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Abstract We consider the one dimensional symmetric simple exclusion process with
additional births and deaths restricted to a subset of configurations where there is a
leftmost hole and a rightmost particle. At a fixed rate birth of particles occur at the
position of the leftmost hole and at the same rate, independently, the rightmost particle
dies. We prove convergence to a hydrodynamic limit and discuss its relation with a
free boundary problem.
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1 Introduction

A free boundary problem in its simplest version is given by the linear heat equation
in a domain Ω which itself changes in time with a law which depends on the same
solution. In the Stefan problem for instance the heat equation is complemented by
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156 A. De Masi et al.

Dirichlet boundary conditions while the local velocity of the points of the boundary
are specified in terms of the local gradient of the solution.

The purpose of this paper is to study a particle version of such free boundary
problems. The linear heat equation is in our case replaced by the one dimensional
symmetric simple exclusion process, SSEP, in the set of configurations having a right-
most particle and a leftmost hole. Furthermore, at a given rate the rightmost particle
dies and at the same rate, independently, a birth of a particle occurs at the position
of the leftmost hole. Since the leftmost hole and the rightmost particle move, we call
them free boundaries.

More precisely, Call η ∈ {0, 1}Z a particle configuration, think of η as the subset
of Z occupied by particles and consider those η having a rightmost particle located
at r(η) := max(η) and a leftmost hole located at l(η) := min(Z\η). Let (ηt ) be the
Markov process performing symmetric simple exclusion process at rate 1

2 and such
that the rightmost particle and the leftmost hole are killed at rate j:

η → η\{r(η)} and η → η ∪ {l(η)} at rate j each.

Since particles are injected to the left and extracted from the right, j can be seen
as the average current of particles through the system. It is well known that under a
diffusive space and time scaling the collective behavior of the SSEP is ruled by the
linear heat equation [4]. We perform the same scaling with a parameter ε such that
time is ε−2t , space ε−1r and the killing is j = j(ε) = ε j , where j is the macroscopic
current.

Consider a function ρ : R → [0, 1] identically zero to the right of r(ρ) := sup{r :
ρ(r) > 0} < ∞ and identically one to the left of l(ρ) := inf{r : ρ(r) < 1} > −∞
and continuous in (l(ρ), r(ρ)). Call R the set of functions with those properties. We
consider a macroscopic density ρ ∈ R and ask the initial configuration η(ε) indexed
by ε to approach the density ρ as follows:

lim
ε→0

sup
a≤b

∣
∣
∣
∣
∣
∣

ε
∑

εx∈[a,b]
η(ε)(x)−

b∫

a

ρ(r) dr

∣
∣
∣
∣
∣
∣

= 0 (1.1)

Our main result is

Theorem 1 Let (η(ε)t ) be the process with killing at rate jε and with initial configu-
ration η(ε) satisfying (1.1). Then for t ≥ 0 there exists a function ρt ∈ R such that
ρ0 = ρ and

lim
ε→0

P

⎛

⎝sup
a≤b

∣
∣
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∣

ε
∑

εx∈[a,b]
η
(ε)

tε−2(x)−
b∫

a

ρt (r) dr

∣
∣
∣
∣
∣
∣

> γ

⎞

⎠ = 0 for all γ > 0. (1.2)

We characterize the limit ρt in terms of “lower and upper barriers”, the inequalities
being in the sense of mass transport. The notion is defined by introducing first a map
from density functions ρ ∈ R to functions φ(r |ρ), r ∈ R, that we call “interfaces”
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Symmetric simple exclusion process with free boundaries 157

and then by saying that ρ ≤ ρ′ if φ(·|ρ) ≤ φ(·|ρ′). See Sect. 4 where the notion is
first defined at the particles level and then for densities in R.

The barriers are defined by functions ρδ,±t , δ > 0, which satisfy “discretized free
boundary problems”. More specifically ρδ,−t evolves according to the heat equation
in the intervals [nδ, (n + 1)δ) and at times nδ takes the rightmost portion jδ of mass
from the right and puts it on the left. Namely, define the δ-quantiles rδ(ρ) and lδ(ρ)
by

∞∫

rδ(ρ)

ρ(r) dr = δ,

lδ(ρ)∫

−∞
(1 − ρ(r)) dr = δ, (1.3)

Define also

(	δρ)(r) :=

⎧

⎪⎨

⎪⎩

1 if r ≤ lδ(ρ)

ρ(r) if lδ(ρ) < r < rδ(ρ)

0 if r ≥ rδ(ρ),

(1.4)

and let Gt (r, r ′) be the Gaussian kernel (see (5.11)). Set ρδ,−0 = ρ and iteratively

ρ
δ,−
t :=

⎧

⎨

⎩

Gt−nδρ
δ,−
nδ , if t ∈ [nδ, (n + 1)δ), n = 0, 1, . . .

	 jδρ
δ,−
nδ−, if t = nδ, n = 1, 2, . . . .

(1.5)

which is well defined for δ small enough. Define ρδ,+t with the same evolution but
with initial profile ρδ,+0 = 	 jδρ. We prove that

ρ
δ,−
t ≤ ρt ≤ ρ

δ,+
t

for any δ and any t ∈ δN. We also prove that any function ρ̃t which satisfies the above
inequality (for all δ and t as above) must necessarily be equal to ρt (uniqueness of
separating elements). The precise statement is in Theorem 5. In particular this allows
to show that:

Theorem 2 Let ρ ∈ R and ρt be the evolution of Theorem 1 with initial datum ρ.
Let ρδ,−t be the evolution (1.5) with the same initial datum. Then for any a < b real
numbers and for any δ > 0,

∣
∣
∣
∣
∣
∣

b∫

a

ρ
δ,−
t (r) dr −

b∫

a

ρt (r) dr

∣
∣
∣
∣
∣
∣

≤ 2 jδ, ∀t ≥ 0 (1.6)

Theorems 1 and 2 are proved at the end of Sect. 6.1.
A formal limit of our particle system leads to conjecture that ρt solves
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∂ρ

∂t
= 1

2

∂2ρ

∂r2 , r ∈ (lt , rt ), (1.7)

r0, l0, ρ(r, 0) given

ρ(lt , t) = 1, ρ(rt , t) = 0; ∂ρ

∂r
(lt , t) = ∂ρ

∂r
(rt , t) = −2 j

where rt := r(ρ(·, t)) and lt := l(ρ(·, t)). Indeed the density flux J (r) associated

to the equation ∂ρ
∂t = 1

2
∂2ρ

∂r2 is equal to J (r) := − 1
2
∂ρ
∂r so that the last two conditions

in (1.7) just state that the outgoing flux at rt is equal to the killing rate j and that the
incoming flux at lt is equal to the birth rate j .

The free boundary problem (1.7) is not of Stefan type. In fact in (1.7) we impose
both Dirichlet and Neumann conditions as we prescribe the values of the function and
of its derivative at the boundaries, while in the classical Stefan problem the Dirichlet
boundary conditions are complemented by assigning the speed of the boundary (in
terms of the derivative of the solution at the boundaries). We can obviously recover the
velocity of the boundaries from a smooth solution ρ(r, t) of (1.7) by differentiating
the identities ρ(lt , t) = 1, ρ(rt , t) = 0, thus obtaining:

dlt

dt
= 1

2 j

∂2ρ

∂r2 (lt , t),
drt

dt
= 1

2 j

∂2ρ

∂r2 (rt , t) (1.8)

The traditional way to study the hydrodynamic limit of particle systems is to prove
that the limit law of the system is supported by weak solutions of a PDE for which
existence and uniqueness of weak solutions holds true. In our case this approach is
problematic. While we know closeness to the heat equation away from the boundaries,
we do not control the motion of the boundaries: we only know that they do not escape
to infinity. We are not aware of existence and uniqueness theorems for (1.7), however
in general in free boundary problems some assumptions of regularity on the motion
of the boundaries is required, for instance Lipschitz continuity.

Our proof of hydrodynamic limit avoids this pattern as we prove directly existence
of the limit by squeezing the particles density between lower and upper barriers which
have a unique separating element. This suggests a variational approach to the analysis
of (1.7) based on a proof that its classical solutions are also squeezed by the barriers,
or more generally that any limit of “approximate solutions” of (1.7) lies in between
the barriers. Such an approach has been carried in [1] for a simpler version of (1.7)
where particles are in the semi-infinite line with reflections at the origin, so that there
is a single free boundary rt where particles are killed at rate j , while births occur at
the origin, at same rate j . An extension to our case is in preparation.

A similar equation has been derived in [9] for a different interface process. In that
case an existence and uniqueness theorem for the limit equation is proved to hold (see
also reference therein). Regularity of the free boundary motions in [9] follows from
some monotonicity properties intrinsic to the model and absent in our case.

Free boundary problems have also been derived in [7] for particles evolutions via
branching and in [10] for a variant of the simple exclusion process.

We have a proof that the limit evolution ρt in Theorem 1 satisfies (1.7) in the very
special case when ρt is a time-independent linear profile with slope −2 j . Stationary
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Symmetric simple exclusion process with free boundaries 159

solutions for free boundary problems have also been studied in [5] for non local
evolutions in systems which undergo a phase transition.

The model we study in this paper is inspired by previous works on Fourier law with
current reservoirs [3–6]; its actual formulation came out from discussions with Stefano
Olla to whom we are indebted. We are also indebted to F. Comets and H. Lacoin for
helpful comments and discussions and to a referee of PTRF for useful comments.

In Sect. 2 we define the particle process and in Sect. 3 we prove the existence of a
unique invariant measure for the process as seen from the median.

Due to the non local nature of the birth-death process the usual techniques for
hydrodynamic limit fail. To overcome this problem we use inequalities based on
imbedding the particle process in an interface process. The relationship between the
one dimensional nearest neighbors simple exclusion process and the interface process
is known since the seminal paper by Rost [12], where he established the hydrodynamics
of the asymmetric simple exclusion process. In Sect. 4 we define the interface dynamics
and show that our particle process can be realized in terms of the interface dynamics.
We also introduce the delta interface processes which correspond to the delta particle
processes where the killing of particles and holes are grouped together and occur only
a finite number of times (uniformly in the hydrodynamic limit) and give as limit the
delta macroscopic evolution defined in (1.5).

In Sect. 4 we also establish basic inequalities between the true and the delta interface
dynamics by giving a simultaneous explicit graphical construction of all of them; that
is, a coupling. In Sect. 5 we prove convergence in the hydrodynamic limit. The proof
uses that any limit point of the true interface dynamics is squeezed in between two
approximate evolutions which depend on an approximating parameter δ > 0. In Sect. 6
we establish basic properties of the macroscopic evolution. In particular, we prove the
existence of a stationary solution for the limit evolution and use this result to prove
that at any positive time the particle density (in the limit evolution) is identically 0 and
1 outside of a compact. In the last section we summarize the results.

