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Abstract

The administration of bacterial lipopolysaccharide (LPS) markedly affects pituitary secretion, and its effects are probably mediated by

cytokines produced by immune cells or by the hypothalamo-pituitary axis itself. Since neurokinin A (NKA) plays a role in inflammatory

responses and is involved in the control of prolactin secretion, we examined the in vivo effect of LPS on the concentration of NKA in

hypothalamus and pituitary (assessed by RIA) and serum prolactin levels in male rats. One hour after the intraperitoneal administration of

LPS (250 Ag/rat), NKA content was decreased in the posterior pituitary but not in the hypothalamus or anterior pituitary. Three hours after

injection, LPS decreased NKA concentration in the hypothalamus and anterior and posterior pituitary. In all the conditions tested, LPS

significantly decreased serum prolactin. We also examined the in vitro effects of LPS (10 Ag/ml), interleukin-6 (IL-6, 10 ng/ml) and tumor

necrosis factor alpha (TNF-a, 50 ng/ml) on hypothalamic NKA release. Interleukin-6 increased NKA release without modifying

hypothalamic NKA concentration, whereas neither LPS nor TNF-a affected them. Our results suggest that IL-6 may be involved in the

increase of hypothalamic NKA release induced by LPS. NKA could participate in neuroendocrine responses to endotoxin challenge.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Neurokinin A (NKA) is a member of the tachykinin

peptide family that also includes substance P (SP), neuro-

kinin B (NKB), neuropeptide K (NPK) and neuropeptide

gamma (NPg). Tachykinins participate in diverse physio-

logical functions when they bind to three subtypes of

specific receptors: NK-1 (SP-preferring), NK-2 (NKA-pre-

ferring) and NK-3 (NKB-preferring), members of the G

protein-linked receptor family [1,2].

SP and NKA are contained in hypothalamic neurons and

nerve fibers and secretory cells of posterior and anterior

pituitary lobes, suggesting that these peptides may have a

physiological role in the control of pituitary function. In

fact, a body of evidence indicates that these tachykinins

regulate the hypothalamo-pituitary–adrenal (HPA) axis and

reproductive functions by actions exerted at the three levels

of the hypothalamo-pituitary–gonadal (HPG) axis [3,4]. In

addition, we have previously shown that both SP and NKA

are involved in the control of prolactin secretion [5,6].

Tachykinins not only function as neurotransmitters in the

central and peripheral nervous system, but also participate as

mediators in inflammation and immune responses [7,8].

Recently, it has been reported that SP and NKA directly

influence the host response to viral infection [9]. Some effects

of SP on inflammation are related to its ability to induce

oxygen reactive species and nitric oxide generation [10]. In

addition, SP induce cytokine synthesis either by activation of

transcription factors, such as NF-nB, or independent of NF-
nB by activation of mitogen-activated protein kinases

[11,12]. Endotoxin-induced cytokine synthesis was reported

to be attenuated by inhibiting SP release or by blocking of

NK-1 receptors [13].

The peripheral administration of bacterial lipopolysac-

charide (LPS) stimulates peritoneal macrophages which

quickly synthesize and release large amounts of several

cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6)

and tumor necrosis factor-alpha (TNF-a) [14]. Peripherally

produced cytokines as well as those locally synthesized in

brain and pituitary contribute to provoke neuroendocrine
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responses to endotoxin. Shared biological activities of IL-1,

IL-6 and TNF-a are activation of the HPA axis and

suppression of the HPG axis [15,16]. However, contra-

dictory results in serum prolactin levels have been found

after administering LPS or cytokines in different experi-

mental models in rodents [17–19]. We have reported that

both peripheral LPS and central TNF-a administration exert

inhibitory effects on prolactin secretion by stimulating

dopaminergic activity in the hypothalamo-pituitary axis

[20].

Since NKA plays a role in inflammatory processes and is

involved in the regulation of pituitary hormone secretion,

the aim of this study was to explore whether NKA could be

involved in the neuroendocrine response to endotoxin.

Therefore, we investigated the effect of LPS administration

on NKA-immunoreactivity in the hypothalamus and ante-

rior and posterior lobes of the pituitary and serum prolactin

levels. In addition, we examined the in vitro effect of LPS,

IL-6 and TNF-a on NKA release from hypothalamic

explants.

