

loaddata();
sort();
flusha();

}

void loaddata()
{SetSeed(400);
for (int k=0; k<N; k++) {a[k]=1
+Maxval*
NextRand();}

}

void sort()
{int c, d, p, swap; c=0;
while (c<(N-1))

{p=c; d=c+1;
while (d<N)

{if (a[p]>a[d]) {p=d;} d++;}
if (p!=c) {swap=a[c]; a[c]=a[p];

a[p]=swap;}
c++;
}

}
void flusha()

123

A. Mili et al.

{for (int k=0; k<N; k++) {cout << a[k]
<< endl;}

}

Specifically, we are interested to compute the semantic met-
rics of the sort function.

6.1 State redundancy

As we recall from Definition 3 the state redundancy of a pro-
gram is the interval bounded by H(S) − H(σI) and H(S) −
H(σF). To compute H(S), we assume that we are dealing
with 32-bit integers, and we count an array of 100 integers and
four integer variables, to a total of 104×32 = 3,328. To com-
pute the entropy of the initial state, we observe that we have
101 variables whose value ranges between 1 and 400 (100
cells of the array + swap), and three index variables, whose
value ranges between 0 and 99; hence the entropy of the initial
state is: 101×log(400)+3×log(100) = 893 bits. Hence the
state redundancy of the initial state is: 3,328 − 893 = 2,435
bits.

To compute the state redundancy of the final state, we must
assess its entropy, which in turn requires that we estimate the
entropy of a sorted array. To this effect, we briefly discuss the
question in general terms and then apply it specifically to our
case study: we know that the entropy of a random array of N
cells which range over 2W values is N × W ; the question is,
by how much is this entropy reduced when we sort the array.
To answer this question, we use an approximation: we divide
the range of values into N intervals of equal length and we
assume that each cell of the array ranges over the interval of
the corresponding rank. The entropy of such an array is then:

N × log

(

2W

N

)

,

which comes out to

N × W − N log(N).

In other words, sorting an array of size N reduces its entropy
by N log(N). In our case, we find that the entropy of the
sorted array is: 100 × log(400) − 100 × log(100) = 100 ×
log(4) = 200 bits. Because the values of variables c and d
at the final state are determined by the program (to be equal
to N), they do not add to the entropy; we only count the
entropy of variables p (range: 100 values) and swap (range:
400 values). Hence the entropy of the final state is: 200 +
log(100)+ log(400) = 213 bits. Hence the state redundancy
of the final state is: 3,328 − 213 = 3115 bits. Whence the
state redundancy of this sorting program is the following
interval:

κ(sort) = [2,435 bits..3,115 bits].

6.2 Functional redundancy

According to Definition 4, the functional redundancy of this
program is given by the following formula:

φ(sort) = H(S) − H(Y)

H(Y)
,

where Y is a random variable that takes its values in the range
of the program’s function. From the previous subsection, we
know that the entropy of S is H(S) = 3,328 bits. Also, ran-
dom variable Y takes its values in the set of final states of
the program, whose entropy we have estimated in the previ-
ous subsection as: H(σF) = 213 bits. Hence the functional
redundancy of this program is:

φ(sort) = 3,328 − 213

213
= 14.62.

This may look very large for a program that has no evidence
of massive functional redundancy; but we have to remember
that functional redundancy reflects the non-surjectivity of
the program function; most of the redundancy that we are
observing in this program comes from using integer variables
that can represent 232 different values to merely represent
400 different values. If array cells ranged over 232 values,
we would have found a functional redundancy of about 0.3.

6.3 Non-injectivity

According to Definition 5, the non-injectivity of this program
is given by the following formula,

θ(g) = H(X |Y),

where X is a random variable that ranges over the domain of
this program’s function, and Y is a random variable that takes
its values over its range; this conditional entropy measures
how much do we know about X if we observe Y . Because
this program sorts arrays, we know that each ordered array of
size N observed at the final state corresponds to N ! possible
arrays at the initial state. Under the hypothesis of uniform
probability, the conditional entropy is:

H(X |Y) = log(N !).
According to Stirling’s approximation, this quantity can be
written as:

N × log(N) − N = 564 bits

for N = 100.

