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ill-posed problems
Abstract: Several generalizations of the traditional Tikhonov–Phillips regularization method have been
proposed during the last two decades. Many of these generalizations are based upon inducing stability
throughout the use of di�erent penalizers which allow the capturing of diverse properties of the exact solu-
tion (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the
regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much
better option could be the simultaneous use of two or more penalizers of di�erent nature. Such is the case,
for instance, in some image restoration problems in which preservation of edges, borders or discontinuities
is an important matter. In this work we present some results on the simultaneous use of penalizers of L2

and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open
problems are discussed and results to signal restoration problems are presented.
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1 Introduction and preliminaries
For our general setting we consider the problem of �nding u in an equation of the form

Tu = v, (1.1)

where T : X → Y is a bounded linear operator between two in�nite dimensional Hilbert spaces X and Y, the
range of T is non-closed and v is the data, which is supposed to be known, perhaps with a certain degree of
error. In the sequel and unless otherwise speci�ed, the spaceXwill be L2(Ω)whereΩ ⊂ ℝn is a bounded open
convex set with Lipschitz boundary. It is well known that under these hypotheses problem (1.1) is ill-posed
in the sense of Hadamard ([10]) and it must be regularized before any attempt to approximate its solutions
is made ([7]). The most usual way of regularizing a problem is by means of the use of the Tikhonov–Phillips
regularization method whose general formulation can be given within the context of an unconstrained
optimization problem. In fact, given an appropriate penalizer W(u) with domain D ⊂ X, the regularized
solution obtained by the Tikhonov–Phillips method and such a penalizer, is the minimizer uá, over D, of
the functional

Já,W(u) = ‖Tu − v‖2 + áW(u), (1.2)
where á is a positive constant called regularization parameter. For general penalizersW, su�cient conditions
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guaranteeing existence, uniqueness and weak and strong stability of the minimizers under di�erent types of
perturbations were found in [7, 12, 14, 16, 17].

Each choice of an appropriate penalizerW originates a di�erent regularization method producing a par-
ticular regularized solution possessing particular properties. Thus, for instance, the choice ofW(u) = ‖u‖2L2(Ω)
gives raise to the classical Tikhonov–Phillips method of order zero producing regularized approximations
which approximate, as á → 0+, the best approximate solution (i.e. the least squares solution of minimum
norm) of problem (1.1) (see [7]) while for W(u) = ‖|∇u|‖2L2(Ω) the order-one Tikhonov–Phillips method is ob-
tained. In both cases the approximations are smooth. Similarly, the choice of W(u) = ‖u‖BV(Ω) (where ‖ ⋅ ‖BV
denotes the total variation norm) orW(u) = ‖|∇u|‖L1(Ω), result in the so-called “bounded variation regulariza-
tion methods” ([1, 15]). The use of these penalizers is appropriate when preserving discontinuities or edges is
an important matter. Several variations of these methods have been introduced ([8, 9, 18]). For instance, for
the case of denoising, Strong and Chan [18] considered an adaptive penalizer of the form

W(u) = ∫
Ω

á(x)|∇u| dx,

where á(x) is a control factor whose objective is to slow down di�usion near edges and borders. The introduc-
tion of this control factor has been proved to produce a very good result in noise reduction. A di�erent type
of variation of BV-penalizer was introduced by Gilboa, Sochen and Zeevi ([8]) where they considered, again
for the case of denoising, penalizers of the form W(u) = ∫Ω õ(|∇u|) dx, where õ is an appropriately chosen
smooth function. It is timely to point out however that all these BV-based methods have drawback that they
tend to produce piecewise constant approximations and therefore, they will most likely be inappropriate in
regions where the exact solutions are smooth ([5]) producing the so-called “staircasing e�ect”.

In certain types of problems, particularly in those in which it is known that the regularity of the exact
solution is heterogeneous and/or anisotropic, it is reasonable to think that using and spatially adapting two
or more penalizers of di�erent nature could bemore convenient. During the last two decades several regular-
ization methods have been developed in light of this reasoning. Thus, for instance, in 1997 Blomgren, Chan,
Mulet and Wong ([4]) proposed the use of the following penalizer, by using variable Lp spaces:

W(u) = ∫
Ω

|∇u|p(|∇u|) dx, (1.3)

where limu→0+ p(u) = 2, limu→∞ p(u) = 1 and p is a decreasing function. Thus, in regions where the modulus
of the gradient of u is small the penalizer is approximately equal to ‖|∇u|‖2L2(Ω) corresponding to a Tikhonov–
Phillips method of order one (appropriate for restoration in smooth regions). On the other hand, when the
modulus of the gradient of u is large, the penalizer resembles the bounded variation seminorm ‖|∇u|‖L1(Ω),
whose use, as mentioned earlier, is highly appropriate for border detection purposes. Although this model
forW is quite reasonable, proving basic properties of the corresponding generalized Tikhonov–Phillips func-
tional turns out to be quite di�cult. A di�erent way of combining these twomethods was proposed by Cham-
bolle and Lions ([5]). They suggested the use of a thresholded penalizer of the form

Wâ(u) = ∫
|∇u|≤â

|∇u|2 dx + ∫
|∇u|>â

|∇u| dx,

where â > 0 is a prescribed threshold parameter. Thus, in regions where borders are more likely to be
present (|∇u| > â), penalization is made with the bounded variation seminorm while a standard order-one
Tikhonov–Phillips method is used otherwise. This model was shown to be successful in restoring images
possessing regions with homogeneous intensity separated by borders. However, in the case of images with
non-uniform or highly degraded intensities, the model is extremely sensitive to the choice of the threshold
parameter â. More recently, penalizers of the form

W(u) = ∫
Ω

|∇u|p(x) dx, (1.4)
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for certain functions p with range in [1, 2], were studied in [6] and [13]. It is timely to point out here that all
previously mentioned results work only for the case of denoising, i.e. for the case T = id.

In this work we propose the use of a model for general restoration problems, which combines, in an
appropriate way, the penalizers corresponding to a zero-order Tikhonov–Phillips method and the bounded
variation seminorm. Although several mathematical issues for this model still remain open, its use in some
signal and image restoration problems has already proved to be very promising. The purpose of this article is
to introduce the model, showmathematical results regarding the existence of the corresponding regularized
solutions, and present some results of its application to signal restoration.

The following theorem, whose proof can be found in [1, Theorem 3.1], guarantees the well-posedness of
the unconstrained minimization problem

u∗ = argmin
u∈Lp(Ω)

J(u). (1.5)

Theorem 1.1. Let J be a BV-coercive functional de�ned on Lp(Ω). If 1 ≤ p < n
n−1 and J is lower semicontinu-

ous, then problem (1.5) has a solution. If p = n
n−1 , n ≥ 2, and in addition J is weakly lower semicontinuous, then

a solutions also exists. In either case, the solution is unique if J is strictly convex.

The following theorem, whose proof can also be found in [1, Theorem 4.1], is very important for the existence
and uniqueness of minimizers of functionals of the form

J(u) = ‖Tu − v‖2 + áJ0(u), (1.6)

where á > 0 and J0(u) denotes the bounded variation seminorm given by

J0(u) = sup
⃗í∈V
∫
Ω

−u div ⃗í dx (1.7)

with V ≐ { ⃗í : Ω → ℝn such that ⃗í ∈ C1
0(Ω) and | ⃗í(x)| ≤ 1 for all x ∈ Ω}.

Theorem 1.2. Suppose that p satis�es the restrictions of Theorem 1.1 and TöΩ ̸= 0. Then J( ⋅ ) de�ned by (1.6)
is BV-coercive.

Note here that (1.6) is a particular case of (1.2) with W(u) = J0(u). The following theorem, whose proof can
be found in [14], gives conditions guaranteeing existence and uniqueness of minimizers of (1.2) for general
penalizersW(u). This theorem will also be very important for our main results in the next section.

Theorem 1.3. Let X,Y be normed vector spaces, T ∈ L(X,Y), v ∈ Y, D ⊂ X be a convex set and W: D → ℝ be
a functional bounded from below,W-subsequentially weakly lower semicontinuous, and such thatW-bounded
sets are relatively weakly compact in X. More precisely, suppose thatW satis�es the following hypotheses:
(H1) there exists some ã ≥ 0 such thatW(u) ≥ −ã for all u ∈ D,
(H2) for every W-bounded sequence {un} ⊂ D such that un

w
Ú→ u ∈ D, there exists a subsequence {unj } ⊂ {un}

such that
W(u) ≤ lim inf

j→∞
W(unj ),

(H3) for everyW-bounded sequence {un} ⊂ D there exists a subsequence {unj } ⊂ {un} and u ∈ D such that

unj w
Ú→ u.

Then the functional
JW,á(u) ≐ ‖Tu − v‖2 + áW(u)

has a global minimizer on D. If moreover W is convex and T is injective or if W is strictly convex, then such
a minimizer is unique.

Proof. See [14, Theorem 2.5].