2. Materials and methods

2.1. Animals

Male Wistar rats weighing 200–250 g were used. The

animals were fed lab chow and water ad libitum and kept

in controlled conditions of light (12 h light/dark) and

temperature (20–25 jC). The animals were treated accord-

ing to the NIH Guide for the Care and Use of Laboratory

Animals.

2.2. Drugs

All materials, including bacterial lipopolysaccharide

(Escherichia coli serotype 0111:B8), were purchased from

Sigma (St. Louis, MO, USA), except recombinant hTNF-a

and hIL-6 (Promega, Madison, WI, USA), anti-NKA serum

(Peninsula Laboratories, Belmont, CA, USA) and NKA-

[125I] (NENk Life Science Products, Boston, MA, USA).

2.3. Experimental protocols

2.3.1. In vivo experiments

Endotoxic shock was induced by a single intraperitoneal

(i.p.) injection of LPS dissolved in pyrogen-free isotonic

saline at a dose of 250 Ag/rat, and rats were sacrificed 1 or

3 h later. Doses and times were chosen on the basis of

previous experiments conducted in our laboratory [32] and/

or known in the literature to effectively induce the corre-

sponding endotoxic shock. Control animals were injected

with vehicle alone. All animals were sacrificed by deca-

pitation and trunk blood was collected for prolactin meas-

urement. Serum was separated by centrifugation. After

sacrifice, the anterior and posterior pituitary gland and brain

were removed. A hypothalamic fragment that included the

arcuate and periventricular nuclei and the median eminence

was dissected by making a frontal cut just behind the optic

chiasm extending dorsally 1.0 mm. A horizontal cut ex-

tended from this point caudally to just behind the pituitary

stalk, where another frontal cut was made. Longitudinal

cuts were made 1 mm lateral to the midline bilaterally. The

tissues were immediately frozen on dry ice, then homogen-

ized in 1 N acetic acid. The tissue homogenates were heated

at 100 jC for 10 min and centrifuged at 14500 rpm for 20

min. The supernatants were stored at � 70 jC until deter-

mination of NKA. Protein concentration in tissue homoge-

nates was determined by the method of Lowry et al., using

bovine serum albumin as standard.

2.3.2. Incubation of hypothalamic fragments

For NKA release, one hypothalamic fragment was pre-

incubated for 15 min in a Dubnoff shaker (60 cycles per

min) at 37 jC in an atmosphere of 95% O2–5% CO2 in 0.5

ml of Krebs–Ringer bicarbonate buffer (KRB) (118.46 mM

NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.18 mM NaH2PO4, 1.18

mM MgSO4, 24.88 mM NaHCO3, pH 7.4) containing 10

mM glucose, 10 mM HEPES, 1 mM ascorbic acid, 0.1 mM

bacitracin and 0.1% bovine serum albumin. Then, the

medium was replaced with fresh KRB containing the sub-

stances to be tested and the tissues were incubated for 60

min. At the end of the incubation period, media were

acidified with 1 N acetic acid and heated at 100 jC for 10

min and tissues treated as described above. Media and tissue

supernatants were quickly frozen on dry ice.

2.4. NKA radioimmunoassay

Incubation media and tissue supernatants were neutral-

ized with 1 N OHNa and diluted in PBS buffer (50 mM

NaCl, 81 mM Na2HPO4, 19 mM NaH2PO4), pH 7.4

containing 0.1% bovine serum albumin and 0.1% Triton

X-100. The samples were incubated with rabbit anti-NKA

serum for 24 h at 4 jC. Then, NKA-[125I] was added as

tracer and incubated for 24 h at 4 jC. The reaction was

stopped by the addition of sheep anti-rabbit IgG serum

diluted 1:15 in PBS–Triton X-100 buffer with 1% normal

rabbit serum for 2 h. After the addition of cold 6% PEG, the

samples were centrifuged at 3000 rpm for 20 min. The

radioactivity was quantified in a gamma counter. All sam-

ples from animals tested within each specific experimental

paradigm were measured in the same RIA to avoid inter-

assay variability. The intraassay coefficient of variation was

lower than 5%, and assay sensitivity was 7.8 pg/tube.