6.4 Non-determinacy

Whereas so far we have computed our semantic metrics
by analyzing the program, the metric of non-determinacy
depends on the specification against which the program’s

123

Semantic metrics for software products

Fig. 3 Semantic metrics for a sorting routine

behavior is judged (to determine correctness, expose fail-
ures, diagnose faults, etc). We consider three possible speci-
fications, and estimate the non-determinacy of each (Fig. 3).

• Ord, which provides that the final array is sorted (say, in
increasing order).

• Prm, which provides that the final array is a permutation
of the initial array.

• Sort = Prm ∩ Ord.

According to Definition 6, the non-determinacy of a specifi-
cation is given by the formula

χ(R) = H(Y |X),

where X is a random variable that ranges over the domain of
the specification (dom(R)) and Y is a random variable that
takes its values in the range of the specification (rng(R)), and
(X, Y) is in relation R.

• Ord: This specification provides that the final array is
ordered, but stipulates no relation to the initial array. In
this case, H(Y |X) = H(Y). As we have discussed previ-
ously, the entropy of a sorted array of size N whose cells
may takes 2W values is: H(Y) = N ×W − N × log(N) =
3,200 − 664 = 2,536 bits.

• Prm: This specification provides that the final array is a
permutation of the initial array but stipulates nothing about
how array cells are arranged. For an array of size N , this
leaves N ! possible final array values for each initial array
value, hence H(Y) = log(N !) = 564 bits for N = 100,
according to Stirling’s approximation.

• Sort: Because this specification is deterministic, H(Y |X)=
0, since observation of X determines Y .

6.5 Summary

The Table of Fig. 4 summarizes our analysis of the sort rou-
tine:

7 Concluding remarks: assessment and prospects

At a time when software systems grow increasingly large
and complex, it becomes increasingly tenuous/unrealistic to
obsess about fault avoidance (developing fault-free software)
and fault removal (removing faults from developed software).
At the very least, the goal of fault-free software, by whatever
means it is achieved, ought to be combined with the goal of
ensuring that the program is adequately equipped to preclude
residual fault from causing failure. Whereas traditional soft-
ware metrics are based on a syntactic analysis of software
products, hence reflect such attributes as fault proneness, our
semantics based metrics are intended to reflect, not the rep-
resentation of programs, but their functional properties, not
least their ability to avoid failure once faults have caused
errors.

7.1 Premises

Our semantic software metrics are defined on the basis of the
following premises:

• If software metrics are to give us some indication on the
quality (reliability/dependability/trustworthiness) of soft-
ware products, they should be focused on failures rather
than faults, for a number of reasons:

– First, it makes more sense to focus on observable
effects (failures) rather than on hypothesized causes
(faults).

– Second, the concept of a fault is not clearly defined:
whereas failure is defined with respect to a well-
defined reference, namely the product’s specification,
a fault is defined with respect to an implicit idea of
what we think the programmer had meant to write,
or should have meant to write. If we consider the
program we used in Sect. 2.3, we had assumed that
the fault in the program was the statement s=2*s;,
which should have been s = s*s;. Yet it is possi-
ble, though not natural, to argue that the faulty state-
ment is not s=2*s; but rather s = s mod 6;,
which should be changed into s = ((s*s)/4)
mod 6. Again, it is posible, though not natural, to
argue that actually both statements are faulty, and we
need to replace the first statement by s = 3*s and
the second statement by s = ((s*s)/9) mod
6. Hence strictly speaking, neither the number nor the
location of the faults is unique, for the same failure.

– Several empirical studies show that the correlation
between fault dentity and reliability (as measured by
mean time to failure) is fairly weak [9]; a program
may be reliable and have many faults, and may be
unreliable with relatively fewer faults.