2 The free boundary ssep

The space of particle configurations is

X :=
⎧

⎨

⎩
η ∈ {0, 1}Z :

∑

x≥0

η(x) < ∞,
∑

x≤0

(1 − η(x)) < ∞
⎫

⎬

⎭

that is, for any η ∈ X the number of particles to the right of the origin and the number
of holes to its left are both finite. A configuration η ∈ X has a rightmost particle
located at r(η) and a leftmost hole located at l(η), where

r(η) := max{x ∈ Z : η(x) = 1}; l(η) := min{x ∈ Z : η(x) = 0}. (2.1)

We define the median m(η) of a configuration η ∈ X as the unique m ∈ Z + 1
2 such

that

∑

x>m

η(x)−
∑

x<m

(1 − η(x)) = 0, (2.2)
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Fig. 1 A typical configuration in X , black and white circles represent respectively particles and holes. r
is the position of the rightmost particle, l the position of the leftmost hole and M is the median

Fig. 2 The effect of three SSEP jumps: the upper line is before and the bottom line is after the jumps. The
jumps are between the positions l and l + 1, m − 1

2 and m + 1
2 and x and x + 1. None of these jumps

change the position of m

that is, the number of particles to the right of m(η) is the same as the number of holes
to its left (Fig. 1). The definition is well-posed because for η ∈ X , as m increases by
one (2.2) increases by one and goes to ±∞ as m goes to ∓∞.

We next define a family of dynamics indexed by a current j > 0. The particle
dynamics is a (countable state) Markov process on X whose generator is

Lj
part = L0 + Lj

r + Lj
l, (2.3)

where

L0 f (η) :=
∑

x∈Z

1

2

[

f (ηx,x+1)− f (η)
]

(2.4)

with ηx,x+1(y) = η(y) if y �= x, x +1, ηx,x+1(x) = η(x +1), ηx,x+1(x +1) = η(x);
and

Lj
l f (η) := j( f (η ∪ {l(η)})− f (η)); Lj

r f (η) := j ( f (η\{r(η)})− f (η)) , (2.5)

where η is identified with the set of occupied sites {x ∈ Z : η(x) = 1}.
In other words, particles perform symmetric simple exclusion with generator L0

and, at rate j, the rightmost particle is “killed” and replaced by a hole and at the same
rate independently the leftmost hole is killed and a particle is born at its place (Fig. 2).
We omit the proof that the process is well defined at all times. Denote by (ηt ) the
process with generator Lj

part.
Denote by Bt and At the number of particles killed, respectively born, in the time

interval [0, t]. By definition, At and Bt are independent Poisson processes with rate j.

Lemma 1 For any η0 ∈ X ,

m(ηt ) = m(η0)+ At − Bt (2.6)

That is, the marginal distribution of the median of ηt is a continuous time symmetric
nearest neighbor random walk on Z + 1

2 with rate j to jump right and j to jump left.
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Fig. 3 The effect of killing the rightmost particle: the upperline is before the killing and the bottom line is
after the killing. The position r of the rightmost particle moves to the left by 3 (for this configuration) and
m moves by 1 to the left (for any configuration). Analogously, the killing of the leftmost hole moves m one
unit to the right (not in the picture)

Proof Note that (a) jumps due to the exclusion dynamics do not change m(·), (b) when
the rightmost particle dies, m(·) decreases by 1 and (c) when the leftmost hole dies
(and a particle appears in its place), m(·) increases by 1 (Fig. 3). This shows (2.6).

�


3 The process as seen from the median

Since m(ηt ) is a symmetric simple random walk the law of ηt cannot be tight but we
show below that the process as seen from the median has a unique invariant measure.
Let

η̃t := θm(ηt )−1/2ηt ,

where for y ∈ Z, the translation θy : X → X is the map (θyη)(x) = η(x − y). Clearly
η̃t ∈ X 0 := {η ∈ X : m(η) = 1/2} and we have that (η̃t ) is a Markov process on X 0

with generator

L̃j
part = L0 + L̃j

l + L̃j
r (3.1)

where for any η ∈ X 0,

L̃j
r f (η) := j ( f (θ−1(η\{r(η)}))− f (η)) ; L̃j

l f (η) := j ( f (θ1(η ∪ {l(η)}))− f (η)])

Before stating the result we introduce some notation. For η ∈ X , define

N 0(η) :=
∑

x<r(η)

(1 − η(x)), N 1(η) :=
∑

x>l(η)

η(x) (3.2)

the number of holes in η to the left of the rightmost particle and the number of particles
in η to the right of leftmost hole, respectively. Clearly

N 0 + N 1 = r − l + 1. (3.3)

Let η0 ∈ X 0 be the Heaviside configuration given by

η0(x) = 1{x ≤ 0}. (3.4)
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162 A. De Masi et al.

Define ψ on X by

ψ(η) :=
∑

x<y

(1 − η(x))η(y) (3.5)

Observe that ψ(η) < ∞ for all η ∈ X . If η ∈ X 0, ψ(η) is the number of jumps
10 → 01 needed to get from η0 to η. In particular, ψ(η0) = 0.

Theorem 3 For any j > 0 the process (η̃t ) has a unique invariant measure μj on X 0

and

μj[r − l + 1] = 1

2j
(3.6)

Proof We show that ψ is a Lyapunov function for (η̃t ) by computing Lj
partψ . Since

ψ(θxη) = ψ(η) for all x and η,

(L̃j
l+ L̃j

r)ψ(η)=(Lj
l + Lj

r)ψ(η)=−j(N 0(η)−N 1(η))=−j (r(η)−l(η)+1) (3.7)

the second identity holds because when the rightmost particle disappears,ψ decreases
by N 0, the number of holes to the left of r. Analogously, when the leftmost hole
disappears, ψ decreases by N 1, the number of particles to the right of l. The third
identity follows from (3.3).

Since ψ increases by one when there is a transition 10 → 01 while it decreases by
one due to the opposite transition:

L0ψ(η) = 1

2

∑

x

{η(x)(1 − η(x + 1))− (1 − η(x))η(x + 1)} = 1

2
, (3.8)

because for any configuration η ∈ X , the number of pairs 10 exceeds by one the
number of pairs 01. The sums in (3.8) are finite for η ∈ X .

Call νt the law of η̃t starting from a configuration η ∈ X 0. For any t ≥ 0 we have
νtψ < ∞ and

1

t
(νtψ − ν0ψ) = 1

t

t∫

0

νs[Lj
partψ] ds = 1

2
− j

t

t∫

0

νs[r − l + 1] ds. (3.9)

Hence, calling μt := 1
t

∫ t
0 νs ds,

μt [r − l + 1] ≤ 1

2j
+ 1

jt
ν0ψ. (3.10)

Since for any c we have #{η ∈ X 0 : r − l + 1 ≤ c} < ∞, then the family {μt , t ≥ 0}
of probabilities on X 0 is tight on X 0 and it has therefore a limit pointμ.μ is stationary
by construction and unique because the process is irreducible.

Identity (3.6) follows from (3.9) by replacing νt by μ, but we need first to show
that μψ < ∞. Introduce a new Lyapunov function ψ2 on X bysetting
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ψ2(η) :=
∑

x<y<z

[1 − η(x)][1 − η(y)]η(z)

Then,

L0ψ2(η) = 1

2

(
∑

x<y

[1−η(x)]η(y)[1−η(y+1)]−
∑

x<y

[1−η(x)][1−η(y)]η(y+1)

)

= 1

2

∑

x<y

[1−η(x)][η(y)−η(y+1)]= 1

2

∑

x

[1−η(x)]η(x+1)

and

Lj
rψ2(η) = −j

∑

x<y<r

[1 − η(x)][1 − η(y)] = − j

2
N 0(η)[N 0(η)− 1]

Lj
lψ2(η) = −j

∑

l<y<z

[1 − η(y)]η(z) = −j
∑

y<z

[1 − η(y)]η(z)+ j
∑

l<z

η(z)

= −jψ(η)+ jN 1(η)

Let νt as defined before (3.9) and μt after it. Then νtψ2 < ∞ and since
∑

x [1 −
η(x)]η(x + 1) ≤ N 0(η),

1

t
(νtψ2 − ν0ψ2) ≤ − j

t

t∫

0

νs

[

− N 0

2j
+ ψ − N 1 + N 0

2
(N 0 − 1)

]

ds

so that, since N 0(N 0 − 1) ≥ 0,

μtψ ≤ 1

jt
ν0ψ2 + μt

[
N 0

2j
+ N 1

]

≤ Constant,

by (3.3) and (3.10). Then μψ < ∞ and setting ν0 = μ in (3.9) we get (3.6). �

The theorem says that under the invariant measure the average distance between

the rightmost particle and the leftmost hole is (2j)−1. This is in agreement with the
Fick’s law (the analogue of the Fourier law for mass densities). In fact Fick’s law states
that the stationary current J flowing in a system of length � when at the endpoints the
densities are ρ± is:

J = −1

2

ρ+ − ρ−
�

1/2 being the particle mobility. In our case J = j, ρ+ = 1 and ρ− = 0 hence
� = (2j)−1. The validity of Fick’s law in our case is however not completely obvious
as the endpoints r(ηt ) and l(ηt ) depend on time.
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4 The interface process

The interfaces Let the set of vertices be

V := {v = (v1, v2) ∈ Z × Z
+ with v1 + v2 even}. (4.1)

and for a vertex v = (v1, v2) ∈ V let Vv : Z → Z be the cone with vertex v defined
by

Vv(x) := |x − v1| + v2. (4.2)

Define the space of interfaces as

Yv :=
{

ξ ∈ Z
Z : |ξ(x)− ξ(x + 1)| = 1, x ∈ Z; #{x : ξ(x) �= Vv(x)} < ∞

}

Y := ∪v∈VYv (4.3)

That is, an interface in Yv coincides with the cone Vv for all but a finite number of
sites. Interfaces share the property “x+ξ(x) even” which is conserved by the dynamics
defined later. For an interface ξ ∈ Y define

l(ξ) := sup{x ∈ Z : ξ(x − y) = ξ(x)+ y for ally ≥ 0} (4.4)

r(ξ) := inf{x ∈ Z : ξ(x + y) = ξ(x)+ y for ally ≥ 0}. (4.5)

Any interface ξ coincides with a cone Vv outside the finite interval (l(ξ), r(ξ)).
The vertex v = v(ξ) is the following function of r = r(ξ)), l = l(ξ), ξ(l) and ξ(r):

v1 = v1(ξ) := ξ(l)− ξ(r)

2
+ l + r

2
, v2 = v2(ξ) := ξ(l)+ ξ(r)

2
+ l − r

2
. (4.6)

Correspondence between interfaces and particle configurations Given an interface ξ
we say that there is a particle at x if ξ(x + 1) < ξ(x) and that there is a hole at x if
ξ(x + 1) > ξ(x). This defines the map D : Y → X given by

η(x) ≡ D(ξ)(x) = 1

2
− ξ(x + 1)− ξ(x)

2
(4.7)

The map is clearly surjective but it is not injective as D is invariant under uniform
vertical shifts: D(ξ + n) = D(ξ) for all n ∈ Z. However the extremes of the non
conic part of ξ correspond to the leftmost hole and the rightmost particle of D(ξ) and
the absise of the vertex of the cone containing ξ corresponds to the median of D(ξ).
More precisely:

Lemma 2 For any ξ ∈ Y ,

l(D(ξ)) = l(ξ), r(D(ξ)) = r(ξ)− 1, m(D(ξ)) = v1(ξ)− 1/2.
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Symmetric simple exclusion process with free boundaries 165

Proof The first and second identities follows directly from the definitions. The third
identity is trivially satisfied by any cone and its mapped particle configuration:
v1(V(a,b)) = a and m(D(V(a,b))) = a − 1

2 . Any interface ξ in the cone V(a,b) can
be attained from V(a,b) by a finite number of moves of the type:

ξ = (. . . , z, z − 1, z, . . . ) → (. . . , z, z + 1, z, . . . ) = ξ ′ (4.8)