Results similar to those in Theorem 1.3 can be found in [12, Theorem 3.1], [16, Theorem 3.3] and [17, Propo-
sition 4.1]. In this sense, an appropriate choice of the spaces and the corresponding weak topologies
guarantee, under the hypotheses of Theorem 1.3, the existence of a global minimizer of the functional
JW,á(u) = ‖Tu − v‖2 + áW(u).
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2 Main results
In this section we will state and prove our main results concerning existence and uniqueness of minimizers
of particular generalized Tikhonov–Phillips functionals with combined spatially-varying L2-BV penalizers.
In what followsM(Ω) shall denote the set of all real valuedmeasurable functions de�ned onΩ and M̂(Ω) the
subset ofM(Ω) formed by those functions with values in [0, 1].

De�nition 2.1. Given è ∈ M̂(Ω) we de�ne the functionalW0, è(u) with values on the extended reals by

W0, è(u) ≐ sup
⃗í∈Vè ∫Ω −u div(è ⃗í) dx, u ∈ M(Ω), (2.1)

where
Vè ≐ { ⃗í : Ω → ℝn such that è ⃗í ∈ C1

0(Ω) and | ⃗í(x)| ≤ 1 for all x ∈ Ω}.

Lemma 2.2. If u and è ∈ C1(Ω), then
W0, è(u) = ‖è|∇u|‖L1(Ω).

Proof. Let u ∈ C1(Ω). For all ⃗í ∈ Vè it follows easily that

∫
Ω

−u div(è ⃗í) dx = ∫
Ω

∇u ⋅ è ⃗í dx − ∫
àΩ

(uè ⃗í ⋅ ⃗n) dS

= ∫
Ω

∇u ⋅ è ⃗í dx (since è ⃗í|àΩ = 0)

≤ ∫
Ω

|è∇u|| ⃗í| dx

≤ ∫
Ω

|è∇u| dx (since | ⃗í(x)| ≤ 1), (2.2)

where ⃗n denotes the outward unit normal to àΩ. Taking supremum over ⃗í ∈ Vè it follows that

W0, è(u) ≤ ‖è|∇u|‖L1(Ω).

For the opposite inequality, de�ne

⃗í∗(x) ≐
{
{
{

∇u(x)
|∇u(x)| , if |∇u(x)| ̸= 0,

0, if |∇u(x)| = 0.

Then one has that | ⃗í∗(x)| ≤ 1 for all x ∈ Ω. Also,

∫
Ω

(∇u ⋅ è ⃗í∗) dx = ∫
Ω

|è∇u| dx.

Since u and è are in C1(Ω), by convolving ⃗í∗ with an appropriately chosen function ÿ ∈ C∞
0 (Ω, ℝn), we can

obtain a function ⃗í ∈ Vè ∩ C∞
0 (Ω, ℝn) for which the left hand side of (2.2) is arbitrarily close to ∫Ω|è∇u| dx.

Then taking supremum over ⃗í ∈ Vè we have that

W0, è(u) ≥ ‖è|∇u|‖L1(Ω).

HenceW0, è(u) = ‖è|∇u|‖L1(Ω), as we wanted to prove.

Observation. From thedensity ofC1(Ω) inW1,1(Ω) it follows that Lemma2.2holds for everyuand è inW1,1(Ω).

Remark 2.3. For any è ∈ M̂(Ω), it follows easily that

W0, è(u) ≤ J0(u) for all u ∈ M(Ω). (2.3)
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In fact, for any ⃗í ∈ Vè and for any u ∈ M(Ω) we have that

∫
Ω

−u div(è ⃗í) dx ≤ sup
⃗í∈V
∫
Ω

−u div ⃗í dx = J0(u), (2.4)

where inequality (2.4) follows from the fact that è ⃗í ∈ V (since |è(x)| ≤ 1 for all x ∈ Ω). By taking supremum
for ⃗í ∈ Vè inequality (2.3) follows.

Although inequality (2.3) is important by itself since it relates the functionalsW0, è and J0, in order to be able
to use the known coercivity properties of J0 (see [1]), an inequality of the opposite type is highly desired. That
is, we would like to show that, under certain conditions on è( ⋅ ), there exists a constant C = C(è) such that
W0, è(u) ≥ CJ0(u) for all u ∈ M(Ω). The following theorem provides su�cient conditions on è assuring such
an inequality.

Theorem 2.4. Let è ∈ M̂(Ω) be such that 1
è ∈ L∞(Ω) and let J0,W0, è be the functionals de�ned in (1.7) and (2.1),

respectively. Then
J0(u) ≤
"""""""
1
è

"""""""L∞(Ω)
W0, è(u) for all u ∈ M(Ω).