123

A. Mili et al.

Fig. 4 Semantic metrics: definitions and interpretations

• To the extent that functional software qualities (such
as correctness, reliability, fault proneness, dependabil-
ity, etc) pertain to whether the software product behaves
according to its specification, the answer to this question
cannot be found in the software product alone but must
also consider the specification. Our metrics suite includes
a measure that reflects the extent to which a specification
is flexible in its requirements; we envision to elaborate
on this by seeking a measure that quantifies how the non-
injectivity of program functions and the non-determinacy
of specifications combine to support a broad scope for
maskability.

• At the same time as we favor to focus on failure avoid-
ance rather than fault removal, we also favor focusing on
a macro-level view of the semantic properties of the soft-
ware product, rather on minute syntactic details.

• Rather than deriving syntactic metrics then using empiri-
cal analysis to discover and validate hypothesized corre-
lations with quality attributes, we favor deriving semantic
metrics whose relationship to quality attributes we ana-
lyze a priori. This does not dispense us from performing
empirical analysis, but we envision the empirical study
as supporting the analytical study, rather than substituting
for it.

• We readily acknowledge that by focusing on semantic
rather than syntactic metrics, we are missing out on an
important attribute of software artifacts, namely product
complexity, which is often equated with fault proneness;
but we argue that this is a normal tradeoff, given our focus
on failure avoidance rather than fault removal.

7.2 Metrics

In keeping with the foregoing premises, we have derived
four semantic metrics, which measure a program’s ability to
detect errors at run-time and avoid failure.

• A measure of state redundancy, which quantifies the non-
surjectivity of state representations, is expressed in Shan-
non bits, and indicates the bandwidth of assertions that
can be checked to ensure state consistency.

• A measure of functional redundancy, which quantifies
the non-surjectivity of program functions, is expressed
as an abstract number, and indicates the ratio or multi-
plicity of the program function that can be checked for
correctness.

• A measure of maskability, which quantifies the non-
injectivity of program functions, is expressed in Shan-
non bits, and indicates the bandwidth of error that may
arise in the program state and still be masked by the
program.

• A measure of recoverability, which quantifies the non-
determinacy of program specifications, is expressed in
Shannon bits, and indicates the bandwidth of loss that a
program state can sustain while still satisfying the spec-
ification.

Together, these four metrics ought to give the analyst some
indication regarding the program’s ability to tolerate faults
and avoid failure.

123

Semantic metrics for software products

7.3 Assessment

It is too early to make a judgement on the roadworthiness of
our suite of metrics, other than to say that we have derived
them analytically, in a goal-oriented manner, in such a way
that, together, they produce a comprehensive picture of a
program’s fault tolerance potential.

7.4 Prospects

We envision a number of extensions of the current work, most
notably:

• Analytical validation, whereby we envision to derive logi-
cal or statistical models that correlate our metrics with the
system’s reliability, or other quality attributes.

• Empirical validation, whereby we explore correlations
between functional quality attributes (reliability, fault tol-
erance) and semantic metrics.

• Automated support, whereby we develop automated sup-
port to the derivation of semantic metrics from an analysis
of the source code and (structured forms of) the require-
ments specifications.

• Theoretical foundations, whereby we explore the con-
cept of bandwidth of an assertion, and its relationship to
the entropy of the state defined by the variables that are
involved in the assertion.

Acknowledgments This publication was made possible by a grant
from the Qatar National Research Fund NPRP04-1109-1-174. Its con-
tents are solely the responsibility of the authors and do not necessarily
represent the official views of the QNRF.