The corresponding particle moves are

η = (. . . , 1, 0, . . . ) → (. . . , 0, 1, . . . ) = η′ (4.9)

and

D(ξ) = η if and only if D(ξ ′) = η′. (4.10)

Observing that v(ξ) = v(ξ ′) and that m(D(ξ)) = m(D(ξ ′)), we conclude that
D(ξ) has median a − 1

2 = v1(ξ) for all ξ ∈ Y(a,b). �

Interface dynamics Let (ξt ) be the Markov process on Y with generator

Lj
inter := L� + Lj

r + Lj
l, with

L� f (ξ) := 1

2

∑

x∈Z

{ f (ξ +�xξ)− f (ξ)}, (4.11)

Lj
r f (ξ) := j

[

f (max{ξ, Vv(ξ)+(−1,1)})− f (ξ)
]

,

Lj
l f (ξ) := j

[

f (max{ξ, Vv(ξ)+(1,1)})− f (ξ)
]

,

where�xξ(y) := (ξ(x + 1)+ ξ(x − 1)− 2ξ(x)) 1{y = x}. The jumps of ξ(x) due to
L� occur only when ξ(x) has the two neighbors at equal height. The jump is up by 2
if the neighboring heights are both above ξ(x) and down by 2 if they are both below
ξ(x). Lj

r acts by changing the rightmost downward variation of ξ into an upward one
with the interface to its right being a straight line with slope 1. The cone containing
the updated interface is obtained from the previous cone by a translation up by 1 and
left by 1; see Fig. 4. A symmetrical picture describes the action of Lj

l. We denote by

At = #(jumps due toLj
lin[0, t]); Bt = #(jumps due toLj

rin[0, t]) (4.12)

A = (At ) and B = (Bt ) are independent Poisson processes of intensity j.
The interface evolution induces via the map D the particle evolution described in

Sect. 2.
Let (ξt ) be the interface process with generator Lj

inter and starting interface ξ and
define

ηt := D(ξt ) (4.13)
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Fig. 4 The thick red line represents the interface ξt ; its corresponding particle configuration is ηt = D(ξt ).
The narrow blue line represents ξ0, the interface at time 0; η0 = D(ξ0). Two particles and one hole have
been killed and several particles have moved due to the exclusion dynamics; in particular the third particle
moved to the place originally occupied by the second one and the second hole has moved three units to
the left. Due to the killings the vertex of the cone containing ξt has moved by 2(−1, 1) + 1(1, 1) which
amounts to three units up and one unit left so that ξ0 ∈ Y(0,0) while ξt ∈ Y(−1,3) (color figure online)

Lemma 3 The particle process (ηt ) defined by (4.13) is Markov with generator Lj
part,

defined in (2.3). Moreover, if ξ0 ∈ Y(0,0), then

ξt (0) = 2Bt + 2
∑

x≥0

ηt (x) (4.14)

Proof It just follows from the definitions of (ξt ) and D that (D(ξt )) is Markov with
generator Lj

part. Calling r ≡ r(ξt ) = r(ηt )+ 1 we get from (4.7)

ξt (0) = ξt (r)− r + 2
∑

x≥0

ηt (x)

From (4.6), ξt (r) = r − (v1 − v2) and since v1 = At − Bt and v2 = At + Bt , we
get (4.14). �


Harris graphical construction We construct explicitly the interface process (ξt ) as a
function of the initial interface and of the Poisson processes governing the different
jumps.

We construct first the process with generator L� and later use it to define the process
with the moving boundary conditions. The probability space (Ω, P) is the product of
independent rate- 1

2 Poisson processes on R+ indexed by Z×{↑,↓}. A typical element
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of� isω = (ω
↑
x , ω

↓
x , x ∈ Z). The Poisson points inω↑

x and respectivelyω↓
x are called

up-arrows and down-arrows, respectively.
We define operators Tt : � × Y → Y with t ≥ 0 where (Tt (ω, ξ)) is the process

with initial interface ξ using the arrows of ω, as follows. We drop the dependence on
ω and write just Ttξ , instead. We can take ω such that at most one arrow occurs at any
given time.

Set T0ξ = ξ . Assume that ξt ′ := Tt ′ξ is defined for all t ′ ∈ [0, s].
Let t be the first arrow after s belonging toω↑

x ∪ω↓
x for some x such that ξs(x +1) =

ξs(x − 1). Since ξ ∈ Y , there are a finite number of such x and t − s > 0 a.s. These
are the arrows involved in the evolution at time s.

Set

Tt ′ξ = Tsξ for t ′ ∈ [s, t)

and (1) If t is an up-arrow, then the interface at x is set to ξt (x − 1)+ 1 no matter its
value at t− and does not change at the other sites:

Ttξ(x) := Tt−ξ(x − 1)+ 1; Ttξ(y) := Tt−ξ(y), y �= x .

(2) Analogously, if t is a down-arrow,

Ttξ(x) := Tt−ξ(x − 1)− 1; Ttξ(y) := Tt−ξ(y), y �= x .

The reader can show that the process Ttξ so defined is Markov and evolves with
the generator L� with initial interface ξ at time t = 0.

In the next definition we need to use the operator Tt in different time intervals. With
this in mind we define

T[s,t](ω, ξ) := Tt−s(θ−sω, ξ), (4.15)

where θsω is the translation by s of the arrows in ω. That is, T[s,t] has the same
distribution as Tt−s but uses the arrows in ω belonging to the interval [s, t]. We drop
the dependence on ω in the notation and write simply T[s,t]ξ .

Generalizing the boundary conditions Consider the partial order in the vertex space
V given by

v ≤ v′ if Vv(x) ≤ Vv′(x) for all x ∈ Z, (4.16)

so that vertex order corresponds to cone order. Let z = (zt ) with zt ∈ V be a non
decreasing path of vertices with finite number of finite jumps in finite time intervals:
‖zt −zt ′ ‖ < ∞ for all t < t ′. Let T[s,t] be the family of random operators governing the
L� motion, defined in (4.15). Typically z will be a function of the Poisson processes
A and B which are independent of the arrows ω used to define the operators T[s,t]. We
abuse notation and call P the probability associated to ω, A and B.
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Let 0 = s0 < s1 < · · · be the times of jumps of z. Define iteratively T z
t ξ := ξ for

t < 0 and

T z
t ξ :=

{

max{T z
t−ξ, Vzt } if t = sn,

T[sn ,t]T z
sn
ξ if t ∈ (sn, sn+1).

(4.17)

So (ξ z
t ) evolves with L� in the intervals (sn, sn+1) and at times sn is updated to the

maximum between the interface at time sn− and the cone with vertex zsn .
Given an initial interface ξ ∈ Y and a number δ > 0, we will consider the following

choices for zt , denoted by Ot , Rt and zδ,−t and zδ,+t :

Ot := v(ξ), for all t; (4.18)

Rt := v(ξ)+ (At − Bt , At + Bt ) (4.19)

zδ,−t := Rnδ, zδ,+t := R(n+1)δ, t ∈ [nδ, (n + 1)δ), n ≥ 0. (4.20)

When the path is (Ot ), the cone does not move and the resulting process has
generator L�. When the path is (Rt ) the process has generator Lj

inter. The process with
path (zδ,−t ) records the increments of (Rt ) in the intervals [nδ, (n + 1)δ) and takes the
maximum of the interface at the end of this interval and the cone with vertex Rnδ . The
process with path (zδ,+t ) records the increments of (Rt ) in the intervals [nδ, (n + 1)δ)
but takes the maximum between the interface at the beginning of this interval and the
cone with center R(n+1)δ . The processes with paths (4.20) will be used later.

Monotonicity and attractivity Consider the natural partial order in Y given by: ξ ≤ ξ ′
if and only if ξ(x) ≤ ξ ′(x) for all x ∈ Z. Use this order to define stochastic order
for random interfaces in Y . If ξ, ξ ′ are random, ξ is stochastically dominated by ξ ′ if
E f (ξ) ≤ E f (ξ ′) for non decreasing f : Y → R. This is equivalent to the existence of
a coupling (ξ̂ , ξ̂ ′)whose marginals have the same distribution as ξ and ξ ′, respectively,
such that P(ξ̂ ≤ ξ̂ ′) = 1.

Let (ξ1
t ) and (ξ2

t ) be two realizations of a stochastic process (ξt ) on Y with initial
random interfaces ξ1 and ξ2, respectively. We say that the process (ξt ) is attractive if
the following holds:

If ξ1 ≤ ξ2 stochastically, then ξ1
t ≤ ξ2

t stochastically, for all t ≥ 0. (4.21)

Lemma 4 If ξ ≤ ξ ′ then Ttξ ≤ Ttξ
′ almost surely. As a consequence, the process

with generator L� is attractive.

Proof Consider ξ ≤ ξ ′ and call ξt = Ttξ, ξ
′
t = Ttξ

′, assume that ξt− ≤ ξ ′
t−, ξt−(x ±

1) = ξ ′
t−(x ± 1) and that t ∈ ω

↑
x . Then ξt (x) = ξ ′

t (x) = ξt−(x − 1) + 1 no matter

the values ξt−(x) and ξ ′
t−(x). Analogous argument applies when t ∈ ω

↓
x . Hence an

arrow does not change the order if the two interfaces coincide at x ± 1. If at least one
of the neighbors of x in ξt− is different of the corresponding neighbor in ξ ′

t−, a similar
argument shows that no jump can break the domination. We have proven that if the
ξ process is dominated by the ξ ′ process just before an arrow, then the domination
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persist after the jump(s) produced by the arrow. Since the set of involved arrows is
finite in any time interval, an iterative argument concludes the proof. �

Remark It is usual to realize the process with generator L� by introducing only one
rate- 1

2 Poisson process of marks ωx , x ∈ Z associated to each x and updating ξ(x) →
ξ(x −1)±1 �= ξ(x)whenever a ωx -mark appears provided ξ(x −1) = ξ(x +1). This
is indeed a realization of the process, but order is not preserved: the jumps cross if two
interfaces coincide at x ± 1 and differ by 2 at x at the updating time of x . Using the
up-arrows and down-arrows, only one of the interfaces jumps, and order is preserved.

Lemma 5 If ξ ∈ Y , then v(Ttξ) = v(ξ) a.s. As a consequence, Vv(ξ) ≤ Ttξ . Further-
more, if z is a non decreasing path with v(ξ) = z0, then v(T z

t ξ) = zt , which implies
Vzt ≤ T z

t ξ .

Proof By the definition of (Ttξ), any time l jumps due to an arrow, the opposite jump
is performed by ξ(l) and analogously, any jump of r is replicated by ξ(r). This implies

l(Ttξ)+ ξ(l(Ttξ)) = l(ξ)+ ξ(l(ξ)),

r(Ttξ)− ξ(r(Ttξ)) = r(ξ)− ξ(r(ξ)) (4.22)

Putting these identities in the definition (4.6) of v(ξ) and noting that the total number
of jumps of l and r is a.s. finite (it is dominated by a Poisson process of rate 2), we
get v(Ttξ) = v(ξ).

The fact that v(T z
t ξ) = zt is true by definition at the z-events and by the first part

of the lemma, it is true for t ∈ [s, s′) where s and s′ are successive z-events. �

Proposition 1 Let z and z′ be non decreasing paths in V .