Proof. Let u ∈ M(Ω) andKè ≐ ‖ 1è ‖L∞(Ω). Then for all ⃗í ∈ V,

∫
Ω

−u div ⃗í dx = Kè ∫
Ω

−u div(
è ⃗í
Kèè
) dx ≤ Kè sup

ø⃗∈Vè ∫Ω −u div(è ø⃗) dx = Kè W0, è(u),

where the last inequality follows from the fact that (Kè è)
−1 ⃗í ∈ Vè since Kè ≥ 1 and |Kèè(x)| ≥ 1 for all x ∈ Ω

and ⃗í ∈ V. Then, taking supremum for ⃗í ∈ V we conclude that J0(u) ≤ Kè W0, è(u).

The following lemma will be of fundamental importance for proving several of the upcoming results.

Lemma 2.5. The functionalW0, è de�ned by (2.1) is weakly lower semicontinuous with respect to the Lp topology,
for all p ∈ [1,∞).

Proof. Let p ∈ [1,∞), {un} ⊂ Lp(Ω) and u ∈ Lp(Ω) be such that un
w
Ú→ u. Let ⃗í∗ ∈ Vè and q the conjugate dual

of p. As è ⃗í∗ ∈ C1
0(Ω), it follows that div(è ⃗í∗) is uniformly bounded onΩ and thus, div(è ⃗í∗) ∈ L∞(Ω) ⊂ Lq(Ω).

Then, from the weak convergence of un it follows that

lim
n→∞
∫
Ω

−un div(è ⃗í∗) dx = ∫
Ω

−u div(è ⃗í∗) dx.

Hence

∫
Ω

−u div(è ⃗í∗) dx = lim
n→∞
∫
Ω

−un div(è ⃗í∗) dx ≤ lim inf
n→∞
sup
⃗í∈Vè ∫Ω −un div(è ⃗í) dx = lim inf

n→∞
W0, è(un).

Thus for all ⃗í∗ ∈ Vè,
∫
Ω

−u div(è ⃗í∗) dx ≤ lim inf
n→∞

W0, è(un).

Taking supremum over all ⃗í∗ ∈ Vè it follows thatW0, è(u) ≤ lim infn→∞ W0, è(un).

We are now ready to present several results on existence and uniqueness of minimizers of generalized
Tikhonov–Phillips functionals with penalizers involving spatially varying combinations of the L2-norm and
of the functionalW0, è, under di�erent hypotheses on the function è.

Theorem 2.6. LetΩ ⊂ ℝn beabounded open convex setwith Lipschitz boundary,X = L2(Ω),Ybeanormed vec-
tor space,T ∈ L(X,Y), v ∈ Y,á1, á2 bepositive constants and è ∈ M̂(Ω)be such that 1

1−è ∈ L1(Ω)and 1
è ∈ L∞(Ω).

Then the functional

Fè(u) ≐ ‖Tu − v‖2Y + á1‖√1 − è u‖2L2(Ω) + á2 W0, è(u), u ∈ D ≐ L2(Ω), (2.5)

has a unique global minimizer u∗ ∈ BV(Ω).
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Proof. Let us consider the functional

W(u) ≐ á1‖√1 − è u‖2L2(Ω) + á2 W0, è(u), u ∈ L2(Ω).

By virtue of Theorem 1.3 and the compact embedding of BV(Ω) in L2(Ω), it su�ces to show that W( ⋅ ) sat-
is�es (H1) and (H2) and that every W-bounded sequence is also BV-bounded. Clearly W( ⋅ ) satis�es (H1)
with ã = 0. That it satis�es (H2) follows immediately from the fact that the condition 1

1−è ∈ L1(Ω) implies that
‖√1 − è ⋅ ‖L2(Ω) is a norm.

Now, let {un} ⊂ L2(Ω) be a W-bounded sequence, i.e. such that W(un) ≤ c < ∞ for all n. We will show
that {un} is BV-bounded. Since W(un) is uniformly bounded, there exists a constant K < ∞ such that
‖√1 − è un‖L2(Ω) ≤ K for all n. From this and the fact that 1

1−è ∈ L1(Ω) it follows that

‖un‖L1(Ω) = ∫
Ω

1
√1 − è
√1 − è |un| dx

≤ (∫
Ω

1
1 − è

dx)

12
(∫
Ω

(1 − è) u2n dx)

12

=
"""""""

1
1 − è

"""""""

12
L1(Ω)

‖√1 − è un‖L2(Ω)

≤ K
"""""""

1
1 − è

"""""""

12
L1(Ω)

< ∞ for all n. (2.6)

On the other hand from Theorem 2.4,

J0(u) ≤ W0, è(u)
"""""""
1
è

"""""""L∞(Ω)
for all u ∈ L2(Ω).