References

1. Abraham JA, Siewiorek DP (1974) An algorithm for the accurate
reliability evaluation of triple modular redundancy networks. IEEE
Trans Comput C–23(7):682–692

2. Abran A (2012) Software metrics and software metrology. Hobo-
ken, NJ

3. Bansyia J, Davis C, Etzkorn L (1999) An entropy based complex-
ity measure for object oriented designs. Theory Pract Object Syst
5(2):1–9

4. Boudriga N, Mili A, Zalila R (1992) An automated tool for spec-
ification validation: Design and preliminary implementation. In:
Proceedings, Hawaii international conference on system sciences,
Kauai, pp 74–82, Jan 1992

5. Brink C, Kahl W, Schmidt G (1997) Relational mathematics in
computer science. Advances in computer science. Springer, Berlin

6. Csiszar I, Koerner J (2011) Information theory: coding theorems for
discrete memoryless systems. Cambridge University Press, Cam-
bridge, UK

7. Christof E, Reiner D (2007) Software measurement: establish,
extract, evaluate, execute. Springer, Berlin Heidelberg

8. Etzkorn LH, Gholston S (2002) A semantic entropy metric. J Softw
Maint Evol Res Pract 14:293–310

9. Fenton NE, Pfleeger SL (1997) Software metrics: a rigorous and
practical approach. PWS Publishing Company, Boston MA

10. Gall CS, Lukins S, Etzkorn L, Gholston L, Farrington P, Utley
D, Fortune J, Virani S (2008) Semantic software metrics computed
from natural language design specifications. IET Softw 2(1) 17–26

11. Halstead MH (1977) Elements of software science. North Holland,
Amsterdam

12. Hehner ECR (2003) Quantifying redundancy. Private correspon-
dence

13. Laprie JC (1995) Dependability—its attributes, impairments and
means. Randell B, Laprie JC, Kopetz H, Littlewood B (eds) Pre-
dictably dependable computing systems. Springer, pp 1–19

14. Mashiko Y, Basili VR (1997) Using the gqm paradigm to investi-
gate influential factors for software process improvement. J Syst
Softw 36:17–32

15. Mili A, Aharon S, Nadkarni CH (2009) Mathematics for reasoning
about loop. Sci Comput Program 74:(11–12)989–1020

16. Morell L, Murill B (1993) Semantic metrics through error flow
analysis. J Syst Softw 20(3):207–216

17. Morell LJ, Voas JM (1993) framework for defining semantic met-
rics. J Syst Softw 20(3):245–251

18. Mraihi O, Louhichi A, Jilani LL, Desharnais J, Mili A (2012)
Invariant assertions, invariant relations, and invariant functions. Sci
Comput Program. DOI:10.1016/j.scico.2012.05.006

19. Northrop L, Feiler P, Gabriel RP, Goodenough J, Linger R,
Longstaff T, Kazman R, Klein M, Schmidt D, Sullivan K, Wallnau
K (2006) Ultra large scale systems: the software challenge of the
future. Software Engineering Institute, July 2006

20. Patterson D, Fox A (2005) Recovery oriented computing—an
overview. Technical report, University of California at Berkeley.
http://roc.cs.berkeley.edu/roc_overview.html

21. Voas JM, Mille K (1993) Semantic metrics for software testability.
J Syst Softw 20(3):207–216

123

http://dx.doi.org/10.1016/j.scico.2012.05.006
http://roc.cs.berkeley.edu/roc_overview.html

	Semantic metrics for software products
	Abstract
	1 Introduction
	1.1 Semantic metrics
	1.2 Related work
	1.3 Agenda

	2 Background
	2.1 Relational mathematics
	2.2 Information theory
	2.3 Fault tolerance methodology

	3 Error detection: redundancy
	3.1 State redundancy
	3.2 Functional redundancy

	4 Error masking: program non-injectivity
	5 Error recovery: specification flexibility
	6 An illustrative example
	6.1 State redundancy
	6.2 Functional redundancy
	6.3 Non-injectivity
	6.4 Non-determinacy
	6.5 Summary

	7 Concluding remarks: assessment and prospects
	7.1 Premises
	7.2 Metrics
	7.3 Assessment
	7.4 Prospects

	Acknowledgments
	References