If zt ≤ z′
t for all t ≥ 0 and ξ ≤ ξ ′, then T z

t ξ ≤ T z′
t ξ

′ for all t ≥ 0 a.s.. (4.23)

In particular, by taking z = z′, Proposition 1 says that for any non decreasing path
z, the process (T z

t ξ) is attractive.

Proof Since the domination is preserved in intervals with no z or z′ events by Lemma 4,
we only need to check that the inequality T z

t ξ ≤ T z′
t ξ is preserved when z and z′ events

occur. We thus suppose the inequality is satisfied for all s < t and this is evidently still
true if t is a z′-event. If instead t is a z-event and not a z′-event, T z

t−ξ ≤ T z′
t−ξ ′ implies

T z
t ξ = max{T z

t−ξ, Vzt } ≤ max{T z′
t−ξ ′, Vzt } ≤ max{T z′

t−ξ ′, Vz′
t
} = T z′

t ξ,

where the last inequality follows from Vzt ≤ Vz′
t

and the last identity from the last
inequality in Lemma 5. �


Let ξ ∈ Y and v = (v1, v2) ∈ V . Define θvξ , the translation by v of ξ , by

θvξ(x) := ξ(x − v1)− v2.
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Recall the order (4.16) in V . Taking v, v′ ∈ V and ξ, ξ ′ ∈ Y , the following statement
is immediate.

If v ≥ v′ and ξ ≤ ξ ′, then θvξ ≤ θv′ξ ′. (4.24)

Call o := (0, 0) and take v ∈ V satisfying v ≥ o and ξ ∈ Yo, then

θvξ ≤ ξ and max{θvξ, Vo} ≤ ξ. (4.25)

The interface process as seen from the vertex Take ξ ∈ Yo and let z be a non decreasing
path of vertices. Define (T̃ z

t ξ), the interface process as seen from the vertex, by

T̃ z
t ξ(x) := θzt T

z
t ξ(x), (4.26)

Of course T̃ z
t ξ ∈ Yo.

Monotonicity We show that if the initial interface ξ ′ dominates ξ and any jump of z′
is dominated by a jump of z, then the interface process as seen from z′ dominates the
one as seen from z. More precisely,

Proposition 2 Let z and z′ be non decreasing paths on V and ξ ≤ ξ ′ be interfaces in
Yo.

If zt − zt− ≥ z′
t − z′

t− for all t ≥ 0, then T̃ z
t ξ ≤ T̃ z′

t ξ
′ for all t ≥ 0 a.s.. (4.27)

Proof Since by Lemma 4, the domination is preserved in intervals with no z or z′
events, it suffices to take care of those events. Assume that T̃ z

t−ξ ≤ T̃ z′
t−ξ ′ and that t is

a z-event, then

T̃ z
t ξ = θzt −zt− T̃ z

t−ξ ≤ θz′
t −z′

t− T̃ z′
t−ξ ′ = T̃ z′

t ξ
′, (4.28)

where the inequality holds by (4.24). �

Let

zt (j) := Rt = (At − Bt , At + Bt ), (4.29)

recalling that A and B are independent Poisson processes of rate j. For each j > 0
define the interface process (ξ̃t ) by

ξ̃t := T̃ z(j)
t ξ (4.30)

Then, (ξ̃t ) has generator is L̃j
inter given by

L̃j
inter = L� + L̃j

r + L̃j
l (4.31)
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where L� was defined in (4.11) and the other generators govern the updating with the
maximum of the cone and the corresponding translation of the origin:

L̃j
r f (ξ) := j

[

f (max{θ(−1,1)ξ, Vo})− f (ξ)
]

,

L̃j
l f (ξ) := j

[

f (max{θ(1,1)ξ, Vo})− f (ξ)
]

.
(4.32)

For ξ ∈ Yo, the process (D(ξ̃t )) has the same law as the particle process (η̃t ) defined
in Sect. 3 with initial particle configuration D(ξ) ∈ X0. The map D : Y0 → X0
(interfaces with vertex in the origin to particle configurations with median − 1

2 ) is
bijective. Since the process (η̃t ) has a unique invariant measure on X0, (ξ̃

z
t ) has a

unique invariant measure μ̃j on Y0.

Corollary 1 The process (ξ̃t ) is attractive. Furthermore, if ξ̃0 = Vo the law of ξ̃t

is non decreasing in t, is stochastically dominated by the invariant measure μ̃j and
converges to μ̃j as t → ∞.

Proof Attractivity follows by taking z = z′ in (4.27). As before use the notation T̃ z
[s,t]ξ

to indicate that the evolution uses the Poisson processes of the Harris construction in
the time interval [s, t] for both the interface evolution and the vertex evolution z. So
that, for s, t ≥ 0, T̃ z

t+sξ has the same law as T̃ z
[−s,t]ξ . Since Vo is minimal in Yo, using

(4.27) we get almost surely

T̃ z
[0,t]Vo ≤ T̃ z

[0,t]T̃
z
[−s,0]Vo = T̃ z

[−s,t]Vo.

This shows that the law of ξ̃t is stochastically non decreasing. Take a random ξ

with law μ̃j. Then,

T̃ z
[0,t]Vo ≤ T̃ z

[0,t]ξ ∼ μ̃j.

by invariance of μ̃j. The convergence of the law of ξ̃t to the unique invariant measure
μ̃j is routine for countable state irreducible Markov processes. �

Corollary 2 The invariant measures μ̃j for the interface processes (ξ̃t ) are stochas-
tically ordered:

If j ≥ j′, then μ̃j ≤ μ̃j′

Proof Take Poisson processes (A, A′, B, B ′) such that (A, A′) and (B, B ′) are inde-
pendent. A and B have rate j while A′ and B ′ have rate j′ and A ⊃ A′, B ⊃ B ′. In this
way the vertex paths z and z′ defined by (4.29) with (A, B) and (A′, B ′), respectively,
satisfy the conditions of Proposition 2. This implies that T̃ z

t Vo ≤ T̃ z′
t Vo almost surely

for all t . Like in Corollary 1, the coupled process (T̃ z
t Vo, T̃ z′

t Vo) is stochastically non
decreasing for the (partial) coordinatewise order and each coordinate is dominated by
the respective invariant measure. This implies the existence of limt→∞(T̃ z

t Vo, T̃ z′
t Vo)

in distribution. The coordinates of the limit are ordered and its marginals have distri-
butions μ̃j, μ̃j′ , respectively. �
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5 Hydrodynamic limit

It is well known that in the diffusive scaling limit (space scaled as ε−1 and time as
ε−2) the hydrodynamic limit of the SSEP process alone converges to the linear heat
equation:

∂ρt

∂t
= 1

2

∂2ρt

∂r2 , ρ0 = ρ (5.1)

Since the distance between the first hole and last particle is random, it is not clear
a-priori that our model should be scaled diffusively as well. From Theorem 3 we know
that at equilibrium the mean distance between the rightmost particle and the leftmost
hole is of order j−1 and this suggest that together with the above diffusive scaling we
should scale j proportionally to ε. Indeed we will prove that under such scaling limit
the density of the process converges as ε → 0 to a deterministic evolution.

5.1 Results

Hydrodynamics of interfaces Initial configurations For each ε > 0 the interface
evolution starts from an interface ξ (ε) such that:

lim
ε→0

sup
x∈Z

|εξ (ε)(x)− φ0(εx)| = 0 (5.2)

where φ0(r) = r for all r ≥ r(φ) > 0; φ0(r) = −r for all r ≤ l(φ) < 0 and φ0 is
differentiable in (l(φ), r(φ))with derivative φ′

0 such that supr∈(l(φ),r(φ)) |φ′
0(r)| < 1.

Fix the macroscopic current j > 0, define j(ε) := jε and call

(ξ
(ε)
t ) := interface process with generator L� + L jε

r + L jε
l , starting from ξ (ε).(5.3)

The following is the hydrodynamic limit for the interface process.

Theorem 4 There is a function φt (r), t ≥ 0, r ∈ R, so that for any γ > 0 and t > 0:

lim
ε→0

P

[

sup
x∈Z

|εξ (ε)
ε−2t

(x)− φt (εx)| ≥ γ

]

= 0 (5.4)

The proof will be given in Sect. 5.5 and properties of φt (r) will be discussed in
Sect. 6.

Hydrodynamics of particles As we shall prove at the end of Sect. 6.1, the hydrody-
namic limit for the particle process Theorem 1 is a corollary of Theorem 4.

The proof that (5.1) is the hydrodynamic limit for the SSEP is quite simple because
the correlation functions obey closed equations. The addition of birth-death processes
spoils such a property but if the rates are cylinder functions and are “small” (births
and deaths happen at rate ε2) the proofs carry over and the limit is a reaction diffusion

123



Symmetric simple exclusion process with free boundaries 173

equation as in [2]. In our case the birth-death rates are not as small (because the
killing rates are of order ε) but the main difficulty is that the killings are highly non
local functions of the configuration, since births and deaths occur at the position of
the leftmost hole and the rightmost particle, respectively. This spoils completely an
analysis based on the study of the hierarchy of the correlation functions.

The way out is to use inequalities namely to sandwich the interface process between
two delta processes, using Proposition 2. The corresponding delta particle process
behave as the exclusion dynamics in macroscopic time intervals of length δ and the
(accumulated) killings occur at the extremes of those intervals.

5.2 The delta processes

The delta interface process (ξ δ,±t ) is defined via (4.17) and (4.20) by

ξ
δ,±
t := T z±

t ξ, with z± := z±δ
t (5.5)

This process is obtained by patching together finitely many pieces of the evolution
with generator L� as explained after (4.20). By Proposition 1, as

zδ,−t ≤ Rt ≤ zδ,+t , for all t ≥ 0,

then, ξδ,−t ≤ ξt ≤ ξ
δ,+
t , for all t ≥ 0. (5.6)

The delta particle processes are defined by using the map (4.7), setting ηδ,±t =
D(ξ δ,±t ). In other words, (ηδ,−t ) evolves with the generator L0 in the intervals [nδ, (n+
1)δ), and ηδ,−nδ is obtained from ηnδ− by removing its Bnδ− B(n−1)δ rightmost particles
and its Anδ − A(n−1)δ leftmost holes, where A and B are the independent Poisson
processes with intensity j. The interpretation of the process (ηδ,+t ) is analogous but
the removal of particles and holes is done at the beginning rather than at the end of
each time interval. For a particle configuration η ∈ X and positive integers a and b
define the quantiles la(η) and rb(η) as the lattice points satisfying

∑

x≥rb(η)

η(x) = b,
∑

x≤la(η)

(1 − η(x)) = a. (5.7)

and define

	a,b(η)(x) = η(x)(1 − 1x≥rb )+ (1 − η(x))1x≤la ; (5.8)

this is the configuration obtained from η by erasing particles and holes as explained
above.

We abuse notation and write T[s,t]η the evolution D(T[s,t]ξ), with η = Dξ . Then
the delta particle processes satisfy the following: for n = 0, 1, . . . ,
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η
δ,±
t = T[nδ,t]ηδ,±nδ , for t ∈ [nδ, (n + 1)δ)

η
δ,−
t = 	Anδ,Bnδ η

δ,−
t− , for t = nδ (5.9)

η
δ,+
t = 	A(n+1)δ,B(n+1)δ η

δ,+
t− , for t = nδ

where recall A and B are independent Poisson processes of parameter j.
The rescaled delta processes We consider a family of processes indexed by ε by
considering ε−2δ instead of δ and ε j instead of j. We call (ξε,δ,±t ) and (ηε,δ,±t ) the
interface and particle processes so obtained. Later we consider those processes with
time rescaled by a factor ε−2 and space by a factor ε−1.