Since 1
è ∈ L∞(Ω) andW0, è(un) is uniformly bounded, it then follows that there exists a constant C < ∞ such

that
J0(un) ≤ C for all n. (2.7)

From (2.6) and (2.7) it follows that

‖un‖BV(Ω) = ‖un‖L1(Ω) + J0(un) ≤ K
"""""""

1
1 − è

"""""""

12
L1(Ω)

+ C < ∞ for all n.

Hence {un} is BV-bounded. The existence of a global minimizer of the functional (2.5) belonging to BV(Ω)
follows from the compact embedding ofBV(Ω) inL2(Ω). This result is an extension of the Rellich–Kondrachov
Theorem which can be found, for instance, in [2] and [3]. Finally note that the condition 1

1−è ∈ L1(Ω) implies
the strict convexity of Fè and therefore the uniqueness of the global minimizer.

Remark 2.7. The hypotheses on theweight function è in Theorem 2.6 are clearly satis�ed if è is both bounded
away from 0 and bounded away from 1, i.e. if there are constants ù1 and ù2 such that 0 < ù1 ≤ è ≤ ù2 < 1 for
all x ∈ Ω.

Remark 2.8. Note that if è(x) = 0 for all x ∈ Ω, thenW(u) = ‖u‖2L2(Ω) and Fè as de�ned in (2.5) is the classical
Tikhonov–Phillips functional of order zero. On the other hand, if è(x) = 1 for all x ∈ Ω, thenW(u) = J0(u) and
Fè has a global minimizer provided that TöΩ ̸= 0. If moreover T is injective, then such a global minimizer is
unique. All these facts follow immediately from [1, Theorems 3.1 and 4.1].

It is timely to note that in Theorem 2.6 the function è cannot assume the extreme values 0 and 1 on a set of
positive measure. In some cases a pure BV regularization in some regions and a pure L2 regularization in
others may be desired, and therefore that restraint on the function è will turn out to be inappropriate. In the
next three theorems we introduce di�erent conditions which allow the function è to take the extreme values
on sets of positive measure.

Theorem 2.9. LetΩ,X,Y,T, vandá1, á2 beas inTheorem2.6. Let è ∈ M̂(Ω)andΩ0 ≐ {x ∈ Ω such that è(x) = 0}.
If 1

è ∈ L∞(Ωc
0) and

1
1−è ∈ L1(Ωc

0), then the functional (2.5) has a unique global minimizer u∗ ∈ L2(Ω) ∩ BV(Ωc
0).
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Proof. Under the hypotheses of the theorem the functionalW(u) can be written as

W(u) = á1‖u‖
2
L2(Ω0) + á1‖√1 − è u‖2L2(Ωc0) + á2 sup

⃗í∈Vè ∫Ωc0
−u|Ωc0 div(è ⃗í) dx. (2.8)

Just like in Theorem 2.6 it follows easily thatW( ⋅ ) satis�es (H1) and (H2).
Let now {un} ⊂ L2(Ω) be aW-bounded sequence. From (2.8) we conclude that there exist u∗1 ∈ L2(Ω0) and

a subsequence {unj } ⊂ {un} such that

unj |Ω0 w-L2(Ω0)ÚÚÚÚÚÚÚ→ u∗1 .

On the other hand from the uniform boundedness of

sup
⃗í∈Vè ∫Ωc0

−unj |Ωc0 div(è ⃗í) dx,

by using Theorem 2.4 withΩ replaced byΩc
0, it follows that there exists a constant C ≤ ∞ such that

J0(unj |Ωc0 ) ≤ C for all nj.

Also, from (2.8) and the hypothesis that 1
1−è ∈ L1(Ωc

0), it can be easily proved that the sequence {un} is uni-
formly bounded in L1(Ωc

0). Hence {unj |Ωc0 } is uniformly BV-bounded. By using the compact embedding of
BV(Ωc

0) in L2(Ωc
0) it follows that there exist a subsequence {unjk } of {unj } and u∗2 ∈ BV(Ωc

0) such that

unjk w-L2(Ωc0)ÚÚÚÚÚÚÚ→ u∗2 .

Let us de�ne now

û1(x) ≐
{
{
{

u∗1 (x), if x ∈ Ω0,
0, if x ∈ Ωc

0,

û2(x) ≐
{
{
{

u∗2 (x), if x ∈ Ωc
0,

0, if x ∈ Ω0,

and u∗ ≐ û1 + û2. Then one has that u∗ ∈ L2(Ω), u∗|Ωc0 = u∗2 ∈ BV(Ωc
0) and

unjk w-L2(Ω)
ÚÚÚÚÚÚ→ u∗.