2.5. Prolactin determination

Prolactin was measured by a double antibody radio-

immunoassay utilizing the RP3 reference preparation and

anti-rPRL-S-9 serum provided by the National Hormone

and Pituitary Program (Torrance, CA, USA). The intrassay
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coefficients of variation was lower than 9% and the assay

sensitivity was 20 pg/tube.

2.6. Statistics

The results were expressed as meansF S.E.M. Signifi-

cance of the differences between means was determined by

Student’s t-test. Differences were considered significant

when p < 0.05. All experiments were performed at least

twice. Figures represent results of individual experiments.

3. Results

3.1. Effect of LPS administration on NKA content

One hour after intraperitoneal administration of LPS (250

Ag/rat), the content of NKA in the hypothalamic fragments

or anterior pituitary gland were not significantly modified.

However, LPS significantly ( p < 0.05) decreased NKA

content in posterior pituitary (Fig. 1A). NKA content was

significantly ( p < 0.05) decreased in hypothalamus and

anterior and posterior pituitary lobes 3 h after LPS admin-

istration (Fig. 1B).

Fig. 1. Effect of LPS administration (i.p., 250 Ag/rat) on NKA immu-

noreactivity in hypothalamic fragments (HF), posterior pituitary (PP), an-

terior pituitary (AP) and serum prolactin levels (insets) 1 h (A) and 3 h (B)

postinjection. Values represent meansF S.E.M. The number of rats is

indicated inside each column. Data were evaluated by Student’s t-test

(*p< 0.05, **p< 0.01, ***p< 0.001 vs. control).

Fig. 2. In vitro effect of IL-6 on hypothalamic NKA release and tissue

concentration. The hypothalamic fragments were incubated with IL-6 (10

ng/ml) for 60 min. Media and tissues were processed for determination of

NKA concentration by RIA. Protein concentration was determined in tissue

homogenates. Values represent meansF S.E.M. The number of hypothala-

mic fragments is indicated inside each column. Data were evaluated by

Student’s t-test (**p< 0.01 vs. control).

Table 1

Effect of LPS and TNF-a on NKA release from hypothalamic fragments

and tissue concentration

NKA release

(ng/mg protein)

NKA tissue content

(ng/mg protein)

Control 0.251F 0.043 (6) 8.420F 0.480 (8)

LPS (10 Ag/ml) 0.315F 0.054 (8) 8.420F 0.701 (8)

Control 0.329F 0.107 (6) 5.980F 0.380 (6)

TNF-a (50 ng/ml) 0.225F 0.108 (6) 5.800F 0.300 (6)

The hypothalamic fragments were incubated with LPS or TNF-a for 60

min. Media and tissues were processed for determination of NKA

concentration by RIA. Protein concentration was determined in tissue

homogenates. Values represent meansF S.E.M. The numbers of determi-

nations are indicated between brackets. Data were evaluated by Student’s

t-test.
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Serum prolactin levels were significantly decreased 1 h

( p < 0.01) and 3 h ( p < 0.001) after the intraperitoneal ad-

ministration of LPS (Fig. 1).

3.2. In vitro effect of LPS, IL-6 and TNF-a on NKA release

from hypothalamic fragments

The presence of LPS (10 Ag/ml) in the incubation

medium did not significantly change NKA release from

hypothalamic fragments or tissue concentration (Table 1).

IL-6 (10 ng/ml) significantly increased ( p < 0.01) hypo-

thalamic NKA release without modifying its content in

tissue (Fig. 2). On the contrary, TNF-a (50 ng/ml) affected

neither hypothalamic NKA release nor content (Table 1).