For any fixed (macroscopic) δ > 0, we will prove the existence of φδ,±t , the limit
as ε → 0 of εξε,δ,±

tε−2 . We also prove that φδ,±t are close to each other and that their
difference vanishes as δ → 0. Taking δ to zero, their common limit φt is then the
hydrodynamic limit of the rescaled evolution ξ (ε)t —as this is squeezed between ξε,δ,−t

and ξε,δ,+t .
While the above outline involves the interface process alone (which then implies

convergence for the particle process as well), yet the analysis of the limit as ε →
0 of (ξε,δ,±t ) is more conveniently studied by looking at the delta particle process
(η
ε,δ,±
t ) and then translating the results to the delta interface process. We start from

the particle model defining first the corresponding approximate macroscopic density
delta evolutions and then prove existence of the hydrodynamic limit for the delta
particle process.

5.3 The macroscopic delta evolutions

In this subsection we fix δ > 0 and define the macroscopic delta evolutions of densities
ρ
δ,±
t and interfaces φδ,±t .

Preliminary results For any density ρ : R → [0, 1] define the R+ ∪ {+∞} valued
functions

F(r; ρ) :=
∞∫

r

ρ(r ′) dr ′, F̂(r; ρ) :=
r∫

−∞
(1 − ρ(r ′)) dr ′

representing the mass of ρ to the right of r and the antimass to its left. These are
the macroscopic analogues of the number of particles, respectively holes, to the right,
respectively left, of r . We introduce two disjoint subsets of densities called R and U .

Let R be the set of densities ρ ∈ L∞(R, [0, 1]) satisfying the following conditions:

(i) F(0, ρ) = F̂(0, ρ) < ∞, that is mass to the right and antimass to the left are
finite and the origin is the median of ρ.

(ii) ρ has finite boundaries. That is, there exist −∞ < l(ρ) ≤ r(ρ) < ∞ such
that ρ has finite support [l(ρ), r(ρ)]: ρ put no mass to the right of r(ρ) and no
antimass to the left of l(ρ).

(iii) ρ is continuous in the interior of the support. That is, if l(ρ) < r(ρ) then ρ(r)
is continuous in (l(ρ), r(ρ)) with values in (0, 1).
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We call R∗ the set of ρ ∈ R such that r(ρ) > 0.
Let U = {u ∈ C(R, (0, 1)) : F(0, u) = F̂(0, u) < ∞}. This is the set of continu-

ous densities with median 0.
Let h ∈ R be the Heaviside density defined by h(r) = 1{r≤0}. Clearly l(h) =

r(h) = 0.

Lemma 6 F(r; u) < ∞ and F̂(r; u) < ∞ for all r ∈ R and u ∈ U ∪ R.
If ρ ∈ R then r(ρ) ≥ 0 and l(ρ) ≤ 0; the two inequalities are strict unless ρ = h.
If r(ρ) > 0 then l(ρ) < 0 and the derivatives F ′(r; ρ) and F̂ ′(r; ρ) exist in

(l(ρ), r(ρ)) where they are respectively strictly negative and positive.
If u ∈ U then F, F̂ ∈ C1(R) and F ′(r; u) < 0 and F̂ ′(r; u) ≥ 0 for all r ∈ R.
For any u ∈ U ∪ R and for any δ > 0 there are unique points rδ(u), lδ(u) such

that

F̂(lδ; u) = δ; F(rδ; u) = δ. (5.10)

If F(0; u) � δ then rδ(u) � 0 and lδ(u) � 0.

Proof Let u ∈ U ∪ R then for any r ∈ R

F(r; u) =
∞∫

0

u(r ′) dr ′ −
r∫

0

u(r ′) dr ′ ≤ F(0; u)+ |r | < ∞,

with an analogous argument showing that also F̂(r; u) < ∞. If ρ ∈ R then r(ρ) ≥ 0
because if r(ρ) < 0 then F(0; ρ) = 0. Since F(0; ρ) = F̂(0; ρ), then F̂(0; ρ) = 0
and this gives a contradiction since r(ρ) < 0 and ρ ≡ 1 is not allowed. Moreover
r(ρ) = 0 if and only if ρ is the Heaviside density because F(0; ρ) = F̂(0; ρ).

If u ∈ U then F ′(r; u) = −u(r) < 0 and F̂ ′(r; u) = 1 − u(r) > 0, by the
definition of U . If ρ ∈ R and r(ρ) > 0 then l(ρ) < 0 and by the definition of R, ρ
is continuous in (l(ρ), r(ρ)) and away from 0 and 1. Hence F ′(r; ρ) = −ρ(r) < 0
and F̂ ′(r; ρ) = 1 − ρ(r) > 0 for all r ∈ (l(ρ), r(ρ)).

Let u ∈ U ∪ R. By the monotonicity of F(r; u) if F(0; u) > δ then rδ(u) > 0,
while if F(0; u) < δ then rδ(u) < 0 with the analogous property for lδ(u). �

Definition of 	δ and Gt . We call 	δ : U ∪ R → R the following map. If rδ(u) ≤ 0
and therefore lδ(u) ≥ 0 we set 	δ(u) = h, the Heaviside density. If instead rδ(u) > 0
and hence lδ(u) < 0 we set ρ = 	δ(u) equal to 0 for r > rδ(u), equal to 1 for
r < lδ(u) and equal to u elsewhere. In this latter case ρ = 	δ(u) ∈ R∗ (that is,
r(ρ) = rδ(u) > 0). Thus 	δ acts by removing a portion δ of mass from the right of
rδ(u) and put it back to the left of lδ(u).

Denote by Gt the Gaussian kernel:

Gt (r, r
′) := 1√

2π t
e−(r−r ′)2/2t (5.11)
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And write Gtρ(r) = ∫

dr ′Gt (r, r ′)ρ(r ′). Recall that Gtρ is the solution of the heat
equation (5.1) with initial data ρ.

Lemma 7 Let ρ ∈ R ∪ U . Then Gtρ ∈ U for any t > 0. Moreover, calling

Uδ = {

u ∈ U : lδ(u) < 0 < rδ(u)
}

(5.12)

for any j > 0 there is δ( j) > 0 so that for any u ∈ R ∪ U and δ < δ( j), Gδu ∈ U jδ

and therefore 	 jδ(Gδu) ∈ R∗.

Proof Since ρ ∈ R ∪ U , we have F(0; ρ) < ∞. Then for any t > 0:

F(0; Gtρ) =
∞∫

0

dr

+∞∫

−∞
dr ′Gt (r, r

′)ρ(r ′)

≤
∞∫

0

dr

+∞∫

0

dr ′Gt (r, r
′)ρ(r ′)+

∞∫

0

dr

0∫

−∞
dr ′Gt (r, r

′) ≤ F(0; ρ)+ c,

where we used Fubini and
∫

Gt (r, r ′) dr ′ = 1 to bound the first term. Since Gtρ ∈
[0, 1], F(r; Gtρ) < ∞ for all r (see the beginning of the proof of Lemma 6). An
analogous argument shows that F̂(r; Gtρ) < ∞ for all r and t > 0 and, being the
solution of the heat equation, Gtρ ∈ C∞ for all t > 0. To prove that Gtρ ∈ U it
remains to show that F(0; Gtρ) = F̂(0; Gtρ) for all t > 0. Using the symmetry
properties of Gt and Fubini, for any t ≥ 0 we have

F(0; ρt )− F̂(0; ρt ) =
∞∫

0

dr Gtρ(r)−
0∫

−∞
dr [1 − Gtρ(r)] = 0.

The last statement in Lemma 7 follows from the following inequalities

∞∫

√
δ

dr Gδu(r) ≥
∞∫

√
δ

dr Gδh(r) ≥ C
√
δ, C > 0

which is larger than jδ for δ small enough. The first inequality follows from the
fact that u is stochastically larger than the Heaviside density h, in the sense that u is
obtained from h by moving mass to the right. The last inequality follows from direct
computations. �


Delta density evolutions We are finally ready to define the delta density evolutions
ρ
δ,±
t . Restrict to δ ≤ δ( j) as defined in Lemma 7, take the initial density ρ ∈ R ∪ U

and define iteratively ρδ,−0 = ρ and
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ρ
δ,−
t :=

{

Gt−nδρ
δ,−
nδ , t ∈ [nδ, (n + 1)δ)

	 jδρ
δ,−
t− , t = nδ.

(5.13)

The evolution ρδ,+t is defined as ρδ,−t but with initial datum ρ
δ,+
0 := 	 jδ(ρ).

Delta interface evolutions The delta interface evolutions are defined as follows. Fix
an initial interface φ belonging to the cone with vertex at the origin and for t ≥ 0
define iteratively φδ,−0 = φ, φ

δ,+
0 = max{φ, V(0,δ j)} and for n ≥ 0,

φ
δ,±
t := Gt−nδφ

δ,−
nδ , if t ∈ [nδ, (n + 1)δ)

φ
δ,−
t := max{φδ,−t− , V(0,nδ j)}, if t = nδ. (5.14)

φ
δ,+
t := max{φδ,+t− , V(0,(n+1)δ j)}, if t = nδ.

We leave the proof of the following Lemma to the reader. It relates both definitions.

Lemma 8 The delta density evolutions ρδ,±t defined in (5.13) and the delta interface
evolutions φδ,±t defined in (5.14) are related by

φ
δ,±
t (r)− φ

δ,±
t (r ′) = 2(r − r ′)− 2

r∫

r ′
ρ
δ,±
t (r ′′) dr ′′. (5.15)

The initial data are related by φ(0) = ∫ 0
−∞(1 − ρ(r)) dr (this is the same as

∫∞
0 ρ(r)dr as ρ ∈ R); this fixes the vertex of the cone of φ at the origin.

5.4 Hydrodynamic limit of the delta particle process

We now study the hydrodynamic limit for the delta particle process defined in Sect. 5.2.
We introduce partitions D(�) of Z into intervals I (�) of length � where, denoting by

I (�)x the interval which contains x, I (�)0 = [0, �−1] (D(�) is now completely specified).
We take � equal to the integer part of ε−β with β ∈ (0, 1), ρ ∈ L∞(R, [0, 1]) and (by
an abuse of notation) we write

A(�)
x (η) = 1

�

∑

y∈I (�)x

η(y), A(�)
x (ρ) = 1

ε�

∫

ε I (�)x

ρ(r) dr (5.16)

not making explicit the dependence on ε.
Introduce an accuracy parameter of the form εα, 0 < α < β; the parameter β ∈

(0, 1) is fixed while α will change at each step of the iteration scheme used in the
sequel. Let Gε,α,β(ρ)be the set of particle configurations which (ε, α, β)-recognize
the macroscopic density ρ ∈ R defined by:
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Gε,α,β(ρ) =
{

η ∈ X : |εl(η)− l(ρ)| + |εr(η)− r(ρ)|

≤ εα, sup
x∈Z\{Ir∪Il}

|A(�)
x (η)− A(�)

x (ρ)| ≤ εα

}

,

� = integer part of ε−β, 0 < α < β < 1, (5.17)

where l(η) and r(η) are defined in (2.1), and Il is the smallest D(�) measurable interval
which contains both l(η) and ε−1l(ρ); Ir is defined analogously with reference to
r(η) and r(ρ).