The existence of a global minimizer of the functional (2.5) then follows immediately from Theorem 1.3.
Uniqueness is a consequence of the fact that the hypothesis 1

1−è ∈ L1(Ωc
0) implies that ‖√1 − è ⋅ ‖L2(Ωc0) is

a norm.

Remark 2.10. It is timely to point out that althoughTheorems 2.6 and 2.9 above require very simple conditions
on the weight function è, under those conditions the existence part of both theorems can also be deduced
from some very general results given in [12], [16] and [17] by appropriately de�ning the spaces and the weak
topologies.

Theorem 2.11. Let Ω, X, Y, T, v and á1, á2 be as in Theorem 2.6. Assume further that Y is a Hilbert space,
let è ∈ M̂(Ω) and Ω1 ≐ {x ∈ Ω such that è(x) = 1}. If n ≤ 2, 1

è ∈ L∞(Ωc
1),

1
1−è ∈ L1(Ωc

1) and TöΩ ̸= 0, then the
functional (2.5) has a global minimizer u∗ ∈ L2(Ω) ∩ BV(Ωc

1). If moreover u ∈ N(T) and u ̸= 0 implies u|Ω1 ̸= 0,
then such a global minimizer is unique.

Proof. Wewill prove that under the hypotheses of the theorem, the functional Fè( ⋅ ) de�ned by (2.5) is weakly
lower semicontinuous with respect to the L2(Ω) topology and BV-coercive.

First note that under the hypotheses of the theorem we can write

Fè(u) = ‖Tu − v‖2Y + á1‖√1 − è u‖2L2(Ωc1) + á2 W0, è(u). (2.9)

Since 1
1−è ∈ L1(Ωc

1), it follows that ‖√1 − è ⋅ ‖L2(Ωc1) is a norm in L2(Ωc
1) and therefore ‖√1 − è u‖2L2(Ωc1) is weakly

lower semicontinuous. The weak lower semicontinuity of Fè( ⋅ ) then follows immediately from this fact, from
Lemma 2.5 and from the convexity of ‖Tu − v‖2Y.
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For the BV-coercivity, note that

‖Tu − v‖2 + á2J0(u) ≤ ‖Tu − v‖2 + á2
"""""""
1
è

"""""""L∞(Ωc1)W0, è(u) (from Theorem (2.4))

≤ ‖Tu − v‖2 + á2
"""""""
1
è

"""""""L∞(Ωc1)W0, è(u) + á1‖√1 − è u‖2L2(Ωc1)
≤
"""""""
1
è

"""""""L∞(Ωc1)Fè(u) (since ‖è−1‖L∞(Ωc1) ≥ 1). (2.10)

Now, since TöΩ ̸= 0, by Theorem 1.2 the functional

J(u) ≐ ‖Tu − v‖2 + á2J0(u)

is BV-coercive on L2(Ω). From this and inequality (2.10) it follows that Fè( ⋅ ) is also BV-coercive. The existence
of a globalminimizer u∗ ∈ L2(Ω) then follows fromTheorem 1.1. SinceFè(u∗) < ∞, one has that both ‖u∗‖L1(Ωc1)
andW0, è(u

∗) are �nite. The fact that u∗ is of bounded variation onΩc
1 then follows from Theorem 2.4. Finally,

since Tu = 0 for u ̸= 0 implies u|Ω1 ̸= 0, we conclude that Fè(u) is strictly convex and therefore such a global
minimizer is unique.

Theorem 2.12. Let n, Ω, X, Y, T, v, á1, á2 and Ω1 be as in Theorem 2.11, let Ω0 be as in Theorem 2.9 and
let è ∈ M̂(Ω). If 1

è ∈ L∞(Ωc
0),

1
1−è ∈ L∞(Ωc

1) and TöΩ1 ̸= 0, then the functional (2.5) has a global minimizer
u∗ ∈ L2(Ω) ∩ BV(Ωc

1 ∩ Ωc
0). If moreover u ∈ N(T) and u ̸= 0 implies u|Ω1 ̸= 0, then such a global minimizer is

unique.