4. Discussion

Our results show that intraperitoneal administration of

LPS decreases NKA concentration in the hypothalamus and

the pituitary 3 h postinjection. The effect of LPS was also

observed in the posterior pituitary 1 h after LPS admin-

istration. Evidence indicated that the secretion of proinflam-

matory cytokines after systemic LPS administration are

causally and temporally related, with plasma TNF-a ele-

vated first, then IL-1, and finally IL-6 [15]. Peripherally

administered LPS also produces an up-regulation of brain

cytokines suggesting that humoral mechanisms in the

periphery are able to signal the brain and modify cytokine

synthesis within specific brain regions [21]. In addition,

systemically administered LPS was shown to induce cyto-

kine expression in both the anterior and posterior pituitary

gland [22]. In our experiments, LPS did not appear to exert

a direct effect on NKA release so that the action of LPS on

tachykinergic neurons could imply cytokine synthesis. In

fact, IL-6 increased NKA release from the mediobasal

hypothalamus, suggesting that IL-6 may be involved in

the decrease of hypothalamic NKA concentration observed

after LPS administration. IL-1h has also been shown to

increase NKA release from the median eminence and

arcuate nucleus of castrated rats [23]. The posterior pituitary

expresses both IL-1 and its receptor and their expression in

this tissue is strongly up-regulated by LPS [24–26]. Both

LPS and IL-1h were shown to stimulate IL-6 synthesis and

release in the posterior pituitary [27]. Since IL-1 and IL-6

have been reported to stimulate neurohypophyseal hormone

release by hypothalamic explants [28], it is possible that

both IL-1 and IL-6 could mediate the changes in NKA

concentration induced by LPS administration in hypothal-

amus and posterior pituitary.

Some evidence suggests that SP and NKA are not

released in significant amounts into the portal vessels and

that they may regulate pituitary secretion by modulating the

release of hypothalamic neuropeptides and neurotransmit-

ters [4]. Therefore, an increase in hypothalamic NKA

neurotransmission induced by cytokines could target neu-

rons in hypothalamic nuclei or their terminals in the

median eminence and the posterior pituitary, thus affecting

systems involved in the control of anterior pituitary func-

tion.

Although serum prolactin levels decreased 1 h after LPS

administration, a decrease in hypothalamic NKA concen-

tration was evident only after 3 h. This time lag suggests

that the effect of LPS on tachykinergic neurons requires the

synthesis, release and action of mediators, such as cyto-

kines. Alternatively, a decrease in NKA content could only

be evident after sustained stimulation of peptide release. The

increase in hypothalamic NKA release induced by IL-6 may

affect the activity of tuberoinfundibular dopaminergic neu-

rons involved in the inhibitory tone that the hypothalamus

exerts on prolactin secretion [29]. Dopaminergic neurons in

the arcuate nucleus receive synaptic inputs from tachykinin-

containing nerve terminals [30]. We have previously shown

that SP stimulates dopamine release from hypothalamic

fragments [31]. In addition, we have shown that LPS

stimulates dopamine turnover in the hypothalamic–pituitary

axis suggesting that the increase in dopaminergic activity

could mediate the inhibitory effect of LPS on prolactin

release [20]. Therefore, NKA could contribute to LPS-

induced decrease in serum prolactin levels by stimulating

hypothalamic dopamine release. Since NKA decreases oxy-

tocin release from the posterior pituitary [32] this mecha-

nism could also be involved in the inhibition of prolactin

secretion during the acute phase of endotoxemia. In fact, IL-

6 decreased in vitro oxytocin release from the posterior

pituitary (unpublished results).

Tachykinins play an important role in the regulation of

the HPA axis, especially in physical or inflammatory

stresses. NK-1 agonists, like SP, exert an inhibitory effect

on the CRH/ACTH system but stimulate the adrenal cortex,

whereas NK-2 agonists like NKA activate both the central

and intradrenal levels of the HPA axis [3]. It has been

demonstrated that SP does not inhibit the initial response of

the HPA axis to restraint stress but reduces the duration of

the response to stress suggesting that SP has an important

role in the transition between acute and chronic stress [33].

On the contrary, an increase in NKA release induced by

cytokines could contribute to activation of the HPA axis

during endotoxemia. It has been well established that

prolactin increases the immune response [16]. The inhib-

ition of prolactin release together with the activation of

glucocorticoid secretion by cytokines [15,17,32] may rep-

resent a feedback mechanism that keeps within physiolog-

ical limits the immune response triggered by acute

inflammatory stimuli [16].

Some evidence indicates that NKA, NPK and NPg have

physiological roles as inhibitors of LH secretion, acting at

the level of the hypothalamus [4]. Furthermore, NKA was

suggested to mediate the inhibitory effect of IL-1h on LH

secretion [23,34]. Our results support the notion that NKA

could be involved in the inhibitory effect of LPS on repro-

ductive functions.
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In conclusion, cytokines synthesized during endotoxe-

mia, in particular IL-6, may increase NKA release from

hypothalamic tachykinergic neurons. NKA could participate

as mediator of some neuroendocrine responses to an

immune challenge such as inhibition of prolactin secretion.
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