Proposition 3 Let ρ ∈ R and ηε,δ,±0 ∈ Gε,α,β(ρ), then for any α′ ∈ (0, α) such that

α′ < min{β2 , 1 − β, 1
4 } the following holds: for any k ≥ 1 there are coefficients ck so

that

P
[

η
ε,δ,±
ε−2δ

∈ Gε,α′,β(ρ
δ,±
δ )

]

≥ 1 − ckε
k (5.18)

Remark By iteration the result extends to any finite macroscopic time interval and we
also have:

Corollary 3 Under the same assumptions of Proposition 3, for any integer m ≥ 1
and for any k ≥ 1 there are coefficients ck so that

P

[
m
⋂

n=1

{ηε,δ,±
ε−2nδ

∈ Gε,α′,β(ρ
δ,±
nδ )}

]

≥ 1 − ckε
k (5.19)

To show Proposition 3 we need to control the position of the quantiles ra and
lb of the process evolving with the exclusion by the macroscopic time δε−2. Here
a = Aε−2t , b = Bε−2t which are Poisson processes of parameter ε j . These bonds
only depend on the exclusion dynamics governed by L0.
Sharp convergence of the exclusion process to the solution of the heat equation Abusing
notation denote (Ttη) the process in X with initial configuration η evolving only with
the exclusion generator L0. The SSEP evolution is close to a linear diffusion in the
following sense: for any n ≥ 2 there is cn so that for any t > 0

sup
(x1,...,xn)∈Z

n�=
|v(x1, . . . , xn; t)| ≤ cnt−n/8 (5.20)

where Z
n�= is the set of all n-tuple of mutually distinct elements of Z,

v(x1, . . . , xn; t) = E

[
n
∏

i=1

{Ttη(xi )− ut (xi )}
]

(5.21)
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hereafter called v-functions, and ut (x) solves the discretized heat equation

dut (x)

dt
= 1

2
�ut (x) = 1

2
(ut (x + 1)+ ut (x − 1)− 2ut (x)) , u0 = η (5.22)

(5.20) is proved in [4]. The solution of (5.22) is

ut (x) =
∑

y∈Z

pt (x, y)η(y)

pt (x, y) the transition probability kernel of the symmetric nearest-neighbors random
walk. The solution of the heat equation starting from ρ is Gtρ (recall (5.11)). Thus,
since η ∈ Gε,α,β(ρ)

|uε−2t (x)− Gtρ(εx)| ≤ c′ (εt−1/2 + ε1−β t−1/2 + εα + εt−1/2ε−(1−α))

≤ c
(

ε1−β t−1/2 + εα
)

(5.23)

The proof of the first inequality is done by changing uε−2t (x) into Gtρ(εx) in succes-
sive steps:

– Replace pε−2t (x, y) by Gt (εx, εy). By the local central limit theorem the error is
bounded by the first term on the right hand side of (5.23).

– Replace Gt (εx, εy) by its average in the intervals ε I (�)z of length ε1−β , hence the
second term on the right hand side of (5.23).

– The contribution of the difference between averages of η and ρ in good intervals
(i.e those not in Il ∪ Ir) is bounded by εα , the contribution of the intervals in Il ∪ Ir
by εt−1/2ε−(1−α).

– We finally reconstruct in each interval ε I (�)z the correct term from Gtρ(εx)with an
error given again by the second term on the right hand side of (5.23).

Bounds on |A(�)
x (Tε−2tη)− A(�)

x (ρt )|. For any x ∈ Z

|A(�)
x (Tε−2tη)−A(�)

x (ρt )|≤ |A(�)
x (Tε−2tη)−A(�)

x (uε−2t )|+|A(�)
x (uε−2t )− A(�)

x (ρt )|
≤ |A(�)

x (Tε−2tη)−A(�)
x (uε−2t )|+c

(

ε1−β t−1/2+εα
)

,

(5.24)

by (5.23). We are going to show that for any integer n,

E
[

|A(�)
x (Tε−2tη)− A(�)

x (uε−2t )|2n
]

≤ c
(

εβn + [tε−2]−n/4
)

(5.25)

Proof of (5.25):

– We expand |A(�)
x (Tε−2tη) − A(�)

x (uε−2t )|2n getting a sum of products of factors
ηε−2t (z)− uε−2t (z).
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– Each term of the form (ηε−2t (x) − uε−2t (x))
k with k > 1 can be rewritten as

c + c′(ηε−2t (x) − uε−2t (x)) with constants c and c′ not depending on η. c and c′
depend on the value of uε−2t (x) but that each of them is always smaller (in absolute
value) than one.

– Thus E[|A(�)
x (Tε−2tη) − A(�)

x (uε−2t )|2n] is a sum of product of constants times
v-functions. We then use (5.20) to get (5.25).

Let γ > 0, then since η ∈ Gε,α,β(ρ),
∑

x≥ε−1−γ
P[Tε−2tη(x) = 1] ≤ c′

kε
k,

∑

x≤−ε−1−γ
P[Tε−2tη(x) = 0] ≤ c′

kε
k

As a consequence

P
[

r(Tε−2tη) ≤ ε−1−γ ; l(Tε−2tη) ≥ −ε−1−γ ] ≥ 1 − c′′
k ε

k (5.26)

By the hypotheses on ρ,

∫

r≥ε−γ
Gtρ(r) dr ≤ c′

kε
k,

∫

r≤−ε−γ
dr [1 − Gtρ(r)] ≤ c′

kε
k . (5.27)

which proves that

P

[

sup
|x |≥ε−1−γ

|A(�)
x (Tε−2tη)− A(�)

x (Gtρ)| ≤ c′
kε

k

]

≥ 1 − c′′′
k ε

k . (5.28)

We shall use (5.28) to prove that for any α′ as in Proposition 3

P

[

sup
x∈Z

|A(�)
x (Tε−2tη)− A(�)

x (Gtρ)| ≤ εα
′
]

≥ 1 − ckε
k . (5.29)

By (5.28) and (5.24) it suffices to prove that for any α′ as above

P

[

sup
|x |≤ε−1−γ

|A(�)
x (Tε−2tη)− A(�)

x (uε−2t )| ≤ εα
′
]

≥ 1 − ckε
k . (5.30)

which follows using the Chebishev’s inequality with power 2n for n sufficiently large
and (5.25), because α′ < min{β2 , 1

4 }.
Quantile bounds To complete the proof of (5.18) we fix α′ as in Proposition 3 and
take α′′ < min{β2 , 1 − β, α, 1

4 } such that α′′ > α′. Then there is a positive γ such that
α′′ − 2γ > α′.

We now fix t = δ and use (5.29) (with α′′) to obtain bounds for the quantiles defined
in (5.10) and (5.7). Recalling (5.10) let

r′ := ε−1r jδ(Gδρ)+ ε−1+α′′−2γ .
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Then

P

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣
∣

∑

r′≤x≤ε−1−γ
Tε−2δη(x)− ε−1

ε−γ∫

εr′
Gδρ(r) dr

∣
∣
∣
∣
∣
∣
∣

≤ cεα
′′
ε−1−γ

⎞

⎟
⎠ ≥ 1 − ckε

k,

On the other hand by the definition of the quantile r jδ(Gδρ) and by (5.27)

ε−γ∫

εr′
Gδρ(r) dr =

∞∫

r jδ(Gδρ)

Gδρ(r) dr −
εr′
∫

r jδ(Gδρ)

Gδρ(r) dr −
∞∫

ε−γ
Gδρ(r) dr

≤ jδ − c′εα′′−2γ

with c′ = min{Gδρ(r) : |r −r jδ(Gδρ)| ≤ 1} > 0. Hence with probability ≥ 1−ckε
k ,

ε
∑

r′≤x≤ε−1−γ
Tε−2δη(x) ≤ jδ − c′εα′′−2γ + cεα

′′
ε−γ < jδ − c′

2
εα

′′−2γ

Let rb(η) be the quantile defined in (5.7) with b = Bε−2δ, B a Poisson process of
rate jε. Observing that for any κ > 0

P
(∣
∣εBε−2δ − jδ

∣
∣ ≤ ε

1
2 −κ) ≥ 1 − ckε

k

we get that for κ small enough and with probability ≥ 1 − ckε
k ,

ε
∑

x≥rb(T
ε−2δη)

Tε−2δη(x) = εBε−2δ ≥ jδ − ε
1
2 −κ ≥ jδ − c′

2
εα

′′−2γ

≥ ε
∑

r′≤x≤ε−1−γ
Tε−2δη(x)

that implies rb(Tε−2δη) ≥ R′ = ε−1r jδ(Gδρ) + ε−1+α′′−2γ . Using an analogous
argument for the lower bound we get

P(|εrb(Tε−2δη)− r jδ(Gδρ)| ≤ εα
′′−2γ ) > 1 − ckε

k,

P(|εla(Tε−2δη)− l jδ(Gδρ)| ≤ εα
′′−2γ ) > 1 − ckε

k;
(5.31)

the second inequality is proved by using the same arguments for a = Aε−2δ, A being
a Poisson process of rate ε j .

Proof of Proposition 3 By the definitions (5.9) and (5.13),

η
ε,δ,−
ε−2δ

= 	A
ε−2δ,Bε−2δTε−2δη, ρ

δ,−
δ = 	 jδGδρ.
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Since the left and right boundaries after applying	 are the quantiles before applying
it, inequality (5.18) for the delta− processes follows from (5.29) and (5.31). The same
argument applies for the delta+ processes. �


5.5 Hydrodynamic limit of interfaces

Proof of Theorem 4 We call τ > 0 the time t fixed in Theorem 4. For each n ∈ N

we let δ ∈ {τ2−n} and consider the evolutions (ξε,δ,±t ) in a bounded time interval,
t ≤ T = 2N+nδ = 2N τ, N an arbitrary, fixed non negative integer. We have by
(4.14),

εξ
ε,δ,±
ε−2(k+1)δ

(0)− εξ
ε,δ,±
ε−2kδ

(0)

= 2εBε−2(k+1)δ − 2εBε−2kδ + 2ε
∑

x≥0

η
ε,δ,±
ε−2(k+1)δ

(x)− 2ε
∑

x≥0

η
ε,δ,±
ε−2kδ

(x) (5.32)

By (4.7) for k = 1, . . . , 2n+N and x > y,

εξ
ε,δ,±
ε−2kδ

(x)− εξ
ε,δ,±
ε−2kδ

(y) = 2ε(x − y)− 2ε
x−1
∑

z=y

η
ε,δ,±
ε−2kδ

(z) (5.33)

By (5.19) and (5.32)–(5.33)–(5.15) we then get that for any γ > 0 and any t ∈
{kδ : k ≤ 2N+n}

lim
ε→0

P

[

sup
x∈Z

|εξε,δ,±
ε−2t

(x)− φ
δ,±
t (εx)| ≥ γ

]

= 0 (5.34)

In the next section we shall prove that for any t :

lim
n→∞ sup

r∈R

∣
∣
∣φ
τ2−n ,+
t (r)− φ

τ2−n ,−
t (r)

∣
∣
∣ = 0 (5.35)

and that there is a function φ(τ)t (r), r ∈ R, t ≥ 0, so that

lim
n→∞ sup

r∈R

∣
∣
∣φ
(τ)
t (r)− φ

τ2−n ,−
t (r)

∣
∣
∣ = 0 (5.36)

Then by (5.34), (5.35), (5.36) and (5.6), for all γ > 0,

lim
ε→0

P

[

sup
x∈Z

|εξ (ε)
ε−2t

(x)− φ
(τ)
t (εx)| ≥ γ

]

= 0, t ∈ T (τ ) (5.37)

where

T (τ ) = {k2−nτ, k ∈ N, n ∈ N} (5.38)
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Since τ ∈ T (τ )we have proved (5.4) for t = τ and since τ was arbitrary, Theorem 4
is proved. �


6 The macroscopic evolution

In Sect. 6.1 we prove that as δ → 0 the macroscopic delta processes converge—that
is, we prove (5.35) and (5.36)—and that φt is well defined by

φt = lim
δ→0

φ
δ,±
t , t ≥ 0

We also collect some properties of the macroscopic evolutions φt and ρt , in partic-
ular monotonicity properties of φt and existence of boundary points for both motions.
In Sect. 6.2 we construct macroscopic stationary profiles.