Proof. For the existence of a global minimizer it is su�cient to prove that the functional Fè de�ned by (2.9) is
weakly lower semicontinuous and L2(Ω)-coercive. For this, note that

Fè(u) = ‖Tu − v‖2Y + á1‖√1 − è u‖2L2(Ωc1) + á2 sup
⃗í∈Vè ∫Ωc0

−u div(è ⃗í) dx. (2.11)

Just like in Theorem 2.11 it follows that Fè( ⋅ ) is weakly lower semicontinuous.
We shall now prove that Fè( ⋅ ) is L2(Ω)-coercive. For that, assume {un} is a sequence in L2(Ω) such that

‖un‖L2(Ω) → ∞.

Then either ‖un‖L2(Ωc1) → ∞ or ‖un‖L2(Ω1) → ∞. If ‖un‖L2(Ωc1) → ∞, then the hypothesis 1
1−è ∈ L∞(Ωc

1) implies
that

‖√1 − è u‖2L2(Ωc1) → ∞

and therefore
Fè(un) → ∞.

Suppose now that ‖un‖L2(Ω1) → ∞ and without loss of generality assume that ‖un‖L2(Ωc1) ≤ C < ∞. Then due to
the compact embedding BV(Ω1) í→ L2(Ω1) it follows that

‖un‖BV(Ω1) → ∞.

Then by Theorem 1.2, the functional ‖Tun − v‖2Y + á2J
Ω1
0 (un) is BV-coercive, i.e.

‖Tun − v‖2Y + á2J
Ω1
0 (un) → ∞. (2.12)

Now clearly
‖Tun − v‖2Y + á2J

Ω1
0 (un) ≤ ‖Tun − v‖2Y + á2 sup

⃗í∈Vè ∫Ωc0
−un div(è ⃗í) dx ≤ Fè(un). (2.13)

From (2.12) and (2.13) it follows that Fè(un) → ∞. Hence Fè is L2(Ω)-coercive. The existence of a global mini-
mizer then follows. Finally, since Tu = 0 for u ̸= 0 implies u|Ω1 ̸= 0, it follows that Fè(u) is strictly convex and
therefore such a global minimizer is unique.



G. L. Mazzieri et al., Mixed spatially varying L2-BV regularization | 579

3 Signal restoration with L2-BV regularization
The purpose of this section is to show some applications of the regularization method developed in the
previous section consisting in the simultaneous use of penalizers of L2 and of bounded-variation (BV) type
to signal restoration problems.

A basic mathematical model for signal blurring is given by convolution, as a Fredholm integral equation
of �rst kind:

v(t) =
1

∫
0

k(t, s)u(t) ds, (3.1)

where k(t, s) is the blurring kernel or point spread function, u is the exact (original) signal and v is the blurred
signal. For the examples that follow we took a Gaussian blurring kernel, i.e.

k(t, s) =
1
√2ðòb
exp(−

(t − s)2

2ò2
b
) with òb > 0.

Equation (3.1) was discretized in the usual way (using collocation and quadrature), resulting in a discrete
model of the form

Af = g, (3.2)

whereA is an (n + 1) × (n + 1)matrix, f, g ∈ ℝn+1 (fj = u(tj), gj = v(tj), tj =
j
n , 0 ≤ j ≤ n). We took n = 130 and

òb = 0.05. The data gwas contaminated with a 1% zero-mean Gaussian additive noise (i.e. standard deviation
equal to 1% of the range of g).

Example 3.1. For this example, the original signal (unknown in real life problems) and the blurred noisy
signal which constitutes the data of the inverse problem for this example are shown in Figure 1.
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Figure 1. Original signal (- -) and blurred noisy signal (—).

Figure 2 shows the regularized solutions obtained with the classical Tikhonov–Phillips method of order
zero (left) and with penalizer associated to the bounded variation seminorm J0 (right). As expected, the regu-
larized solution obtained with the J0 penalizer is signi�cantly better than the one obtained with the classical
Tikhonov–Phillips method near jumps and in regions where the exact solution is piecewise constant. The
opposite happens where the exact solution is smooth.

Figure 3 shows the regularized solution obtained with the combined L2-BV method (see (2.5)). In this
case the weight function è(t) was chosen to be è(t) ≐ 1 for t ∈ (0, 0.4] and è(t) ≐ 0 for t ∈ (0.4, 1). Although
this choice of è(t) is clearly based upon “a-priori” information about the regularity of exact solution, other
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Figure 2. Original signal (- -) and regularized solutions (—) obtained with Tikhonov–Phillips (left) and bounded variation
seminorm (right).

reasonable choices of è can be made by using only data-based information. Choosing a “good” weighting
function è is a very important issue but we shall not discuss this matter in this article. For instance, one way
of constructing a reasonable function è is by computing the normalized (in [0, 1]) convolution of a Gaussian
function of zero mean and standard deviation òb and the modulus of the gradient of the regularized solution
obtained with a pure zero-order Tikhonov–Phillips method (see Figure 4). For this weight function è, the
corresponding regularized solution obtained with the combined L2-BV method is shown in Figure 5. In all
cases re�exive boundary conditions were used ([11]) and the regularization parameters were calculated using
Morozov’s discrepancy principle with ó = 1.1 ([7]).
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Figure 3. Original signal (- -) and regularized solution (—) obtained with the combined L2-BVmethod and binary weight
function è.

As it can be seen, the improvement of the result obtained with the combined L2-BV method and
“ad-hoc” binary function è with respect to the pure simple methods, zero-order Tikhonov–Phillips and
pure BV, is notorious. As previously mentioned however, in this case the construction of the function è is
based on “a-priori” information about the exact solution, which most likely will not be available in concrete
real life problems. Nevertheless, the regularized solution obtained with the data-based weight function è
shown in Figure 4 is also signi�cantly better than those obtained with any of the single-based penalizers.
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Figure 4.Weight function è computed by normalizing the convolution of a Gaussian kernel and the modulus of the gradient of
the regularized solution with a pure Tikhonov–Phillips method.
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Figure 5. Original signal (- -) and regularized solution (—) obtained with the combined L2-BVmethod and the data-based weight
function è showed in Figure 4.

This fact is clearly and objectively re�ected by the Improved Signal-to-Noise Ratio (ISNR) de�ned as

ISNR = 10 log10(
‖f − g‖2

‖f − fá‖2
),

wherefá is the restored signal obtainedwith regularization parameterá. For all the previously shown restora-
tions, the ISNR was computed in order to have a parameter for objectively measuring and comparing the
quality of the regularized solutions (see Table 1).

Regularization method ISNR

Tikhonov–Phillips of order zero 2.5197
Bounded variation seminorm 4.2063
Mixed L2-BVmethod with binary è 5.7086
Mixed L2-BVmethod with zero-order Tikhonov-based è 4.4029

Table 1. ISNRs for Example 3.1.
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Example 3.2. For this example we considered a signal which is smooth in two disjoint intervals and it is
piecewise constant in their complement, having three jumps. The signal was blurred and noise was added
just as in the previous example. The original and blurred-noisy signal are depicted in Figure 6.
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Figure 6. Original (- -) and blurred-noisy (—) signals for Example 3.2.

Figure 7 shows the restorations obtained with the classical zero-order Tikhonov–Phillips method (left)
and BV with penalizer J0 (right).
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Figure 7. Original signal (- -) and regularized solutions (—) obtained with Tikhonov–Phillips (left) and bounded variation
seminorm (right).

An ad-hoc binary weight function theta for this example was de�ned on [0, 1] as è(t) = ö[0.3,0.65](t). The
regularized solution obtainedwith thisweight function and the combinedL2-BVmethod is shown in Figure 8.
Once again, the improvement with respect to any of the classical pure methods is clearly notorious.

Here also we constructed a data based weight function è as in Example 3.1, by convolving a Gaussian
kernel with the modulus of the gradient of a Tikhonov regularized solution and normalizing the result. This
weight function è is now depicted in Figure 9, while the corresponding restored signal is shown in Figure 10.

In Table 2 the values of the ISNR for the four restorations are presented. These values show once again
a signi�cant improvement of the combined method with respect to any of the pure single methods.
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Figure 8. Original signal (- -) and regularized solution (—) obtained with the combined L2-BVmethod and binary function è.
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Figure 9. Tikhonov-based weight function è for Example 3.2.
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Figure 10. Original signal (- -) and regularized solution (—) obtained with the combined L2-BVmethod and function è showed
in Figure 9.
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Regularization method ISNR

Tikhonov–Phillips of order zero 2.6008
Bounded variation seminorm 2.8448
Mixed L2-BVmethod with binary è 4.8969
Mixed L2-BVmethod with zero-order Tikhonov-based è 4.3315

Table 2. ISNRs for Example 3.2.

4 Conclusions
In this article we introduced a new generalized Tikhonov–Phillips regularization method in which the
penalizer is given by a spatially varying combination of the L2-norm and of the bounded variation semi-
norm. For particular cases, existence and uniqueness of global minimizers of the corresponding functionals
were shown. Finally, applications of the new method to signal restoration problem were shown.

Although these preliminary results are clearly quite promising, further research is needed. In particular,
the choice or construction of aweight function è(t) in a somewhat optimalway is amatter which undoubtedly
deserves much further attention and study. Research in these directions is currently under way.
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