6.1 Existence and regularity of the macroscopic profiles

Proof of (5.35) and (5.36) Let τ > 0 and δ ∈ {τ2−n, n ∈ N}. We shall first prove by
induction on k that for any such δ,

sup
r∈R

∣
∣
∣φ
δ,+
kδ (r)− φ

δ,−
kδ (r)

∣
∣
∣ ≤ jδ. (6.1)

(6.1) holds for k = 0 because

φ
δ,+
0 (r) = max{φ0(r), jδ + |r |}, φ

δ,−
0 (r) = φ0(r).

Suppose next that (6.1) holds for k − 1, then by the maximum principle (for the
linear heat equation),

∣
∣
∣φ
δ,+
(kδ)−(r)− φ

δ,+
(kδ)−(r)

∣
∣
∣ ≤ jδ

hence (6.1) holds for k because

φ
δ,+
kδ (r) = max

{

φ
δ,+
(kδ)−(r), j (k + 1)δ + |r |

}

, φ
δ,−
kδ (r) = max

{

φ
δ,−
(kδ)−(r), jkδ + |r |

}

(6.1) and (5.35) are thus proved. It is not difficult to see that

φ
δ,−
t (r) ≤ φ

δ′,−
t (r), φ

δ,+
t (r) ≥ φ

δ′,−
t (r), δ = kδ′ for some integer k > 0

Thus for any n ∈ N and t ≥ 0

φ
τ2−n ,−
t (r) ≤ φ

τ2−(n+1),−
t (r) ≤ φ

τ2−n ,+
t (r) (6.2)
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Hence for any fixed t, φτ2−n ,−
t (r) converges pointwise to a function that we call

φ
(τ)
t (r) (it may depend on τ ). Since by definition |φδ,±t (r)− φ

δ,±
t (r ′)| ≤ |r − r ′|, the

convergence is in sup norm and (5.36) is then proved with φ(τ)t (r) a Lipschitz function
with Lipschitz constant 1. �


In the next Theorem we prove that φ(τ)t is independent of τ and also regularity
properties of this function.

Theorem 5 The function φ(τ)t is independent of τ and will be denoted by φt (the same
as in Theorem 4). φt is continuous in r and t, more precisely there is c > 0 so that for
all t, t ′ such that |t − t ′| ≤ 1 and all r and r ′,

|φt (r)− φt ′(r)| ≤ c
√|t − t ′|, |φt (r)− φt (r

′)| ≤ |r − r ′| (6.3)

Denoting by δn any sequence of positive numbers such that δn+1 = δn/2 then

φt = lim
n→∞φ

δn ,±
t , ∀t ≥ 0, (6.4)

with φδn ,−
t monotonically increasing and φδn ,+

t monotonically decreasing.

Proof Let t ≥ 0 and s > 0, recalling (5.11) we have

Gsφ
δ,−
t (r) ≤ φ

δ,−
t+s (r) ≤ Gsφ

δ,−
t (r)+ j (s + δ). (6.5)

The first inequality is obvious. We have

φ
δ,−
(k+1)δ = max{Gδφ

δ,−
kδ , j (k + 1)δ + |r |} ≤ max{Gδφ

δ,−
kδ + jδ, j (k + 1)δ + |r |}

= jδ + Gδφ
δ,−
kδ ,

because φδ,−kδ ≥ jkδ + |r |. We then get the last inequality (without the term jδ) for
t = hδ, h ∈ N. If instead t ∈ (hδ, (h + 1)δ), then

φ
δ,−
(h+1)δ ≤ G(h+1)δ−tφ

δ,−
t + jδ

hence (6.5).
Since φδ,−t (r) is Lipschitz, it follows from (6.5) that |φδ,−t+s (r)−φδ,−t (r)| ≤ c

√
s +

j (s + jδ) and, by taking δ → 0,

|φ(τ)t (r)− φ
(τ)

t ′ (r)| ≤ c
√|t − t ′|, for all r and |t − t ′| ≤ 1 (6.6)

We shall next prove that φ(τ)t (r) is independent of τ . Obviously φ(τ)t (r) = φ
(τ ′)
t (r)

if, recalling (5.38), τ ′ ∈ T (τ ) (or viceversa). We next suppose that τ and τ ′ are not

related in such a way. We fix T > 0 and want to prove that φ(τ)T (r) = φ
(τ ′)
T (r). Let
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δ ≤ δ′ and k such that kδ < δ′ < (k + 1)δ. Then

φ
δ′,−
δ′ (r) = max{Gδ′−kδφ

δ′,−
kδ (r), jδ′ + |r |}

≤ max{Gδ′−kδφ
δ,−
kδ (r)+ j (δ′ − kδ), jδ′ + |r |} ≤ φ

δ,−
δ′ (r)+ j (δ′ − kδ)

because φδ,−kδ (r) ≥ jkδ + |r |.
By iteration φδ

′,−
T ≤ φ

δ,−
T + j Nδ if N is the cardinality of {k : kδ′ ≤ T }. Thus

φ
δ′,−
T ≤ φ

δ,−
T + cT

δ

δ′

Take δ′ = τ ′2−n′
and δ = τ2−n . Take first n → ∞ and then n′ → ∞ to get

φ
(τ ′)
T ≤ φ

(τ)
T . The opposite inequality holds as well by interchanging δ and δ′ in the

previous argument. �


Proof of Theorem 1 From (5.4) we get for all γ > 0

lim
ε→0

P

⎛

⎝sup
a<b

∣
∣
∣
∣
∣
∣

ε
∑

εx∈[a,b]
η
(ε)

tε−2(x)− 1

2
{ε(b − a)− [φt (εb)− φt (εa)]}

∣
∣
∣
∣
∣
∣

> γ

⎞

⎠ = 0

Since φt is Lipschitz there is ρt ∈ L1 such that, given any r0 ∈ R,

φt (r) = φt (r0)+
r∫

r0

(

1 − 2ρt (r
′)
)

dr ′ (6.7)

and since by (6.3) the Lipschitz constant is 1, ρt has (almost surely) values in [0, 1]
and this proves (1.2). We prove in Theorem 7 later that ρt ∈ R, i.e. −∞ < l(ρt ) ≤
r(ρt ) < ∞. �


Proof of Theorem 2 For any t and δ,

b∫

a

ρ
δ,−
t (r) dr −

b∫

a

ρt (r) dr = 1

2

(

φt (b)− φ
δ,−
t (b)+ φ

δ,−
t (a)− φt (a)

)

(6.8)

Let δn := 2−nδ, then from (6.4), for all r

φ
δn ,−
t (r) ≤ φt (r) ≤ φ

δn ,+
t (r) (6.9)
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so that from (6.1) and (6.8)

b∫

a

ρ
δn ,−
t (r) dr −

b∫

a

ρt (r) dr ≤ 1

2

(

φ
δn ,+
t (b)−φδ,−t (b)+φδ,−t (a)−φδn ,−

t (a)
)

≤ jδ

(6.10)

�


6.2 Stationary solutions

We say that a macroscopic interface φ ∈ V0 is stationary if, φ0 = φ implies φt =
φ + 2 j t . A macroscopic density ρ ∈ R is stationary if ρ0 = ρ implies ρt = ρ. Here
φt and ρt are the dynamics given by Theorems 4 and 1, respectively.

If φ is stationary, then the density ρ associated to φ via (6.7) is stationary because
by (6.7)

r∫

r0

(

1 − 2ρt (r
′)
)

dr ′ =
r∫

r0

(

1 − 2ρ0(r
′)
)

dr ′, for all r0, r and t ≥ 0

Let

ρ̄(r) :=

⎧

⎪⎨

⎪⎩

0, for r ≥ 1
4 j

1
2 − 2 jr, for |r | ≤ 1

4 j

1, for r ≤ − 1
4 j

φ̄(r) :=
{

2 jr2 + 1
8 j , for |r | ≤ 1

4 j

|r |, for r ≥ 1
4 j .

(6.11)

Theorem 6 The macroscopic interface φ̄ and the associated macroscopic density ρ̄
are stationary.

If ξ (ε)0 approximates φ̄ in the sense of (5.2), then the theorem says that the rescaled
interface process as seen from its vertex converges in the sense of Theorem 4 at any
macroscopic time t to the initial value φ̄ shifted by 2 j t . An analogous statement holds
for the particle process (but the stationary density profile does not move).

Theorem 6 is proven in the next section by introducing a deterministic harness
process on R

Z, a discrete time process that approachesφt and whose stationary solution
is directly computable.

6.3 Monotonicity

We collect some monotonicity properties of the macroscopic interface inherited from
the microscopic dynamics. We tacitly suppose hereafter that the initial data φ ∈ Vo,
namely that φ(r) = Vo(r) ≡ |r | for all |r | large enough.

The following lemma is a direct consequence of the definition of φt .
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Symmetric simple exclusion process with free boundaries 187

Lemma 9 For any t > 0, φt (r) ≥ (|r | + j t), r ∈ R, and

lim|r |→∞ |φt (r)− (|r | + j t)| = 0

Proof Let t = τk2−n . It follows from the inequality φτ2−n ,−
t ≤ φt ≤ φ

τ2−n ,+
t that

there is R = Rn,τ so that

|r | + j t ≤ φt (r) ≤ |r | + j (t + 2−n), |r | ≥ R.

�


We shall next establish inequalities relating evolutions with different values of j ,
we thus add a superscript j writing φ( j)

t and φ( j,δ,±)
t .

Lemma 10 Let j ≤ j ′ then for all t ≥ 0

φ
( j)
t − j t ≥ φ

( j ′)
t − j ′t. (6.12)

Proof It is enough to prove that

φ
( j,δ,−)
δ (r)− jδ ≥ ψ

( j ′,δ,−)
δ (r)− j ′δ, if φ ≥ ψ

Let l′, r′ be such that

ψ
( j ′,δ,−)
δ (r) = Gδψ(r), l′ ≤ r ≤ r′, and ψ( j ′,δ,−)

δ (r) = |r | + j ′δ elsewhere

By the maximum principle Gδφ ≥ Gδψ , then

φ
( j,δ,−)
δ (r) ≥ Gδφ(r) ≥ ψ

( j ′,δ,−)
δ (r), l′ ≤ r ≤ r′

and a fortiori:

φ
( j,δ,−)
δ (r) ≥ ψ

( j ′,δ,−)
δ (r)− ( j ′ − j)δ, l′ ≤ r ≤ r′

By definition φ( j,δ,−)
δ (r) ≥ |r | + jδ, r ∈ R so that

φ
( j,δ,−)
δ (r) ≥ |r | + jδ = ψ

( j ′,δ,−)
δ (r)− ( j ′ − j)δ, r /∈ (l′, r′)

which concludes the proof. �
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6.4 Existence of boundaries

Recall the definition in Sect. 5.3 of the boundaries l(ρ), r(ρ) of a density ρ ∈ R.
They are also the boundaries of the interface φt which corresponds to ρt .

Theorem 7 The boundaries l(ρt ), r(ρt ) of a density ρt as defined in Theorem 1
starting from ρ ∈ R are finite. In other words, ρ ∈ R implies ρt ∈ R.

Proof We shall prove the theorem in the framework of interfaces. We thus want
to prove that the boundary points of the interface are finite, that is, −∞ <

l(φ( j)
t ), r(φ( j)

t ) < ∞ for initial ρ ∈ R and all t ≥ 0. Let φ̄( j ′) be the station-
ary interface for the j ′-evolution. If j ′ < j is small enough, φ ≤ φ̄( j ′) so that, by
Lemma 10,

φ
( j)
t − j t ≤ φ̄

( j ′)
t − j ′t = φ̄( j ′).

This implies that the boundary points of φ( j)
t are bounded by those of φ̄( j ′) and the

theorem is proved. �


7 The harness process

We consider now the (deterministic) Harness Process proposed by Hammersley [8]
with “moving cone” boundary conditions and prove that with the diffusive scaling this
process also converges to the macroscopic evolution φ.

Let H : Z → R and define the operator Θ by

(ΘH)(x) = H(x − 1)+ H(x + 1)

2
(7.1)

but to keep notation light we drop the parentheses and writeΘH(x). Let (Hn(x), x ∈
Z, n ∈ Z

+), Hn(x) ∈ R be the deterministic process satisfying the discrete heat
equation:

Hn+1(x) := ΘHn(x) = Θn+1 H0(x) (7.2)

Here n is time and x is space.

Duality Let X x
n be a symmetric nearest neighbors random walk on Z with X x

0 = x
and pn(x, y) := P(X x

n = y) the probability that the walk goes from x to y in n steps.
Then, a simple recurrence shows that

Hn(x) =
∑

y∈Z

pn(x, y)H0(y) = E(H0(X
x
n )) (7.3)
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Symmetric simple exclusion process with free boundaries 189

Traveling wave solutions A family of traveling wave solutions of this process are

H̄(x) := ax2 + b,

where a and b are arbitrary constants. Indeed,

H̄n := Θn H̄ = H̄ + 2an. (7.4)

Moving boundaries For v = (v1, v2) ∈ Z × R, let Vv : Z → R be the cone defined
by Vv(x) = |x − v1| + v2; call v the vertex of Vv . Let

Hv := {K : Z → R : K (x) = Vv(x) for all but a finite number of x ∈ Z}
H := ∪v∈Z×RHv

For K ∈ Hv define

l(K ) := min{� ∈ Z : K (�+ 1) �= Vv(�+ 1)}
r(K ) := max{� ∈ Z : K (�− 1) �= Vv(�− 1)}

The harness process with moving cone boundary conditions and initial interface
K j

0 ∈ H(0,0) is defined for n ≥ 1 by

K j
n(x) := max{ΘK j

n−1(x), V(0,2jn)(x)}. (7.5)

So that K j
n ∈ H(0,2jn).

A travelling wave solution K̄ of this process is associated to H̄ : if the initial interface
is given by

K̄ j
0(x) :=

{
1
8j + 2jx2, |x | ≤ 1

4j
|x |, |x | ≥ 1

4j
(7.6)

then the evolution (7.5) at time n gives a translation of the initial interface:

K̄ j
n(x) = K̄ j

0(x)+ 2jn. (7.7)

The sides of the cone y = |x | are tangent to the parabola y = 1
8j + 2jx2 at the

points (−1
4j ,

1
4j ) and ( 1

4j ,
1
4j ).

Hydrodynamic limit Let K be a Lipschitz function on H and define

�
(ε)
t (r) := ε

(

K ε j
[ε−2t]([ε−1r ])

)

(7.8)

123



190 A. De Masi et al.

Proposition 4 (Hydrodynamic Limit) Letφt be the evolution of Theorem 4 with initial
condition φ and let K ε j

n the evolution (7.5) with initial interface K (ε)
0 (x) = φ(εx).

Then,

lim
ε→0

sup
r∈R

|�(ε)t (r)− φt (r)| = 0. (7.9)

where the rescaled process �(ε)t (r) is defined in (7.8).

The proof of Theorem 6 follows from the above proposition:

Proof of Theorem 6 Taking K̄ ε j as the explicit stationary solution in (7.6) with j = ε j
and �̄(ε) the corresponding renormalization as in (7.8),

φt (r) = lim
ε→0

�̄
(ε)
t (r) = �

(ε)
0 (r)+ 2 j t = φ̄(r)+ 2 j t (7.10)

where the first identity is consequence of (7.9), the second one comes from the sta-
tionarity of K̄ given by (7.7) and the last one is a computation based on the explicit
expressions of K̄ (ε) and φ̄. �


To prove Proposition 4 we introduce the delta processes associated to K .

The delta harness processes We define the delta harness processes K j,δ,−
� , K j,δ,+

�

as follows. Take δ ≥ 1, fix an initial condition K j,δ,−
0 ∈ H(0,0), K j,δ,+

0 =
max{K j,δ,−

0 , V(0,δj)} and define iteratively

K j,δ,±
� := Θ�−[nδ]K j,δ,±

[nδ] , if � ∈ [[nδ], [(n + 1)δ] − 1], n ≥ 0

K j,δ,−
[nδ] := max{K j,δ,−

[nδ]−1, V(0,nδ2j)}, if n ≥ 1 (7.11)

K j,δ,+
[nδ] := max{K j,δ,+

[nδ]−1, V(0,(n+1)δ2j)}, if n ≥ 1.

Both processes evolve with (7.1) in the time intervals [[nδ], [(n + 1)δ] − 1] ∩ Z

and update the interface at times [nδ]: the process delta− takes the max with the cone
with vertex (0, nδ2j)while the process delta+ takes the max with the cone with vertex
(0, (n + 1)δ2j). The following dominating Lemma follows immediately.

Lemma 11 If K j,δ,−
0 ≤ K j

0 ≤ K j,δ,+
0 , then K j,δ,−

� ≤ K j
� ≤ K j,δ,+

� , for all � ≥ 1; for
all δ ≥ 1, j ≥ 0. Furthermore,

sup
x∈Z,�≥0

{

K j,δ,+
� (x)− K j,δ,−

� (x)
}

≤ δ2j. (7.12)

Hydrodynamic limit of the delta processes Take a macroscopic initial condition φ as
in Theorem 4. Fix j > 0 and take j = ε j , fix δ > 0 and ε small such that δε−2 > 1,
take δε−2 in the place of δ and define

�
ε,δ,±
t (r) := εK ε j,ε−2δ,±

[ε−2t] ([ε−1r ])
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with initial K (ε)
0 (x) = φ(εx), which implies

�
ε,δ,±
0 (r, 0) = �ε0(r) = φ(ε[rε−1]).

From Lemma 11 we have

�
ε,δ,−
t (r) ≤ �εt (r) ≤ �

ε,δ,+
t (r) (7.13)

sup
r,t,ε

(

�
ε,δ,+
t (r)−�

ε,δ,−
t (r)

)

≤ 2δ j. (7.14)

Proposition 5 (hydrodynamics) Let φ be Lipschitz. Then, there exists a constant C >

0 such that,

sup
r

∣
∣
∣�

ε,δ,±
t (r)− φ

δ,±
t (r)

∣
∣
∣ ≤ Ctδβ−1ε1−2β, (7.15)

for any β > 0.

Proof Take t < δ. In this case φt obeys the heat equation. Let W r
t be Brownian motion

with starting point r ; then the solution φt is given by φt (r) = Gtφ(r) = Eφ(W r
t ). By

duality (7.3) and assuming Xn and Wt are defined in the same probability space,

∣
∣
∣�

ε,δ,±
t (r)− φ

δ,±
t (r)

∣
∣
∣ =

∣
∣
∣E

(

φ(εX [ε−1r ]
[ε−2t] )− φ(W r

t )
)∣
∣
∣

≤ E

∣
∣
∣φ(εX [ε−1r ]

[ε−2t] )− φ(W r
t )

∣
∣
∣ ≤ E

∣
∣
∣εX [ε−1r ]

[ε−2t] − W r
t

∣
∣
∣ (7.16)

≤ Cδβε1−2β, for any β > 0, t < δ, (7.17)

where in (7.16) we used that φ is Lipschitz and in (7.17) the dyadic KMT coupling
between the Brownian motion and the random walk [11], Theorem 7.1.

At t = δ we have

∣
∣
∣max

{

�
ε,δ,±
δ− , V(0,[ε−2δ]2 jε2)

}

− max
{

φ
δ,±
δ− , V(0,δ2 j)

}∣
∣
∣ ≤ Cδβε1−2β + ε, (7.18)

because the two cones differ at most by ε. Changing the constant C , (7.18) is bounded
by Cδβε1−2β , so that iterating (7.18) [(t + 1)/δ] times we get (7.15). �


Proof of Proposition 4 As a consequence of (7.13) and (7.14),

∣
∣
∣φt −�

(ε)
t (r)

∣
∣
∣ ≤

∣
∣
∣φt − φ

δ,±
t

∣
∣
∣+

∣
∣
∣φ
δ,±
t −�

ε,δ,±
t

∣
∣
∣+

∣
∣
∣�

ε,δ,±
t −�

(ε)
t

∣
∣
∣

≤ 2δ + Ctδ1−βε1−2β + 2δ.

Taking first ε → 0 and then δ → 0, we get (7.9). �


123



192 A. De Masi et al.

8 Conclusions

In this section we summarize the results we have obtained so far. In Theorems 4 and 1
we have proved convergence in the hydrodynamic limit to a deterministic evolution
for the interface and, respectively, the density. The limit interface φt is Lipschitz
continuous in space and continuous in time, see Theorem 5. At each time t > 0 it
“belongs” to a cone, in the sense that there are real numbers l(φt ) and r(φt ) so that
φt (r) = |r |+ j t for r /∈ (l(φt ), r(φt )), Theorem 7. The limit particle densities inherit
analogous properties from the interface.

The interface evolution φt is characterized in terms of a sequence of upper and
lower bounds φδ,±t which in the limit δ → 0 become identical. φδ,±t are solutions of
time discretized free boundary problems obtained by alternating linear heat diffusion
and motion of the boundaries.

We miss however a proof that the limit evolution satisfies the free boundary problem
described in the introduction for the particle density. We do know however that the
stationary solution of (1.7)–(1.8) is indeed stationary for the limit evolution, Theo-
rem 6. The formula for the velocity of the boundaries is quite natural once we observe
that the levels of the solution of the heat equation have velocity −ρ′′

t /(2ρ
′
t ) (ρ′ and

ρ′′ the space derivatives of ρ). To get (1.8) we need to add the information that at the
endpoints ρ′ = −2 j which is consistent with the analysis of the stationary solution.

We have proved in Theorem 3 that there is a stationary measure for the particle
process at fixed j = jε > 0; we miss however a proof that in the limit ε → 0
it becomes supported by the stationary solution of (1.7)–(1.8), even though this is
stationary for the limit evolution.
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